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Abstract

Let F and H be fixed graphs and let G be a spanning subgraph of H. G is an F-free subgraph of H if F

is not a subgraph of G. We say that G is an F-saturated subgraph of H if G is F-free and for any edge

e ∈ E(H)− E(G), F is a subgraph of G + e. The saturation number of F in Kn,n, denoted sat(Kn,n, F),

is the minimum size of an F-saturated subgraph of Kn,n. A t-edge-coloring of a graph G is a labeling

f : E(G)→ [t], where [t] denotes the set {1, 2, . . . , t}. The labels assigned to the edges are called colors.

A rainbow coloring is a coloring in which all edges have distinct colors. Given a family F of edge-colored

graphs, a t-edge-colored graph H is (F , t)-saturated if H contains no member of F but the addition of any

edge in any color completes a member of F . In this thesis we study the minimum size of (F , t)-saturated

subgraphs of edge-colored complete bipartite graphs. Specifically we provide bounds on the minimum

size of these subgraphs for a variety of families of edge-colored bipartite graphs, including monochromatic

matchings, rainbow matchings, and rainbow stars.

Key words: Saturation, matching, rainbow, monochromatic, star
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I. Introduction

I.1 Saturation Numbers

A graph G consists two sets: a vertex set, denoted V(G) and an edge set, denoted E(G), where edges

are unordered pairs of vertices. A simple graph is an unweighted, undirected graph without loops

or multiple edges. All graphs considered in this thesis are simple. Let G and F be graphs. We

say that G is F-free if F is not a subgraph of G. A graph G is F-saturated if G is F-free and F is a

subgraph of G + e for any edge e ∈ G. The saturation number, denoted sat(G), is the minimum

size of a saturated graph. For example, consider C4, the cycle on four vertices. The complement

of C4, denoted C4, contains two edges. C4 does not contain a triangle, K3 (see figure 1). C4 is

K3-saturated since adding either of the two edges in C4 to C4 will force it to contain a triangle (see

Figure 2).

a b

cd

a b

cd

Figure 1: C4 and its complement C4.

a b

cd

a b

cd

Figure 2: C4 with the addition of an edge from C4.

Let F and H be fixed graphs and let G be a spanning subgraph of H. G is an F-free subgraph

of H if F is not a subgraph of G. We will refer to H as the host graph. We say that G is an

F-saturated subgraph of H if G is F-free and for any edge e ∈ E(H)− E(G), F is a subgraph of

G + e. The saturation number for F in H, denoted sat(H, F), is the minimum size of an F-saturated
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subgraph of H. For bipartite graphs, we will focus on sat(Kn,n, F).

Erdős, Hajnal, and Moon [5] introduced saturation numbers in 1964. They determined the

saturation number of Kk and characterized the n-vertex Kk-saturated graphs of minimum size

inside complete graphs. Later, Bollobás [2] and Wessel [22] independently proved a conjecture

of Erdős, Hajnal, and Moon, regarding saturation numbers in bipartite graphs. In [11], Kászonyi

and Tuza provided a general construction and an upper bound for sat(n, F). They found that

the saturation numbers are at most linear in n, the order of the host graph. A year later, Hanson

and Toft [8] introduced saturation numbers for edge-colored graphs. Then in 2012, Moshkovitz

and Shapira [17] considered saturation in d-partite hypergraphs. If we allow d = 2, the problem

reduces to saturation in bipartite graphs.

I.2 Rainbow Matchings

A t-edge coloring of a graph G is a labeling f : E(G)→ R, where |R| = t. The labels are colors and

the set of edges of one color form a color class. A k-edge coloring is proper if no two edges of the

same color share an endpoint. A matching in a graph G is a set of edges with pairwise disjoint

sets of endpoints (see Figure 3). A perfect matching in a graph G is a matching such that the set of

edges is incident to every vertex in G (see Figure 3). In an edge-colored graph, a rainbow matching

is a matching in which all edges have distinct colors (see Figure 4).

a b

c

de

f

a b

c

de

f

Figure 3: A matching, the set {a f , cd} and a perfect matching, the set {a f , bc, de} for a graph G.
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a b

c

de

f

Figure 4: A rainbow matching of graph G, the set {a f , be, cd}.

A Latin Square of order n is an n× n array with entries from {1, 2, . . . , n} arranged such

that no row or column contains the same number twice. A transversal of such a square is a set

of n entries such that no two entries share the same row, column, or symbol. In 1967, Ryser [18]

conjectured that every Latin Square of odd order has a transversal.

For example, the following matrices, L1 and L2, are Latin Squares of order 4 and 5,

respectively.

L1 =


1 2 3 4

2 3 4 1

3 4 1 2

4 1 2 3

 L2 =



1 2 3 4 5

2 3 4 5 1

3 4 5 1 2

4 5 1 2 3

5 1 2 3 4


Notice that L1 has even order and does not contain a transversal. Suppose we try to create

a transversal with the element, l1,1 = 1 in L1. Next we want to look at the second column where

we can choose between the elements from the second and third rows. We cannot however choose

an element from the fourth row in this example because the element in the fourth row, second

column is a 1. We cannot repeat elements in the transversal. Suppose we choose l3,2 = 4. In the

third column, we have to choose l4,3 otherwise we would repeat 4 in the transversal. This implies

the last choice is l2,4. But now the set contains {1, 4, 2, 1} and this is not a transversal. Repeating

the process with different selection of the elements in the matrix results in the repetition of one

element for the transversal. Thus we cannot build a transversal from L1.
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Take the following transversal:

L2 =



1 2 3 4 5

2 3 4 5 1

3 4 5 1 2

4 5 1 2 3

5 1 2 3 4


.

This is a transversal since each element in the set is a unique element from 1− 5 and we have

selected one element from each row and one from each column.

A Latin square of order n can be encoded as a properly edge-colored copy of Kn,n. Let X =

{x1, x2, . . . , xn} be the set of vertices corresponding to the rows of matrix and Y = {y1, y2, . . . , yn}

be the set of vertices corresponding to the columns. We then color the edge xiyj with the color

corresponding to the element in the ith row and jth column of the matrix. The transversal appears

in the bipartite graph as a rainbow matching of size n. So in our example, L2 is a matrix of order

5 that has encoded a rainbow matching of size 5 inside K5,5 (see Figure 5). In Figure 5, we have

translated the elements in the matrix to colors, so 1 =red, 2 =green, 3 =orange, 4 =purple, and

5 =blue.

x5 y5

x4 y4

x3 y3

x2 y2

x1 y1

Figure 5: A rainbow matching in K5,5 based on L2.
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I.3 Edge-colored Saturation Parameters

In 1987, Hanson and Toft began the exploration of saturation parameters in edge-colored graphs.

They determined the saturation number with respect to monochromatic complete subgraphs in

t-edge-colored graphs. They conjectured that they could relate edge-colored saturation numbers

to Ramsey numbers, leading to new results by Chen [3] and Ferrera et al. [6].

Let R(F) denote the set of all rainbow-colored copies of H. A t-edge colored graph is

(R(F), t)-saturated if G does not contain a rainbow copy of F but for any edge e ∈ G and any color

i ∈ [t], the addition of e in color i to G produces a rainbow copy of F. For example, C4 with four

distinct edge colors is (R(K3), 4)-saturated. Note that before the addition of a new edge, this

graph does not contain a rainbow K3. We can see in Figure 6 the complement of the host graph

without specifying edge colors.

a b

cd

a b

cd

Figure 6: Properly edge-colored C4 on four colors and its complement G.

Now in Figure 7, we have identified the edges in C4 that can be added to the graph in any

of the four colors. If we add the new edge ac in red or blue, then we have a rainbow K3 using

the edges ac, ab and bc. If we add ac in green or yellow, than we have a rainbow K3 using edges

ac, ad and cd. Similarly if we add the edge bd to the C4 in yellow or red, then we have a rainbow

K3 using edges bd, ab, and ad. If we add bd in green or blue, we obtain a rainbow K3 using edges

bd, bc, and cd.
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a b

cd

a b

cd

Figure 7: C4 with the addition of new edge e.

The rainbow saturation number of a graph H, denoted satt(R(F), n), is the minimum number

of edges in a t-edge-colored (R(F), t)-saturated graph of order n.

We define the saturation number for a family of monochromatic edge-colored graphs,

denoted satt((F1, F2, . . . , Ft), Kn,m), inside host graph, Kn,m, as the minimum number of edges in

a t-edge-colored ((F1, F2, . . . , Ft), t)-saturated graph of order n. This implies that the addition of

a new edge e in color i to the host graph, we complete a copy of Fi in color i, where each Fi is

monochromatic.

In many of the monochromatic saturation problems, the results are linear in the number

of vertices in the graph. In [1], Barrus et al. prove that rainbow saturation numbers can have

nonlinear orders of growth.

I.4 Overview

In Section 2, we provide background for the problems considered in Sections 3 and 4. In Section 3,

we prove our main results regarding monochromatic saturation numbers in edge-colored bipartite

graphs. In Section 4, we present our main results for the rainbow saturation numbers of matchings

and stars in a edge-colored complete bipartite graphs. In Section 4.1, we determine an upper

and lower bound for satt(R(mK2), Kn,n). In Section 4.2, we prove asymptotically sharp upper and

lower bounds for satt(R(K1,k), Kn,n. Finally, in Section 5 we summarize our results and discuss

directions for future work.
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I.5 Definitions and Notation

In this section, we provide the definitions and notation used in this thesis. A graph G consists two

sets: a vertex set, denoted V(G) and an edge set, denoted E(G), where each edge is an unordered

pair of vertices. We associate the two vertices with each edge as the endpoints of the edge. We

say that two vertices are adjacent, or are neighbors, if they are endpoints of the same edge. The

neighborhood of a vertex v, denoted N(v), is the set of all vertices that are adjacent to v. The degree

of a vertex v, denoted as d(v), is the size of the neighborhood of the v. So, d(v) = |N(v)|. The

minimum degree of a graph G, denoted δ(G), is the minimum degree of all the vertices in G.

A graph is simple if the graph does not contain any loops of multiple edges, where multiple

edges refers to different edges having the same endpoints. A complete graph on n vertices, denoted

Kn, is a graph that contains every possible edge between n vertices. A path on n vertices, denoted

P(n), is a graph whose vertices can be ordered so that two vertices are adjacent if and only if

they are consecutive in the list. A tree is a connected acyclic graph. A star, denoted K1,k, is a tree

consisting of one central vertex that is adjacent to the other k vertices. The complement of a simple

graph G, denoted G, is the simple graph with the vertex set V(G) defined by uv ∈ E(G) if and

only if uv 6∈ E(G).

A graph G is bipartite if we can partition the vertex set into two sets V1(G) and V2(G), such

that every edge in G has one endpoint in V1(G) and one endpoint in V2(G). A complete bipartite

graph, denoted Kn,m, is a bipartite graph such that two vertices are adjacent if and only if they are

in different partite sets and |V1(G)| = n and |V2(G)| = m.

A t-edge-coloring of a graph G is a labeling f : V(G) → [t], where [t] denotes the set

{1, 2, . . . , t}. The labels assigned to the edges are colors. An edge-coloring is proper if edges with

the same endpoint have distinct colors. The edge-chromatic number of a graph G, denoted χ
′
(G), is

the smallest number of colors required to properly edge-color G. We say that a t-edge-colored

graph is (R(F), t)-saturated if G does not contain a rainbow copy of F, but with the addition of

any edge e ∈ G in any of the t possible colors creates a rainbow copy of F. The rainbow saturation

number of F, denoted satt(n,R(F)) is the minimum number of edges in a (R(F), t)-saturated

graph of order n. Similarly, a graph is (F, t)-saturated if G does not contain a monochromatic

copy of F in any of the possible t colors, but with the addition of any edge e ∈ G in any of the t

possible colors creates a monochromatic copy of F.
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A matching is a set of edges with no shared endpoints. A perfect matching in a graph G is a

matching such that the set of edges is incident to every vertex in G. In an edge-colored graph, a

rainbow matching is a matching such that no two edges have the same color. A vertex cover of a

graph G is a set R ⊆ V(G) that contains at least one endpoint of every edge.

Table 1: Reference for Notation

Notation Brief Description

δ(G) Minimum degree of G

δc(G) Minimum color degree of G

sat(R(H), n) Monochromatic saturation number of graph H

satt(R(H), n) Rainbow Saturation number of H with color set [t]

satt((m1K2, . . . , mkK2), Kn,n) Saturation number for multiple monochromatic matchings inside Kn,n

satt(R(H), Kn,n) Rainbow saturation number for a graph, H, inside Kn,n

8



II. Prior Work

II.1 Saturation Numbers

In [5], Erdős, Hajnal, and Moon introduced graph saturation problems by defining property-(n, k)

on a graph. Let n and k be integers such that 2 ≤ k ≤ n. A graph G on n vertices has property-(n, k)

if the addition of any new edge increases the number of copies of Kk contained in G. In [5],

they defined minimal (n, k) graphs as graphs that have property-(n, k) and contain the minimum

number of edges. They wanted to know if every bipartite graph with partitions n, m that does

not contain a Kk,k but will contain this complete subgraph with the addition of any new edge,

will have at least (k− 1)(n + m− k + 1) edges. Using induction on k and l and assigning weights

to edges in the graph, Bollobás [2] determined the number of edges necessary in a graph with

property(k, n). We present Bollobás’ theorem, which influenced our results for the monochromatic

matchings.

Theorem 1 (Bollobás [2]). Let k ≤ n and l ≤ m, then sat(Kk,l , Kn,m) = (k− 1)m + (l − 1)n− (k−

1)(l − 1).

Wessel [22] independently determined the saturation number for bipartite graphs by

specifying the coloring of the edges in sets. A survey of saturation problems can be found in

[9].

Hanson and Toft [8] applied concepts from [5] to observe edge-colored saturated graphs. In

a complete graph Kn colored in such a way that there is no monochromatic complete ki-subgraph,

they determined the number of edges necessary such that the addition of any edge in any color will

create a monochromatic complete ki-subgraph in that respective color. G is (k1, k2, . . . , kt)-saturated

if there exists a coloring of the edges in G with t colors such that there is no monochromatic copy

of Kki
in color i for any i, but the addition of any new edge in color i creates a monochromatic

Kki
.

For graphs G, H1, . . . , Hk we write that G → (H1, . . . , Hk) if every k-coloring of the edges of

G contains a monochromatic copy of Hi in color i for some i. A graph G is (H1, . . . , Hk)-Ramsey

minimal if G → (H1, . . . , Hk) but for any edge e ∈ G, (G− e) 6→ (H1, . . . , Hk). LetRmin(H1, . . . , Hk)

denote the family of (H1, . . . , Hk)-Ramsey minimal graphs. Given simple graphs G1, . . . , Gk, the

classic Ramsey number is the smallest integer n such that every k-coloring of E(Kn) contains a

9



copy of Gi in color i for some i. Hanson and Toft [8] conjectured that if r = r(k1, . . . , rk) is the

classical Ramsey number for complete graphs, then

sat(Rmin(Kk1 , . . . , Kkt), n) =

(n
2) if n < r

(r−2
2 ) + (r− 2)(n− r + 2) if n ≥ r.

In [3], Chen et al. considered the first non-trivial case for this conjecture. For sufficiently

large n, they showed that sat(Rmin(K3, K3), n) = 4n− 10 for n ≥ 56. Ferrara, Kim, and Yeager [6]

showed that sat(Rmin(m1K2, . . . , mkK2), n) = 3(m1 + · · ·+ mk − k) given that m1, . . . mk ≥ 1 and

n ≥ 3(m1 + · · ·+ mk − k). They prove this result and characterize saturated graphs of minimum

size using the approach of iterated recoloring, in which they reassign the colors of various edges

to force structures in G to appear.

Moving away from monochromatic saturation numbers, Barrus et al. [1] studied rainbow

edge-colorings in an edge-colored graph. A rainbow edge-coloring of a graph H is an edge coloring

in which every edge in H receives a different color. The set of rainbow-colored copies of H is

denoted R(H). A graph is (R(Kk), t)-saturated if G does not contain a rainbow copy of Kk, but

with the addition of any edge e ∈ G in any of the t possible colors creates a rainbow copy of H.

Thus satt(n,R(Kk)) is the minimum number of edges in a (R(Kk), t)-saturated graph of order n.

They observed that if k ≥ 3 and the number of colors t is at least (k
2), then for large n there exists

constants c1 and c2 such that:

c1
n log n

log log n
≤ satt(R(Kk), n) ≤ c2n log n

They also determined the rainbow saturation number for several classes of graphs and bounds for

other graphs. We present their proof for rainbow stars in Kn, which lead to the observations for

rainbow stars in Kn,n

Theorem 2 ( Barrus et al. [1]). If n ≥ (k + 1)(k− 1)/t then satt(R(K1,k), n) = Θ( (k−1)
2t n2).

Proof. Let G be a (R(K1,k), t)-saturated graph on n vertices. We have the following observations:

1. No vertex is incident to edges of k or more colors, otherwise G already contains a rainbow

K1,k.

2. If v is incident to edges of at most k− 2 colors then v has degree n− 1.

3. If vertices w and v both see color i, then v must be adjacent to w.

10



Now, by observations 1 and 2, we can partition the vertex set into two parts: a set X of vertices

that see at most k− 2 colors and a set Y that sees exactly k− 1 colors. We can use observation 3

to partition the set Y based on the colors each vertex sees. This partitioning results in ( t
k−1) sets.

Notice that if two of the partitioned sets in Y correspond to vertices that are incident to edges of a

common color, then the sets must be completely joined. Now if we contract each independent set

to a vertex and include edges where we have complete bipartite graphs between the independent

sets, we have the blow up of Y, G[Y]. We want to look at the complement. We can see that G[Y]

is (R(K1,k), t)-saturated since no vertex sees k colors and the only missing edge are between sets

in Y that correspond to vertices that are incident to disjoint color sets. If we add a new edge vw

in color i, where v and w are in different sets, then with out loss of generality, w did not contain

a neighbor of color i. Now we want to minimize the edges for the graph presented. Note that

minimizing the number of edges present in the graph is equivalent to maximizing the number of

edges in the complement of G. Using Turáns Theorem, they conclude that the number of edges is
k−1

t (n
2) edges.

They concluded by considering the rainbow saturation number for matchings. By presenting

lower bounds for the size of G and the number of colors, they showed that for a positive integer

m, with t ≥ 5m− 5 and n ≥ 5
2 m− 1, that:

11
4

m ≤ satt(R(mK2), n) ≤ 5m− ε,

where ε = 5 if m is even and ε = 4 if m is odd.

11



II.2 Rainbow Saturation

A rainbow matching in an edge-colored graph is a matching such that no two edges have the same

color. A Latin Square of order n is an n× n array with entries from {1, 2, . . . n} arranged so that no

row or column contains the same number twice. A Latin transversal is a set of entries in a Latin

square that includes exactly one entry from each row and column and one of each element in

this set is unique. Ryser [18] conjectured that each Latin Square of odd order contains a Latin

transversal. A survey of rainbow matchings and rainbow subgraphs in edge colored graphs can

be found in [10].

Li and Wang [20] examined rainbow matchings in edge-colored graphs. The color degree of

a vertex v is the number of distinct colors on the edges incident to v and is denoted dc(v). The

minimum color degree of a graph G, denoted δc(G), is the smallest number of distinct colors on the

edges incident with a vertex in G. Li and Wang showed that if δc(G) ≥ k, then G will contain a

rainbow matching of size
⌈

5k−3
12

⌉
. If δc(G) ≥ k ≥ 4, then they conjectured that the graph must

contain a rainbow matching of size
⌈

k
2

⌉
.

LeSaulnier et al. [14] proved that if δc(G) = k G contains a rainbow matching of size at least⌊
k
2

⌋
. They also conjectured three sufficient conditions for a graph to contain a rainbow matching

of size
⌈

k
2

⌉
: G must be triangle-free, it must be properly edge-colored for G 6= K4 and n 6= k + 2,

and |V(G)| > 3(k−1)
2 . Kostochka and Yancey [13] proved that if G is not a properly edge-colored

K4 and δc(G) ≥ k, then G contains a rainbow matching of size at least
⌈

k
2

⌉
.

An alternative approach to finding and guaranteeing a rainbow matching in a graph is

by using the minimum degree of the vertices of a properly edge-colored graph G, denoted δ(G).

Wang [19] showed that if the number of vertices in a graph G is greater than 8δ(G)
5 , then G

contains a rainbow matching with size at least
⌊

2δ(G)
3

⌋
. Wang asked if there exists a function

f (n) such that if a properly edge colored graph with the property that |V(G)| ≥ f (δ(G)), then

G must contain a rainbow matching of size δ(G). Diemunsch et al. [4] answered this question,

proving that if the number of vertices in a properly edge-colored graph G is larger than 98δ(G)
23 ,

then G contains a rainbow matching of size δ(G). Thus f (δ(G)) < 4.27δ(G) suffices. Using a

greedy algorithm, they efficiently constructed a rainbow matching of size δ(G) in a properly

edge-colored graph with order 6.5δ(G). Independently, Gyárfás and Sárkőzy [7] improved this

bound to f (δ(G)) ≤ 4δ(G)− 3.
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Kostochka, Pfender, and Yancey [12] showed that in every edge colored graph, not neces-

sarily properly colored, that as long as G contains at least 17k2

4 vertices and δc(G) ≥ k, then G

contains a rainbow matching of size k. In [16], Lo and Tan showed that every edge-colored graph

on n vertices with δc(G) ≥ k contains a rainbow matching of size k provided that n ≥ 4n− 4 for

k ≥ 4. So, f (k) ≤ 4k− 4 for k ≥ 4. Lo [15] improved this bound to show that if a graph contains

n ≥ 7k
2 + 2 vertices for k ≥ 4 then G contains rainbow matching of size at least k. Moreover, if the

graph G is bipartite, he improved the bound to n ≥ (3 + ε)k + ε−2, where 0 < ε ≤ 1
2 .

The previous results all relate to general graphs G. Now we want to consider bipartite

graphs. In [20], Wang and Li consider the color degree of a neighborhood of a set of vertices.

Let S be a set of vertices and let |Nc(S)| denote the color degree of the neighborhood of S. They

showed that if G is an edge colored bipartite graph with bipartition X, Y and |Nc(S)| ≥ |S| for

all S ⊆ X, then G has a rainbow matching of size
⌈
|X|
2

⌉
. Wang and Liu [21] showed that if G is

a properly edge-colored bipartite graph with partite sets X and Y such that δ(G) = k ≥ 3 and

max {|X|, |Y|} ≥ 7k
4 , then G contains a rainbow matching of size at least

⌊
3k
4

⌋
.
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III. Monochromatic Matchings

A matching in a graph G is a set of edges with pairwise disjoint sets of end points. A vertex cover

of a graph is a set of vertices that contains at least one endpoint of every edge. In the proof of the

following theorem, we use the Kőnig-Egerváry theorem.

Theorem 3 (Kőnig-Egerváry [23]). If G is a bipartite graph, then the maximum size of a matching in G

equals the size of a minimum vertex cover.

Since our graphs are edge-colored and we seek monochromatic matchings, we introduce a

colored version of vertex covers. By constructing vertex covers of the appropriate size for each

of the matchings, we are able to bound the number of edges in the graph. Suppose we want the

host graph to contain a fixed number of different sized matchings, where the sum of the sizes of

matchings is sufficiently less that n and we order the matchings such that m1 ≤ m2 ≤ · · · ≤ mt.

We want to know how many edges are necessary in this graph to ensure that the addition of a new

edge increases the size of one of the matchings. Our results have an interesting conclusion: the

number of edges is solely dependent on the size of the largest in the graph. There can be multiple

matchings of the largest size in G but the number of matchings does not dictate the number of

edges necessary. Consider a bipartite graph with color set [t]. Then,

Theorem 4. If m1, . . . , mt be positive integers such that m1 ≤ m2 ≤ · · · ≤ mt and n ≥ ∑t
i=1 mi, then

sat(m1K2, Kn,n) = n(m1 − 1) +
⌊

m1−1
2

⌋2
−
⌊

m1−1
2

⌋
(m1 − 1).

Proof. Let G be a t-edge-colored bipartite graph with parts X = {x1, x2, x3, . . . , xn} and Y =

{y1, y2, y3, . . . , yn}. Consider a bipartite subgraph in G with parts X
′
= {x1, x2, . . . , xbmt

2 c} and

Y
′
= {y1, y2, . . . , ydmt

2 e−1}. Partition the set X − X
′

into t sets such that |Xi| = mi for t ∈ [t− 1]

and Xt = X−
(

X
′ ∪ X1 ∪ · · · ∪ Xt−1

)
. We partition Y−Y

′
in the same manner by creating t sets

Y1, . . . , Yt such that |Yi| = mi for t ∈ [t− 1] and Yt = Y −
(

Y
′ ∪Y1 ∪ · · · ∪Yt−1

)
. Let the set K1

have
⌊

k1
2

⌋
vertices in X

′
and

⌈
k1
2

⌉
− 1 vertices in Y

′
. Connect the set of k1 in X

′
to Y and y

′
to X

with edges in color 1. Similarly, let the set K2 have
⌊

k2
2

⌋
vertices in X

′
and

⌈
k2
2

⌉
− 1 vertices in

Y
′
. We want to connect these two sets with edges in color 2. Then connect the set of K2 in X

′
to

Y and y
′

to X with edges in color 2, without reassigning the edges already in color 1. We will

continue coloring the sets X
′

and Y
′

by dividing it into sets of Ki with edges in color i up to the

14



largest set Kbm
2 c. Without loss of generality, we order the sets so that k1 ≤ k2 · · · ≤ kbm

2 c. Then we

connect the remaining edges between X
′

and Y and Y
′

and X with color m
2 so that the vertices in

X
′

and Y
′

have degree n. This can bee seen in Figure 8, where each solid edge between the Ki sets

represents a collection of edges.

The total number of edges in G is:

=
⌊mt

2

⌋ (
n−

⌈mt

2

⌉
+ 1
)
+
(⌈mt

2

⌉
− 1
) (

n−
⌊mt

2

⌋)
+
(⌊mt

2

⌋) (⌈mt

2

⌉
− 1
)

= n(mt − 1) +
⌊

mt − 1
2

⌋2
−
⌊

mt − 1
2

⌋
(mt − 1)

K1

K2

K3

Kt

X
e

K1

K2

K3

Kt

Y

X1 Y1

X2 Y2

Xt Yt

Figure 8: Construction 1: Monochromatic Matching.

Consider the graph G presented in the construction. The size of the largest vertex cover

for color i in this graph is mi − 1 by construction. Thus by Kőnig-Egerváry Theorem, the size of

the largest matching in this graph is mi − 1 for i ∈ [t]. Thus this graph does not contain a miK2.

Suppose we add a new edge to G in color i. Since all the vertices in X
′

and Y
′

have degree n, we

must add this new edge between Y−Y
′

and X− X
′
. With the addition of e in color i, the size of

the minimum vertex cover for color i increased by 1. By the Kőnig-Egerváry Theorem, since our

15



minimum vertex cover has size mi, our matching in color i will also increase by one. Thus

sat((m1K2, ..mkK2), Kn,n) ≤ n(M− 1) +
⌊

M− 1
2

⌋2
−
⌊

M− 1
2

⌋
(M− 1).

For the lower bound, let G be a t-edge-colored bipartite graph that is (m1K2, . . . , mtK2)-

saturated. Let M = max{m1, . . . , mt}. Without loss of generality, let mt be the largest. The

largest possible monochromatic matching in G is size mt − 1, since the addition of an edge

in color t would not increase the size of the matching in color t and the graph would not be

(m1K2, . . . , mtK2)-saturated. By the Kőnig-Egerváry Theorem, we know there must be a minimum

vertex cover of color t of size mt − 1. For G to be (m1K2, . . . , mkK2)-saturated, each vertex in the

vertex cover must have degree n otherwise the addition of an edge in color t that will not yield a

matching mtK2 in color t. Let S be the set of vertices that make up the vertex cover of color t. Let

|S ∩ X| = r and |S ∩Y| = mt − 1− r. Then the graph has at least n(mt − 1)− s edges, where s is

the number of edges that are between S ∩ X and S ∩ Y. The the total edges between these two

parts is r((mt − 1)− r) = −r2 − r(mt − 1) = s. Thus the total number of edges in this graph is

given by:

|E(G)| = (n− r)((mt − 1)− r) + r((mt − 1)− r) + r(n− (mt − 1) + r)

= n(mt − 1)− r(mt − 1) + r2.

If follows that E(G) is minimized when r =
⌊

mt−1
2

⌋
, and thus G must contain at least n(mt − 1)−⌊

mt−1
2

⌋
(mt − 1) +

⌊
mt−1

2

⌋2
edges.

16



IV. Rainbow

IV.1 Rainbow Matchings

In [1], Barrus et al. determined bounds for the saturation number of rainbow matchings. We want

to consider the bounds for the saturation number for a rainbow matching, mK2, inside Kn,n.

In rainbow matchings, we lose the ability to use the Kőnig-Egerváry Theorem that produced

concrete bounds in the monochromatic case. Since we cannot look at rainbow vertex covers to

count the number of edges, we use an elementary graph, a K2,2 that is properly egde-colored with

two colors. The structure of K2,2 allows us to chose only one edge to be part of the matching. Since

we want a matching of size m in this graph, we will need m− 1 copies of the K2,2. Disjoint copies

with disjoint color sets allows us to add any new edge between the K2,2’s to increase the size of

the matching. As we will see, increasing the lower bound for the number of edges for the rainbow

matching saturation is difficult. We know that initially we will need at least m− 1 edges in the

graph. Since we cannot use vertex covers, we start by building up the degree on the vertices in the

graph.

Theorem 5. If n > m, then 2m ≤ satt(R(mK2), Kn,n) ≤ 4(m− 1).

Let G be a bipartite graph with parts X = {x1, x2, x3, . . . , xn} and Y = {y1, y2, y3, . . . , yn}.

Let the edge set of G consist of m− 1 disjoint copies of K2,2. Properly edge color each K2,2 with

pairwise disjoint sets of two colors. The number of edges in G is 4(m− 1). Let H be the induced

subgraph of G that contains all vertices of with positive degree (see Figure 9). This graph does not

contain a rainbow matching of size m. In each copy of K2,2, we can take one edge to be included

in any rainbow matching. If we select two edges from the same K2,2, then both of the edges would

be the same color.
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X Y

e

m− 1

Figure 9: Construction 2: Rainbow Matching.

Consider the addition of a new edge xy to this graph x, y ∈ G− H. Then, regardless of the

color of xy this new edge will increase the size of the largest rainbow matching by one. The next

case is x ∈ H and y ∈ G− H. If an edge in the matching was incident to x before the addition of

the new edge, then when we add xy we take the other edge of that same color in the K2,2. In the

third case, we add xy in H such that x is in one K2,2 and y is in a different K2,2. Regardless of the

color of xy we will be able to chose three edges, xy and one edge from each disjoint K2,2. As a

result, the addition of any new edge e will force H to have a rainbow matching of size m.

For the lower bound, we know that we need at least m− 1 edges since that is the size of the

largest possible rainbow matching without xy.

Observation 6. G contains no vertices of degree 1.

Proof. Suppose that x1 is a vertex of degree 1 in X with edge x1y1 has color 1. Suppose the vertex

y1 has other neighbors in X. Add new edge e to the graph. If this new edge is added such that is

has the form xry1, for xr ∈ X, in color 1, then the size of the rainbow matching will not increase

since we can swap out this new edge for the edge between x1y1. Therefore, x1 can not have degree

one as claimed. Since every vertex of positive degree has degree at least 2, and we have at least

m− 1 vertices of positive degree in X, then we have 2m as our lower bound.
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Increasing the lower bound beyond this point requires that we increase the overall degree

of the vertices incident to the m− 1 edges in the matching. However this gets difficult as each time

we add a new edge to increase the vertices, we will have to consider the degree of the vertices

neighboring the endpoint of the new edge. The goal is to increase the average degree across the

vertices to be closer to 3.
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IV.2 Rainbow Stars

In [1], Barrus et al. proved the bounds for the saturation number of a rainbow star in a graph

on n vertices. We want consider a similar problem with the host graph Kn,n. In this proof, we

make use of the Pigeonhole Principle, by taking a large number of vertices and partitioning them

by the color of their edges. In order to achieve asymptotic bounds, we go through a process of

duplicating vertices to mimic the vertex of smallest degree in G. Duplication will keep the number

of edges in the graph the same, or it will reduce the number of edges needed. There will be some

edges in the graph that we can not remove by trying to duplicate the adjacent vertex without

losing being R(K1,k)-saturated. We refer to these edges as "special" edges. We then proceed to

use the pigeonhole principle to group these special edges based on their color and use these sets

to count the number of edges necessary in the graph to increase the size of the rainbow star by

one.

Consider a bipartite graph Kn,n with color set [t].

Theorem 7. For t > 2k, 2n(k− 1)−O(t2) ≤ satt(R(K1,k), Kn,n) ≤ 2n(k− 1)−O(t2).

Proof. Let G be a bipartite graph with parts X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn}. Consider

a set X
′
= {x1, x2, . . . , xk−1} in X and a set Y

′
= {y1, y2, . . . , yk−1} in the saturation number for a

rainbow star. For each i ∈ [k− 1], completely join xi from X
′

to the vertices in Y− Y
′

in color i.

Next, completely join yi from Y′ to X− X′ with edges of color k− 1 + i. Finally let X
′

and Y
′

be

completely joined with edges in color 1. The total number of edges in G is:

|E(G)| = 2n(k− 1)− (k− 1)2

Consider the graph G presented in the construction (see Figure 10). From the construction,

we know that each vertex can see at most k − 1 colors, thus the largest rainbow star in G has

size k− 1. Thus this graph does not contain a R(K1,k). Suppose we add a new edge e = xjyl

to G in color i. Since all the vertices in X
′

and Y
′

have degree n, e must be added between

X − X
′

and Y − Y
′
. With the addition of e in color i, we have increased the rainbow star at

xj unless the vertices in X
′
X already have an edge in color i. In which case, since the color

sets between X and Y are disjoint, we have increased the size of the rainbow star in ys. Thus,
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satt(R(K1,k), Kn,n) ≤ 2n(k− 1)− (k− 1)2.

x1

x2

x3

xk−1

xk

xl

xm

xp

y1

y2

y3

yk−1

yk

yl

ym

yp

X
′

X
e

Y
′

Y

Figure 10: Construction 3: Rainbow Star.

Let G be a R(K1,k)-saturated graph. For the lower bound, we know that we need at least

k− 1 edges since that is the size of the largest possible rainbow star without xy. We begin by

presenting some observations about R(K1,k)-saturated graphs.

Observation 8. Every vertex can see at most k− 1 colors. If a single vertex sees k or more colors,

then G would already contain a rainbow K1,k.

Observation 9. If a vertex v is incident to edges of at most k− 2 colors, then it must have degree

n. Otherwise suppose that u and v are not adjacent.Let ci be the color of an edge incident to u. If

we add the new edge uv in color ci , then we have not created a rainbow K1,k at u, nor have we

created a rainbow K1,k at v since v sees at most k− 1 colors. Hence G is not R(K1,k)-saturated.

Observation 10. If two vertices see the same color, they must share an edge. If u and v both see

color i, then u and v must be adjacent; otherwise we can add the edge between u and v in color i

without creating a rainbow K1,k.
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Observation 11. Since xj sees k− 1 colors, we know k− 1 ≤ δ ≤ 2(k− 1). Otherwise there are

2n(k− 1) edges in G.

Now we consider the remaining vertices in X. In order to reduce the number of edges from

being a complete bipartite graph, we want to try to duplicate the vertex xj. By duplication, we

refer to the process of taking a vertex xi and removing its edges to Y and then reconnecting it to

Y so that it has the edges to the same vertices in Y as xj in the same color. So if xjyj is color j,

then the edge xiyj is color j. Consider the vertex x1 and its edges into Y. If all of x1’s edges can

be removed without loosing the property of being R(K1,k)-saturated then we can remove these

edges and recreate the edges between x1 and Y so that it is identical to xj. The edges that we must

have to remain R(K, K1,k)-saturated we will call "special," which means that we have vertices we

are not able to duplicate. We can repeat this process of duplicating vertices in X and collect the

vertices that cannot be repeated.

Observation 12. The duplication process will not increase the number of edges. Since xj has

minimum degree, each duplication will result in either the same number of edges previously

adjacent to the vertex, or it will decrease the number of edges. Therefore we may assume that it is

not possible to duplicate any vertices in G.

Let X
′

be the set of vertices in X that are incident to special edges. Since G is edge colored

with t colors, then by the Pigeonhole Principle, we know that there are x
t special edges with the

same color. Those x
t special vertices in X′ that are incident to special edges of the same color. By

Observation 10, this implies that there is a complete bipartite graph, K x
t , x

t
. Counting the number

of edges, we obtain
( x

t
)2 from the complete bipartite graph. Then we count the number of edges

that we were able to duplicate, (n− x)(k− 1). And then the remaining vertices, the number of

edges that are incident to the vertices in Y that are not neighbors of xj and are also not in the

matching in X are
(
n− 2(k− 1)− x

t
)
(k− 1). Therfore:

|E(G)| ≥
( x

t

)2
+ (n− x)(k− 1) +

(
n− 2(k− 1)− x

t

)
(k− 1)

Minimizing this with respect to x, we obtain x = (k−1)(t+1)
2 and,

|E(G)| ≥ 2n(k− 1)−
[
(k− 1)2(t + 1

2
+

t(k− 1)(t + 1)
2

− (k− 1)(t + 1)
t

+ 2(k− 1)2
]

.
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V. Conclusion

In this thesis, we have examined the saturation number for a bipartite graph containing multiple

matchings. In our problem, we looked at the host graph Kn,n with k matchings. Using the Kőnig-

Egerváry Theorem, we found that if the number of vertices is sufficiently larger than the number

of monochromatic edge matchings in the graph, we have exact results for the number of edges in

the graph.

Question 1. How many matchings can we fit into this graph?

Question 2. What will happen to the saturation number if the partitions of the graph G are no

longer the same size?

We conjecture that when the partitions of the graph become unbalanced, the construction

will change to have more of the vertex covers on the bigger side. This will decrease the number of

edges needed in the graph.

As an extension of the monochromatic matchings in the bipartite graph, in Section 4 we

consider rainbow matchings. In this case, the lower bounds seem difficult to obtain. We presented

a construction for an upper bound in order to obtain the saturation number for the rainbow

matching. We then presented some observations for the lower bound. The difficulty with the

lower bound lies in trying to increase the average degree of the vertices with positive degree in

the graph. Since we observed that every vertex cannot have degree one, to obtain lower bounds

closer to our construction, we need to increase the number of vertices with positive degree to get

closer to our construction.

Following the ideas from [1], we determined asymptotic results for the rainbow saturation

number of a star in Kn,n. A family of constructions can account for the upper bound on the

saturation number of the rainbow star. By duplicating the smallest degree vertex, we were able

to isolate the edges that were necessary to keep the graph saturated, the ’special’ edges. The

Pigeonhole Principle allowed us to group the special edges in order to count the number of edges

in the graph. An interesting comparison would be to look at the saturation for monochromatic

stars in Kn,n.

Question 3. We viewed the saturation number for rainbow stars, what is the saturation for

monochromatic stars?
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For future work, it would be interesting to explore the previously stated questions, as

well as look for other subgraphs inside Kn,n and then see how these results compare when the

partitions become unbalanced.
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