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ABSTRACT

Very-Large Scale Integration (VLSI) is the problem of arranging components on the surface of a

circuit board and developing the wired network between components. One methodology in VLSI is

to treat the entire network as a graph, where the components correspond to vertices and the wired

connections correspond to edges. We say that a graph G has a rectangle visibility representation if

we can assign each vertex of G to a unique axis-aligned rectangle in the plane such that two vertices

u and v are adjacent if and only if there exists an unobstructed horizontal or vertical channel of

�nite width between the two rectangles that correspond to u and v. If G has such a representation,

then we say that G is a rectangle visibility graph.

Since it is likely that multiple components on a circuit board may represent the same electrical node,

we may consider implementing this idea with rectangle visibility graphs. The rectangle visibility

number of a graph G, denoted r(G), is the minimum k such that G has a rectangle visibility

representation in which each vertex of G corresponds to at most k rectangles. In this thesis, we

prove results on rectangle visibility numbers of trees, complete graphs, complete bipartite graphs,

and (1, n)-hilly graphs, which are graphs where there is no path of length 1 between vertices of

degree n or more.
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I. Introduction

I.1 VLSI Design

When manufacturing computer chips, Very-Large-Scale Integration (VLSI) is the process of arrang-

ing and placing transistors on the surface of a small chip, as well as the wired network between

components. Designing an optimal arrangement can substantially decrease a circuit's footprint,

allowing for the production of smaller and cheaper electronics. The optimal arrangement of VLSI

components, however, is an NP-hard problem. Since a circuit's functionality is largely dependent

on its arrangement, VLSI optimization is a critical aspect of a circuit design.

Various algorithms, mathematical models, and methodologies for the VLSI problem have been

proposed and studied in recent years ([2,5,6,14,15]). While the placement of components on a circuit

board heavily impacts the total physical area required in manufacturing and overall performance

of the circuit, it is only one of three subproblems in the VLSI problem. The other two subproblems

include the partitioning of components, which splits the circuit into logical sub-circuits, and the

routing of the circuit, which constitutes the placement of wires used to connect components and

develop the network. This has motivated the study of techniques to address this circuit design

problem from di�erent angles.

I.2 Visibility Graphs

The VLSI component placement subproblem can be confronted from a graph theoretic approach

by assigning components on a computer chip's surface to vertices, and the wires that make up the

network to edges. A visibility representation of a graph G is an assignment of the vertices in G to

objects in a plane where vertices u and v are adjacent in G if and only if there is an unobstructed

straight-line channel between the objects that correspond to u and v. If this condition is satis�ed,

then we say that the objects corresponding to u and v "see" one another. A graph with a visibility

representation is called a visibility graph. While visibility graphs are limited in their application

to VLSI design due to the restriction of edges in the graph corresponding only to objects that

see one another, they form a starting point for the consideration of a physical ciruit network as a

graph.

In [17], Wismath �rst introduced bar visibility graphs by considering the assignment of vertices of a

graph G to horizontal line segments of �nite nonzero length called bars, where two vertices u and v
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are adjacent if and only if there is there is an unobstructed, vertical straight-line channel between

the bars that correspond to u and v (see Figure 1 (a) and (b)). Wismath also developed a unifying

characterization of bar visibility graphs, which Tamassia and Tollis [16] extended by considering

how the visibility representation of a graph relates to the visibility representations of its subgraphs.

Since this initial investigation, the study of visibility graphs has expanded to include many variants.

Typically, visibility graphs are denoted by the shape and structure of the objects to which vertices

are assigned, as is the case for bar visibility graphs. Additional objects that have been analyzed

include rectangles [3] (see Figure 1 (c) and (d)), arcs (used in arc-and-circle visibility graphs [13]),

and points [12]. Another element of interest in visibility graphs is object uniformity. Examples of

these have been studied with bars [7] and rectangles [9]. A unit bar visibility graph is one with a

bar visibility representation whose bars are all of equal length. A unit rectangle visibility graph is

one with a rectangle visibility representation whose rectangles are all unit squares.

Dean et al. [8] introduced an alternative type of visibility graph that is better suited for the landscape

of VLSI design. A bar k-visibility graph is one that admits two bars b(u) and b(v) corresponding to

vertices u and v respectively to see one another if and only if the straight-line channel between them

intersects at most k bars. This removes the need for an uninterrupted channel required for two

bars to see one another. In a circuit design, it is not unusual for connections to be made between

components that are not next to one another in the layout. Wires can easily be made to bend around

components or insert into deeper layers of the circuit board in order to make these connections, so

lessening the restriction of visibility in this manner facilitates a more realistic approach to VLSI

design.

I.3 Visibility Numbers

Electronic designs in VLSI often include components that are represented more than once on the

surface of a circuit board. It is therefore intuitive to consider this approach in the study of visibility

representations. We de�ne a t-visibility representation of a graph G to be a visibility representation

where a maximum of t objects are assigned to each vertex in G. Note that there exists some t

for every graph such that a t-visibility representation exists. The visibility number of a graph G is

the minimum t such that a t-visibility representation of G exists. The study of visibility numbers

in the literature thus far has been limited to bar visibility graphs [1, 4, 11]. A t-bar representation

of a graph G is a bar visibility representation in which a maximum of t bars are assigned to each

vertex in G. The bar visibility number of a graph, denoted b(G), is the minimum t such that a
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Figure 1: (a) A graph G (b) A bar visibility representation of G (c) A graph H (d) A rectangle visibility

representation of H
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Figure 2: A 2-rectangle visibility representation of K9

t-bar representation of G exists. Chang et al. [4] proved various results on bar visibility numbers

including bounds on bar visibility numbers for planar graphs, complete bipartite graphs, complete

graphs, and n-vertex graphs. Axenovich et al. [1] later studied bar visibility numbers of directed

graphs. The unit bar visibility number of a graph, denoted ub(G), is the bar visibility number of G

under the condition that the bars are of equal length.

A t-rectangle representation of a graph G is a rectangle visibility representation in which a maximum

of t rectangles are assigned to each vertex in G (see Figure 2). Similarly, the rectangle visibility

number of a graph, denoted r(G), is the minimum t such that a t-rectangle representation of G

exists and the unit rectangle visibility number of a graph, denoted ur(G), is the rectangle visibility

number of G under the condition that the rectangles are unit squares. The purpose of this thesis is

to provide an analysis of rectangle visibility numbers. A rectangle visibility graph can be thought of

loosely as an extension of a bar visibility graph into two dimensions. Therefore, many of the results

involving rectangle visibility numbers in this thesis are inspired by analogous results involving bar

visibility numbers.

I.4 Overview of Thesis

In Section 2 we provide a brief history of visibility representations and visibility numbers. We

start with the motivation and introduction of bar visibility graphs, which eventually led to the

development of rectangle visibility graphs, and present several important results for these two

classes of visibility graphs. We then move on to discuss advancements regarding bar visibility
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numbers and rectangle visibility numbers, as well as their unit length counterparts.

In Section 3 we present our main results. In Section 3.1, given a graph G, we determine a lower

bound for the rectangle visibility number of G. In Section 3.2, given a tree T , we present an upper

bound for the unit rectangle visibility number of G. We then show that this unit rectangle visibility

number is equal to the unit rectangle arboricity of T by means of a general result that is applicable

in n dimensions. In Section 3.3, we present an upper bound on the rectangle visibility number of a

complete graph Kn. In Section 3.4, we present a lower bound on the rectangle visibility number of

a complete bipartite graph Km,n and an upper bound when m = n. In Section 3.5, we introduce

(1, n)-hilly graphs and show that if G is a (1, 4)-hilly graph, then r(G) ≤ 2. We conclude by showing

that, for all n, there exists a (1, n)-hilly graph whose rectangle visibility number can be bounded

below.

In Section 4, we discuss possible extensions of the results in this thesis for future work.

I.5 Notation & De�nitions

This section is devoted to de�ning terms that will be used throughout this thesis. A graph G is

de�ned by two sets: the vertex set of G, denoted V (G), and the edge set of G, denoted E(G). Each

edge is an unordered pair of vertices. A simple graph is one that contains no duplicate edges or

self-loops. All graphs for the purpose of this thesis are simple graphs. An edge e is incident to a

vertex v if it includes v. Two vertices u and v are adjacent if they are in the same edge. Similarly,

u is a neighbor of v if u is adjacent to v. The degree of a vertex v in G, denoted deg v, is the

number of vertices that v is adjacent to. The maximum degree of a graph G, denoted ∆(G), is the

maximum degree among all vertices in G. A subgraph H of G is a graph such that V (H) ⊆ V (G)

and E(H) ⊆ E(G). An induced subgraph H of G is a subgraph where all edges between vertices in

V (H) are members of E(H). Two vertex sets V1(G) and V2(G) are disjoint if there are no edges in

E(G) between vertices from V1(G) and V2(G). A decomposition of G is a partitioning of its edges.

An edge e = uv in a graph G can be subdivided into two edges by inserting a vertex w in between

u and v so that e becomes e1 = uw and e2 = wv. A subdivision of a graph G is a graph that is the

result of subdividing edges in G. A digraph is a graph G where the each member of E(G) is an arc

that is de�ned by an ordered pair of vertices from V (G).

The path on n vertices, denoted Pn, is the graph with V (Pn) = {v1, v2, ..., vn} and E(Pn) =

{v1v2, v2v3, ..., vn−1vn}. The complete graph on n vertices, denoted Kn, is the graph with every

possible edge. The cycle on n vertices, denoted Cn, is the graph where V (Cn) = {v1, v2, ..., vn} and
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E(Cn) = {v1v2, v2v3, ..., vn−1vn, vnv1}. A cycle of length 3 is also called a triangle. A graph G is

triangle-free if it contains no C3 subgraphs.

A walk from v1 to vk is a union of paths Pn1
, Pn2

, ..., Pnj
where Pn1

starts at v1, Pnj
ends at vk,

and the starting vertex in Pni
is the end vertex in Pni−1

for all i. A graph G is connected if there

exists a path between any two vertices in V (G). A graph G is k-connected if the removal of any

k − 1 vertices does not disconnect G. A connected component of G is an induced subgraph H

where V (H) and V (G)− V (H) are disjoint vertex sets, and all vertices in V (H) are connected. A

cut-vertex is a vertex v such that G is connected but the graph G with v and all edges incident to

v removed, denoted G− v, is not connected.

A bipartite graph G is one where we can partition the vertex set V (G) into two sets V1(G) and

V2(G) such that every edge in E(G) contains one vertex from V1(G) and one from V2(G). The

complete bipartite graph, denoted Km,n, is the bipartite graph where |V1(G)| = m, |V2(G)| = n that

contains every possible edge.

A tree T is a connected graph that contains no cycle. Vertex v is a leaf of T if it only has one

neighbor. The distance between vertices u and v is k if the shortest path between u and v has k

edges. A star is a tree T such that a single vertex v is adjacent to all other vertices. A caterpillar

C is a graph containing a path P where every vertex in C is either contained in P or adjacent to

some vertex in P . A forest is a disjoint union of trees and a caterpillar forest is a disjoint union

of caterpillars. A spanning path is one that includes all vertices of G. An interval graph G is one

where each vertex can be assigned to an interval on the real number line such that two vertices u

and v are adjacent if and only if the intervals corresponding to u and v intersect.

The following de�nitions consider the embedding of a graph G in the plane where vertices are

represented by points and edges are represented by curves that connect vertices if and only if they

are adjacent. Two edges cross one another if their curves overlap in the embedding of G. The graph

G is a planar graph if there exists an embedding of G such that no two edges cross. The exterior

face of a graph is the region of space that surrounds the graph.
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II. Prior Work

Bar visibility graphs were the �rst visibility graphs to be studied. Wismath [17] began by observing

that a bar visibility representation is planar, so bar visibility graphs form a subset of all planar

graphs. His work included a characterization of bar visibility graphs.

Theorem 1. (Wismath [17]) If G is a graph and G+ is G with one extra vertex that is joined to

all cut-vertices, then G is a bar visibility graph if and only if G+ is planar.

Tamassia and Tollis [16] di�erentiated between two types of visibility. A graph G has a weak

visibility representation if the vertices of G can be mapped to objects in the plane such that if

v1, v2 ∈ G are adjacent, then the objects they correspond to see each other. In contrast, G has

a strong visibility representation if the vertices of G can be mapped to objects in the plane such

that v1, v2 ∈ G are adjacent if and only if the objects they correspond to see each other. It follows

that if G has a strong visibility representation, then it also has a weak visibility representation. In

this thesis, we adapt the convention that a visibility representation of a graph is a strong visibility

representation, unless otherwise speci�ed. It was shown in [16] that any 2-connected planar graph

has a weak visibility representation.

The logical next step in the study of visibility graphs was to investigate the assignment of vertices

of a graph G to axis-aligned rectangles instead of bars, forming a rectangle visibility representation

of G. Bose et al. [3] developed several important results for classes of graphs that have rectangle

visibility representations. Here, a rectangle visibility representation is said to be noncollinear if no

two rectangles have sides contained in the same (horizontal or vertical) line, and collinear if two

rectangles are permitted to have sides contained in the same (horizontal or vertical) line.

Theorem 2. (Bose et al. [3]) If a graph G can be decomposed into two caterpillar forests, then it

has a noncollinear rectangle visibility representation.

Bose et al. proved this result by giving a generalized construction of a rectangle visibility represen-

tation for a graph that can be decomposed into two caterpillar forests C1 and C2. This construction

carefully lays out C1 and C2 as interval graphs using horizontal and vertical bars respectively such

that the intersections of the projections of bars from C1 and C2 form nonintersecting rectangles.

These rectangles form the rectangle visibility representation of G.
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The following two results, also from [3], characterize rectangle visibility graphs with maximum

degree 3 and 4.

Theorem 3. (Bose et al. [3]) If a graph G has maximum vertex degree 3, then it has a noncollinear

rectangle visibility representation.

Theorem 4. (Bose et al. [3]) If a graph G has maximum vertex degree 4, then it has a weak

rectangle visibility representation.

Since VLSI design often involves the layout of millions of transistors, it is likely that many of these

components are uniform in size. To model this situation, we may require the bars in visibility

representations to have uniform length. Graphs with such visibility representations are called

unit bar visibility graphs. Dean and Veytsel [7] studied unit bar visibility graphs from various

graph classes, including complete graphs, complete bipartite graphs, outerplanar graphs, and trees.

Currently, there is no characterization of unit bar visibility graphs.

A graph that has a rectangle visibility representation composed entirely of unit squares is called a

unit rectangle visibility graph. As with unit bar visibility graphs, these do not yet have a complete

characterization, although Dean et al. [9] have made progress with classifying complete graphs,

complete bipartite graphs, hypercube graphs, outerplanar graphs, and trees that have unit rectangle

visibility representations.

The assignment of multiple components on a circuit board to the same electrical node is a common

reality of VLSI design. Such nodes are often connected in deeper layers of the circuit board but may

be located in completely di�erent areas of the surface circuit layout. This idea has motivated the

study of bar visibility numbers and rectangle visibility numbers. A t-bar representation of a graph

G is a bar visibility representation of G where a maximum of t bars are assigned to each vertex in G.

The bar visibility number of G, denoted b(G), is the minimum t such that G has a t-bar visibility

representation. A t-rectangle representation of a graph G is a rectangle visibility representation

of G where a maximum of t rectangles are assigned to each vertex in G. Similarly, the rectangle

visibility number of G, denoted r(G), is the minimum t such that G has a t-rectangle visibility

representation. Visibility numbers have only been studied thus far for bar visibility graphs [4], bar

visibility directed graphs [1], and unit bar visibility graphs [11]. The following are general results

from [4] that apply to any bar visibility graph.
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Theorem 5. (Chang et. al [4]) If G has n vertices, then b(G) ≤
⌈
n
6

⌉
+ 2.

Theorem 6. (Chang et. al [4]) If G has n vertices and e edges, then b(G) ≥
⌈
e+6
3n

⌉
.

These theorems bound the bar visibility number of a graph G. Other main results for bar visibility

numbers have focused on bounds (lower and/or upper) for various graph classes, including complete

graphs and complete bipartite graphs.

Theorem 7. (Chang et. al [4]) If n ≥ 7, then b(Kn) =
⌈
n
6

⌉
.

Theorem 8. (Chang et. al [4]) If r =
⌈

mn+4
2m+2n

⌉
, then r ≤ b(Km,n) ≤ r + 1.

Axenovich et al. [1] proved a lower bound for the bar visibility number for any digraph based on

the number of vertices and arcs, and an upper bound based only on the number of vertices.

Theorem 9. (Axenovich et al. [1]) If G is a digraph with n vertices, then b(G) ≤ n+10
3 .

Theorem 10. (Axenovich et al. [1]) If G is a digraph with n vertices and m arcs, then b(G) ≥ m+6
3n .

If G is triangle-free, then b(G) ≥ m+4
2n .

The unit bar visibility number of a graph G, denoted ub(G), is the bar visibility number of G

under the condition that all bars have the same length. As with bar visibility graphs, the main

results have been the determination of bounds for speci�c graph classes. In particular, results for

unit bar visibility numbers of trees have been determined. Although there is not yet a complete

characterization for all unit bar visibility graphs, Dean and Veytsel [7] determined a characterization

speci�cally for unit bar visibility trees.

Theorem 11. (Dean and Veytsel [7]) A tree T is a unit bar visibility graph if and only if it is a

subdivided caterpillar with maximum degree 3.

Based on the above characterization, an upper and lower bound for ub(T ) that di�er by one was

determined by Gaub et al. [11]. In addition, a fast algorithm was developed to compute ub(T ) and

9



provide the unit bar visibility representation for an input T .

Theorem 12. (Gaub et al. [11]) If T is a tree, then
⌈

∆(T )
3

⌉
≤ ub(T ) ≤

⌈
∆(T )+1

3

⌉
.

The unit rectangle visibility number of a graph G, denoted ur(G), is the rectangle visibility number

of G where all rectangles are unit squares. A characterization of unit rectangle visibility trees

exists.

Theorem 13. (Dean et al. [9]) A tree T is a unit rectangle visibility graph if and only if it is the

union of two subdivided caterpillar forests, each with maximum degree 3.
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III. Main Results

III.1 Preliminaries

Our �rst result is a general lower bound based on a result for bar visibility graphs due to Chang

et al. [4]. For any graph G that has a rectangle visibility representation, the edge bound on planar

graphs is used to establish a lower bound on its rectangle visibility number r(G).

Theorem 14. If G is a graph with n vertices and e edges, then r(G) ≥
⌈
e+12
6n

⌉
.

Proof. Consider a t-rectangle representation of G and let N be the total number of rectangles that

are used. This implies that N ≤ nt. Draw an edge joining each pair of rectangles that see each

other and color all horizontal edges red, and all vertical edges blue. Shrink each rectangle until it

becomes a point and consider the graphs U and V that contain all red edges and all blue edges,

respectively. Since U and V are simple planar graphs, the edge bound for planar graphs due to

the Euler characteristic implies that G will have at most 6N − 12 edges. Thus, e ≤ 6nt − 12, so

t ≥ e+12
6n . Hence, r(G) ≥

⌈
e+12
6n

⌉
.

Corollary 14.1. r(Kn) ≥
⌈
n−1
12 + 2

n

⌉
.

We also note provide a short lemma describing how to take a union of disjoint representations

and place them in the plane such that there are no unwanted visibilities between these representa-

tions.

Lemma 15. A disjoint union of rectangle visibility representations is a rectangle visibility repre-

sentation.

Proof. Let G1 and G2 be graphs with rectangle visibility representations R1 and R2. Place R1

in the plane and then place R2 such that all rectangles are completely to the left and above all

rectangles in R1. Thus, there will be no unwanted horizontal or vertical visibilities between R1 and

R2.

11



III.2 Trees

From Wismath [17], we get that b(T) = 1 for any tree T , so then by giving each bar in a represen-

tation of T a small width, we have a rectangle visibility representation of T . Therefore, r(T ) = 1

for any tree. As a result, we will only consider using unit rectangles.

A tree that is a unit bar visibility graph is called a unit bar visibility tree, and a graph whose

components are unit bar visibility trees is called a unit bar visibility forest. Likewise, a tree that is a

unit rectangle visibility graph is called a unit rectangle visibility tree, and a graph whose components

are unit rectangle visibility trees is called a unit rectangle visibility forest.

In [11], it is shown that the unit bar visibility number of a tree T is less than or equal to
⌈

∆(T )+1
3

⌉
.

The following theorem uses a similar inductive argument to establish an upper bound for the unit

rectangle visibility number of a tree T . For the following results, we will assume that the side length

of any unit rectangle is 1 unit.

Theorem 16. If T is a tree, then ur(T ) ≤
⌈

∆(T )+1
6

⌉
Proof. We will use induction on the number of vertices in T . For the base case, assume that T is

a star. Decompose T = K1,n into
⌊
n
6

⌋
copies of K1,6, and one copy of K1,r where n ≡ r (mod 6)

and 0 ≤ r ≤ 5. We will say that a rectangle r(v) in a representation is receptive if it is contained

in an open channel width of 2 units in either the horizontal or vertical direction that does not

intersect any other rectangles as well as an open channel width of 1 unit in the perpendicular

direction. Construct a unit rectangle visibility representation of T such that every leaf corresponds

to a receptive rectangle (see rectangles corresponding to vertex v and its receptive leaves w1, w2, w3,

and w4 in Figure 3). This is possible due to the fact that each leaf rectangle of T sees only one

other rectangle in either the horizontal or vertical direction, so the required open channels of width

1 and width 2 can be established.

Next, assume that T is not a star and consider some v ∈ V (T ) that has exactly one non-leaf

neighbor. Let L(v) be a set of neighbors of v that are leaves. Also, let T ′ be a decomposition

of T − L(v) into m =
⌈

∆(T ′)+1
6

⌉
unit rectangle visibility trees, which exists due to the inductive

hypothesis. If |L(v)| = 6, then add one copy of K1,6 to the decomposition of T ′. If |L(v)| = 5, then

add one copy of K1,5 to the decomposition of T ′. If |L(v)| = r, where 1 ≤ r ≤ 4, then delete the r

leaves of v that make up L(v). By induction, T ′ already has an m-rectangle representation where

v is assigned to exactly one receptive rectangle. Add receptive rectangles for each of the deleted

12
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Figure 3: Arrangement of receptive rectangles corresponding to leaves w1, w2, w3 and w4 of v with u

corresponding to the non-leaf neighbor of v

neighbors of v to the decomposition of T ′ as described in Figure 3. Note that if r < 4, leaves of v

can be deleted in Figure 3 as necessary.

Since T is composed of �nitely many vertices, the unit rectangle visibility representation will contain

�nitely many rectangles. Hence, we can place rectangles corresponding to leaves of v as far out in

their respective directions as necessary to ensure that these rectangles are receptive. As a result,

we have obtained the desired decomposition of T into
⌈

∆(T )+1
6

⌉
unit rectangle visibility trees.

We de�ne the unit bar visibility arboricity of a graph G, denoted Υub(G), as the minimum number

of unit bar visibility forests required to decompose G. The unit rectangle visibility arboricity of a

graph G, denoted Υur(G), is the minimum number of unit rectangle visibility forests required to

decompose G. The next theorem relates the unit rectangle visibility arboricity of a tree T to its

unit bar visibility arboricity.

Theorem 17. If T is a tree, then Υur(T ) ≥
⌈

Υub(T )
2

⌉
.

Proof. If Υur(T ) = k, then there exists a decomposition of T into k unit rectangle visibility forests.

We can further decompose each of those k forests into 2 unit bar visibility forests by looking at

13



horizontal and vertical visibilities separately. The union of these 2k unit bar visibility forests is also

T . Hence, Υub(T ) ≤ 2k, so Υur(T ) ≥
⌈

Υub(T )
2

⌉
.

Our next result concludes that the unit rectangle visibility arboricity for a tree T is the same as its

unit rectangle visibility number. By the above theorem, this result implies that we can relate the

unit bar visibility arboricity of T directly to its unit rectangle visibility number.

In order to arrive at this result, we prove a result that applies to n-hypercube visibility graphs,

which are visibility graphs with vertices corresponding to unit axis-aligned hypercubes of dimension

n. A tree that is an n-hypercube visibility graph is called an n-hypercube visibility tree. An n-

hypercube visibility forest is a graph whose components are unit n-hypercube visibility trees, and

the n-hypercube arboricity of a graph G, denoted Υ
(n)
h (G) is the minimum number of n-hypercube

visibility forests required to decompose G.

Finally, the n-hypercube visibility number of a graph G, denoted h(n)(G) is the minimum t such

that a n-hypercube visibility representation exists where a maximum of t n-hypercubes are assigned

to each vertex in G.

Theorem 18. If T is a tree, then Υ
(n)
h (T ) = h(n)(T ).

Proof. If Υ
(n)
h (T ) = k then there exists a decomposition of T into k n-hypercube visibility forests.

Observe that a vertex may correspond to only one n-hypercube per forest, so there are at most k n-

hypercubes corresponding to each vertex in T . Consequently, this decomposition is a k-n-hypercube

visibility representation of T , so Υ
(n)
h (T ) ≤ h(n)(T ).

Let h(n)(T ) = t and let R be a t-n-hypercube representation such that each component of R contains

the minimum number of n-hypercube pairs {h, h′} that correspond to the same vertex. Here, we

de�ne a component of R to be a set of n-hypercubes that corresponds to a component of the n-

hypercube visibility graph with representation R (where the n-hypercubes are assigned to distinct

vertices).

Assume that there exists some v ∈ V (T ) such that two n-hypercubes corresponding to v are in

the same component. Call the constituent R1. Draw in all lines of sight in R1. Each line of sight

has a nonzero Euclidean length and some lines of sight correspond to the same edge in T . Color

a line of sight red if its Euclidean length is minimum over all lines of visibility corresponding to

the same edge, breaking ties arbitrarily. This ensures that all red lines of sight in R1 are between

n-hypercube pairs corresponding to distinct vertex pairs. Furthermore, the red lines of sight induce

14



h(a) h(b)h(c1)
h(c2)

h(c3)

h(ck)

...

Figure 4: Representation of W with 2-hypercubes h(a) and h(b) using blockers h(c1),...,h(ck)

a spanning forest of the n hypercubes in R1. By Lemma 15, we can partition R1 by shifting each

component of the forest with red lines of sight so that each n-hypercube in each new component

does not see n-hypercubes in any other component. Observe that this partitioning of R1 retains all

edges represented in R1.

We now show that there are no extra edges that appear from this partitioning due to extra lines

of sight. Suppose that n-hypercubes h(a) and h(b) correspond to distinct vertices a and b that are

not adjacent in T , but h(a) and h(b) see each other and are in the same component, call it A, after

applying the above partitioning of R1.

This implies that there is a �nite-width channel of visibility between h(a) and h(b) in A that does

not exist before partitioning R1. In order for this to be true, there must be a collection of n-

hypercubes that intersect the channel of visibility between h(a) and h(b) before the partitioning of

R1 and collectively block this channel. We will refer to these as blockers. Observe that there exists

a walk W between a and b that is represented by the blocking n-hypercubes h(c1), h(c2), ..., h(ck)

(where h(a) sees h(c1) and h(ck) sees h(b)) with lines of sight parallel to the channel between h(a)

and h(b) (see Figure 4). Let the length of the channel between h(a) and h(b) be d. Then, the sum

of the Euclidean lengths of the lines of sight corresponding to edges in W is equal to d− k.

Since h(a) and h(b) are in the same component after partitioning R1, the path between a and b in

T is represented in the visibility representation such that the lines of sight between n-hypercubes

corresponding to vertices along this path are minimum in Euclidean length for each vertex pair. Let

the path between a and b in T be of length m and call the n-hypercube representation of this path

with minimum line of sight lengths P . Also, let P consist of hypercubes h(p1), h(p2), ..., h(pm).

Consequently, m ≤ k. Observe that the sum of these lines of sight cannot be less than d, the

Euclidean length between h(a) and h(b), minus the widths of the m n-hypercubes corresponding

to vertices along this path. Thus, this sum is greater than or equal to d−m ≥ d− k.

Consider the case where d−m > d−k. In this case, the sum of the lengths of the lines of sight in W

is greater than the sum of the lengths of the lines of sight in P . Then, by the pigeonhole principle,
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h(c1)

h(p1)

h(c2)
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...

Figure 5: 2-hypercubes h(a) and h(b) showing the contradiction of the path between a and b being repre-

sented by both W and P where lines of sight between correponding n-hypercubes are of equal

length

there is one line of sight between two n-hypercubes h(u) and h(v) in P whose length is greater than

that of the line of sight between two n-hypercubes h′(u) and h′(v) in W that correspond to the

edge between u and v. This contradicts the fact that all lines of sight between n-hypercubes in P

between h(a) and h(b) are minimum.

Now consider the case where d−m = d− k. This is the case where m = k and the walk between a

and b is a path. We assume that P must have all lines of sight be a minimum for each n-hypercube

pair. Since the sum of the lengths of lines of sight in W and P is the same, this is only satis�ed

when each line of sight in P between two n-hypercubes h(u) and h(v) is the same length as that

of the corresponding line of sight between h′(u) and h′(v). Furthermore, since the lines of sight in

W were required to be parallel to the channel between h(a) and h(b), this requires for lines of sight

in P to also be parallel to this channel to retain equality of all corresponding lengths. But then

each n-hypercube in W sees the n-hypercube in P corresponding to the same vertex in T , which is

a contradiction (see Figure 5).

We conclude that it is not possible for h(a) and h(b) to be in the same component without a set

of blockers that completely block the channel between the two n-hypercubes. This leads to the

validity of the partitioning of R1 as described above.

This successful partitioning of R1 contradicts the minimality of R. Hence, h(n)(T ) ≥ Υ
(n)
h (T ), so

h(n)(T ) = Υ
(n)
h (T ).

The following corollary is the case from the previous theorem where n = 2, which is for unit

rectangles.

Corollary 18.1. If T is a tree, then Υur(T ) = ur(T ).
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Figure 6: Zigzag spanning path decomposition of Ai where m = 2

III.3 Complete Graphs

An upper bound on the rectangle visibility number of a complete graph Kn can be determined

using a methodology similar to a result in [4] for bar visibility graphs.

Theorem 19. r(Kn) ≤
⌈

n
12

⌉
+ 1

Proof. Let m =
⌈

n
12

⌉
and partition K12m into three sets of 4m vertices each, call them A1, A2,

and A3. We can decompose a complete graph of size 4m into 2m spanning paths that correspond

to rotations of a zigzag path formed when the vertices are placed in a circle. After forming these

paths, pair up every jth zigzag (where j ∈ [2m] and j is odd) with every (j + 1)th zigzag. This

creates m pairs consisting of two spanning paths each that are pairwise edge-disjoint (see Figure

6).

Next, arrange each pair of zigzag paths from Ai as a bar visibility graph where the bars overlap

in a "staircase" such that each bar has an unobstructed channel of visibility in both vertical and

horizontal directions. Let one path in each pair be arranged with vertical channels of visibility and

the other with horizontal channels of visibility. For each of m pairs, place rectangles in the plane

that correspond to the intersection of these channels (see Figure 7). After applying this construction

to all m pairs, we have m sets of 4m rectangles in the plane corresponding to the vertices of Ai

such that each rectangle has a channel of visibility in all four directions. We will refer to these m

17



1
2

3
4

5
6

7
8

6

8

4

7

2

5

1

3 1

2

3

4

5

6

7

8

Figure 7: Arrangement of bar visibility graphs corresponding to a spanning path pair in Figure 6 with

resulting module

rectangle visibility graphs as modules.

For each of m modules from Ai, place one long rectangle each above, below, to the left, and to

the right of the 4m rectangles in the model, as shown in Figure 8. Assign these four rectangles to

vertices in Ai+1 where indices are taken modulo 3. This amounts to m pairwise edge-disjoint copies

of the 4m rectangles corresponding to vertices in Ai, whose union covers the complete graph for Ai

and all edges between Ai and Ai+1. Repeat for each Ai, such that we have 3m modules in total

whose union is the complete graph K12m.

Observe that each vertex of Ai is used in the m modules for Ai and then once more as one of

the four rectangles surrounding one module from Ai−1. Hence, each vertex in K12m is assigned to

m + 1 =
⌈

n
12

⌉
+ 1 rectangles. If n is not divisible by 12, then we delete unwanted rectangles from

the (m + 1)-representation of K12m to obtain an (m + 1)-representation of Kn.

The upper bound established above is not sharp. We can easily show that r(K17) is actually lower

than the suggested bound by means of a construction, which is of interest because the layout does
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Figure 8: Arrangement of four outer rectangles from Ai−1 surrounding the module in Figure 7

not suggest a pattern for larger complete graphs. Moreover, slight alterations of this construction

do not provide one for K18, so it is a standalone result.

Theorem 20. r(K17) = 2.

Proof. Since there does not exist a 1-rectangle visibility representation for K9, it follows that

r(K9) ≥ 2, so r(K17) ≥ 2. Figure 9 shows a 2-rectangle representation of K17.

III.4 Complete Bipartite Graphs

The following theorem is based on a similar result in [11] for unit bar visibility graphs and establishes

a lower bound for the unit rectangle visibility number of any complete bipartite graph Km,n. As

with Theorem 14, planar graph edge bounds are utilized to the lower bound.

Theorem 21. For m ≥ n ≥ 2, r(Km,n) ≥
⌈

n
4(m+n)m + 2

m+n

⌉
. If n = m− o(m), then r(Km,n) ≥⌈

m
8 − o(m)

⌉
.
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Figure 9: A 2-rectangle representation of K17
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Proof. Let m ≥ n ≥ 2. Consider a t-rectangle representation of Km,n. Let N be the total number

of rectangles that are used in the representation. Observe that N ≤ (m + n)t. Draw an edge

joining each pair of rectangles that see each other and then color all horizontal edges red, and all

vertical edges blue. Consider subgraphs U and V such that U is the subgraph containing all red

edges and V is the subgraph containing all blue edges. Observe that U and V are planar and

edge-disjoint. Shrink each rectangle until it becomes a point in the plane while keeping all edges

intact to retain the planarity of U and V . Since the t-rectangle representation of Km,n is bipartite,

the planar edge disjoint subgraphs U and V will be bipartite as well. Each planar bipartite graph

has at most 2N−4 edges by the Euler characteristic, so Km,n has at most 4N−8 edges. Therefore,

mn ≤ 4(m + n)t− 8, so t ≥ mn+8
4(m+n) . Hence, r(Km,n) ≥

⌈
n

4(m+n)m + 2
m+n

⌉
.

If n = m− o(m), then t ≥
⌈

m2

8m−o(m) −
o(m2)

8m−o(m) + 2
2m−o(m)

⌉
=
⌈
m
8 − o(m)

⌉
.

The following theorem is based on a similar result in [11] for unit bar visibility graphs and establishes

a lower bound for the unit rectangle visibility number of any complete bipartite graph Km,n.

Theorem 22. r(Kn,n) ≤
⌈
n
8

⌉
+ 2.

Proof. We present a partial construction of Kn,n and then show that the edges not in the partial

rectangle visibility representation can be added without signi�cantly increasing r(Kn,n).

Construction 1.

Let Kn,n have partite sets X and Y . We de�ne a staircase to be a set of n unit rectangles where the

lower right corner of the ith rectangle is �xed to the upper left corner of the (i+ 1)th rectangle, for

all i ∈ [n−1]. Let the topmost rectangle in a staircase be the starting rectangle. Lay out 2(
⌈
n
8

⌉
+1)

staircases according to Figure 10 such that each staircase from top to bottom is shifted slightly to

the left. We will number these staircases from 1 to
⌈
n
8

⌉
+ 1 starting from the topmost staircase.

Assign the rectangles in 1st staircase vertices from X, starting with x1 and ending at xn. Assign

the rectangles in the 2nd staircase to vertices from Y starting with y1 and ending at yn. Assign the

rectangles in the remaining odd numbered staircases with vertices from X where the index of the

starting rectangle in a staircase increases by 5 modulo n from top to bottom. Likewise, assign the

rectangles in the remaining numbered staircases to vertices from Y where the index of the starting

rectangle in a staircase decreases by 3 modulo n from top to bottom. This construction is depicted

in Figure 10. Let the ith staircase be an X staircase such that the index of its starting rectangle is

the same as that of the Y staircase directly below it. This occurs when 1 + 5i ≡ 1 − 3i (mod n).
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The �rst time after the initial staircases where this occurs is when 8i ≡ (mod n), or equivalently

i =
⌈
n
8

⌉
. Consequently, the indices of the starting rectangles in adjacent X and Y staircases are

only the same for the �rst two staircases and the last two staircases.

We will �rst make an assumption that all rectangles in Construction 1 that correspond to vertices

in X have degree 8 and show that the rectangles that have degree less than 8 can be consid-

ered in special cases. Consider some rectangle that corresponds to the vertex xj ∈ X, where

j ∈ [1, n], and is located in the kth X staircase (where k increases from top to bottom). Call

this rectangle rk(xj). Let the rectangles from the (k − 1)th Y staircase that rk(xj) sees be de-

�ned as rk−1(yi), rk−1(yi+1), rk−1(yi+2), and rk−1(yi+3), where addition of i is performed modulo

n. Thus, the rectangles that r(xj) sees in the kth Y staircase are rk(yi−4), rk(yi−3), rk(yi−2), and

rk(yi−1). Now consider rk+1(xj), the rectangle in the (k + 1)th X staircase that corresponds to

the vertex xj . It follows that the rectangles rk+1(xj) sees in the Y staircases above and below

it are rk(yi−8), rk(yi−7), rk(yi−6), rk(yi−5) and rk+1(yi−12), rk+1(yi−11), rk+1(yi−10), rk+1(yi−9) re-

spectively. We have now shown that the degree 8 rectangles corresponding to the same vertex in

X see sets of eight rectangles corresponding to pairwise disjoint sets of vertices in Y . Note that

since the indices of the starting rectangles for the �rst two staircases and last two staircases are the

same, then the rectangles from X in these staircases see rectangles in that correspond to the same

vertices from Y in these staircases. Since there are
⌈
n
8

⌉
+1 rectangles corresponding to each vertex,

then each rectangle corresponding to xi ∈ X sees 8
⌈
n
8

⌉
+ 8 rectangles, n of which are distinct, and

then up to 8 of which are repeated in the last set of staircases. Hence, all edges from X to Y are

accounted for under the assumption that all rectangles are degree 8.

Now, consider rectangles that correspond to vertices in X that see less than eight other rectangles.

Since we have just ensured that the �rst staircase, whose rectangles have maximum degree 4, does

not lose any necessary visibilities by means of repetition in the last staircase, we only need to

consider rectangles on both ends of all staircases. Observe in Construction 1 that the �rst two and

last two rectangles in any given staircase lose a maximum of 3 possible visibilities. If we consider

adding an additional rectangle corresponding to each vertex in X and Y in a separate area of the

plane, we see that each rectangle then requires at most 3 visibilities. This corresponds to a subcubic

graph, which has a rectangle visibility representation [3]. Hence, each vertex in Kn,n corresponds

to at most (
⌈
n
8

⌉
+ 1) + 1 =

⌈
n
8

⌉
+ 2 rectangles in this rectangle visibility representation.
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Figure 10: Arrangement of staircases and assignment of vertices in X and Y to rectangles outlined in

Construction 1
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III.5 (1,n)-Hilly Graphs

Bose et al. [3] de�ne a graph G to be k-hilly if there is no path of length k or less between any

two high degree vertices, where a vertex of high degree is one whose degree is 4 or more. Various

results have been achieved with rectangle visibility representations involving 2-hilly graphs and

3-hilly graphs, but the literature is currently lacking concrete properties of 1-hilly graphs and their

rectangle visibility representations.

First, we extend this de�nition to allow for the meaning of "high degree" to change. We de�ne a

graph to be (k,n)-hilly if there is no path of length k or less between two vertices of degree n or

more.

Within the context of rectangle visibility graphs, we present an example of a (1, 4)-hilly graph

that does not even have a weak 1-rectangle visibility representation. The observation that not all

(1, 4)-hilly graphs are rectangle visibility graphs is made in [3], but a proof is not provided.

Theorem 23. There exists a (1,4)-hilly graph that does not have a weak rectangle visibility repre-

sentation.

Proof. Let K
k,([k]

3 ) be the bipartite graph with partite sets containing k vertices and
(
k
3

)
vertices

where each vertex in the
(
k
3

)
partite set is degree 3 and adjacent to a distinct combination of 3

vertices from the size k partite set. We will consider the construction of a rectangle visibility

representation of K
k,([k]

3 ) as an example of a 1-hilly graph and show that if k is large enough, then

this graph does not have a rectangle visibility representation. Let G be an arbitrary graph with a

rectangle visibility representation of k = (n− 1)6 + 1 rectangles laid out on a set of xy axes, where

n ≥ 33. We will characterize each rectangle in G by the coordinate value of the top left corner,

(x, y). We will also assign each pair of rectangles G with one of six relationships based on their

positions relative to one another as described below.

Choose two rectangles Ri, Rj ∈ G. For the following two de�nitions, let the x-coordinate of Ri to

be strictly less than that of Rj . We de�ne these two rectangles to be nested left if the projection

of Ri onto the y-axis is completely contained inside the projection of Rj onto the y-axis. Complete

containment, in this case, is inclusive of endpoints. Similarly, we de�ne these two rectangles to be

nested right if the projection of Rj onto the y-axis is completely contained inside the projection of

Ri onto the y-axis. For the following two de�nitions, let the y-coordinate of Ri be strictly less than

that of Rj . We de�ne these two rectangles to be nested above if the projection of Rj onto the x-axis
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Figure 11: Ri and Rj (a) Nested left (b) Nested right (c) Nested above (d) Nested below (e) Ascending

(f) Descending

is completely contained inside the projection of Ri onto the x-axis. Similarly, we de�ne these two

rectangles to be nested below if the projection of Ri onto the x-axis is completely contained inside

the projection of Rj onto the x-axis. For the following two de�nitions, let the x-coordinate of Ri

be strictly less than that of Rj . We de�ne two rectangles as ascending if they are not nested in

any direction (as de�ned above) and the y-coordinate of Ri is strictly less than that of Rj . In the

�nal case, we de�ne these two rectangles to be descending if they are not nested in any direction

(as de�ned above) and the y-coordinate or Ri is strictly greater than that of Rj . Observe that if

the y-coordinate of Ri and Rj is the same, then then these rectangles must be either nested left

or nested right, so we need only consider inequality in the de�nitions of ascending and descending

rectangles. Examples of these six relationships are shown in Figure 11.

List the rectangles in the representation of G by their x-coordinate in order of least to greatest and

denote each rectangle by Ri where i ∈ [k]. In the case where rectangles have the same x coordinate

value, we will list these by the y coordinate from greatest to least. Hence, the list of rectangles in G

will read left to right as seen in the plane, except where rectangles have the same x coordinate, in

which case the list will read top to bottom for these rectangles. Observe that each pair of rectangles

must fall into one of the six aforementioned relationships. We then assign each rectangle pair (in

order) with a 6-tuple coordinate, (ai, bi, ci, di, ei, fi) in which each of six relationships is assigned to

one coordinate value. Let ai be the length of a longest sublist where all rectangles are nested left

ending at gi. Similarly, let bi, ci, di, ei, and fi be the length of a longest sublist where all rectangles

are nested right, nested above, nested below, ascending, or descending respectively that ends at

gi. Since there are k = (n − 1)6 + 1 rectangles in G, by the pigeonhole principle, there exists a

monotone sublist with length n. Consider the rectangles that make up this sublist as an auxiliary

graph H of G. Consequently, H will consist of n rectangles that are all either either nested in one
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direction, ascending, or descending. We will denote each rectangle by Ui where i ∈ [n] where the

assignment of Ui to all rectangles is done the same way as with rectangles in G previously.

Assume that all rectangles in H are nested left, which implies that the length of the left side of

U1 is less than that of all other rectangles in H. In the plane, the general shape of H would be

rectangles that fan outward from left to right. We attempt to place
(
n−1

2

)
= n2−3n+2

2 rectangles

from the partite set of
(
k
3

)
that see U1 and two other distinct rectangles in H; this is required in the

representation of K
k,([k]

3 ). We de�ne a rectangle V that sees U1 and two other distinct rectangles

in H to be parallel if when considering the edges between the two rectangles that are not U1, both

are either horizontal or vertical. Similarly, we de�ne a rectangle that sees U1 and two other distinct

rectangles in H to be perpendicular if when considering the edges between the two rectangles that

are not U1, one edge is horizontal and the other is vertical. Moreover, we denote rectangles to be

located in the upper region when they are placed above any rectangle in H, and for rectangles to

be located in the lower region when they are placed below any rectangle in H.

Consider placing rectangles in the
(
k
3

)
partite set that are parallel. We will show that there is

an upper bound on the number of rectangles that can be placed of this type. Let rectangles

Ui, Uj , Uk, Ul ∈ (H − U1) such that i < j < k < l. Since H is an ordered set of rectangles, then we

can de�ne edge crossing according to [5]. Let L(e) be the index of the left endpoint vertex of an

edge e and R(e) be the index of the right endpoint vertex of e. We say that two edges e and f cross

if L(e) < L(f) < R(e) < R(f). Furthermore, a stack is a set of edges such that no pair of edges

cross. In general, a k-stack is a graph that whose edge set can be partitioned into k edge-disjoint

stacks. Observe that if a parallel rectangle V is placed such that it sees Ui and Uk, then V will span

across the entire length of Uj 's band of visibility in the same direction. This makes it impossible to

place a parallel rectangle W in the same region that shares two parallel edges in the same direction

with Uj and Ul without blocking the band of visibility between V and Uk (see Figure 12).

We can therefore consider parallel rectangles V and W themselves as "edges" between rectangles

in the ordered set H. Observe that if it were possible to place both V and W in this manner,

then L(V ) < L(W ) < R(V ) < R(W ) and therefore V and W would cross. Hence, we cannot allow

edge crossings where edges are interpreted as parallel rectangles. As a result, the set of parallel

rectangles that can be placed forms a 1-stack, which has a maximum of 2p − 3 edges in a set of

p vertices [10]. Note that the structure of H in Figure 12 illustrates that it is only possible to

place parallel rectangles with horizontal edges that extend from the right. In addition, parallel

rectangles in the upper region whose edges are vertical must be such that they extend from the

bottom. It follows then that parallel rectangles in the lower region whose edges are vertical must
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Figure 12: (a) Example of a parallel rectangle V with horizontal edges in the upper region that sees Ui,

and Uk (b) Adding another parallel rectangle W with horizontal edges in the upper region

that sees Uj and Ul but then blocks V 's visibility to Uk
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be such that they extend from the top. Consequently, we have a 4-stack in total to encompass all

four possible combinations of parallel rectangles that can be placed. This leads to a maximum of

4[2(n− 1)− 3] = 8n− 20 rectangles that can be placed that see U1 and share two parallel edges to

distinct rectangles in H − U1.

Next, consider placing rectangles in the
(
k
3

)
partite set that are perpendicular. Similarly, we will

show that there is an upper bound on the number of rectangles that can be placed of this type. Let

rectangles Ui, Uj , Uk, Ul ∈ (H −U1) such that i < j < k < l. It should be noted that there are four

distinct types of these rectangles that can be placed: horizontal edge on left with vertical edge on

top, horizontal edge on right with vertical edge on top, horizontal edge on left with vertical edge

on bottom, and horizontal edge on right with vertical edge on bottom. Since H is an ordered set of

rectangles, then we can de�ne edge nesting according to [5]. We say that an edge e is nested inside

another edge f if L(f) < L(e) < R(e) < R(f). Furthermore, a queue is a set of edges such that no

that there are no nested edges. In general, a k-queue is a graph whose edge set can be partitioned

into k edge-disjoint queues. Observe that if a perpendicular rectangle V is placed such that it sees

Ui and Ul, then it becomes impossible to place a perpendicular rectangle W of the same type in

the same region that shares two perpendicular edges in the same direction with Uj and Uk without

blocking the band of visibility between V and Ui (see Figure 13).

We can therefore consider perpendicular rectangles V and W themselves as "edges" between rect-

angles in the ordered set H. Observe that if it were possible to place both V and W in this manner,

then L(V ) < L(W ) < R(W ) < R(V ) and therefore W would nest in V . Hence, we cannot al-

low edge nestings where edges are interpreted as perpendicular rectangles. As a result, the set of

perpendicular rectangles of a single type that can be placed in the same region of the plane forms

a 1-queue, which has a maximum of 2p − 3 edges in a set of p vertices [10]. Figure 6 illustrates

that it is not possible for a perpendicular rectangle to have its horizontal edge extend from the left

and still see Ui, so only two types of perpendicular rectangles may be placed in each of the two

regions. Consequently, we have a 4-queue that encompasses all four combinations of perpendicular

rectangles that can be placed. This leads to a maximum of 4[2(n − 1) − 3] = 8n − 20 rectangles

that can be placed that see U1 and share two perpendicular edges to distinct rectangles in H −U1.

We now observe that the above restrictions on parallel and perpendicular rectangles can be applied

to nesting from any direction by rotating the plane until rectangles in H are all nested left. If all

rectangles in H are ascending, then these restrictions still apply, although we note that in this case

U1 is always the leftmost rectangle in H, not necessarily the rectangle with the shortest left side as

with the nested cases. Then, if all rectangles in H are descending, we can rotate the plane by 90
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Figure 13: (a) Example of a perpendicular rectangle V in the upper region that sees Ui, and Ul (b) Adding

another perpendicular rectangle W of the same type in the upper region that sees Uj and Uk

but then blocks V 's visibility to Ui
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degrees to make them ascending.

We have therefore shown that in any case, we can place the required n2−3n+2
2 rectangles as long as

n2−3n+2
2 ≤ (8n− 20) + (8n− 20) = 16n− 40. This implies that we require n2 − 35n + 82 ≤ 0, but

when n ≥ 33, then n2 − 35n + 50 ≥ 16. This implies that there does not exist a rectangle visibility

representation of a K
k,([k]

3 ) bipartite where k = n6 + 1 and n ≥ 33.

So, we have found a (1, 4)-hilly graph that does not have a rectangle visibility representation.

Although not all (1, 4)-hilly graphs have a 1-rectangle visibility representation, they do all have a

2-rectangle visibility representation.

Theorem 24. If G is a (1, 4)-hilly graph, then r(G) ≤ 2.

Proof. We will construct a 2-rectangle visibility representation of G as follows. Let H be the set of

all rectangles that correspond to high degree vertices in G. Note that H consists of two rectangles

per high degree vertex. Arrange rectangles in H in the plane as unit squares with unit length 1 as

a descending staircase. We will show how to place rectangles corresponding to low degree vertices

that are adjacent to high degree vertices for di�erent cases.

Place all vertices in G that are adjacent to exactly one high degree vertex u as rectangles with

dimensions 1
m by 1

m (where m = deg u) completely inside the channel of visibility of one of the two

rectangles corresponding to u as a descending staircase.

Place all vertices v in G that are adjacent to exactly two high degree vertices u and w as rectangles

with dimensions 1
m by 1

n (where m = deg u and n = degw) completely inside the intersection of

the channels of visibility of rectangles corresponding to u and w as a descending staircase.

Place all vertices v in G that are adjacent to three high degree vertices u, w, and x as rectangles

with dimensions 1
m by 1

n (where m = deg u and n = degw) completely inside the intersection of

the channels of visibility of rectangles corresponding to u and w as a descending staircase. For each

of these vertices, place an additional rectangle of dimension 1
p by 1

p completely inside the channel

of visibility of one of the two rectangles corresponding to x (see Figure 14) to form a descending

stairacse.

Note that all high degree vertices and low degree vertices that are adjacent to three high degree

vertices will be completely accounted for at this point in the rectangle visibility representation.

Observe that we can place at least one rectangle corresponding to low degree vertices that are
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Figure 14: Placement of rectangles corresponding to vertices adjacent to high degree vertices u, w, and x

(v1, ..., vk)

adjacent to at most two high degree vertices. This collection of vertices and edges forms a subcubic

graph, which has a 1-rectangle visibility representation [3]. We can construct this representation

according to Lemma 15.

Theorem 25. There exists a (1, r + 1)-hilly graph G such that r(G) ≥
⌈
r−1

8 + 1
r−1

⌉
.

Proof. Let k = 2r and let G = K
k,([k]

r ), which is an example of a (1, r + 1)-hilly graph. Next, let

k = 2r. Observe that we can select r − 1 vertices in the set of
(

[2r]
r

)
that are all adjacent to a set

of r − 1 vertices in the partite set k. The rth edge of all r − 1 vertices from
(

[2r]
r

)
can then be

distributed among the remaining r + 1 vertices in k. From this, we can conclude that there exists

k such that Kr−1,r−1 is a subgraph of K
k,([k]

r ) for all r.

Let H be a subgraph of G isomorphic to Kr−1,r−1 and remove all rectangles in G that do not

correspond to vertices in H. Since there may have been rectangles in G − H that were blocking

potential visibilities between rectangles of vertices in H, the subgraph H may be a weak rectangle

visibility graph in the plane once unnecessary rectangles are removed. We can still apply the edge

bound stated in Theorem 21 for complete bipartite graphs because any extra visibilities in the weak
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representation of H will be between rectangles corresponding to vertices in the same partite set of

r − 1 vertices rather than between two vertices in di�erent partite sets. Moreover, the visibility

number of a graph must be no less than that of one of its subgraphs. Therefore, we have that

r(G) ≥ r(H), then r(G) ≥
⌈

(r−1)2+8
8(r−1)

⌉
=
⌈
r−1

8 + 1
r−1

⌉
.
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IV. Future Work

The following is a list of open problems related to the work presented in this thesis:

• Can we determine the maximum degree of a unit hyper n-cube tree for n ≥ 3?

• Is Υur(T ) =
⌈

Υub(T )
2

⌉
? We believe this to be true but have not yet been able to provide a

proof.

• Is there a sharper bound on r(Kn)? We have seen that even small complete graphs such as

r(K17) are below the determined upper bound.

• Can we provide an upper bound for r(Km,n), the complete graph where the partite sets are

of di�erent sizes?

• Can we analyze r(G) where G is a (k, n)-hilly graph and k 6= 1?

One of the bigger questions that is not directly related to the work presented in this thesis is if

there is a unifying characterization for rectangle visibility graphs and unit rectangle visibility graphs

analagous to the characterization for bar visibility graphs given by Wismath [17]. In the framework

of VLSI design, one might also consider future work to involve an analysis of visibility numbers for

rectangle k-visibility graphs, where lines of sight may intersect at most k other rectangles. This

looser de�nition of visibility is better for direct application to circuit design because it considers

the possibilities of wired connections that travel through deeper layers of a circuit board before

resurfacing or those that bend around components.
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