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Abstract

Hierarchical temporal memory (HTM) is an emerging machine learning algorithm,

with the potential to provide a means to perform predictions on spatiotemporal

data. The algorithm, inspired by the neocortex, consists of two primary components,

namely the spatial pooler (SP) and the temporal memory (TM). The SP is utilized to

map similar inputs into generalized sparse distributed representations (SDRs). Those

SDRs are then utilized by the TM, which performs sequence learning and prediction.

One challenge with HTM is ensuring that proper SDRs are generated from the SP. If

the SDRs are not generalizable, the TM will not be able to make proper predictions.

This work focuses on the SP and its corresponding output SDRs. A single unifying

mathematical framework was created for the SP. The primary learning mechanism

was explored, where a maximum likelihood estimator for determining the degree of

permanence update was proposed. The boosting mechanisms were studied and found

to only be relevant during the initial few iterations of the network. Observations

were made relating HTM to well-known algorithms such as competitive learning and

attribute bagging. Methods were provided for using the SP for classification as well

as dimensionality reduction. Empirical evidence verified that given the proper pa-

rameterizations, the SP may be used for feature learning.

Similarity metrics were created for scoring the SDRs produced by the SP. The

overlap metric proved that the SP is extremely robust to noise. The SP was able

to produce similar outputs for a given input, provided the noise did not cause the

input to change classes. This overlap metric was further utilized to create a classifier

for novelty detection. The SP proved to be able to withstand more noise than the

well-known support vector machine (SVM).
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Chapter 1

Introduction

Hierarchical temporal memory (HTM) is a machine learning algorithm that was in-

spired by the neocortex and designed to learn sequences and make predictions. In its

idealized form, it should be able to produce generalized representations for similar

inputs. Given time-series data, HTM should be able to use its learned representations

to perform a type of time-dependent regression. Such a system would prove to be

incredibly useful in many applications utilizing spatiotemporal data. One instance for

using HTM with time-series data was recently demonstrated by Cui et al. [1], where

HTM was used to predict taxi passenger counts. The use of HTM in other applica-

tions remains unexplored, largely due to the evolving nature of HTM’s algorithmic

definition. Additionally, the lack of a formalized mathematical model hampers its

prominence in the machine learning community. This work aims to bridge the gap

between a neuroscience inspired algorithm and a math-based algorithm by construct-

ing a purely mathematical framework around HTM’s original algorithmic definition.

HTM models, at a high-level, some of the structures and functionality of the

neocortex. Its structure follows that of cortical minicolumns, where an HTM region

is comprised of many columns, each consisting of multiple cells. One or more regions

form a level. Levels are stacked hierarchically in a tree-like structure to form the

full network. Within HTM, connections are made via synapses, where both proximal

and distal synapses are utilized to form feedforward and neighboring connections,

1



CHAPTER 1. INTRODUCTION

respectively.

The current version of HTM is the predecessor to HTM cortical learning algo-

rithm (CLA) [2]. In the current version of HTM the two primary algorithms are the

spatial pooler (SP) and the temporal memory (TM). The SP is responsible for taking

an input, in the format of a sparse distributed representation (SDR), and producing

a new SDR. In this manner, the SP can be viewed as a mapping function from the

input domain to a new feature domain. In the feature domain a single SDR should

be used to represent similar SDRs from the input domain. The algorithm is a type

of unsupervised competitive learning algorithm that uses a form of vector quanti-

zation (VQ) resembling self-organizing maps (SOMs). The TM is responsible for

learning sequences and making predictions. This algorithm follows Hebb’s rule [3],

where connections are formed between cells that were previously active. Through the

formation of those connections a sequence may be learned. The TM can then use its

learned knowledge of the sequences to form predictions.

HTM originated as an abstraction of the neocortex; as such, it does not have an ex-

plicit mathematical formulation. Without a mathematical framework, it is difficult to

understand the key characteristics of the algorithm and how it can be realized. In gen-

eral, very little work exists regarding the mathematics behind HTM. Hawkins et al. [4]

recently provided a starting mathematical formulation for the TM, but no mentions

to the SP were made. Lattner [5] provided an initial insight about the SP, by relating

it to VQ. He additionally provided some equations governing computing overlap and

performing learning; however, those equations were not generalized to account for

local inhibition. Byrne [6] began the use of matrix notation and provided a basis

for those equations; however, certain components of the algorithm, such as boosting,

were not included. Leake et al. [7] provided some insights regarding the initialization

of the SP. He also provided further insights into how the initialization may affect the

initial calculations within the network; however, his focus was largely on the network

2



CHAPTER 1. INTRODUCTION

initialization. The goal of this work is to provide a complete mathematical framework

for HTM’s SP. Additionally, this work aims to provide a basis for utilizing HTM’s SP

in machine learning.

1.1 Research Statement and Contributions

This work was created with the belief that formalized spatiotemporal algorithms, in-

spired by the neocortex, will advance the machine learning of tomorrow. As such, the

primary objective of this work was to formalize the SP, and to apply that formaliza-

tion in the field of machine learning.

The aforementioned formalization was created in Chapter 4. This mathematical

framework took into consideration all aspects of the SP and brought them together

under a single unifying framework. In addition to the primary operation of the SP, the

initialization as well as the boosting mechanisms were described. The initialization

work provides a probabilistic approach for determining the initial expected output of

the SP; thereby, creating an easy technique for choosing suitable parameters. The

model for boosting provided a premises for evaluating the effectiveness of the strategy,

where it was found that the current boosting technique will typically make little

difference in the SP’s learned representations.

In addition to those contributions, the framework provided a foundation for study-

ing the primary learning mechanism of the SP. Through that study, a plausible ex-

planation for the origin of the permanence update amount was created. An estimator

was developed to optimize the permanence increment and decrement amounts. The

SP was also described in terms of traditional machine learning algorithms, where it

was found that the SP is similar to attribute bagging with a competitive learning

network as the base learner.

An open-source Python implementation of the aforementioned framework was

developed (see Section 5.1). This implementation of the SP was unique, because it
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specifically allowed the SP to be utilized in the same manner as any other comparable

machine learning algorithm. This implementation will allow future researchers to

easily utilize the SP in their present or future studies.

Using the created mathematical framework and software solution, the SP was

demonstrated in a number of areas within machine learning (see Section 5.4 and

Section 6.2). In addition to the traditional use case of classification, the SP was used

to perform feature extraction, dimensionality reduction, and novelty detection. A

method was also created for using the SP’s output, along with its permanences, to

recreate the input.

Two methods were created to evaluate the quality of the SP’s SDRs (see Sec-

tion 6.1). Those metrics, the uniqueness metric and the overlap metric, proved to

provide a suitable means for evaluating the SP’s SDRs. Additionally, those metrics

were used to show that the SP is extremely robust to noise and is able to create

similar SDRs for similar inputs. The result of the latter provides confirmation that

the SP algorithm is able to perform is primary goal of feature mapping.

1.2 Document Structure

Chapter 2 discusses the necessary background relating to HTM. Additional informa-

tion is provided discussing the algorithm’s history. Chapter 3 provides an overview

of the SP. All components utilized by the SP are explained, in their original terms.

A high-level overview of the operations of the SP is provided, with corresponding

pseudocode.

Chapter 4 introduces the mathematical model created for the SP. The notation

utilized by this work is explained. Additionally, insights into the SP’s primary learning

mechanism are provided.

Chapter 5 provides detailed instructions on how to begin using the SP for machine

learning related tasks. Data encoding is explained, with details provided for various
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encoders. An explanation on how to train the SP is provided. Feature learning is

discussed, with a demonstration of multi-class classification.

Chapter 6 discusses how to evaluate the SDRs produced by the SP. One of the

introduced metrics is used to create a classifier. That classifier is then demonstrated

in the context of novelty detection.

Chapter 7 summaries this work. It also provides some final remarks regarding

other aspects of the SP algorithm.
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Chapter 2

Background

2.1 Memory-Prediction Framework

A theory of brain function, known as the memory-prediction framework, was devel-

oped by Hawkins [8] to describe the manner in which the mammalian neocortex stores

and utilizes memory. The theory proposes the notion of a single algorithm to describe

the processing of all cortical information.

In this theory, a bi-directional, tree shaped hierarchy of regions are used to process

data. Inputs enter at the lowest levels of the hierarchy, and information flows through

the system in both a feedforward and feedback manner. In each region, an invariant

representation of the information is created and stored in the form of patterns. This

type of data storage is an autoassociative memory, where patterns are retrieved based

on similarities to past patterns.

Each time an input is presented to the system, the current region infers as to

what the input represents, passing its knowledge up the hierarchy, representing a

feedforward flow. The region, storing past-occurrences of feedforward inputs, is able

to combine feedback from higher levels with its memory and the current feedforward

input to make a prediction about the next input.

Through the changing of input, each region is able to learn sequences of patterns.

The higher regions are able to use the representations of the lower regions to learn
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Sunday : 11100000000000000000000000
Monday : 01110000000000000000000000

· · ·
Saturday : 11000000000000000000000001

Figure 2.1: Example SDR encoding for the days of the week. In this example, Sunday is
similar to both Saturday and Monday, denoting a periodic pattern.

sequences of higher-order objects. This process allows higher levels to become more

invariant, as less details are propagated forward through the network.

2.2 Sparse Distributed Representation (SDR)

HTM uses the concept of sparse distributed representations (SDRs), where a given

input is encoded into a quantized binary representation. This binary representation

has a small number of active bits. SDRs are primarily used to allow a type of similarity

between inputs to occur.

For example, an SDR of the days of the week, might look something like the

vectors shown in Figure 2.1. In that figure, Sunday shares two bits with Monday,

implying that Sunday and Monday are similar. In this case, “similar” represents

days of the week that are close in order. Additionally, Sunday shares two bits with

Saturday, thus denoting a periodic pattern, as the first and last elements are similar.

If the number of overlapping bits were to increase, the resolution would also in-

crease, allowing for an increase in step size between encodings. Additionally, an

increase in bit overlap improves the robustness of the system, as only a single bit

overlap is required to classify two inputs as similar.

SDRs are utilized by an HTM in a number of places. Before an HTM is able to

use input data, it must first be encoded by an appropriate encoder (see Section 5.2

for more details). The encoder is used to map the input from its current form into

its corresponding SDR form. While encoders are not explicitly part of an HTM they

are a necessary requirement for the system.
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Level

Figure 2.2: A generic HTM, consisting of three levels. The first level is at the bottom of
the hierarchy and the last level is at the top of the hierarchy. The inputs are fed bottom-up,
with the final output produced from the last level.

Within an HTM, SDRs are used whenever data is stored or read. This most

prominently appears as an output from the SP, the current state of the TM, and a

prediction from the TM.

2.3 Hierarchical Temporal Memory (HTM)

Hierarchical temporal memory (HTM) is a machine learning algorithm, created by

Hawkins and George [9] that is based on the memory-prediction framework. A basic

depiction of the system is shown in Figure 2.2. That system is comprised of three

levels. The inputs to the network are fed bottom-up from level one up through level

three. The overall output of the system is produced at the last level.

Originally, HTM, was developed as a system capable of performing invariant visual

pattern recognition [10]. That version of HTM, known as Zeta 1, was built upon a

Bayesian framework. After Zeta 1, Zeta 2 was developed.

The Zeta algorithms were succeeded by the cortical learning algorithms (CLAs).

The CLAs were defined to be a category of algorithms utilized in HTM, explicitly
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known as the HTM CLAs [2]. The CLAs were comprised of the spatial pooler (SP)

and the temporal pooler (TP). Following HTM CLA came the current version of

HTM, which is simply known as HTM [4]. This version of HTM is similar to HTM

CLA, with the most noticeable difference being that the TP is replaced by tempo-

ral memory (TM).

HTM is under active development and as such, its details are changing. For

purposes of clarity, this work primarily follows the definitions from the original HTM

CLA whitepaper [2]. To ensure that the most recent details are provided, the latest

version of HTM was used as a reference. All areas of ambiguity are explained as they

appear. Terminology is used to follow the current version of HTM, to help remove

any future confusion.

2.3.1 Zeta Algorithms

Zeta 1 HTM refers to the HTM described in [10]. This type of HTM is constructed

with nodes. Each box in Figure 2.2 represents a node, with multiple nodes comprising

a level. The nodes are the basic building blocks of Zeta 1 HTM and include both the

algorithmic and memory components of the system. Nodes are used to learn spatial

invariant representations of input spaces.

The nodes have two phases of operations. The first phase, learning, is where the

node creates internal representations of the input. The second phase, sensing / infer-

ence, is where the node produces an output for the input. During the learning phase,

three operations occur: memorization of patterns, learning transition probabilities,

and temporal grouping. In this context, a “pattern” refers to the input the node

receives at a given instance, in time.

During the memorization phase, unique occurrences of each pattern are labeled

and stored. During the learning transition probabilities phase, a Markov chain is

maintained. Each vertex in the chain corresponds to a stored pattern. The link
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between two vertices corresponds to the probability of the pattern occurring. The

probability is simply a unity normalized value corresponding to the percentage the

transition from one pattern to another pattern occurred.

During the temporal grouping phase, patterns are clustered using agglomerative

hierarchical clustering. Each cluster in the hierarchical clustering dendrogram cor-

responds to a set of patterns that are likely to follow one another, in time. Those

clusters are known as temporal groups.

Once the learning phase has completed, the sensing / inference phase may occur.

In this phase, each node produces an output based on an instantaneous input. The

closeness of the input pattern to the patterns stored in memory is calculated. The

closeness is measured by the Euclidean distance between all vertices in a temporal

group. The node’s output is a unity normalized vector containing the probabilities of

the input pattern matching each temporal group.

10



Chapter 3

Spatial Pooler (SP) Overview

HTM is comprised of multiple levels, with each level consisting of one or more regions.

The term level refers to the HTM’s structure, where a level contains all components

within a single rank of the hierarchy. A region refers to the functionality within

the level. Each region is comprised of one or more columns consisting of one more

cells. The cells act as the fundamental functional unit within an HTM. An example

HTM architecture is depicted in Figure 3.1. This chapter explains those individual

components, as well as the spatial pooler (SP) and its role within HTM.

3.1 HTM Components

An HTM is comprised of a number of components, many of which follow a naming

convention inspired from neuroscience. Structurally, an HTM is a tree-shaped hierar-

chy of levels. Each level consists of one or more regions, which are used to carry out

the basic operation of the system. A region is defined to create an SDR of an input,

represent that input in the context of previous inputs, and perform inference based

on that new representation [2]. In practice, a region is used as a building block to

perform one distinct function, namely encoding the input, performing spatial pooling,

or executing the temporal memory operations. As such, to represent a true region
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Level

Region
ColumnCell

Sy
na
pse

Figure 3.1: An HTM consisting of three levels. The first level is at the bottom of the
hierarchy and the last level is at the top of the hierarchy. The inputs are fed bottom-up,
with the final output produced from the last level. Each level contains one or more regions
comprised of columns of cells. Connections between cells, within a region, also occur.

both an SP region and a TM region must be combined1.

A region may be n-dimensional in size; however, for simplicity, it is convenient to

work with a three-dimensional (3D) structure and two-dimensional (2D) data. One

area where that 3D structure is desired is in computer vision, where the input is in the

form of images. For simplicity, all further examples will assume a 3D structure with

2D data, such as the HTM previously shown in Figure 3.1. In addition to regions, an

HTM contains a number of other components, such as columns, cells, segments, and

synapses. Figure 3.2 shows a breakdown of the structure of those components.

As previously mentioned, a region is made up of columns of cells. A column

may contain one or more cells. Columns within an SP region will have one cell2 and

columns within a TM region will have one or more cells. Each cell in a column receives

the same feedforward input through a shared proximal segment. Those cells also

1It is common to split a complete HTM region into an SP and a TM region. This distinction
eases both the implementation, utilization, and understanding of the system. In light of that, when
the word region is utilized it will typically refer to either an SP or a TM region.

2Since SP columns only have one cell, the concept of cells may be ignored, with each column
acting as a cell.
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Region

Column Column Column Column

(a) Structure of an HTM region.

Column
Cell

Cell

Cell

Cell

(b) Structure of
an HTM column.

Cell

Proximal Segment

Distal Segment

Distal Segment

Distal Segment

Distal Segment

(c) Structure of an HTM cell.

Segment
Synapse

Synapse

Synapse

Synapse

(d) Structure of an
HTM segment.

Figure 3.2: Structure of the various components inside of an HTM. A region (a) is com-
prised of columns (b) of cells (c) of segments (d) of synapses. There may exist multiple types
of each subcomponent, except the proximal segment, which is limited to one per column.

receive different lateral inputs through distal segments. The activation of a column

is determined by the proximal segment. When the proximal segment becomes active,

the entire column is active.

A proximal segment is used to connect feedforward input, via synapses, to a

column. A proximal segment becomes active when the number of active synapses

exceeds a threshold. Each proximal segment has a fixed set of potential synapses, i.e.

synapses may attach and / or detach from a proximal segment.

A distal segment is used to connect cells within a region. Each cell may have

multiple distal segments. As with the proximal segment, when the number of active

synapses exceeds a threshold the distal segment becomes active. Unlike a proximal

segment, a distal segment has a dynamic set of potential synapses, allowing for new
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potential synapses to be created3.

A synapse is the lowest level unit inside of an HTM. A synapse has a direct

connection with a cell, where the cell’s state determines the synapse’s input4. Each

synapse has an associated permanence, which is a scalar between zero and one, inclu-

sive. If the permanence is above a threshold, the synapse is connected; otherwise, it

is disconnected. The larger the permanence the more difficult it is for the synapse to

detach, likewise, the smaller the permanence the more difficult it is for the synapse

to attach. A synapse becomes active if its input is active5. As in artificial neural

networks (ANNs), synapses have weights; however, the weight of an HTM synapse

is binary, whereas the weight of an ANN synapse is scalar. The weight of an HTM

synapse is simply ‘1’ when the synapse is connected and ‘0’ when it is disconnected6.

A cell in an HTM is analogous to a neuron in an ANN, having all activity entering

the cell and the corresponding output exiting the cell. The output of a cell takes the

form of three states — active, predictive, and inactive. The active state occurs when

the cell’s proximal segment becomes active. The predictive state occurs when at least

one of the distal segments becomes active. In all other conditions, the cell is inactive.

It is possible for the cell to be in both the active and predictive states. This would

occur when at least part of the predicted pattern is the same as the current pattern.

If a cell is in the active state, cells that are connected to that cell by distal segments

may also become active. Those cells would then enter the predictive state, collectively,

indicating what the next input should be. Using those states, the output of a region

3A limit may be placed on the maximum number of synapses per segment, reducing the network
complexity.

4If the cell is active, the input is ‘1’; otherwise, the input is ‘0’. For connections with the SP, it is
usually more convenient to observe the column’s state, where an active column results in an input
of ‘1’ and an inactive column results in an input of ‘0’. For the lowest region (where the region is
directly connected to the HTM’s input), a synapse’s input is a single bit of the input SDR.

5It is common to refer to the state of the synapse as a function of its input and its permanence.
For example, an “active connected” synapse would be a synapse whose input is active and whose
permanence exceeds the connected threshold.

6The weight may be perceived at as the logical value of the synapse’s connection state, i.e. ‘1’
for connected and ‘0’ for unconnected.
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is found by taking the bitwise logical OR of the active states and predictive states of

the region’s cells7.

3.2 SP Properties

The SP must utilize all columns to represent the input. This attribute eliminates

dead columns, as all columns, even those that rarely receive an active input, will still

be utilized in representing the input. This also ensures that the weaker columns have

some degree of representation. The SP uses the concept of boosting, where columns

with a low activation rate are forced to become active8, to assist in achieving this

property.

The percentage of active columns in a given range must remain constant. The

number of active columns is fixed within an inhibition radius. This “radius” refers

to a set of columns spatially located around a given column. The radius is dynamic

and may range from only direct neighbors to the size of the entire region.

The inhibition radius is proportional to the size of the receptive field of the

columns. The receptive field refers to the portion of the input that a column is

able to connect with. This field exhibits plasticity in that synapses may dynami-

cally become connected or disconnected from the column’s proximal segment, thus

changing the column’s input.

In addition to those three properties, the SP must also avoid learning trivial

patterns and avoid forming extra connections. To avoid learning trivial patterns,

a threshold is applied to the proximal segment, requiring that a certain number

of synapses must be active. To avoid forming extra connections, permanence’s are

both incremented and decremented during the SP’s learning phase. If the synapse

7This is the output that would be passed as a feedforward input to the next region. If this region
is the final region, it may be desirably to use either the active or predictive state, rather than both.

8The columns must still be connected to enough active synapses. If a column is poorly connected,
such that its synapses are connected to inputs that rarely become active, it is likely that these
columns will still become dead.
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is connected to an active column that survived the inhibition phase, the synapse’s

permanence is incremented; otherwise, it is decremented.

3.3 SP Operation

The SP consists of three phases, namely overlap, inhibition, and learning. In this sec-

tion the three phases will be presented based on their original, algorithmic definition.

This algorithm follows an iterative, online approach, where the learning updates oc-

cur after the presentation of each input. Before the execution of the algorithm, some

initializations must take place.

3.3.1 Initialization

Initialization occurs upon instantiation of the SP and is used to prepare the SP for

operation. During initialization, each column randomly connects with a user-defined

number of inputs via the formation of potential proximal synapses. The standard

assignment allows for potential synapses to form across any distances9. The synapses

connecting to a column are connected via the column’s proximal segment. After

forming the synapses, their respective permanences are randomly initialized. The

permanences are set within a small range around the threshold used for determining

the connectivity of a synapse. Additionally, the permanence values must be a function

of their distance from the column they are attached to, where synapses traveling less

distances are assigned larger permanence values.

3.3.2 Phase 1: Overlap

The first phase of the SP is known as overlap, and it is used to compute the degree of

overlap between a column and its current input. This is done by summing the active

9This gives the synapses the ability to connect to any input bit. In other words, the number of
synapses per column and the number of input bits (the size of the input to this region) are binomial
coefficients.
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Algorithm 1 SP phase 1: Overlap

1: for all col ∈ sp.columns do
2: col.overlap← 0
3: for all syn ∈ col. connected synapses() do
4: col.overlap← col.overlap+ syn. active()

5: if col.overlap < pseg th then
6: col.overlap← 0
7: else
8: col.overlap← col.overlap ∗ col.boost

synapses connected to the column. If the sum is too low, the overlap is set to zero;

thus, removing this column from the potential set of active columns. The overlap is

then boosted, by simply multiplying the overlap by that column’s boost.

The operation of this phase is shown algorithmically in Algorithm 1. In Algo-

rithm 1, the SP is represented by the object sp. The method col. connected synapses()

returns an instance to each synapse on col’s proximal segment that is connected, i.e.

synapses having permanence values greater than the permanence connected thresh-

old, psyn th. The method syn. active() returns ‘1’ if syn’s input is active and ‘0’

otherwise. pseg th10 is a parameter that determines the activation threshold of a

proximal segment, such that there must be at least pseg th active connected proxi-

mal synapses on a given proximal segment for it to become active. The parameter

col.boost is the boost for col, which is initialized to ‘1’ and updated according to

Algorithm 4.

3.3.3 Phase 2: Inhibition

The second phase is known as inhibition, and it is used to determine the set of

active columns. Within a column’s inhibition radius, the largest overlap, up to a

user-defined amount, is obtained. If this column’s overlap is at least as large as that

10This parameter was originally referred to as the minimum overlap; however, it is renamed in
this work to allow consistency between the SP and the TM.
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Algorithm 2 SP phase 2: Inhibition

1: for all col ∈ sp.columns do
2: mo← kmax overlap(sp. neighbors(col), k)

3: if col.overlap > 0 and col.overlap ≥ mo then
4: col.active← 1
5: else
6: col.active← 0

overlap, the column is chosen as one of the active columns. Hence, the columns within

the inhibition radius of the column being examined are inhibiting that column.

The operation of this phase is shown algorithmically in Algorithm 2. In Algo-

rithm 2, kmax overlap(C, k) is a function that returns the k-th largest overlap of the

columns in C. The method sp. neighbors(col) returns the columns that are within

col’s neighborhood, including col, where the size of the neighborhood is determined

by the inhibition radius. The parameter k is the desired column activity level. Line

2 in Algorithm 2 computes the k-th largest overlap out of col’s neighborhood. A

column is then said to be active if its overlap is greater than zero and the computed

minimum overlap, mo.

3.3.4 Phase 3: Learning

The third phase is the learning phase. This phase is used to update the permanence

values of all of the synapses, the boost values, and the inhibition radius. This phase is

optional and may be disabled. Disabling it, would cause the SP to no longer perform

any learning processes. In this phase, the permanence of all of the potential synapses

is updated for each active column. If the synapse is active (and thereby contributing

to the column activating) its permanence is incremented; otherwise, its permanence

is decremented. After the permanences have been updated, the duty cycles and boost

are updated for each column.

The duty cycle refers to a moving average of the frequency of an event. Two duty
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cycles exist for the columns, the active duty cycle and the overlap duty cycle. The

active duty cycle refers to how often a column has been active after the inhibition

phase. The overlap duty cycle refers to how often a column’s overlap has exceeded

the minimum overlap threshold. Before the duty cycles are updated, the minimum

active duty cycle is calculated, which is by default equal to one percent of the largest

active duty cycle within the inhibition radius. The duty cycles are then updated and

the minimum active duty cycle is used to update the boost.

If the active duty cycle is above the minimum active duty cycle then the boost

is set to one; otherwise, the boost is linearly increased. To aid the activation of

synapses, if the overlap duty cycle is less than the minimum active duty cycle, the

permanences of each synapse connected to a column is increased by ten percent (by

default) of the connected permanence threshold.

The final step in the learning phase involves globally updating the inhibition

radius. The inhibition radius is set to be the size of the average receptive field. This

is found by finding the average distance that a connected synapse is from its column,

i.e. the distance is measured from the column’s position to the position of the input

bit connected via the synapse.

The operation of this phase is shown algorithmically in Algorithm 3. In Algo-

rithm 3, syn.p refers to the permanence of syn. The functions min and max return

the minimum and maximum values of their arguments, respectively, and are used

to keep the permanence values bounded in the closed interval [0, 1]. The constants

syn.psyn inc and syn.psyn dec are the proximal synapse permanence increment and

decrement amounts, respectively.

The function max adc(C) returns the maximum active duty cycle of the columns

in C, where the active duty cycle is a moving average denoting the frequency of col-

umn activation. Similarly, the overlap duty cycle is a moving average denoting the fre-

quency of the column’s overlap being at least equal to the proximal segment activation
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Algorithm 3 SP phase 3: Learning

# Adapt permanences
1: for all col ∈ sp.columns do
2: if col.active then
3: for all syn ∈ col.synapses do
4: if syn. active() then
5: syn.p← min(1, syn.p+ syn.psyn inc)
6: else
7: syn.p← max(0, syn.p− syn.psyn dec)

# Perform boosting operations
8: for all col ∈ sp.columns do
9: col.mdc← 0.01 ∗max adc(sp. neighbors(col))

10: col. update active duty cycle()
11: col. update boost()

12: col. update overlap duty cycle()
13: if col.odc < col.mdc then
14: for all syn ∈ col.synapses do
15: syn.p← min(1, syn.p+ 0.1 ∗ psyn th)

16: sp. update inhibition radius()

threshold. The functions col. update active duty cycle() and col. update overlap duty cycle()

are used to update the active and overlap duty cycles, respectively, by computing the

new moving averages. The parameters col.odc, col.adc, and col.mdc refer to col’s

overlap duty cycle, active duty cycle, and minimum duty cycle, respectively. Those

duty cycles are used to ensure that columns have a certain degree of activation.

The method col. update boost() is used to update the boost for column, col, as

shown in Algorithm 4, where maxb refers to the maximum boost. It is important to

note that the whitepaper did not explicitly define how the boost should be computed.

This boost function was obtained from the source code of Numenta’s implementation

of HTM, Numenta platform for intelligent computing (NuPIC) [11].

The method sp. update inhibition radius() is used to update the inhibition radius.

The inhibition radius is set to the average receptive field size, which is computed as

20



CHAPTER 3. SPATIAL POOLER (SP) OVERVIEW

Algorithm 4 Boost Update: col. update boost()

1: if col.mdc == 0 then
2: col.boost← maxb
3: else if col.adc > col.mdc then
4: col.boost← 1
5: else
6: col.boost = col.adc ∗ ((1−maxb)/col.mdc) +maxb

the average distance between all connected synapses and their respective columns in

the input and the SP.
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SP Mathematical Framework

4.1 Notation

The operation of the SP (see Section 3.3) lends itself to a vectorized notation. By

redefining the operations to work with vectors it is possible not only to create a

mathematical representation, but also to greatly improve upon the efficiency of the

operations. The notation described in this section will be used as the notation for

the remainder of this work.

All vectors will be lowercase, bold-faced letters with an arrow hat. Vectors are

assumed to be row vectors, such that the transpose of the vector will produce a column

vector. All matrices will be uppercase, bold-faced letters. Subscripts on vectors and

matrices are used to denote where elements are being indexed, following a row-column

convention, such that X i,j ∈ X refers to X at row index1 i and column index j.

Element-wise operations between a vector and a matrix are performed column-wise,

such that ⇀xT � Y = ⇀xiY i,j ∀i ∀j.

Let I(k) be defined as the indicator function, such that the function will return

1 if event k is true and 0 otherwise. If the input to this function is a vector of

events or a matrix of events, each event will be evaluated independently, with the

function returning a vector or matrix of the same size as its input. Any variable with

a superscript in parentheses is used to denote the type of that variable. For example,

1All indices start at 0.
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Table 4.1: User-defined parameters for the SP

Parameter Description
n Number of patterns (samples)
p Number of inputs (features) in a pattern
m Number of columns
q Number of proximal synapses per column
φ+ Permanence increment amount
φ− Permanence decrement amount
φδ Window of permanence initialization
ρd Proximal dendrite segment activation threshold
ρs Proximal synapse activation threshold
ρc Desired column activity level
κa Minimum activity level scaling factor
κb Permanence boosting scaling factor
β0 Maximum boost
τ Duty cycle period

⇀x(y) is used to state that the variable ⇀x is of type y.

All of the user-defined parameters are defined in Table 4.12. These are parameters

that must be defined before the initialization of the algorithm. All of those parameters

are constants, except for parameter ρc, which is an overloaded parameter. It can either

be used as a constant, such that for a column to be active it must be greater than

the ρc-th column’s overlap. It may also be defined to be a density, such that for a

column to be active it must be greater than the bρc ∗ num neighbors(i)c-th column’s

overlap, where num neighbors(i) is a function that returns the number of neighbors

that column i has. If ρc is an integer it is assumed to be a constant, and if it is a

scalar in the interval (0, 1] it is assumed to be used as a density.

Let the terms s, r, i, j, and k be defined as integer indices. They are henceforth

bounded as follows: s ∈ [0, n), r ∈ [0, p), i ∈ [0,m), j ∈ [0,m), and k ∈ [0, q).

2The parameters κa and κb have default values of 0.01 and 0.1, respectively.
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4.2 Initialization

Competitive learning networks typically have each node fully connected to each input.

The SP; however, follows a different line of logic, posing a new problem concerning the

visibility of an input. As previously explained, the inputs connecting to a particular

column are determined randomly. Let ⇀c ∈ Z1×m, ⇀c ∈ [0,m) be defined as the set of

all columns indices, such that ⇀ci is the column’s index at i. Let U ∈ {0, 1}n×p be

defined as the set of inputs for all patterns, such that U s,r is the input for pattern s

at index r. Let Λ ∈ {r}m×q be the source column indices for each proximal synapse

on each column, such that Λi,k is the source column’s index of ⇀ci’s proximal synapse

at index k. In other words, each Λi,k refers to a specific index in U s.

Let
⇀
icr ≡ ∃!r ∈ Λi ∀r, the event of input r connecting to column i, where ∃!

is defined to be the uniqueness quantification. Given q and p, the probability of

a single input, U s,r, connecting to a column is calculated by using (4.1). In (4.1),

the probability of an input not connecting is first determined. That probability is

independent for each input; thus, the total probability of a connection not being

formed is simply the product of those probabilities. The probability of a connection

forming is therefore the complement of the probability of a connection not forming.

P(
⇀
icr) = 1−

q∏
k=0

(
1− 1

p− k

)
=
q + 1

p

(4.1)

It is also desired to know the average number of columns an input will connect

with. To calculate this, let
⇀
λ ≡

∑m−1
i=0

∑q−1
k=0 I(r = Λi,k) ∀r, the random vector

governing the count of connections between each input and all columns. Recognizing

that the probability of a connection forming in m follows a binomial distribution, the
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expected number of columns that an input will connect to is simply (4.2).

E
[⇀
λr

]
= mP(

⇀
icr) (4.2)

Using (4.1) it is possible to calculate the probability of an input never connecting,

as shown in (4.3). Since the probabilities are independent, it simply reduces to the

product of the probability of an input not connecting to a column, taken over all

columns. Let λ′ ≡
∑p−1

r=0 I(
⇀
λr = 0), the random variable governing the number of

unconnected inputs. From (4.3), the expected number of unobserved inputs may

then be trivially obtained as (4.4). Using (4.3) and (4.2), it is possible to obtain a

lower bound for m and q, by choosing those parameters such that a certain amount

of input visibility is obtained. To guarantee observance of all inputs, (4.3) must be

zero. Once that is satisfied, the desired number of times an input is observed may be

determined by using (4.2).

P
(⇀
λr = 0

)
= (1− P(

⇀
icr))

m (4.3)

E[λ′] = pP
(⇀
λr = 0

)
(4.4)

Once each column has its set of inputs, the permanences must be initialized. As

previously stated, permanences were defined to be initialized with a random value

close to ρs, but biased based on the distance between the synapse’s source (input

column) and destination (SP column). To obtain further clarification, NuPIC’s source

code [11] was consulted. It was found that the permanences were randomly initialized,

with approximately half of the permanences creating connected proximal synapses

and the remaining permanences creating potential (unconnected) proximal synapses.

Additionally, to ensure that each column has a fair chance of being selected during

inhibition, there are at least ρd connected proximal synapses on each column.
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Let Φ ∈ Rm×q be defined as the set of permanences for each column, such that

Φi is the set of permanences for the proximal synapses for ⇀ci. Each Φi,k is randomly

initialized as shown in (4.5), where Unif represents the uniform distribution. Using

(4.5), the expected permanence value would be equal to ρs; thus, q/2 proximal synapses

would be initialized as connected for each column. To ensure that each column has a

fair chance of being selected, ρd should be less than q/2.

Φi,k ∼ Unif(ρs − φδ, ρs + φδ) (4.5)

It is possible to predict, before training, the initial response of the SP with a

given input. This insight allows parameters to be crafted in a manner that ensures a

desired amount of column activity. Let X ∈ {0, 1}m×q be defined as the set of inputs

for each column, such that X i is the set of inputs for ⇀ci. Let
⇀
aii ≡

∑q−1
k=0X i,k, the

random variable governing the number of active inputs on column i. Let P(X i,k) be

defined as the probability of the input connected via proximal synapse k to column i

being active. P(X i) is therefore defined to be the probability of an input connected

to column i being active. Similarly, P(X) is defined to be the probability of an input

on any column being active. The expected number of active proximal synapses on

column i is then given by (4.6). Let a ≡ 1
m

∑m−1
i=0

∑q−1
k=0X i,k, the random variable

governing the average number of active inputs on a column. Equation (4.6) is then

generalized to (4.7), the expected number of active proximal synapses for each column.

E[
⇀
aii] = qP(X i) (4.6)

E[a] = qP(X) (4.7)

Let ACi,k ≡ X i,k ∩ I (Φi,k ≥ ρs), the event that proximal synapse k is active

and connected on column i. Let ⇀aci ≡
∑q−1

k=0ACi,k, the random variable governing
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the number of active and connected proximal synapses for column i. Let P(ACi,k) ≡

P(X i,k)ρs, the probability that a proximal synapse is active and connected3. Following

(4.6), the expected number of active connected proximal synapses on column i is given

by (4.8).

E[⇀aci] = qP(ACi,k) (4.8)

Let Bin(k;n, p) be defined as the probability mass function (PMF) of a binomial

distribution, where k is the number of successes, n is the number of trials, and p

is the success probability in each trial. Let at ≡
∑m−1

i=0 I
((∑q−1

k=0X i,k

)
≥ ρd

)
, the

random variable governing the number of columns having at least ρd active proximal

synapses. Let act ≡
∑m−1

i=0 I
((∑q−1

k=0ACi,k

)
≥ ρd

)
, the random variable governing

the number of columns having at least ρd active connected proximal synapses. Let

πx and πac be defined as random variables that are equal to the overall mean of

P(X) and P(AC), respectively. The expected number of columns with at least ρd

active proximal synapses and the expected number of columns with at least ρd active

connected proximal synapses are then given by (4.9) and (4.10), respectively.

In (4.9), the summation computes the probability of having less than ρd active

connected proximal synapses, where the individual probabilities within the summa-

tion follow the PMF of a binomial distribution. To obtain the desired probability,

the complement of that probability is taken. It is then clear that the mean is nothing

more than that probability multiplied by m. For (4.10) the logic is similar, with the

key difference being that the probability of a success is a function of both X and ρs,

3ρs was used as a probability. Because ρs ∈ R, ρs ∈ (0, 1), permanences are uniformly initialized
with a mean of ρs, and for a proximal synapse to be connected it must have a permanence value at
least equal to ρs, ρs may be used to represent the probability that an initialized proximal synapse
is connected.
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α = {  0  1  1  3  2  2  1  2  5  4  6  2  }^

Connected synapse
Unconnected synapse

Example column
Example column's input

Figure 4.1: SP phase 1 example where m = 12, q = 5, and ρd = 2. It was assumed that
the boost for all columns is at the initial value of ‘1’. For simplicity, only the connections
for the example column, highlighted in gray, are shown.

as it was in (4.8).

E[at] = m

[
1−

ρd−1∑
t=0

Bin(t; q, πx)

]
(4.9)

E[act] = m

[
1−

ρd−1∑
t=0

Bin(t; q, πac)

]
(4.10)

4.3 Phase 1: Overlap

Let
⇀
b ∈ R1×m be defined as the set of boost values for all columns, such that

⇀
bi is

the boost for ⇀ci. Let Y ≡ I(Φi ≥ ρs) ∀i, the bit-mask for the proximal synapse’s

activations. Y i is therefore a row-vector bit-mask, with each ‘1’ representing a con-

nected synapse and each ‘0’ representing an unconnected synapse. In this manner,

the connectivity (or lack thereof) for each synapse on each column is obtained. The

overlap for all columns, ⇀α ∈ {0, 1}1×m, is then obtained by using (4.11), which is a

function of
⇀
α̂ ∈ Z1×m.

⇀
α̂ is the sum of the active connected proximal synapses for all

columns, and is defined in (4.12).
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α = {  0  0  0  3  2  2  0  2  5  4  6  2  }

c = {  0  0  0  1  1  1  0  0  1  0  1  0  }^

Example column Neighbor column

Figure 4.2: SP phase 2 example where ρc = 2 and σo = 2. The overlap values were
determined from the SP phase 1 example.

Comparing these equations with Algorithm 1, it is clear that
⇀
α̂ will have the same

value as col.overlap before line five, and that the final value of col.overlap will be

equal to ⇀α. To help provide further understanding, a simple example demonstrating

the functionality of this phase is shown in Figure 4.1.

⇀α ≡


⇀
α̂i

⇀
bi

⇀
α̂i ≥ ρd,

0 otherwise

∀i (4.11)

⇀
α̂i ≡X i • Y i (4.12)

4.4 Phase 2: Inhibition

Let H ∈ {0, 1}m×m be defined as the neighborhood mask for all columns, such that

H i is the neighborhood for ⇀ci.
⇀cj is then said to be in ⇀ci’s neighborhood if and only

if H i,j is ‘1’. Let kmax(S, k) be defined as the k-th largest element of S. Let max(⇀v)

be defined as a function that will return the maximum value in ⇀v. The set of active

columns,
⇀
ĉ ∈ {0, 1}1×m, may then be obtained by using (4.13), where

⇀
ĉ is an indicator
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vector representing the activation (or lack of activation) for each column. The result

of the indicator function is determined by ⇀γ ∈ Z1×m, which is defined in (4.14) as the

ρc-th largest overlap (lower bounded by one) in the neighborhood of ⇀ci ∀i.

Comparing these equations with Algorithm 2, ⇀γ is a slightly altered version of mo.

Instead of just being the ρc-th largest overlap for each column, it is additionally lower

bounded by one. Referring back to Algorithm 2, line 3 is a biconditional statement

evaluating to true if the overlap is at least mo and greater than zero. By simply

enforcing mo to be at least one, the biconditional is reduced to a single condition.

That condition is evaluated within the indicator function; therefore, (4.13) carries

out the logic in the if statement in Algorithm 2. Continuing with the demonstration

shown in Figure 4.1, Figure 4.2 shows an example execution of phase two.

⇀
ĉ ≡ I(⇀αi ≥ ⇀γi) ∀i (4.13)

⇀γ ≡ max(kmax(H i �⇀α, ρc), 1) ∀i (4.14)

4.5 Phase 3: Learning

Let clip(M , lb, ub) be defined as a function that will clip all values in the matrix M

outside of the range [lb, ub] to lb if the value is less than lb, or to ub if the value is

greater than ub. Φ is then recalculated by (4.15), where δΦ is the proximal synapse’s

permanence update amount given by (4.16)4.

Φ ≡ clip (Φ⊕ δΦ, 0, 1) (4.15)

4Due to X being binary, a bitwise negation is equivalent to the shown logical negation. In a

similar manner, the multiplications of
⇀
ĉT with X and ¬X can be replaced by an AND operation

(logical or bitwise).
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c = {  0  1  0  1  1  1  0  0  1  0  1  0  }^

Increment permanence Decrement permanence

Figure 4.3: SP phase 3 example, demonstrating the adaptation of the permanences. The
gray columns are used denote the active columns, where those activations were determined
from the SP phase 2 example.

δΦ ≡
⇀
ĉ
T
� (φ+X − (φ−¬X)) (4.16)

The result of these two equations is equivalent to the result of executing the first

seven lines in Algorithm 3. If a column is active, it will be denoted as such in
⇀
ĉ;

therefore, using that vector as a mask, the result of (4.16) will be a zero if the column

is inactive, otherwise it will be the update amount. From Algorithm 3, the update

amount should be φ+ if the synapse was active and φ− if the synapse was inactive.

A synapse is active only if its source column is active. That activation is determined

by the corresponding value in X. In this manner, X is also being used as a mask,

such that active synapses will result in the update equalling φ+ and inactive synapses

(selected by inverting X) will result in the update equalling φ−. By clipping the

element-wise sum of Φ and δΦ, the permanences stay bounded between [0, 1]. As

with the previous two phases, the visual demonstration is continued, with Figure 4.3

illustrating the primary functionality of this phase.

Let
⇀
η(a) ∈ R1×m be defined as the set of active duty cycles for all columns, such

that
⇀
η
(a)
i is the active duty cycle for ⇀ci. Let

⇀
η(min) ∈ R1×m be defined by (4.17)

as the set of minimum active duty cycles for all columns, such that
⇀
η
(min)
i is the

minimum active duty cycle for ⇀ci. This equation is clearly the same as line 9 in
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Algorithm 3.

⇀
η(min) ≡ κa max

(
H i �

⇀
η(a)

)
∀i (4.17)

Let update active duty cycle(⇀c) be defined as a function that updates the moving

average duty cycle for the active duty cycle for each ⇀ci ∈ ⇀c. That function should com-

pute the frequency of each column’s activation. After calling update active duty cycle(⇀c),

the boost for each column is updated by using (4.18). In (4.18), β

(⇀
η
(a)
i ,
⇀
η
(min)
i

)
is defined as the boost function, following (4.19)5. The functionality of (4.18) is

therefore shown to be equivalent to Algorithm 4.

⇀
b ≡ β

(⇀
η
(a)
i ,
⇀
η
(min)
i

)
∀i (4.18)

β

(⇀
η
(a)
i ,
⇀
η
(min)
i

)
≡



β0
⇀
η
(min)
i = 0

1
⇀
η
(a)
i >
⇀
η
(min)
i

⇀
η
(a)
i

1−β0
⇀

η
(min)
i

+ β0 otherwise

(4.19)

Let
⇀
η(o) ∈ R1×m be defined as the set of overlap duty cycles for all columns,

such that
⇀
η
(o)
i is the overlap duty cycle for ⇀ci. Let update overlap duty cycle(⇀c) be

defined as a function that updates the moving average duty cycle for the overlap duty

cycle for each ⇀ci ∈ ⇀c. That function should compute the frequency of each column’s

overlap being at least equal to ρd. After applying update overlap duty cycle(⇀c), the

permanences are then boosted by using (4.20). This equation is equivalent to lines

13 – 15 in Algorithm 3, where the multiplication with the indicator function is used

to accomplish the conditional and clipping is done to ensure the permanences stay

5The conditions within the piecewise function must be evaluated top-down, such that the first
condition takes precedence over the second condition which takes precedence over the third condition.
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within bounds.

Φ ≡ clip

(
Φ⊕ κbρs I

(⇀
η
(o)
i <
⇀
η
(min)
i

)
, 0, 1

)
(4.20)

Let d(x, y) be defined as the distance function6 that computes the distance between

x and y. To simplify the notation7, let pos(c, r) be defined as a function that will

return the position of the column indexed at c located r regions away from the current

region. For example, pos(0, 0) returns the position of the first column located in the

SP and pos(0,−1) returns the position of the first column located in the previous

region. The distance between pos(⇀ci, 0) and pos(Λi,k,−1) is then determined by

d(pos(⇀ci, 0), pos(Λi,k,−1)).

Let D ∈ Rm×q be defined as the distance between an SP column and its corre-

sponding connected synapses’ source columns, such that Di,k is the distance between

⇀ci and ⇀ci’s proximal synapse’s input at index k. D is computed following (4.21),

where Y i is used as a mask to ensure that only connected synapses may contribute to

the distance calculation. The result of that element-wise multiplication would be the

distance between the two columns or zero for connected and unconnected synapses,

respectively8.

D ≡ (d(pos(⇀ci, 0), pos(Λi,k,−1))� Y i ∀k) ∀i (4.21)

The inhibition radius, σ0, is defined by (4.22). The division in (4.22) is the sum of

the distances divided by the number of connected synapses9. That division represents

the average distance between connected synapses’ source and destination columns,

6The distance function is typically the Euclidean distance.
7In an actual system the positions would be explicitly defined.
8It is assumed that an SP column and an input column do not coincide, i.e. their distance is

greater than zero. If this occurs, D will be unstable, as zeros will refer to both valid and invalid
distances. This instability is accounted for during the computation of the inhibition radius, such
that it will not impact the actual algorithm.

9The summation of the connected synapses is lower-bounded by one to avoid division by zero.
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and is therefore the average receptive field size. The inhibition radius is then set to

the average receptive field size after it has been floored and raised to a minimum

value of one, ensuring that the radius is an integer at least equal to one. Comparing

(4.22) to line 16 in Algorithm 3, the two are equivalent.

σo ≡ max

(
1,

⌊ ∑m−1
i=0

∑q−1
k=0Di,k

max(1,
∑m−1

i=0

∑q−1
k=0 Y i,k)

⌋)
(4.22)

Once the inhibition radius has been computed, the neighborhood for each column

must be updated. This is done using the function h(⇀ci), which is dependent upon the

type of inhibition being used (global or local) as well as the topology of the system10.

This function is shown in (4.23), where
⇀
ζ represents all of the columns located at the

set of integer Cartesian coordinates bounded by an n-dimensional shape. Typically

the n-dimensional shape is a represented by an n-dimensional hypercube.

h(⇀ci) ≡


⇀c global inhibition

⇀
ζ local inhibition

(4.23)

4.6 Boosting

It is important to understand the dynamics of boosting utilized by the SP. The

SP’s boosting mechanism is similar to DeSieno’s [12] conscience mechanism. In that

work, clusters that were too frequently active were penalized, allowing weak clusters

to contribute to learning. The SP’s primary boosting mechanism takes the reverse

approach by rewarding infrequently active columns. Clearly, the boosting frequency

and amount will impact the SP’s learned representations.

The degree of activation is determined by the boost function, (4.19). From that

10For global inhibition, every value in H would simply be set to one regardless of the topology.
This allows for additional optimizations of (4.14) and (4.17) and eliminates the need for (4.22) and
(4.23). For simplicity only the generalized forms of the equations were shown.
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Figure 4.4: Demonstration of boost as a function of a column’s minimum active duty
cycle and active duty cycle.

equation, it is clear that a column’s boost is determined by the column’s minimum

active duty cycle as well as the column’s active duty cycle. Those two values are

coupled, as a column’s minimum active duty cycle is a function of its duty cycle,

as shown in (4.17). To study how those two parameters affect a column’s boost,

Figure 4.4 was created. From this plot it is found that the non-boundary conditions for

a column’s boost follows the shape 1/
⇀
η
(min)
i . It additionally shows the importance of

evaluating the piecewise boost function in order. If the second condition is evaluated

before the first condition, the boost will be set to its minimum, instead of its maximum

value.

To study the frequency of boosting, the average number of boosted columns was

observed by varying the level of sparseness in the input for both types of inhibition, as

shown in Figure 4.5. For the overlap boosting mechanism, (4.18), very little boosting

occurs, with boosting occurring more frequently for denser inputs. This is to be

expected, as more bits would be active in the input; thus, causing more competition to

35



CHAPTER 4. SP MATHEMATICAL FRAMEWORK

Figure 4.5: Demonstration of frequency of both boosting mechanisms as a function of
the sparseness of the input. The top figure shows the results for global inhibition and the
bottom figure shows the results for local inhibition11.

occur among the columns. For the permanence boosting mechanism, (4.20), boosting

primarily occurs when the sparsity is between 70 and 76%, with almost no boosting

11The inputs to the SP consisted of 100 randomly generated bit-streams with a width of 100
bits. Within each bit-stream, bits were randomly flipped to be active. The sparseness is then the
percentage of non-active bits. Each simulation consisted of 10 epochs and was performed across 10
trials. The SP’s parameters are as follows: m = 2048, p = 100, q = 40, ρd = 15, ρs = 0.5, φδ = 0.05,
ρc = b0.02 ∗ mc, φ+ = 0.03, φ− = 0.05, β0 = 10, and τ = 100. Synapses were trimmed if their
permanence value ever reached or fell below 10−4. On the figure, each point represents a partial box
plot, i.e. the data point is the median, the upper error bar is the third quartile, and the lower error
bar is the first quartile.
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Figure 4.6: Frequency of boosting for the permanence boosting mechanism for a sparsity
of 74%. The top figure shows the results for global inhibition and the bottom figure shows
the results for local inhibition Only the first 200 iterations were shown, for clarity, as the
remaining 800 propagated the trend.

occurring outside of that range. Given the extremely large error bars at some of

those points, it is evident that the random initialization plays a large role in the

permanence boosting mechanism. This is likely due to that mechanism’s dependency

on the degree of overlap between a column and its input, i.e. the inputs that a column

randomly connects with will greatly influence the frequency of permanence boosting.

To further explore the permanence boosting mechanism, its boosting frequency

was plotted for a sparsity of 74% in Figure 4.6. It is shown that there is a delayed
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start, followed by a decaying exponential that falls until its minimum level is reached,

at which point the overall degree of boosting remains constant. Additionally, this

decaying exponential trend was common among the sparsities that resulted in a no-

ticeable degree of permanence boosting. Comparing this to DeSieno’s work [12], both

boosting mechanisms follow a right-skewed decaying exponential. It is also interesting

to note the size of the error bars. This once again reinforces the notion that network

initialization plays an important role.

Given that both boosting mechanisms generally occur infrequently, for inputs

that were expected to cause the largest degree of boosting, it is concluded that these

boosting mechanisms are secondary learning mechanisms, with the primary learning

occurring from the permanence update in (4.15). This observation allows resource

limited systems (especially hardware designs) to exclude boosting, while still obtain-

ing comparable results; thereby, greatly reducing the complexity of the system.

4.7 Exploring the Primary Learning Mechanism

To complete the mathematical formulation it is necessary to define a function govern-

ing the primary learning process. Within the SP, there are many learned components:

the set of active columns, the neighborhood (through the inhibition radius), and both

of the boosting mechanisms. All of those components are a function of the perma-

nence, which serves as the probability of an input bit being active in various contexts.

As previously discussed, the permanence is updated by (4.16). That update equa-

tion may be split into two distinct components. The first component is the set of

active columns, which is used to determine the set of permanences to update. The

second component is the remaining portion of that equation, and is used to determine

the permanence update amount.
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4.7.1 Plausible Origin for the Permanence Update Amount

In the permanence update equation, (4.16), it is noted that the second component is

an unlearned function of a random variable coming from a prior distribution. That

random variable is nothing more than X. It is required that X i,k ∼ Ber(P(X i,k)),

where Ber is used to denote the Bernoulli distribution. If it is assumed that each

X i,k ∈ X are independent and identically distributed (i.i.d.)12, then X
i.i.d.∼ Ber(θ),

where θ is defined to be the probability of an input being active. Using the PMF of

the Bernoulli distribution, the likelihood of θ given X is obtained in (4.24), where

t ≡ mq and X ≡ 1
t

∑m−1
i=0

∑q−1
k=0X i,k, the overall mean of X. The corresponding

log-likelihood of θ given X is given in (4.25).

L(θ;X) =
m∏
i=0

q∏
k=0

θXi,k(1− θ)1−Xi,k

= θtX(1− θ)t−tX
(4.24)

`(θ;X) = tXlog(θ) + (t− tX)log(1− θ) (4.25)

Taking the gradient of the joint log-likelihood of (4.25) with respect to θ, results

in (4.26). Ascending that gradient results in obtaining the maximum-likelihood esti-

mator (MLE) of θ, θ̂MLE. It can be shown that θ̂MLE = X. In this context, θ̂MLE is

used as an estimator for the maximum probability of an input being active.

∇`(θ;X) =
t

θ
X − t

1− θ
(1−X) (4.26)

12Recall that Xi contains the input observed by ⇀ci, which is a subset of U s. Each Xi ∈ X is
determined independently, such that all Xi ∈ X are guaranteed to be i.i.d. Each Xi,k ∈ Xi is
identically distributed, but not independent, thereby invalidating the i.i.d. assumption. However, if
the initialization was altered such that the selection from U s was done with replacement, then all
Xi,k ∈X would be guaranteed to be i.i.d.
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Taking the partial derivative of the log-likelihood for a singleX i,k results in (4.27).

Substituting out θ for its estimator, X, and multiplying by κ, results in (4.28a). κ

is defined to be a scaling parameter and must be defined such that κ
X
∈ [0, 1] and

κ
1−X ∈ [0, 1]. Revisiting the permanence update equation, (4.16), the permanence

update amount is equivalently rewritten as φ+X − φ−(J −X), where J ∈ {1}m×q.

For a single X i,k it is clear that the permanence update amount reduces to φ+X i,k−

φ−(1 − X i,k). If φ+ ≡ κ
X

and φ− ≡ κ
1−X , then (4.28a) becomes (4.28b). Given

this, δΨ is presented as a plausible origin for the permanence update amount. Using

the new representations of φ+ and φ−, a relationship between the two is obtained,

requiring that only one parameter, κ, be defined. Additionally, it is possible that

there exists a κ such that φ+ and φ− may be optimally defined for the desired set of

parameters.

∂

∂θ
`(θ;X i,k) =

1

θ
X i,k −

1

1− θ
(1−X i,k) (4.27)

δΨi,k ≡
κ

X
X i,k −

κ

1−X
(1−X i,k) (4.28a)

≡ φ+X i,k − φ−(1−X i,k) (4.28b)

4.7.2 Discussing the Permanence Selection

The set of active columns is the learned component in (4.16), obtained through a

process similar to competitive learning [13]. In a competitive learning network, each

neuron in the competitive learning layer is fully connected to each input neuron.

The neurons in the competitive layer then compete, with one neuron winning the

competition. The neuron that wins sets its output to ‘1’ while all other neurons set

their output to ‘0’. At a global scale, this resembles the SP with two key differences.
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The SP permits multiple columns to be active at a time and each column is connected

to a different subset of the input.

Posit that each column is equivalent to a competitive learning network. This

would create a network with one neuron in the competitive layer and q neurons in

the input layer. The neuron in the competitive layer may only have the state of ‘1’

or ‘0’; therefore, only one neuron would be active at a time. Given this context, each

column is shown to follow the competitive learning rule.

Taking into context the full SP, with each column as a competitive learning net-

work, the SP could be defined to be a bag of competitive learning networks, i.e. an

ensemble with a type of competitive learning network as its base learner. Recalling

that X ⊆ U s, each X i is an input for ⇀ci. Additionally each X i is obtained by

randomly sampling U s without replacement. Comparing this ensemble to attribute

bagging [14], the primary difference is that sampling is done without replacement

instead of with replacement.

In attribute bagging, a scheme, such as voting, must be used to determine what

the result of the ensemble should be. For the SP, a form of voting is performed

through the construction of ⇀α. Each base learner (column) computes its degree of

influence. The max degree of influence is q. Since that value is a constant, each ⇀αi

may be represented as a probability by simply dividing ⇀αi by q. In this context, each

column is trying to maximize its probability of being selected. During the inhibition

phase, a column is chosen to be active if its probability is at least equal to the ρc-th

largest probability in its neighborhood. This process may then be viewed as a form

of voting, as all columns within a neighborhood cast their overlap value as their vote.

If the column being evaluated has enough votes, it will be placed in the active state.
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Chapter 5

SP for Machine Learning

Since its conception, there has been a gap between HTM and the machine learning

community. This gap has largely been a result of the algorithm’s origin. Many promi-

nent machine learning algorithms originated from a rigours mathematical background,

whereas HTM is based on the operating principles of the neocortex. A mathematical

framework for the SP was presented in Chapter 4. This chapter is designed to bridge

the gap between HTM theory and traditional machine learning concepts.

5.1 Software Implementation

It was desired to create a software implementation of the SP, based on the presented

mathematical framework, that is readily usable by the machine learning community.

Such a framework was created in Python and is dubbed math HTM (mHTM)1 [15].

The implementation was made to be fully compatible with the popular Python ma-

chine learning library, scikit-learn [16].

The implementation of the SP is single-threaded; however, multiple forms of par-

allelizations for performing cross-validation (CV) and parameter optimization exist.

Those parallelizations are supported for both local machines and clusters. The code

is additionally platform independent and should run on any system containing the

1This implementation has been released under the MIT license and is available at: https://

github.com/tehtechguy/mHTM. The application program interface (API) is documented at: http:
//techtorials.me/mHTM.
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prerequisites. To use the code on a cluster, the cluster must be running SLURM, and

as such must be a valid Linux distribution.

5.2 Data Encoding

An HTM learns on the data that is provided to it, as well as how that data is presented.

Mapping an arbitrary input to a format that an HTM understands is handled by an

encoder. This input must always be an SDR. Each bit in the SDR represents the

activation state (‘0’ or ‘1’ for inactive and active, respectively) of the columns from

the previous region in the HTM. This input then serves as the feedforward input to

the next region in the HTM.

In the case of the input to the system, the input data must be mapped from its

representation to a suitable SDR. This mapping is performed by an encoder. The

most trivial mapping occurs when the input is already in the form of an SDR. In that

case, a unity encoder may be used, where the raw input is simply passed through.

Regardless of the input type, if it can be mapped to an SDR, the network will be

able to process it. Choosing an appropriate encoder is critical, as a coarse-grained

encoder (small number of bits per state) may not allow for enough distinction between

inputs and a fine-grained encoder (large number of bits per state) may demand large

memory and computation requirements or result in too large of an input distinction.

In addition to encoding, decoding is critical. An HTM region’s output is an SDR.

To obtain the original input, that SDR must be related to the input SDR, and then

decoded. The process of mapping from a region’s output SDR to its input SDR is

explained in Section 5.3. With that in mind, the purpose of an encoder is to be

able to take a supported input, convert it to an SDR, and then decode that SDR to

obtain the original input. With a lossless encoder it is always possible to obtain the

original input; however, a lossy encoder will only be able to obtain an input close to

the original input. The closeness of a lossy encoder’s decoded value to the original
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value depends on the granularity of the encoder.

The ensuing subsections will explain the details of a few encoders2. While other

encoders exist, most inputs may be satisfied through a unity encoder, category en-

coder, or a scalar encoder. In the event of multiple inputs, a multivariate encoder

may be used.

5.2.1 Category Encoder

A category encoder is used to encode categorical data. Each category is represented

by a user-defined set of contiguous bits, known as a bin. Each bit in the bin is set

to the active state if its category is the one being encoded; otherwise, it is set to the

inactive state. The bin for each category is concatenated together to form the final

representation.

The number of bits in each bin is specified by the user. An increase in bits

increases the degrees of freedom for each input. It also ensures that each bin is

able to be properly observed. Since an HTM network only cares about active bits,

having multiple active bits for a given input allows the system to more readily utilize

its resources. Having a large number of bits also provides some benefits for noise

tolerance, as the loss of some bits within a bin will not necessarily result in an incorrect

encoding. The tradeoff exists with the desired amount of memory, as the total size

of the SDR increases proportionally to the number of bits in the bin. This may then

result in increasing the number of columns in the HTM.

In addition to defining the number of bits, the user may specify the bit length.

The encoding will always be scaled to fit within the bit length. If too many bits

are created, the number of bits for a given bin is decremented until the bit length is

satisfied or there is no longer enough bits left to encode the data3. If the encoding

2Due to the informal definition of the encoders, the actual implementation of an encoder will
vary based on the work. The encoders presented in this work provide details for one possible
implementation.

3This occurs when the number of categories is greater than the number of bits.
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is shorter than the desired bit length, it will be padded on the right-hand side with

zeroes.

This implementation requires categories to be integers in the set of zero up to

the number of categories less one. While categories can technically be defined to

be any arbitrary object, integers simplify the design. Additionally, the number of

categories must be known at the time of creation. Having a discrete set of categories,

represented as integers, converts the categorical encoding problem into a simplified

scalar encoding problem. This reduction allows this encoder to use a scalar encoder

to perform the actual encoding and decoding, while still obtaining the desired result.

A category encoder is inherently a lossless encoder, as there exists a 1:1 rela-

tionship between encodings and categories. If the provided input to decode is lossy,

the most likely category will be returned as the output. This decoding process is

explained further in Section 5.2.2.

5.2.2 Scalar Encoder

A scalar encoder is used to encode scalars. Unlike the category encoder, the scalar

encoder has an infinite set of possible inputs. That set must still be mapped to an

SDR; therefore, like the category encoder, a finite set of bins is required. Determining

the proper number of bins is very important, as this will set the level of granularity

for the quantization process. Unfortunately, the current method for determining this

parameter is through experimentation.

In addition to the number of bins, the encoder must know the minimum and max-

imum values of the data it is encoding. This allows the quantization to be uniformly

distributed across that range. If a value is found that lies outside of that range, it is

clamped to its respective limit (the minimum or maximum value).

As with the category encoder, the number of bits and the number of active bits are

valid input parameters with a requirement of at least one of them being supplied. Two
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Figure 5.1: Scalar encoding example demonstrating the cases without (a) and with wrap-
ping (b). For both cases, four active bits and three bins were used with the bin overlap set to
70%. The encoding bounds are zero and two for the minimum and maximum, respectively.

additional parameters exist to further customize the encoding process: bin overlap

and wrap. Those parameters are both techniques to allow a commonality between

bins. This commonality enables a native way to denote similar inputs, but by doing

so, the complexity for discretizing the bins is increased.

Bin overlap is a percentage used to define the degree of overlap between bins. For

example, if four active bits are used with a bin overlap of 70%, there will be, at most,

two bits of overlap (bbin overlap ∗ # active bitsc) on either side of the bin. This

means that the two right-most bits of the bin representing the value immediately

lower than the current value will be shared with the two left-most bits of the current

bin, and that the two right-most bits of the current bin will be shared with the two

left-most bits of the bin representing the value immediately larger than the current

value. This encoding is depicted in Figure 5.1a.

Wrap is used as a flag to denote if the encoding should wrap around to the other

side. This can be used as a means to denote that the last element in the set shares

some commonality with the first element in the set. In the case of the previous bin

overlap example, if the current bin was the last bin, its two right-most bits would be

the first two bits of the encoding. This encoding is depicted in Figure 5.1b.
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Algorithm 5 Decode the SDR, sdr, to a scalar value.

# Find the set of best matching bin indexes
1: scalar encoder bins← get all scalar encoder bins()
2: bitwise bins← bitwise and(bin, sdr)∀bin ∈ scalar encoder bins
3: n← len(bitwise bin)− 1

4: bin sums←
bitwise bin[n]∑
b=bitwise bin[0]

(b)∀bitwise bin ∈ bitwise bins

5: best bin sum← max(bin sums)
6: best bin indexes← []
7: i← 0
8: for all bin sum ∈ bin sums do
9: if bin sum = best bin sum then

10: best bin indexes. append(i)

11: i← i+ 1

# Determine the bin’s value
12: median value← mean(get bin median(bin ix))∀bin ix ∈ best bin indexes
13: min value← mean(get bin min(bin ix))∀bin ix ∈ best bin indexes
14: max value← mean(get bin max(bin ix))∀bin ix ∈ best bin indexes

A scalar encoder is a lossy encoder, as an infinite number of scalars must be

mapped to a finite number of bins. Due to this mapping challenge decoding SDRs

into scalars is a non-trivial problem, where multiple decoding schemes may be used.

The decoding scheme presented in this work aims to map a given SDR to the bin that

it best matches. To do this, the given SDR is bitwise AND’d with each valid bin

representation. The sum of the active bits is found, and each bin having a sum equal

to the max sum is selected as the best bin. The average scalar representation of those

best bins is taken as the decoded scalar value. The pseudocode for this procedure is

shown in Algorithm 5. Since a bin is defined to be a range of scalars, the median

bin value, minimum bin value, and maximum bin value are all computed. In most

cases, the median bin value should be sufficient, but by also using the minimum and

maximum bins a more precise representation of the number is obtained.
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...encoder0 encoder1 encodern - 1 

Figure 5.2: Depiction of a multivariate encoder with n encoders.

5.2.3 Multivariate Encoder

A multivariate encoder is a special type of encoder that supports the encoding of mul-

tiple inputs. This encoder takes multiple encoders as inputs and uses those encoders

to create a new encoding. This encoder supports utilizing any other valid encoder,

such as the unity encoder, scalar encoder, or category encoder. It additionally sup-

ports as many encoders as desired. An encoding from this encoder is obtained by

concatenating the encodings of all of the internal encoders. The encodings are con-

catenated based on the order that they were originally provided to the multivariate

encoder. This structure is depicted in Figure 5.2.

To encode a set of values, a list of tuples containing the value to encode and the

encoder’s index is supplied, respectively. For each encoder, if a corresponding tuple is

supplied it is encoded using its encoder; otherwise, its encoding is an array of zeroes.

For decoding, this encoder iterates through all of its encoders, passing them the

relevant portion of the input SDR to decode. The return value is then a list of tuples

containing the encoded value and the encoder’s index, respectively.

5.3 Methodology of Operation

HTM is defined to be an online algorithm, allowing an iterative training approach. In

this manner, patterns are observed sequentially, with the system adapting after each

pattern. It is possible to disable the learning mechanisms. Doing so enables the ability

to extract the representation of the network after the provided set of training samples.

This online learning approach is further to be applied for hierarchical regions, where

each region performs learning after each pattern. While this approach works by
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Figure 5.3: Procedure for classifying with a single SP.

design, it creates some difficulty in understanding which representation corresponds

to which input.

The training strategy utilized in this work is shown in Figure 5.3. The SP is set to

enable learning. For each training epoch, each training sample is encoded and sent to

the SP. The SP then processes that encoded sample. Once the training process has

finished, the learning mechanisms in the SP are disabled. The encoded training and

testing sets are passed to the SP, respectively. The corresponding output of the SP,

along with the class label are stored. Those new training and testing sets are passed

to the classifier where it is then trained and used to compute the overall score.

If there exist multiple SP regions, the output of the previous SP is used as the

input for the current SP. Assuming that only a final overall score is desired, only the

output from the last SP is needed to train the classifier. It is also possible to use

the representation of the other regions. In that case, the output of the desired region

would need to be stored for both the training and testing sets.

In this hierarchical training scheme, each SP is training at the same time. It
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may be desirable to instead train each level in the hierarchy independently. This

would ensure that subsequent levels are only processing a static set of SDRs, since

the lower level would no longer be training. This approach has other benefits, such

as the ability to store intermediate outputs4. Unfortunately, if a constant stream of

data is expected, this approach will likely have issues. This is because the system will

have switched from training on a static set of SDRs to a new dynamic set; thus, the

training context will have changed.

In the event that a TM follows an SP, a new methodology is required. The input

to the TM will be the output from the SP; however, because it is unknown what

the output represents, it must first be mapped to the input. This is done by using a

classifier as shown in Figure 5.3. That classifier may then be used to easily tell which

output SDR (from the SP below the TM) produced which input. In this manner, the

output of the TM may be directly related back to the input of the system. This is

obviously required, as it is needed to determine the validity of the TM’s predictions.

Another interesting situation occurs with the use of TM. The TM needs to learn

what input SDR follows the current input SDR. If the online learning approach is

utilized, the set of input SDRs to the TM will be dynamic, thereby complicating

the process of predicting the next SDR. Given these circumstances, it is likely that

breaking the training into multiple parts will be desirable.

5.4 Feature Learning

A classical use case for the SP is to act as a pre-processing step for a classifier.

In this context, the SP is learning a new representation of the input that should

be easier for the classifier to classify. This is also the primary job of the SP, i.e.

4A system built to only utilize one SP could be trained by sequentially training each SP. Once the
first SP has been trained, its output (with learning disabled) could be stored for both the training
and testing sets. Those sets can then be used as input for a new system consisting of the SP for the
next level.
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mapping similar inputs to similar output SDRs. It is therefore clear that the SP is

performing feature learning. This section explores what that entails both theoretically

and experimentally.

5.4.1 Probabilistic Feature Mapping

It is convenient to think of a permanence value as a probability. That probability is

used to determine if a synapse is connected or unconnected. It also represents the

probability that the synapse’s input bit is important. It is possible for a given input

bit to be represented in multiple contexts, where the context for a specific instance

is defined to be the set of inputs connected, via proximal synapses, to a column.

Due to the initialization of the network, it is apparent that each context represents

a random subspace; therefore, each column is learning the probability of importance

for its random subset of attributes in the feature space. This is evident in (4.16),

as permanences contributing to a column’s activation are positively reinforced and

permanences not contributing to a column’s activation are negatively reinforced.

If all contexts for a given input bit are observed, the overall importance of that bit

is obtained. Multiple techniques could be conjured for determining how the contexts

are combined. The most generous method is simply to observe the maximum. In

this manner, if the attribute was important in at least one of the random subspaces,

it would be observed. Using those new probabilities the degree of influence of an

attribute may be obtained. Let
⇀
φ̂ ∈ (0, 1)1×p be defined as the set of learned attribute

probabilities. One form of
⇀
φ̂ is shown in (5.1)5. In (5.1), the indicator function is used

to mask the permanence values for U s,r. Multiplying that value by every permanence

in Φ obtains all of the permanences for U s,r. This process is used to project the SP’s

5The function max was used as an example. Other functions producing a valid probability are
also valid.
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representation of the input back into the input space.

⇀
φ̂ ≡ max (Φi,k I(Λi,k = r) ∀i ∀k) ∀r (5.1)

5.4.2 Dimensionality Reduction

The learned attribute probabilities may be used to perform dimensionality reduction.

Assuming the form of
⇀
φ̂ is that in (5.1), the probability is stated to be important

if it is at least equal to ρs. This holds true, as
⇀
φ̂ is representative of the maximum

permanence for each input in U s. For a given U s,r to be observed, it must be

connected, which may only happen when its permanence is at least equal to ρs.

Given that, the attribute mask, ⇀z ∈ {0, 1}1×p, is defined to be I
(⇀
φ̂ ≥ ρs

)
. The new

set of attributes are those whose corresponding index in the attribute mask are true,

i.e. U s,r is a valid attribute if ⇀zr is true.

5.4.3 Input Reconstruction

Using a concept similar to the probabilistic feature mapping technique, it is possible

to obtain the SP’s learned representation of a specific pattern. To reconstruct the

input pattern, the SP’s active columns for that pattern must be captured. This is

naturally done during inhibition, where
⇀
ĉ is constructed.

⇀
ĉ, a function of U s, is used

to represent a specific pattern in the context of the SP.

Determining which permanences caused the activation is as simple as using
⇀
ĉ to

mask Φ. Once that representation has been obtained, the process follows that of the

probabilistic feature mapping technique, where I(Λi,k = r) is used as a second mask

for the permanences. Those steps will produce a valid probability for each input bit;

however, it is likely that there will exist probabilities that are not explicitly in {0, 1}.

To account for that, the same technique used for dimensionality reduction is applied,
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by simply thresholding the probability at ρs. This process is shown in (5.2)6, where

⇀
û ∈ {0, 1}1×p is defined to be the reconstructed input.

⇀
û ≡ I

([
max

(
Φi,k

⇀
ĉi I(Λi,k = r) ∀i ∀k

)
≥ ρs

])
∀r (5.2)

5.4.4 Experimental Results

mHTM was used to empirically investigate the performance of the SP. Since the SP

should perform well with inherently spatial data, it was desired to evaluate the SP

with a well-known computer vision task. Additionally, because the SP requires a bi-

nary input, it was desired to work with images that were originally black and white or

could be readily made black and white without losing too much information. Another

benefit of using this type of image is that the encoder may be de-emphasized, allow-

ing for the primary focus to be on the SP. With those constraints, the modified Na-

tional Institute of Standards and Technology’s (MNIST’s) database of handwritten

digits [17] was chosen as the dataset.

The MNIST images are simple 28 × 28 grayscale images, with the bulk of the

pixels being black or white. To convert them to black and white images, each pixel

was set to ‘1’ if the value was greater than or equal to 255/2 and ‘0’ otherwise. Each

image was additionally transformed to be one-dimensional by horizontally stacking

the rows. The SP has a large number of parameters, making it difficult to optimize

the parameter selection. To help with this, 1, 000 independent trials were created, all

having a unique set of parameters. The parameters were randomly selected within

reasonable limits7. Additionally, parameters were selected such that E[λ′] = 0. To

reduce the computational load, the size of the MNIST dataset was reduced to 800

6The function max was used as an example. If a different function is utilized, it must be ensured
that a valid probability is produced. If a sum is used, it could be normalized; however, if caution is
not applied, thresholding with respect to ρs may be invalid and therefore require a new thresholding
technique.

7The following parameters were kept constant: ρs = 0.5, 30 training epochs, and synapses were
trimmed if their permanence value ever reached or fell below 10−4.
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training samples and 200 testing samples. The samples were chosen from their re-

spective initial sets using a stratified shuffle split with a total of five splits. To ensure

repeatability and to allow proper comparisons, care was taken to ensure that both

within and across experiments the same random initializations were occurring. To

perform the classification, a linear support vector machine (SVM) was utilized8. The

input to the SVM was the corresponding output of the SP.

Three comparisons were explored for both global and local inhibition: using the

set of active columns as the features (denoted as “column”), using
⇀
φ̂ as the features

(denoted as “probabilistic”), and using the dimensionality reduced version of the

input as the features (denoted as “reduction”). For each experiment the average

error of the five splits was computed for each method. The top 10 performers for

each method were then retrained on the full MNIST dataset. From those results, the

set of parameters with the lowest error across the experiments and folds was selected

as the optimal set of parameters.

The results are shown in Table 5.1 and Table 5.2 for global and local inhibition,

respectively. For reference, the same SVM without the SP resulted in an error of

7.95%. The number of dimensions was reduced by 38.27% and 35.71% for global

and local inhibition, respectively. Both the probabilistic and reduction methods only

performed marginally worse than the base SVM classifier. Considering that these

two techniques are used to modify the raw input, it is likely that the learned features

were the face of the numbers (referring to inputs equaling ‘1’). In that case, those

methods would almost act as pass through filters, as the SVM is already capable of

determining which features are more / less significant. That being said, being able

8When a single SP region is used, the input is typically projected into a higher dimensional space.
The SP, by definition, also produces a sparse output. Based on those details, any classifier following
an SP would need to be able to work well with both high dimensional and sparse data. Since SVMs
perform well with that type of data, the decision for using an SVM followed naturally. Additionally,
an SVM should also work well with the raw input, allowing for a fair comparison between using the
SP and not using the SP. A linear kernel was used over a nonlinear one, because the dimensionality
is large. Also, using a linear kernel has the added benefit of greatly improving the execution time.
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Table 5.1: SP Performance on MNIST using Global Inhibition9

Method Error
column 7.70%
probabilistic 8.98%
reduction 9.03%

Table 5.2: SP Performance on MNIST using Local Inhibition10

Method Error
column 7.85%
probabilistic 9.07%
reduction 9.07%

to reduce the number of features by over two thirds, for the local inhibition case,

while still performing relatively close to the case where all features are used is quite

desirable.

Using the active columns as the learned feature is the default behavior, and it is

those activations that would become the feedforward input to the next level (assuming

an HTM with multiple SPs and / or TMs). Both global and local inhibition outper-

formed the SVM, but only by a slight amount. Considering that only one SP region

was utilized, that the SP’s primary goal is to map the input into a new domain to be

understood by the TM, and that the SP did not hurt the SVM’s ability to classify, the

SP’s overall performance is acceptable. It is also possible that given a 2D topology

and restricting the initialization of synapses to a localized radius may improve the

accuracy of the network. Comparing global to local inhibition, comparable results

are obtained. This is likely due to the globalized formation of synaptic connections

upon initialization, since that results in a loss of the initial network topology.

To explore the input reconstruction technique, a random instance of each class

from MNIST was selected. The input was then reconstructed as shown in Figure 5.4.

The top row shows the original representation of the inputs. The middle row shows

9The following parameters were used to obtain these results: m = 936, q = 353, ρd = 14,
φδ = 0.0105, ρc = 182, φ+ = 0.0355, φ− = 0.0024, β0 = 18, and τ = 164.

10The following parameters were used to obtain these results: m = 786, q = 267, ρd = 10,
φδ = 0.0425, ρc = 57, φ+ = 0.0593, φ− = 0.0038, β0 = 19, and τ = 755.
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Figure 5.4: Reconstruction of the input from the context of the SP. Shown are the original
input images (top), the SDRs (middle), and the reconstructed version (bottom).11

the SDR of the inputs. The bottom row shows the reconstructed versions. The

representations are by no means perfect, but it is evident that the SP is indeed

learning an accurate representation of the input.

11The following parameters were used to obtain these results: m = 784, q = 392, ρd = 10,
φδ = 0.01, ρc = 10, φ+ = 0.001, φ− = 0.002, ten training epochs, global inhibition, and boosting
was disabled. The number of columns was set to be equal to the number of inputs to allow for a 1:1
reconstruction of the SDRs.
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Chapter 6

SDRs and Novelty Detection

6.1 Evaluating the SP’s SDRs

The primary purpose of the SP is to map similar inputs to similar output SDRs. If it is

able to perform this mapping, the TM should be able to make the proper predictions.

Proving that the SP is doing such operations can be difficult, since the definition of

similar changes by application. Additionally, there is a lack of methodology as well as

metrics for proving that the SP is actually producing the desired result. This section

provides some useful metrics for evaluating the SP’s output SDRs1.

6.1.1 Uniqueness Metric

The simplest technique for determining similarity is to evaluate the uniqueness of the

sample set. If all of the SDRs are unique there is no similarity, and if all of the SDRs

are identical there is complete similarity.

Let W ∈ {0, 1}n×m be defined as the set of SDRs produced by the SP from input

U , such that W s represents the SDR for input U s and W s,i represents bit i in W s.

W s is said to be unique if ∃!⇀w ∈W : (⇀w = W s). Let nu be defined as the number

of unique ⇀w ∈W . Let µu be defined as the uniqueness metric as shown in (6.1). µu

is the number of unique SDRs in W , normalized between zero and one. The metric

1The definitions are explicitly made in the context of the SP; however, the metrics may be used to
evaluate any arbitrary input, provided that the appropriate substitutions are made. The definitions
were made to be explicit for the SP to reduce the complexity of the equations.
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is equal to ‘1’ when all ⇀w ∈W are unique and ‘0’ when there are no unique SDRs.

When used in the context of evaluating the SP’s output SDRs, an ideal value for µu

is zero.

µu ≡
nu− 1

n− 1
(6.1)

This metric readily shows if the SP is performing perfectly; however, it is possible

for this metric to be equal to one even when all of the SDRs are similar. That

condition can occur if the SDRs differ by a relatively low number of flipped bits. To

obtain better insight, it is wise to use this metric in conjunction with another metric.

6.1.2 Overlap Metric

Overlap is the distance metric used by the SP (see (4.11)). The SP works to maximize

this distance, such that the number of overlapping bits within two given SDRs will

be as large as possible. Since overlap is used within the SP, it is natural to use it as

a similarity metric.

Referring to (4.11), overlap is nothing more than the dot product between two

vectors. By using overlap as the distance metric, it is possible to compute the similar-

ity of a collection of vectors. This is done by computing the average overlap across all

pair-wise vectors. It can then be normalized by dividing that term by the maximum

possible overlap value. The maximum overlap value that two vectors may obtain is

the number of active bits in the vector whose sum of active bits is the second largest

of the collection.

Let ao be defined as the average overlap across all pair-wise vectors in W , as

given by (6.2). In (6.2), the summations compute the sum of the overlap between all

pair-wise vectors. To obtain the average, that term is divided by the the number of
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elements in that sequence, which is the (n− 1)th triangular number.

ao ≡
2
∑n−2

s=0

(∑n−1
u=s+1 (W s •W u)

)
n(n− 1)

(6.2)

Let mo be defined as the maximum overlap of two given vectors in W , as given

by (6.3). Since the overlap is the sum of the number of overlapping bits between two

vectors, the maximum possible overlap is the number of the active bits in the vector

having the second largest number of active bits. This number is technically biased,

as it is possible that the actual maximum overlap is less than this value; however, it

does provide a valid upper bound.

mo ≡ kmax

(
m−1∑
i=0

W s,i∀s, 2

)
(6.3)

Let µo be defined as the overlap metric, as shown in (6.4). µo is the average

overlap, normalized between zero and one. By using mo as an upper bound, it is

ensured that this value may never exceed one. mo is additionally raised to one if it

is zero to avoid division by zero. If µo is one, all of the SDRs are identical. If it is

zero then all of the SDRs are unique. If it is somewhere in-between, it can provide a

means of measure for determining the similarity amongst the SDRs.

µo ≡
ao

max(mo, 1)
(6.4)

6.1.3 SP Dataset

A custom dataset was developed for evaluating the SP’s output SDRs. This dataset,

simply named “SP dataset” (SPD)2, is a generic dataset designed specifically for use

in exploring the capabilities of the SP. SPD is a dynamic dataset whose specifics

depend upon the provided user input.

2This dataset is included in mHTM. The class name is “SPDataset” and it is located in
“mHTM.datasets.loader”.
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The dataset consists of only a single class that is utilized for generating SDRs.

The user defines the number of bits that each SDR has, as well as the percentage of

bits that should be active, i.e set to ‘1’. Based on those two parameters, the base

class is created. The base class consists of a user-defined, randomly activated number

of bits in an SDR initialized to be all zeroes. This base class represents the ideal

representation for the dataset.

SPD may contain as many samples as the user desires. To generate samples, noise

is added to the base class. A user-specified percentage of bits, i.e. the degree of

noise, is inverted. Those bits are randomly determined, such that the exact number

of desired bits to be inverted will be inverted.

SPD provides an easy way to determine how effective the SP is at producing

generalizable SDRs. Since the determination of active bits is random and the other

parameters are user-definable, SPD can be used to create a generalized representation

for a specific dataset. It also has the added benefit of not being exclusively tied to

a specific underlying dataset, but rather the state of the input. Recalling that the

input that each column observes, X i, is randomly determined from the current input,

U s, SPD should be able to approximate any single-class dataset. In that context,

the number of bits in the SDR becomes q. The percentage of bits to make active is

approximated by U . The degree of noise is approximated by subtracting the overlap

metric of the input from one3.

Since the dataset has only one class, the output from the SP would ideally be

a single SDR. Additional samples are added to the dataset by perturbing the true

representation of the input. Those samples are a function of the original input and

noise, as such, it is easy to evaluate the SP’s resilience to noise in the input.

It is also possible to use a modified version of SPD, where multiple classes are cre-

3The overlap metric of the input is µo, where all instances of W are replaced by U and all
constants referring to the dimensions of W are altered to refer to the dimensions of U . This same
concept may be used to compute the overlap metric (or uniqueness metric) of any arbitrary input.
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ated. Any secondary classes can be explicitly set to have as much similarity (overlap)

with the primary class (and each other) as desired. This technique makes it possible

to determine if the SP is not only producing similar SDRs for the primary class, but

also filtering out classes that are not of the primary class.

6.1.4 Experimental Results

Using mHTM, the uniqueness and overlap metrics were evaluated4. A single SP was

configured based on manual experimentation5. SPD was used as the dataset. 500

samples were created, each having 100 bits. 40% of the bits were set to be active. The

experiment consisted of varying the degree of noise utilized to generate the dataset’s

samples. The noise was varied from 0 – 100%. For each percentage, ten trials were

used, such that the repeatably of the experiment could be studied. In a trial, the

random state for both the SP as well as the dataset were varied. The same random

states were used across the various amounts of noise, to ensure a fair comparison.

During an individual trial, the SP was trained on all of the data in SPD. The

SP was then tested on that same exact data. The uniqueness and overlap metrics

were computed for both the SP’s predicted SDRs as well as the raw input. The

results are shown in Figure 6.1 and Figure 6.2 for the uniqueness and overlap metrics,

respectively6.

In an ideal situation, the SP would produce the same representation for all inputs

until the noise level becomes large enough to change what the base class’ represen-

tation is. For this experiment, that transition is expected to occur when the noise is

4These metrics, along with a number of other metrics, are all part of the “SPMetrics” class which
is located in “mHTM.metrics”.

5The SP parameters were m = 200, p = 100, q = 75, ρd = 15, ρs = 0.5, φδ = 0.5, ρc = 50,
φ+ = 0.001, and φ− = 0.001. Synapses were trimmed if their permanences ever reached or fell
below 10−4, all boosting mechanisms were disabled, and ten training epochs were used. Those
specific parameters were used, because they worked well for Section 6.2.2. This allowed for a nice
comparison between the two experiments. Other parameters were found to produce “better” results.
Those were avoided to ensure the presented data would not be misleading.

6Each point in the figure represents a partial box plot, i.e. the data point is the median, the
upper error bar is the third quartile, and the lower error bar is the first quartile.
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Figure 6.1: Uniqueness metric on SPD for varying degrees of noise.

around 20%. That number represents half of the number of active bits in the base

class. With that much noise, it is possible for half of the originally active bits to be

inverted. At that point, the base class would be on the verge of being lost, since only

half of the bits between the base class and that new SDR would be overlapping. In

reality, it is unlikely that those bits would be selected, so the SDRs should still be

“similar” until the noise has exceeded 20%.

Referring to the results from the uniqueness metric, Figure 6.1, the SDRs in the

dataset were completely unique once the amount of noise reached only 3%. At that

point, the SP would now be responsible for filtering out the produced noise from the

dataset. The SP was able to produce perfect representations until the noise reached

4%. It was then able to produce near perfect representations until the noise reached

7%, where the uniqueness metric increased from 0.10% up to 1.40%. It was not until

the noise reached 14% that the uniqueness of SDRs exceeded 50%. Continuing from

there, once the noise reached 21% all of the SDRs were unique. Based on that, it is

likely that with a noise of 21% or more, it will be very hard to classify the output

SDRs as similar. Before that level had been reached, it should have been possible to
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classify the SDRs to be similar, assuming an appropriate classifier was used. Given

that it was not until a noise level of 14%, where the majority of the SDRs became

unique, the SP proved itself to be robust to noise in the input data. Additionally, the

random state of the SP, as well as the dataset, appeared to have almost no affect on

the SP’s output representations, provided that the SP was still producing very few

unique SDRs.

Referring to the results from the overlap metric, Figure 6.2, the raw data’s overlap

reached 50% at about a 21% noise level. Once the dataset’s overlap fell below 50%,

the original base class began to become lost. At that point, the SP was still able to

produce output SDRs with a large amount of overlap, boasting an overlap of about

86%. Additionally, the SP’s overlap did not reach 50% until the noise level was about

35%, at which point the overlap of the raw data was about 41%. This indicates that

the SP was able to generalize the input SDRs even in the presence of a substantial

amount of noise. Depending on how much noise is desired to be tolerated, the SP may

have been slightly overfitting the data. That is because it was still able to classify

the SDRs to be of the same type, even when the base class began to become lost.

It was also observed that the overlap metric proved to be robust to the random

variation between trials, having almost no variation, regardless of the degree of noise.

That property is extremely useful, as it alleviates the concern regarding the SP’s

initialization. It also implies that the SP should be robust to noise, regardless of

the dataset, provided that the samples stay within a certain degree of noise from

each other, and that the SP is properly trained. This is because any other given

dataset (consisting of a single class), is also just a set of SDRs representing a common

class. Assuming that those SDRs do indeed represent the same class, they should all

be centered around a common base class SDR. That class could be approximated

by computing the average bit activations (the average down the rows of U) and

thresholding each of those averages to either a ‘0’ or a ‘1’.
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Figure 6.2: Overlap metric on SPD for varying degrees of noise.

From these results, it is clear that the SP is indeed creating a valid mapping from

the input SDRs to a new set of SDRs. The uniqueness metric provided insight into

how much noise the system can trivially tolerate; however, the metric was blind to the

similarity between SDRs having almost identical representations. The overlap metric

proved to be more robust, showing that the SP was able to produce recognizable

SDRs up until the amount of noise became so large that the base class had changed.

These results indicate that it is possible for the SP to group a collection of input

SDRs into a single category. This experiment; however, does not provide insight

into the degree to which two overlapping or non-overlapping base classes may be

separated. Additionally, it is possible to find a set of parameters for the SP that

would result in a very tight distribution. While this at first glance would appear that

the SP is performing extremely well, it may be misleading, as it is likely that the SP is

over aggressively grouping SDRs together, i.e. overfitting. For this experiment, some

overfitting is occurring; however, the degree is minimal, given that once the original

base class becomes lost, the SP quickly regards the SDRs to be dissimilar.
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6.2 Novelty Detection

Given that the metrics in Section 6.1 demonstrated that it is possible to determine

the similarity among SDRs and that the SP was able to produce similar outputs for

similar inputs, it is likely that the SP should be able to perform novelty detection. In

novelty detection, the classifier is trained on the base class. It is then charged with

classifying new items to either be within the base class or to be novel, i.e. outliers.

The goal is to be able to easily detect any outliers. This section will explore utilizing

the SP as a novelty detector. An emphasis will be placed on the SP’s overall accuracy,

i.e. it will be judged by how well it is able to accurately separate the base and novel

classes.

6.2.1 SP Novelty Detection Classifier

To be able to use the SP for novelty detection, a classifier was designed. This classifier

is dubbed SP novelty detection classifier (SPNDC). SPNDC utilizes the concept of

the overlap metric at its core. Let U (tr) and U (te) be defined as the input SDRs for

the training and testing datasets. The corresponding output SDRs for U (tr) and U (te)

are W (tr) and W (te), respectively. The SP should be trained on U (tr). After training,

both W (tr) and W (te) are produced.

Using W (tr), this classifier begins by computing the probability that a given bit

within an SDR in W (tr) should be active. This probability is defined to be ⇀πw as

given by (6.5)7. That probability is then thresholded such that all bits in ⇀πw that are

at least equal to 0.5 are set to ‘1’ and all other bits are set to ‘0’. This thresholded

vector, defined to be ⇀w0, is now an SDR. ⇀w0 is taken to be the generic representation

7n in this context represents the number of vectors in W (tr).
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for all of the SDRs in W (tr), i.e. ⇀w0 represents the base class.

⇀πw ≡
1

n

n−1∑
s=0

W (tr)
s (6.5)

To determine whether a given input is of the base class or the novel class, SPNDC

computes µo between ⇀w0 and the provided input. If µo is at least equal to 0.5, the

input is classified to be part of the base class; otherwise, it is classified to be part of

the novel class. Applying that strategy to all of the SDRs in W (tr) and W (te), the

full dataset is classified.

6.2.2 Experimental Results

Using mHTM and SPNDC, an experiment was conducted to study the SP’s ability to

perform novelty detection. A single SP was configured after performing some manual

optimizations8. A variant of SPD was used as the dataset. 1,000 samples were created,

800 of those samples were used to form U (tr). Each sample contained 100 bits, and

40% of the bits were set to be active for the base class. A second dataset was created,

also using SPD. Instead of this datset’s base class being randomly constructed, as

with the first dataset, it was created based on the original dataset’s base class. This

new base class was adjusted to have a certain percentage of overlapping bits with

the original base class. If this percentage was zero, the original base class and the

new base class would have no overlapping active bits. If the percentage was 100, the

two base classes would have all 40 of their active bits overlapping, i.e. they would be

identical.

Similar to the experiment used in evaluating the metrics (Section 6.1.4), the

amount of noise used to generate additional samples was varied. Additionally, the

percentage of overlapping bits between base classes was varied. All possible pairs of

8The SP parameters were m = 200, p = 100, q = 75, ρd = 15, ρs = 0.5, φδ = 0.5, ρc = 50,
φ+ = 0.001, and φ− = 0.001. Synapses were trimmed if their permanence value ever reached or fell
below 10−4, all boosting mechanisms were disabled, and ten training epochs were used.
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those values were varied, such that data was generated for each single noise and bit

overlap pair. For each one of those pairs, ten trials were conducted. In a trail, the

random state for both the SP as well as the dataset were varied. The same random

states were used across the various amounts of noise, to ensure a fair comparison.

U (te) was created by using the remaining 200 SDRs from the first dataset as well

as an additional 200 SDRs generated from the second dataset. The first dataset

was used to represent the base class and the second dataset was used to represent a

different, novel, class. Evenly dividing the number of samples in each class allows for

the overall accuracy to be evenly representative of each class, such that an accuracy

of 50% indicates that the classifier was unable to distinguish between the base and

novel classes.

In addition to using the SP with SPNDC, a one-class SVM was used. The SVM

utilized a linear kernel and had ν equal to 0.1. ν was set to allow a training error of

10%. A larger value of ν resulted in the SVM poorly classifying the base class and a

smaller value resulted in it poorly classifying the novel class.

The training results for the SP and the SVM are shown in Figure 6.3. The

SP (Figure 6.3a) shows that it was able to produce a very good fit, across the board.

There did not appear to be any impact on training error with regards to overlap.

For noise, the error did not increase above 0% until the noise reached 34%, at which

point the error was only 0.25%. The maximum training error occurred for a noise of

43%, with the error being 8.25%. Given these results, it is clear that the SP was able

to accurately detect the base class, even in the presence of noise or when the overlap

between the base classes was large.

The SVM (Figure 6.3b) struggled at the boundary conditions. When the classes

were made to be identical, the SVM was unable to classify them correctly. This is

to be expected, since there is no distinction between the base and novel classes. To

provide some additional visibility, the noise was restricted to be between 5 and 95%,
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(a) SP training error.

(b) SVM training error.

Figure 6.3: Novelty detection, training, results for the SP (a) and the SVM (b).
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Figure 6.4: Restricted version of Figure 6.3b, where the noise ranged between 5 and 95%.

as shown in Figure 6.4. From that figure it is clear that the SVM did not fit the base

class as well as the SP. The lowest error the SVM obtained was 8%9, which was only

marginally better than the SP’s worst error. The highest error the SVM reached was

20%, which indicates that it was struggling to fit the data, since the expected error

should be 10%. As with the SP, varying the overlap did not appear to affect the error.

The testing results for the SP and the SVM are shown in Figure 6.5. The SP (Fig-

ure 6.5a) showed a robustness to noise. The error only began to increase once the

noise reached about 40%. Unlike the training results, varying overlap had a large

impact on the test error. The SP was able to perform well, provided that the over-

lap was below 40%. Once the overlap exceeded that threshold, the error steadily

increased to its maximum value.

The SP’s results closely followed the results that occurred from the metric exper-

iments (Section 6.1.4). Once the noise exceeded 35%, it became difficult to classify

9That occurred when the noise reached 35%. Interestingly, the SVM’s best fitting error was near
where the SP began to no longer have a perfect fit.
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(a) SP testing error.

(b) SVM testing error.

Figure 6.5: Novelty detection, testing, results for the SP (a) and the SVM (b).
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the data. Forcing the two base classes to have overlapping bits greatly increases the

complexity of the problem. Once 50% of the bits are overlapping, it should no longer

be possible to separate the two classes. Based on the results in Figure 6.5a, that

theory is supported. If however, both the overlap and noise are at their respective

thresholds, it could be possible to get “lucky” due to the chaotic nature of the input.

This was observed in Figure 6.5a, where the error was not 100% even when 90+% of

the bits were overlapping.

Compared to the SP, the SVM (Figure 6.5b) was not as robust to noise. Once the

noise was around 30%, the SVM’s error began to struggle with performing the correct

classifications. The amount of noise the SVM could tolerate was further reduced as

the number of overlapping bits increased. Unlike the SP, the SVM was able to tolerate

a much larger degree of overlapping bits, without sacrificing the error rate. This is

likely a result of the SVM’s ability to take into consideration not only the active

bits, but also the inactive bits. There is likely a correlation between an input’s class

and which bits remain inactive, within a given dataset. Since the SP is restricted to

learning based on the active bits, it is unable to take that into consideration. It may;

however, be possible to construct a classifier (or use a pre-existing one) that is able

to take that into consideration, utilizing W (tr) as the training set.

Revisiting Figure 6.5a, it was desired to further study the details of how well the

SP performs on the verge of chaos. To study this, two slices from both Figure 6.3

and Figure 6.5 were taken. The first slice was taken with the overlap fixed at 0% and

the noise varied. The results for training and testing for both the SP and the SVM

are shown in Figure 6.6. Figure 6.6a reiterates that the SP was more robust than the

SVM to noise in the training set. The SVM’s error was around 20%, whereas the SP’s

was around 0%, excluding a slight bump where the noise became 40%. Figure 6.6b

shows that the SP also performed better on the test set. The SP’s test error did not

begin to increase until around 40%, whereas the SVM’s test error began to increase
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at about 30%. Figure 6.6 can be used as a baseline, showing how the two algorithms

should respond to noise in an ideal situation.

The second case was studied with the noise fixed at 35% and the overlap varied.

This high level of noise was chosen, as it marks the point at which the SP was just

beginning to struggle. The results for training and testing for both the SP and the

SVM are shown in Figure 6.7. The training results, Figure 6.7a, were perfect for both

classifiers. The SP had a constant zero error and the SVM had a constant 10% error.

The test results, Figure 6.7b, showed a very interesting trend. With no overlap,

the SVM’s error started at just above 20%. This error then steadily increased as the

number of overlapping bits increased. With an overlap of only 20%, the SVM was

already bordering an error rate of 50%. Based on this, it is clear that the SVM is

unable to handle the chaotic nature of this dataset.

The SP proved to be incredibly robust, having only 0.5% test error until the

overlap reached 25%. Even with the chaotic nature of the input, the SP did not

begin to show any substantial increase in error until the overlap was about 40%. At

that point, the SP’s error was only 6%, whereas the SVM’s error had already grown to

60%. As expected, the error bars for the SP became non-negligible once the overlap

became large. Taking that into consider, the SP did not reach an error of 50% (with

error) until the overlap reached 70%.

72



CHAPTER 6. SDRS AND NOVELTY DETECTION

(a) Training error.

(b) Testing error.

Figure 6.6: Novelty detection results for non-overlapping inputs. The training (a) and
the testing (b) results are shown.
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(a) Training error.

(b) Testing error.

Figure 6.7: Novelty detection results for samples generated with a noise variation of 35%.
The training (a) and the testing (b) results are shown.
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Final Remarks

7.1 Summary of Work

This work took the biologically inspired HTM SP algorithm and created a mathemat-

ical framework for it. Using that framework, it was demonstrated how the SP can

be used within machine learning. In particular, the SP was demonstrated to perform

feature learning. This was demonstrated in the context of a multi-class classification

problem. It was shown how using the SP’s learned features, the SP may be used

to perform dimensionality reduction. Additionally, a reverse-mapping technique was

created. That reverse-mapping allows for the SP’s output to be converted back into

the input domain.

The primary learning mechanism of the SP was explored. It was shown that the

mechanism consisted of two components, the permanence selection and the degree of

permanence update. A plausible estimator was provided for determining the degree

of permanence update, and insight was given on the behavior of the permanence

selection. The behavior was compared to well-known machine learning algorithms.

Methods for evaluating the SP’s produced SDRs were provided. One such method

utilized the SP’s inherent distance metric, overlap. It was shown that the SP is

extremely robust to noise. The SP was able to group inputs as similar until the noise

became so large that the original input class was lost.
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Using the created overlap metric, the SP was designed for use in novelty detection.

A classifier was created to provide the SP with this capability. The SP was then

evaluated for different levels of noise. It was also evaluated with respect to the

similarity between the base and novel classes. The SP proved to be more robust to

noise than an SVM.

The conducted work may be used to bridge the gap between HTM and the ma-

chine learning community. Substantial evidence was presented showing the use of

the algorithm. Additionally, an open-source implementation of the algorithm was

created. That implementation, mHTM, includes all of the code utilized in this work.

mHTM should prove to be a solid foundation for future studies, as well as for using

the SP as-is in other machine learning venues.

7.2 Parameter Optimization

The topic of parameter selection and how to optimize those parameters is always

important in any parameterized algorithm. The SP, unfortunately, has a very large

number of parameters. As shown in this work, finding suitable parameters is a non-

trivial process. Techniques such as randomly searching a reduced space and manually

tunning the parameters were utilized. Those techniques are by no means the best

methods for determining such parameters. It is quite likely there exists a different

set of parameters for which better results may be obtained.

There are; however, some general guidelines to follow. The permanence incre-

ment and decrement amounts should be made low (∼10−3). They can somewhat be

thought of as learning rates. A theory regarding optimizing those was presented in

Section 4.7.1. If these parameters are set to be too large, the SP produces a very

coarse mapping. If the parameters are set to be too small, a fine grain mapping occurs.

These parameters are also directly related to determining the number of epochs.

In general, it is possible to use a very low number of training epochs. This is
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much unlike traditional neural networks that may require hundreds of epochs. It is

even possible to get away with only using a single training epoch; however, this will

typically not produce the best results. Having ten or so epochs seems to be sufficient

when the permanence update amounts are of a 10−3 magnitude. Additional epochs

did not appear to provide any extra benefit and may in fact lead to overfitting.

The permanences should always be randomly initialized. Initializing the perma-

nences based on the synapses’ relative distance between their source and destination

columns produced extremely poor results in all examined cases. When initializing the

permanences, using a small window will allow the permanences to become connected

more readily. This comes at the risk of too greedily forming synaptic connections.

Some benefits may be found adjusting this parameter; however, in general using 0.5

should be sufficient.

Trimming permanences seemed to have little effect. Depending on the implemen-

tation, this may improve performance. If that is the case, it is recommended to use

trimming. A value of 10−4 was found to have no negative impact.

Boosting greatly slows down the execution of the network. In rare cases it may

prove to be useful; however, in general it was found to not add any benefit. Based on

that, it is highly recommended to disable boosting. The current boosting mechanism

requires improvement, but it is likely that it can be improved to address this issue.

Global inhibition was found to perform similarly to local inhibition. Global inhibi-

tion has the added benefit of significantly reducing execution time. It is recommended

to only use local inhibition when it is clear that the application will benefit from it.

Refer to Section 7.4 for additional remarks.

After using those guidelines only four parameters remain to be discussed: the

number of columns, the number of active columns, the number of synapses, and

the segment threshold. For optimizing these parameters, experimentation will be

required. It is possible to use a search optimization algorithm to optimize the param-
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eters. That being said, there are still some general guidelines that may be used to

reduce the search space.

The number of synapses should be as large as possible. Referring back to Sec-

tion 4.7.2, it was discussed how the SP may be performing a type of attribute bagging.

In this context, the number of synapses dictates how many attributes each column

will observe. If this number is equal to the number of input bits, then all attributes

will be observed. In certain circumstances, this may be ideal; however, in general it

can lead to overfitting. It is best to choose a large number of synapses, such that an

adequate representation of the sample is selected.

The segment threshold is tightly coupled with the number of synapses parameter.

This parameter may often be fickle, such that changing it by as little as ±1 can

drastically affect the results. The safest choice is always zero. Using zero ensures

that there will always be adequate representation of the sample. While this is the

safest, it is not the best. This parameter should be optimized to be as large as

possible. As the value increases in size, the SP will become more robust to noise. If

the parameter is too large, it is possible to completely lose any sort of representation,

and if it is too small it is likely that too much noise is being introduced into the system.

The discussion in Section 4.2 may be used to help determine this parameter’s upper

bound.

Choosing the appropriate number of columns is tricky. A good starting point is

to set it to be equal to the number of bits in the input. This will provide a minimally

adequate level of coverage. It is possible to utilize a small number of columns, i.e.

less than the number of input bit; however, doing so may result in a less stable

network. If there are too many columns, the network will be more likely to overfit the

training data. If the input data is very chaotic, it may be likely that more columns

will be required. As a starting upper bound, it should not be necessary to use more

than 4× the number of input bits. This is by no means a guarantee, but rather a
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starting point. It was found that increasing the number of columns quickly provided

diminishing returns. Additionally, too many columns hurt the system’s accuracy.

Ideally, this parameter should be optimized to be as small as possible. The smaller

this parameter is, the shorter the execution time will be.

The last remaining parameter is the number of active columns. This parameter

may also be set to be a percentage. No real difference was observed when using

a constant vs. a density. For simplicity, the use of a constant is recommended.

This parameter is tightly coupled with the number of columns, and should always be

smaller than the number of columns. Ahmad et al. [18] suggest that this parameter be

set to make m/p very small (e.g. 0.02). Having a small ratio has shown to improve the

training accuracy; however, when the ratio is too small a loss in the testing accuracy

was observed. This was found to occur for both the multi-class classification and

novelty detection cases. Based on that evidence, it is recommended to use a ratio of

m/p in the range of 0 – 30%. Since there is a tight coupling of all of the parameters,

it is still likely that a low ratio will work, given alternative parameters.

Keep in mind that all of these provided suggestions are what was found to work

best for this work. For any given application, experimentation should be used to

determine the “ideal” selection of parameters.

7.3 Scalability

When considering using the SP for use in an application, it is important to evaluate

how well it will scale. The exact scalability may vary based on the specific implemen-

tation. mHTM was designed to scale with respect to the number of columns. In this

design paradigm, each phase becomes embarrassingly parallel. If this is exploited,

this will obviously greatly reduce the computation time; however, it will also increase

memory and power consumption.

One factor affecting scalability is the number of synapses. If the implementation
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is made to scale with respect to the number of columns, it will likely not be able

to scale with respect to the number of synapses. Adding additional synapses will

increase both computation time as well as memory consumption.

Given that the SP will likely be used for spatial related tasks or in conjunction

with the TM, it is very important to take into consideration the size of the input.

If the input is an RGB image, then it will first need to be encoded. If it is desired

to keep information on each channel, the input size is effectively tripling (a result

of the three channels). If color is required to be kept, the pixel values will need to

be encoded into an SDR. This could result in each pixel consuming many bits. For

example, if each pixel is desired to be represented by only five bits, and the image

size is a mere 28 × 28 pixels, p would become 11,7601. From this simple example,

it becomes apparent that to construct a large-scale system, parallelizations will be

required.

For improved performance, custom hardware may be created. Given the simplistic

nature of this algorithm, building such hardware should be readily achievable.

7.4 Hierarchical Topologies

Very few examples have demonstrated utilizing HTM in a hierarchical fashion. Zhang

et al. [19] mentioned the use of a hierarchy; however, the specifics of the design are

vague. Preliminary work was conducted while creating this work to explore the

potential of a hierarchical design. Unfortunately, said work has not yet been finished;

however, some preliminary statements may still be made.

A hierarchical design may prove useful for forming higher-level representations of

the input. Hierarchical designs in traditional neural networks (aka deep learning)

have proven to be immensely successful. In the context of the SP, it is believed that

1This is a fabricated encoding scheme for demonstration only. It is entirely possible that prepro-
cessing may be done to the image before it is encoded and / or a different encoding scheme may be
utilized.
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some changes to the initialization of the network should first occur.

The original design allows synapses to randomly form anywhere within the input

space. This is fine for using a single SP; however, when used hierarchically, this type

of initialization losses all of the topology originally present within the input. One

possible work around is to construct many SP regions within the region and to have

those regions connecting to a specific window (i.e. each SP region will have a unique

receptive field). While that technique would work, it would be better to redefine the

initialization method.

One such method would be to restrict columns to forming connections within a

given window. If the latter technique is used, each column would be effectively acting

as a mini region. If the number of bits that the column connects with is small enough,

it is believed that this technique should perform well. Additionally, it is presumed

that each column should be fully connected to all bits within its receptive field. If the

receptive fields are constructed to be overlapping, this topology will resemble that of

a convolutional neural network (CNN), which has proven to perform exceptionally

well in computer vision tasks.

With the aforementioned initialization, it is important to take into consideration

how that will affect the utilization of local inhibition. When local inhibition is used,

neighboring columns are competing with one another. With the original, random,

global initialization method, the original input topology is lost, such that localized

competition becomes somewhat meaningless2. If however, the input topology is pre-

served, as with the aforementioned design change, local inhibition now has an immense

amount of meaning. Instead of looking at the top columns (global inhibition), each

column, within a neighborhood, will have the ability to inhibit other columns. This

adds an additional level of competitiveness to the system and will likely improve the

SP’s results.

2This is a likely explanation for why global and local inhibition performed similarly, in this work.
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Assuming this new initialization scheme3, constructing a feed-forward hierarchy

is relatively straight forward. Subsequent levels would use the output of the previous

level as input. If feedback is desired, a new design will need to be created.

While it may not be difficult to physically construct a hierarchical design, a lot

of unknowns exist, regarding how it should be trained and utilized. Using an online

training technique will require the most amount of resources, as the full network

will be required to be present in memory. If each level is trained sequentially, it

is possible to simulate a multi-level design with only ever using a single SP. That

method; however, has the downside of not being able to accept new input, since the

learning would have incrementally built off the previous level’s representation.

Adding levels will also greatly increase the network computation time, so if the

hierarchy is not required, it is best to avoid it. Additional concerns regarding param-

eter selection and optimization are also created. If online learning is used, finding

proper parameters will likely be arduous. Offline learning may allow the ability to

reuse the ideas in Section 7.2, reducing the complexity.

In theory, a hierarchy should allow for more complex representations to be learned.

Additional research is still required to determine the full potential of this idea. Ad-

ditionally, how this will affect the TM is something that must be understood. One

possible construction (classical) is to sandwich an SP with a TM and to stack those

levels on top of one another. This would allow for learning an intermediate temporal

relationship; however, it is likely that only the top-level sequence is desired to be

learned. In such a case, it would make most sense to stack SP levels, with a single

TM region on top of that stack.

3NuPIC has the option to use localized regions, which is similar to this idea. Additionally,
openHTM [20] was known to utilize a localized connection scheme years before this work or NuPIC
began to utilize it.
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7.5 Future Work

Exploring the use of the proposed initialization scheme as well hierarchical designs

should be explored. Given that HTM was designed to be hierarchical, it is important

to demonstrate that capability.

The claims made in Section 4.7.1 regarding the selection of the permanence incre-

ment and decrement amounts need to be experimentally validated. They should be

studied under two contexts. In the first context the parameters should be adaptive,

i.e. set based on the current input pattern. In the second context they should be

static, i.e. based on the general distribution.

The work done with novelty detection has the potential to be expanded. It is

theorized that HTM works best with a single signal. If that theory is correct, it

would be best to construct an SP for each input class. This could be tested on the

MNIST dataset. A voting method could be used for classification. Alternatively, the

output from the overlap metric may be passed onto a classifier. A third option would

be to pass the raw output SDRs to a classifier. In this option, each SP would only

train on a single class. New inputs would need to be passed to each SP. Those outputs

would need to be passed to the classifier. Assuming the classifier’s decision function

produces a probability, it would be possible to use that probability to determine class

membership.

This work should be extended for the TM. Taking a similar approach could provide

many insights into the TM. Once that work has been completed, a full system-level

model for describing HTM can be created. HTM should be explored in many spa-

tiotemporal applications. One particularly interesting application would be anomaly

detection in video streams.

It is very likely that expanding this work will produce experiments of a larger

scope. If that occurs, the implementation should be parallelized. If a hardware
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version of HTM is created, it could be used to rapidly increase the scope of HTM-

related experiments.
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Glossary

active state

A cell state indicating that the cell became active due to feedforward input from

its proximal segment.

bin

A contiguous set of bits within an encoded SDR that represent a particular

subset of inputs.

boost

The process of increasing the activation of columns, such that weaker columns

will eventually become active.

cell

A fundamental unit within an HTM, analogous to a neuron in an ANN.

column

A collection of one or more cells within a region.

cortical learning algorithm

Terminology used in the previous version of HTM, denoting an algorithm that

enables learning in an HTM, namely the SP and the TP.

distal

An adjective used to describe a synapse or a segment. This refers to a connection

from lateral input.
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encoder

A unit used to convert an input to an SDR. An encoder is used before sending

the data to the HTM.

feedback

The flow of data from a higher hierarchical level to a lower hierarchical level.

feedforward

The flow of data from a lower hierarchical level to a higher hierarchical level.

inactive state

A cell state indicating that the cell is inactive.

inhibition radius

The set of columns that may be disabled after the active columns have been

determined. This “radius” is spatially centered around each column.

level

A reference to the structure of a single rank within the hierarchy of an HTM.

permanence

A scalar indicating the strength of a synapse connection.

potential synapse

A synapse that could become part of a specific segment, i.e. a synapse that is

not currently connected, but could become connected in the future.

predictive state

A cell state indicating that the cell became active due to lateral input from one

or more distal segments.
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proximal

An adjective used to describe a synapse or a segment. This refers to a connection

from feedforward input.

receptive field

The set of inputs that may be connected to a column. This is determined by

the distance from a column to all of its connected synapses.

region

The highest-level functional unit within a level. If the level only contains one

region, the region would be used to describe the functionality of the level.

segment

A dendrite segment, in the context of HTM, where a segment houses a collection

of synapses.

sparse distributed representation

A type of binary encoding, where a small percentage of bits are active at a time.

Each unique configuration of active bits represents a specific input.

spatial pooler

One of the primary algorithms in HTM. It is used to form an SDR of the input.

synapse

A connection between cells and / or columns.

temporal memory

One of the primary algorithms in HTM. It is used to form representations of

sequences of input patterns.
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temporal pooler

One of the CLAs. It is used to form representations of sequences of input

patterns.
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