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RENEWAL THEORY ON PATTERN ANALYSIS

Abstract

In this thesis, renewal theory is used to analyze patterns of outcomes for discrete random

variables. We start by introducing the concept of a renewal process and by giving some

examples. It is then shown that we may obtain the distribution of the number of renewals by

time t and compute its expectation, the renewal function. We then proceed to state and illustrate

the basic limit theorems for renewal processes and make use of Wald’s equation to give a proof

of the Elementary Renewal Theorem. The concept of a delayed renewal process is introduced for

the purpose of studying the patterns mentioned above. The mean and variance of the number of

trials necessary to obtain the first occurrence of the desired pattern are found as well as how

these quantities change in cases where a pattern may overlap itself. In addition to this, we

explore the expected number of trials between consecutive occurrences of the pattern. If our

attention is restricted to patterns from a given finite set, the winning pattern may be defined to

be the one which occurs first and the game ends once a winner has been declared. We compute

the probability that a given pattern is the winner as well as the expected length of the game. In

concluding our discussion, we explore the expected waiting time until we obtain a complete run

of distinct or increasing values.
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1. Introduction

A renewal process is a counting process where the interarrival times, the time between successive

events, are independent and identically distributed (iid) random variables with an arbitrary

distribution. One well known example of this is the Poisson process, whose interarrival times

are iid exponential random variables. The general nature of a renewal process, allowing for any

interarrival distribution, can be useful in the sense that any properties or definitions found to

apply to a renewal process can then be used in a wide variety of cases. It is this reasoning that

makes it valuable for pattern analysis.

1.1 Definition of a Renewal Process

Definition 1.1 A counting process, {N(t), t ≥ 0}, is a renewal process if {X1, X2, . . . }, the sequence of

nonnegative random variables of interarrival times, are independent and identically distributed. [3]

In other words, a renewal process is a counting process where the times between events, the

interarrival times, all have the same distribution but are independent of each other. The occurrence

of an event is referred to as a renewal.

Example 1.1 Suppose when a light bulb burns out, it is immediately replaced with another

whose lifetime is iid to the previous. Assume there is an infinite supply of these light bulbs.

Allow us to define the following quantities.

Xn represents the lifetime of light bulb n; Xn is the nth the interarrival time. A renewal is the

replacing of a light bulb; the arrival of an event. Then {N(t), t ≥ 0} is a renewal process and N(t)

represents the number of light bulbs that have burned out by time t; the number of renewals by

time t. [3]

�

For general cases, we will use the following notation. The interarrival distribution of {X1, X2, . . . }

will be denoted by F, the mean time between successive renewals is denoted by µ, and Tn is the

time that the nth renewal takes place.

Then, we have the following two equations that describe the simple relationship between the

1
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Figure 1: relationship between interarrival times and renewals

interarrival times, {X1, X2, . . . }, and the times of renewals, Tn. [3]

T0 = 0

Tn =
n

∑
i=1

Xi, n ≥ 1

1.2 Assumptions and Consequences

For the sake of eliminating trivial cases, the assumptions are made that no two arrivals may occur

at the same time and that the interarrival distribution, F, is such that it’s Xn are not identically

zero. That is,

F(0) = P(Xn = 0) < 1.

Then, by extension,

µ = E(Xn) > 0, n ≥ 1

due to the fact that the Xn are not identically zero and since they are representative of times, they

must be nonnegative. [3]

Considering the previous two equations, can an infinite number of renewals occur in a finite

amount of time? Can a finite amount of renewals occur in an infinite amount of time?

Let us answer the first question.

N(t) = max{n : Tn ≤ t} (eq. 1.1)

We can justify this equation in the following way. Since N(t) is the count of renewals by time t,

any time a renewal event occurs and as long as it’s Tn < t, it will contribute to the count of N(t).

Say for example a renewal takes place at times T1 = 3, T2 = 7, T3 = 9, and T4 = 15. Then N(14)

will represent the renewals from times T1, T2, and T3, so N(14) = 3. [3]

2
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We can say

Tn

n
→ µ as n→ ∞

by the strong law of large numbers, which tells us that the average of the interarrival times will

almost surely (with probability 1) converge on the expected value of the interarrival times. Because

µ > 0 and n→ ∞, then Tn must also be going to infinity. This tells us that only a finite number of

Tn can be less than or equal to a finite t.

It can now be stated that for a finite value of t, N(t) must be also be finite.

Is it possible for a finite number of renewals to occur in an infinite amount of time?

N(t) is finite for finite t, but if we allow t→ ∞, then N(∞) represents the total amount of renewals

that have ever occurred in the process and it follows that

N(∞) = lim
t→∞

N(t) = ∞.

The only way to have a finite number of total renewals is if some of the interarrival times, Xn,

were infinite. In fact, this can be shown below.

P(N(∞) < ∞) = P(one or more interarrival time was infinite)

= P(Xn = ∞ for some n)

= P(∪∞
i=1(Xn = ∞))

Which must be less than or equal to the probability that every Xn is infinite.

≤ P(X1 = ∞, X2 = ∞, . . . , Xn = ∞)

Because interarrival times are iid, this is the sum of their independent probabilities.

≤
∞

∑
i=1

P(Xn = ∞)

= 0

Therefore, the probability of the total number of renewals being finite is zero here. So for an

infinite t, N(t) must also be infinite. [3]

3
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2. Distribution of a Renewal Process

2.1 Obtaining the Distribution of N(t)

First noting an important relationship between the number of renewals and the time of each

renewal, we can actually find the distribution of N(t), at least in theory.

N(t) ≥ n iff Tn ≤ t (eq. 2.1)

It is a simple relationship. If the time of the nth renewal occurs at time t, or Tn = t, then N(t) = n.

However, what if the time of the nth renewal falls short of t? In this case, there is the possibility

of another renewal occurring before time t. Say one more renewal does occur in that period,

then Tn+1 < t and so N(t) = n + 1. If two renewals take place in that period, then Tn+1 < t and

Tn+2 < t, so N(t) = n + 2. By this reasoning, the previous equation is validated.

Using this relationship, we have,

P(N(t) = n) = P(N(t) ≥ n)− P(N(t) ≥ n + 1)

= P(Tn ≤ t)− P(Tn ≤ t)

= Fn(t)− Fn+1(t). (eq. 2.2)

Remembering the definition of Tn, Tn = ∑n
i−1 Xi, we know that because the interarrival times

are iid with distribution F, then the distribution of Tn is the n-fold convolution of F with itself,

denoted by Fn. [3]

Example 2.1 A renewal process has geometric interarrival times. Find an expression for

P(N(t) = n).

To start, the distribution of Tn must be negative binomial since it is the sum of iid geometric

random variables.

Recall that the pmf of the negative binomial is,

P(Tn = t) =


(

t− 1
n− 1

)
pn(1− p)t−n t ≥ n

0 t < n

Because we are working with discrete random variables, n ≤ t. This is because for each time unit,

a renewal may or may not occur, but two renewals may not occur at the same time. So, at most,

4
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one renewal may take place per unit of time. This is useful because we can disregard the zero

portion of the negative binomial pmf.

From here, (eq. 2.2) can be manipulated.

P(N(t) = n) = Fn(t)− Fn+1(t)

= P(Tn ≤ t)− P(Tn+1 ≤ t)

=
t

∑
i=n

P(Ti = t)−
t

∑
i=n+1

P(Ti+1 = t)

=
t

∑
i=n

(
i− 1
n− 1

)
pn(1− p)i−n −

t

∑
i=n+1

(
i− 1

n

)
pn+1(1− p)i−n−1

= pn

[
t

∑
i=n

(
i− 1
n− 1

)
(1− p)i−n − p

t

∑
i=n+1

(
i− 1

n

)
(1− p)i−n−1

]

= pn

[
t

∑
i=n

(
i− 1
n− 1

)
(1− p)i−n − (1− (1− p))

t

∑
i=n+1

(
i− 1

n

)
(1− p)i−n−1

]

= pn

[
t

∑
i=n

(
i− 1
n− 1

)
(1− p)i−n −

t

∑
i=n+1

(
i− 1

n

)
(1− p)i−n−1 +

t

∑
i=n+1

(
i− 1

n

)
(1− p)i−n

]

Pulling out the i = n term of the first sum allows for the first and third sums to be combined by

use of the fact that
(

i− 1
n− 1

)
+

(
i− 1

n

)
=

(
i
n

)
.

= pn

[
1 +

t

∑
i=n+1

(
i
n

)
(1− p)i−n −

t

∑
i=n+1

(
i− 1

n

)
(1− p)i−n−1

]

= pn

[
1 +

t

∑
i=n+1

(
i
n

)
(1− p)i−n −

t−1

∑
i=n

(
i
n

)
(1− p)i−n

]

= pn

[
1 +

t

∑
i=n+1

(
i
n

)
(1− p)i−n −

(
1 +

t−1

∑
i=n+1

(
i
n

)
(1− p)i−n

)]

= pn

[
t

∑
i=n+1

(
i
n

)
(1− p)i−n −

t−1

∑
i=n+1

(
i
n

)
(1− p)i−n

]

= pn

[(
t
n

)
(1− p)t−n +

t−1

∑
i=n+1

(
i
n

)
(1− p)i−n −

t−1

∑
i=n+1

(
i
n

)
(1− p)i−n

]

=

(
t
n

)
pn(1− p)t−n

The calculation ends with the binomial distribution, which makes sense here. N(t) counts the

number of renewals, so if we think of a renewal as a successful trial, then N(t) refers to the number

of successful outcomes by time t. [3]

�
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A second method for finding the distribution of N(t) is to condition on the value of Tn.

P(N(t) = n) =
∫ ∞

0
P(N(t) = n|Tn = x) fTn(x) dx

Because the only way for there to be exactly n events by time t is if the n + 1st renewal took place

after t, we know that the length of Xn+1 must be greater than t− x. We can simplify this in the

following manner. [3]

=
∫ t

0
P(Xn+1 > t− x|Tn = x) fTn(x) dx

Then since Xn+1 and Tn are independent of eachother, the condition may be dropped, giving,

=
∫ t

0
P(Xn+1 > t− x) fTn(x)dx

=
∫ t

0
[1− P(Xn+1 ≤ t− x)] fTn(x) dx

=
∫ t

0
[1− F(t− x)] fTn(x) dx

Example 2.2 Suppose a renewal process’ interarrival times follow the exponential distribution.

Then the distribution of Tn is the convolution of n exponential random variables, the gamma

distribution. Find P(N(t) = n). [3]

Recall that the cumulative distribution function, cdf, of an exponential random variable is F(x) =

1− e−λx and the pdf of the gamma distribution is f (x) = λe−λx(λx)n−1

(n−1)! .

P(N(t) = n) =
∫ t

0
[1− F(t− x)] fTn(x) dx

=
∫ t

0

[
1− (1− e−λ(t−x))

] λe−λx(λx)n−1

(n− 1)!
dx

=
∫ t

0
e−λ(t−x) λe−λx(λx)n−1

(n− 1)!
dx

=
∫ t

0
e−λteλx λe−λx(λx)n−1

(n− 1)!
dx

=
e−λtλn

(n− 1)!

∫ t

0
eλx e−λxxn−1 dx

=
e−λtλn

(n− 1)!

∫ t

0
xn−1 dx

=
e−λtλn

(n− 1)!

(
tn

n

)
=

e−λt(λt)n

n!

�
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2.2 Computing the Renewal Function

Definition 2.1 The function which represents the expected value of N(t), is the renewal function, m(t).

That is,

m(t) = E(N(t)).

The renewal function is unique to its specific renewal process’ interarrival distribution. [3]

The renewal function for discrete distributions can be calculated by use of (eq. 2.1).

m(t) = E(N(t))

=
∞

∑
n=1

P(N(t) ≥ n)

=
∞

∑
n=1

P(Tn ≤ n)

=
∞

∑
n=1

Fn(t)

By conditioning on the time of the first renewal, an integral equation for m(t) can be made for

continuous cases with probability density function f (x). *

m(t) = E(N(t)) =
∫ ∞

0
E(N(t)|X1 = x) f (x) dx (eq. 2.3)

If x < t, then,

E(N(t)|X1 = x) = E(1 + N(t− x))

= 1 + E(N(t− x))

because, probabilistically speaking, the renewal process starts over after each renewal occurrence.

So N(t) is increased by one and there is still the possibility of another renewal occurring in the

remaining time before t.

On the other hand, if x > t, then no renewals will have occurred by time t, and then we know that

7
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E(N(t)|X1 = x) = 0. In this case, (eq. 2.3) can be used as follows.

m(t) =
∫ t

0
E(N(t)|X1 = x) f (x) dx

=
∫ t

0
[1 + E(N(t− x))] f (x) dx

=
∫ t

0
[1 + m(t− x)] f (x) dx

=
∫ t

0
f (x) dx +

∫ t

0
[m(t− x) f (x) dx

= F(t) +
∫ t

0
m(t− x) f (x) dx (eq. 2.4)

The previous equation is known as the renewal equation and, in some cases, it is possible to obtain

the renewal function by solving it.

The following example will demonstrate the most simple case where this equation is solvable for

m(t). [3]

Example 2.3 Suppose Xn ∼ Uni(0, 1) and assume t ≤ 1, find an expression for m(t).

Beginning with (eq. 2.4),

m(t) = F(t) +
∫ t

0
m(t− x) f (x) dx

=
∫ t

0
f (x) dx +

∫ t

0
m(t− x) f (x) dx

=
∫ t

0
1 dx +

∫ t

0
m(t− x)(1) dx

= t +
∫ t

0
m(t− x) dx

Differentiating both sides and applying the fundamental theorem of Calculus, we have,

m′(t) = t + m(t)

Making the replacement g(t) = t + m(t), then g′(t) = m′(t), and so the following equation may

be solved by typical means.

g′(t) = g(t)

Then g(t) = cet for some constant c. In terms of the original function m(t), the generic solution is

m(t) = cet − 1. Applying that m(0) = 0, which is intuitive, gives c = 1, and therefore, [3]

m(t) = et − 1, 0 ≤ t ≤ 1.

�
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3. Limit Theorems

3.1 Rate of Renewals

It was already been shown that limt→∞ N(t) = ∞. Now we will explore the rate at which this

happens. Specifically, what can be said about limt→∞
N(t)

t ?

If TN(t) represents the time of the most recent renewal before or at time t, then TN(t)+1 denotes

the time of the first renewal following t. Trivially, it can be stated then that [3]

TN(t) ≤ t < TN(t)+1. (eq. 3.1)

Proposition 3.1 Almost surely, [1]

lim
t→∞

N(t)
t

=
1
µ

.

Proof. The proof begins by making use of the simple relationship shown in (eq. 3.1).

TN(t) ≤ t < TN(t)+1

TN(t)

N(t)
≤ t

N(t)
<

TN(t)+1

N(t)
TN(t)

N(t)
≤ t

N(t)
<

( TN(t)+1

N(t) + 1

)(
N(t) + 1

N(t)

)
lim
t→∞

TN(t)

N(t)
≤ lim

t→∞

t
N(t)

< lim
t→∞

( TN(t)+1

N(t) + 1

)
lim
t→∞

(
N(t) + 1

N(t)

)

We know that limt→∞

(
N(t)+1

N(t)

)
= 1, so we may simplify this to,

lim
t→∞

TN(t)

N(t)
≤ lim

t→∞

t
N(t)

< lim
t→∞

( TN(t)+1

N(t) + 1

)

From here, consider
TN(t)
N(t) . Because TN(t) is the sum of N(t) variables, this quotient is an average

and, therefore, will follow the strong law of large numbers. It follows that

lim
N(t)→∞

TN(t)

N(t)
= lim

t→∞

TN(t)

N(t)
= µ

9
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since, as shown previously, N(∞) = ∞. Simplifying the inequality with this information gives the

following:

µ ≤ lim
t→∞

t
N(t)

≤ µ.

In the line above, the simplification of the other side of the inequality was simple since it also

must follow the same strong law of large numbers logic. Therefore, courtesy of the Squeeze

Theorem,

lim
t→∞

t
N(t)

= µ

Finally, this gives us [3]

lim
t→∞

N(t)
t

=
1
µ

.

�

Definition 3.1 Since the average number of renewals per time unit is 1
µ , this quantity is the rate of a

renewal process.

Example 3.1 Suppose a bus departs from a bus-stop every 25-35 minutes, uniformly. At what

rate do departures occur?

Here Xn ∼ Uni(25, 35), so we have µ = a+b
2 = 25+35

2 = 30. Then the rate is

lim
t→∞

N(t)
t

=
1
µ
=

1
30

.

On average, a bus leaves the stop every half hour.

�

Example 3.2 Suppose the same bus has to undergo a brief safety check before it’s doors are

opened at a stop. This check will take 0 minutes if the bus driver forgets and up to 2 minutes if he

remembers. Assume the length of the check is distributed uniformly. Now at what rate do bus

departures take place?

Let X1 represent the time it takes the bus to arrive at the stop and let X2 denote the duration

of the safety check. Then X1 ∼ Uni(25, 35) and X2 ∼ Uni(0, 2). The sum of X1 + X2 has mean

µ = µ1 + µ2 where µ = 25+35
2 + 0+2

2 = 30 + 1 = 31 and the rate is

lim
t→∞

N(t)
t

=
1
µ
=

1
31

.

On average, a bus departs every 31 minutes.

10
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�

Example 3.3 Suppose each trial of an iid sequence will always result in some outcome i with

probability pi, i = 1, 2, . . . , n. A renewal takes place each time the same outcome is observed

n times in a row, after which, the game starts over. The outcome which caused this renewal is

considered the winner. What is the probability that outcome i wins and what is the expected

number of trials the game will last?

First, we can look at a simpler case by computing the expected number of coin tosses necessary to

get a run of n successive heads. We are assuming each toss is independent and has a probability,

p, of landing on heads.

Let T be the number of tosses needed to obtain n heads in a row, and let S denote the time of the

first tails. Then, by conditioning on the time of the first tails, we obtain our starting equation and

the rest follows.

E(T) =
∞

∑
k=1

E(T|S = k) P(S = k)

Because the probability that the first tails occurs at time k is geometric, we can simplify this

to,

=
∞

∑
k=1

E(T|S = k) (1− p)pk−1

Consider the possible values of E(T|S = k). If k > n and k is the first time a tails occurred, then

there must have already been a run of at least n heads, so E(T|S = k) = n if k > n. On the other

hand, if k < n, then the occurrence of a tails at time k ruins the run of heads and we essentially

start over again, therefore, E(T|S = k) = k + E(T) when k < n. Using this information, we may

break up the above summation.

=
n

∑
k=1

(k + E(t)) (1− p)pk−1 +
∞

∑
k=n+1

n (1− p)pk=1

=
n

∑
k=1

(k + E(t)) (1− p)pk−1 + n (1− p)
∞

∑
k=n+1

pk=1

=
n

∑
k=1

(k + E(t)) (1− p)p−1 + n (1− p)
[

pn

1− p

]
= npn +

n

∑
k=1

[
(1− p)pk−1(k + E(T))

]

11
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= npn + (1− p)
n

∑
k=1

kpk−1 + (1− p)E(T)
n

∑
k=1

pk−1

= npn + (1− p)
[

1− pn

(1− p)2 −
npn

(1− p)

]
+ (1− p)E(T)

[
pn − 1
(p− 1)

]
= npn +

1− pn

(1− p)
− npn +

(1− p)(pn − 1)
(p− 1)

E(T)

=
1− pn

(1− p)
− (pn − 1)E(T)

E(T) + (pn − 1)E(T) =
1− pn

(1− p)

[1 + (pn − 1)]E(T) =
1− pn

(1− p)

E(T) =
1− pn

pn(1− p)
(eq. 3.2)

Now we are ready to tackle the original example.

Because a win by outcome i is a renewal, we can apply Proposition 3.1. So,

the rate at which i wins =
1
µ
=

1
E(Ni)

here E(Ni) represents the expected number of trials that take place between successive wins by i.

In other words, E(Ni) is the expected wait time until i wins. In fact, we’ve already computed this

quantity, (eq. 3.2), and can now apply it here.

the rate at which i wins =
1
µ
=

1
E(Ni)

=
pk

i (1− pi)

1− pk
i

(eq. 3.3)

The proportion of games won by i are as follows.

proportion of games won by i =
rate at which i wins

rate at which wins occur
=

pk
i (1−pi)

1−pk
i

∑n
j=1

pk
j (1−pj)

1−pk
j

Then, by the strong law of large numbers, the long-run proportion of games that i will win will,

with probability 1, be equal to the probability that i wins any given game. So,

P(i wins) =

pk
i (1−pi)

1−pk
i

∑n
j=1

pk
j (1−pj)

1−pk
j

.

12
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Lastly, we can compute the expected length of a game. It follows that,

rate at which games end = rate at which wins occur

=
n

∑
j=1

pk
j (1− pj)

1− pk
j

.

Then, from Proposition 3.1, [3]

E(duration of a game) =
1

rate at which games end

=
1

∑n
j=1

pk
j (1−pj)

1−pk
j

�

3.2 Stopping Time and Wald’s Equation

Definition 3.2 If we have a non-negative integer-valued random variable, N, we can call this a stopping

time for a sequence of independent random variables, X1, X2, . . . only in the case that for all n = 1, 2, . . . ,

then (N = n) is independent of Xn+1, Xn+2, . . . . [3]

In other words, a stopping time is the time at which a sought after event occurs, as seen in the

next example, and it is no longer necessary to continue with trials.

Example 3.4 Let X1, X2, . . . be a sequence of independent and identically distributed random

variables with only two potential outcomes, 1 or 0. Then we can say,

P(Xi = 1) = p

P(Xi = 0) = 1− p = q, forp > 0.

Suppose we are seeking the event where (X1 + X2 + · · · + Xn > k), then we have N being a

stopping time for the sequence if we define it as N = min(n : X1 + X2 + · · ·+ Xn > k). [3]

�

Theorem 3.1 (Wald’s Equation) [3] If we have a sequence of iid random variables, X1, X2, . . .

with some finite expectation, denoted E(X), and if N is a stopping time for the sequence X1, X2, . . . ,

then assuming E(N) < ∞,

E

(
N

∑
n=1

Xn

)
= E(N)E(X)

13
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Proof. Let In be an binary indicator variable such that In = 1 if n ≤ N and 0 if n > N, for

n = 1, 2, . . . . With this, we have the relationship

N

∑
n=1

Xn =
∞

∑
n=1

Xn In.

If we consider the expected values of these sums, it can be seen that

E

(
∞

∑
n=1

Xn

)
= E

(
∞

∑
n=1

Xn In

)

=
∞

∑
n=1

E(Xn In)

=
∞

∑
n=1

E(Xn)E(In)

= E(X)E

(
∞

∑
n=1

In

)
= E(X)E(N)

where the above relies on the argument that that Xn and In are independent since the value of In

relies solely on whether or not we have yet stopped. [3]

�

Proposition 3.2 Suppose we have the interarrival times of a renewal process given by X1, X2, . . . ,

then,

E(X1 + X2 + · · ·+ XN(t)+1) = E(X) E(N(t) + 1).

Altering notation shows us another equivalent expression, E(TN(t)+1) = µ(m(t) + 1). [2]

Theorem 3.2 (Central Limit Theorem for Renewal Processes) [3] For large values of t and for

Xi ∼ F(µ, σ2), then N(t)
approx.∼ Normal

(
t
µ , tσ2

µ3

)
. Recall that F denotes the distribution of the

interarrival times.

lim
t→∞

P

N(t)− t
µ√

tσ2

µ3

< x

 =
1√
2π

∫ x

−∞
e
−x2

2 dx

lim
t→∞

Var(N(t))
t

=
σ2

µ3 (3.1)
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3.3 Elementary Renewal Theorem

The theorems and properties developed in the previous section are the ideas on which the proof

of the Elementary Renewal Theorem relies, which is why they were presented first. We are now

ready to investigate this theorem and prove it.

Theorem 3.3 (Elementary Renewal Theorem) [1] limt→∞
m(t)

t = 1
µ or limt→∞

E(N(t)
t = 1

E(T)

Proof. Since TN(t)+1 is the time of the first renewal that occurs after a time t, we can determine

that

TN(t)+1 = t + Y(t)

and

E(TN(t)+1) = E(t + Y(t)) = t + E(Y(t))

where Y(t) is the excess at the time t. We define the excess as the difference in time between t and

the next renewal, or Y(t) = TN(t)+2 − t.

By use of Proposition 3.2, this can be rearranged to yield the following:

µ(m(t) + 1) = t + E(Y(t)) (eq. 3.4)

m(t) =
t
µ
+

E(Y(T))
µ

− 1

m(t)
t

=
1
µ
+

E(Y(T))
tµ

− 1
t

The stipulation that Y(t) ≥ 0 allows us to see that

m(t)
t
≥ 1

µ
− 1

t

which, when t→ ∞, simplifies this. That is,

lim
t→∞

m(t)
t
≥ 1

µ
.

Assuming that there exists a finite B, an upper boundary on the values of Xi, it must satisfy

the property that P(Xi < B) = 1. Since all Xi < B, it follows that Y(t) < B and consequently,

E(Y(t)) < B.

We then have
m(t)

t
≤ 1

µ
+

B
tµ
− 1

t

15
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Now if we consider t→ ∞, it can be seen that the limit of m(t)
t does not exceed 1

µ .

lim
t→∞

m(t)
t
≤ 1

µ

With that statement, due to the Squeeze theorem, the theorem is now proven for the cases where

we may bound the interarrival times. We can say,

lim
t→∞

m(t)
t

=
1
µ

.

For the cases where the interarrival times are unbounded, we define B > 0 and choose {NB(t), t ≥

0} to be a renewal process with min(Xi, B), i ≥ 1 as the interarrival times. Since, for all i,

min(Xi, B) ≤ Xi, it follows that NB(t) ≥ N(t), ∀t. It then further follows that since N(t) ≤ NB(t),

we also have E(N(t)) ≤ E(NB(t)), which yields

lim
t→∞

E(N(t))
t

≤ lim
t→∞

E(NB(t))
t

=
1

E(min(Xi, B))

We can claim the previous equality due to the interarrival times of NB(t) being bounded.

By letting B → ∞, we obtain that limB→∞ E(min(Xi, B)) = E(Xi) = µ and then limt→∞
m(t)

t ≤
1
µ .

The theorem has been proven for the case of unbounded interarrival times as well.

Therefore, the theorem is proven in all cases. [3]

�

Example 3.5 Let D ∼ Uni(0, 1) and set Xk =

k D ≤ 1
k

0 D ≥ 1
k

.

D will always be greater than 0, and for suitably large k, then Xk will be 0. With this, we conclude

that Xk converges to zero almost surely as k goes to infinity. The above, if considering Proposition

3.1, implies that it’s expected value should be infinite.

However, we instead have that

E(Xk) = k P(D ≤ 1
k
) = k

1
k
= 1.

Therefore, each Xk will have an expected value of one even though the sequence is expected

to converge to zero. This showcases the differences between Theorem 3.3 and Proposition 3.1.

[3]
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�

Example 3.6 Assume Xi to be iid random variables for i ≥ 1. Here, rather than the time

between events, let Xi denote the change in position from one event to the next. Then we can

define Rn to be the total displacement at time n from the process’ original position.

We assume the process started at position 0 and let Rn = ∑n
i=1 Xi, n > 0. The process {Rn, n ≥ 0}

is a random walk process and can be considered a renewal process if you let a renewal occur each

time the displacement reaches a new low. That is, if Rn < min(0, R1, R2, . . . , Rn−1), then a renewal

has taken place at time n. Let us assume that the expected value of Xi is negative.

The strong law of large numbers gives us

lim
n→∞

Rn

n
= E(Xi).

For this quotient’s limit to be negative, we must have Rn approaching negative infinity since n

is positive. Let the probability that the random walk is always negative after the first move be

denoted by α = P(Rn < 0, n ≥ 1).

The next renewal, or record displacement, after n occurs k units of time afterward if

Xn+1 ≥ 0

Xn+1 + Xn+2 ≥ 0

...

Xn+1 + · · ·+ Xn+k−1 ≥ 0

Xn+1 + · · ·+ Xn+k < 0

Since all Xi are iid, the preceding event is independent of the values of Xi and the probability of

occurrence does not depend on n, which validates that this can be considered a renewal process.

That means we can say *

P(renewal at time n) = P(Rn < 0, Rn < R1, . . . , Rn < Rn−1)

= P(X1 + X2 + · · ·+ Xn < 0, X2 + X3 + · · ·+ Xn < 0, . . . , Xn < 0)

There are replacements that can be made without loss of generality since Xn, Xn−1, . . . , X1 shares

the joint probability distribution with X1, X2, . . . , Xn. We can replace X1 by Xn, X2 by Xn−1, X3 by

Xn−2 and so on until we replace Xn by X1.
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Looking back, we now have

P( renewal at time n) = P(Xn + · · ·+ X1 < 0, Xn−1 + · · ·+ X1 < 0, . . . , X1 < 0)

= P(Rn < 0, Rn−1 < 0, . . . , R1 < 0)

We can now see that α = limn→∞ P(renewal at time n) = P(Rn < 0, n ≥ 1).

Invoking the Elementary Renewal Theorem implies that α = 1
E(T) with T = min(n : Rn < 0) being

the time between renewals. [3]

�
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4. Pattern Analysis Applications

4.1 Delayed Renewal Process

Definition 4.1 A delayed or general renewal process is a counting process with independent interar-

rival times given by X1, X2, X3, . . . if the distribution of X1 does not match the identical distribution of

X2, X3, . . . . However, all limiting theorems about N(t) are still true for these processes. [2]

Let X1, X2, . . . be independent such that P(Xi = j) = p(j) for all non-negative j. We also let T

denote the time of the first occurrence of a pattern x1, x2, . . . , xr. If there is a renewal that occurs at

time n with n ≥ r and if (Xn−r+1, . . . , Xn) = (x1, . . . , xr), then we have a delayed renewal process

{N(n), n ≥ 1} where N(n) represents the number of renewals that have occurred by the time

n.

From here, if we consider µ and σ to represent the mean and standard deviation of the time

between successive renewals, we have the following consequence of the Central Limit Theorem:

[3]

lim
n→∞

E(N(n))
n

=
1
µ

(4.1)

lim
n→∞

Var(N(n))
n

=
σ2

µ3 . (4.2)

4.2 Mean and Variance of T

Next, we explore how renewal theory results we have been exploring can be used to compute both

the mean and variance of T.

Here we will use the same binary indicator variable as seen previously. Let I(i) = 1 if there is a

renewal occurring at time i and i ≥ r and let it be 0 otherwise. Also let p = Πr
i=1 p(xi). We now

have

P(I(i) = 1) = P(i1 = Xi−r+1, . . . , ir = Xi) = p

The equation above, in other words, says that the probability that an event occurs at time i is the

same as the probability that the rth and final element of our sought after pattern occurs at time i.

So it is the probability that our pattern is made complete at time i.
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This allows us to determine that I(i) with i ≥ r to be Bernoulli random variables with a given

parameter p because we either have a success at time i, the pattern is completed, or else it is a

failure. As N(n) is the count of renewals that have taken place by time n, we may define this as

the following summation. [3]

N(n) =
n

∑
i=r

I(i)

Which gives us

E(N(n)) =
n

∑
i=r

E(I(i))

=
n

∑
i=r

(1p + 0(1− p))

=
n

∑
i=r

p

= (n− r + 1)p

If we divide this by n and subsequently take the limit as n→ ∞, the following can be seen:

E(N(n)) = (n− r + 1)p

E(N(n))
n

=
(n− r + 1)p

n

lim
n→∞

E(N(n))
n

= lim
n→∞

(
p− rp

n
+

p
n

)

Therefore, we know that,

lim
n→∞

E(N(n))
n

= p

Combining this with 4.1 yields

p =
1
µ
⇒ µ =

1
p

(4.3)

This shows that the mean time between successive occurrences of the pattern is given by 1
p . We

are also able to determine that

Var(N(n))
n

=
1
n

n

∑
i=r

Var(I(i)) +
2
n

n−1

∑
i=r

∑
n≥j>i

Cov(I(i), I(j))

=
n− r + 1

n
p(1− p) +

2
n

n−1

∑
i=r

∑
i<j≤min(i+r−1,n)

Cov(I(i), I(j))
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The above is obtained as I(i) and I(j) are independent when |i− j| ≥ r; that is, when they are at

least r trials apart. This reasoning makes sense because the occurrence of renewals is independent

and there must be at least a distance of r, the length of the pattern, between them for another

renewal to even take place at time j.

Since the Cov(I(i), I(j)) depends on i and j through |j− i|, so we now have

lim
n→∞

Var(N(n))
n

= p(1− p) + 2
r−1

∑
j=1

Cov(I(r), I(r + j))

Combining this with equation 4.2, then we obtain the following expression for variance. [3]

σ2

µ3 = p(1− p) + 2
r−1

∑
j=1

Cov(I(r), I(r + j))

σ2(
1
p

)3 = σ2 p3 = p(1− p) + 2
r−1

∑
j=1

Cov(I(r), I(r + j))

σ2 =
1
p2 (1− p) + 2

1
p3

r−1

∑
j=1

Cov(I(r), I(r + j)) (eq. 4.1)

4.3 Cases of Overlap

Definition 4.2 (Overlap) Overlap is defined as the maximal number of values at the end of a pattern that

could make up the beginning of the next occurrence. It is of size k : k > 0 if [3]

k = max(n < m : (im−n+1, . . . , im) = (i1, . . . , in))

Example 4.1 Consider the following coin toss patterns and their respective overlaps.

HTT HTT overlap k = 0

HTH HTH overlap k = 1

HHTHH HHTHH overlap k = 2

HHTTHHT HHTTHHT overlap k = 3

�

Let’s now consider the overlap cases.

The first case concerns a zero overlap. Let (N(n), n ≥ 1) be an ordinary renewal process and

choose T to be distributed as an interarrival time between renewals with mean and variance µ and
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σ2 respectively. The following stems from equation 4.3:

E(T) = µ =
1
p

(4.4)

Since the minimum distance between two patterns is r, it can be seen that I(r)I(r + j) = 0 for

1 ≤ j ≤ r− 1, yielding

Cov(I(r), I(r + j)) = −E(I(r))E(I(r + j)) = −p2 for 1 ≤ j ≤ r− 1

Now, if we invoke equation eq. 4.1, we are able to obtain [3]

Var(T) = σ2

=
1
p2 (1− p)− 2

1
p3 (r− 1)p2

=
1
p2 −

1
p
(2r− 1) (eq. 4.2)

An interesting property worth noting about T is as follows. If some time, n, has passed already

and the pattern we seek has yet to occur, there is no reason to believe that it will take less time to

continue trials and receive the pattern than it would to just completely start over.

In fact, T is classified as a new better than used (NBU) variable, which means (non-rigorously) that

it tends to be faster to start trials over rather than continuing them if a pattern has not occurred by

some time, n.

Because of this, the distribution of T may be considered approximately memoryless, and then it

can be claimed that T is approximately exponentially distributed. Therefore, since Var(T) ≈ E2(T)

in the exponential distribution, then we should expect here that Var(T)
E2(T) ≈ 1 for large µ. [3]

Example 4.2 Let’s say we are seeking a pattern such as HTTH and that we are interested in

finding how many coin tosses are required to come across this pattern. In this case, r = 4 and

p = 1
24 = 1

16 and we have zero overlap. Applying equations 4.4 and eq. 4.2 we can see that

E(T) =
1
p
= 16

Var(T) =
1
p2 −

1
p
(2r− 1) = 162 − (7 ∗ 16) = 144

Var(T)
E(T)2 =

16
144

= 0.11111
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Another pattern we could seek is abcdefg where each letter has p = 1
7 of occurring. Here r = 7

and p = 1
823,543 (for the whole pattern) and we again have overlap zero. Using the same technique

as above, we can calculate

E(T) = 823, 543

Var(T) = (823, 543)2 − 13(823, 543) ≈ 6.78× 1011

Var(T)
E(T)2 ≈

6.78× 1011

823, 543
≈ 0.99967

�

Now let’s consider the second case; the case where overlap is of size k. We start by defining

T = Ti1,...,ik + T∗

where Ti1,...,ik is the time until the pattern i1, . . . , ik is seen. We also consider T∗ to be distributed

as the interarrival time of the renewal process and to be the additional time needed to receive the

pattern i1, . . . , ir when we start with i1, . . . , ik. These random variables are independent of each

other, so we can state the following [3]

E(T) = E(Ti1,...,ik ) + E(T∗) (4.5)

Var(T) = Var(Ti1,...,ik ) + Var(T∗) (4.6)

If we consider 4.3, then we see that

E(T∗) = µ =
1
p

(4.7)

It can be seen that I(r)I(r + j) = 0 since no two renewals occur within r− k− 1 of each other if

1 ≤ j ≤ r− k− 1. Keeping this in mind and applying equation eq. 4.1, we can show that

Var(T∗) = σ2 =
1
p2 (1− p) +

2
p3

(
r−1

∑
j=r−k

E [I(r)I(r + j)]− (r− 1)p2

)

=
1
p2 −

1
p
(2r− 1) +

2
p3

(
r−1

∑
j=r−k

E [I(r)I(r + j)]

)
(4.8)

We are able to calculate E[I(r)I(r + j)] for the above equations by considering the specific pattern.

For the rest of the calculation of 4.5 and 4.6, we need the mean and variance of Ti1,...,ik which can

be obtained by the same method. [3]

Example 4.3 Let’s say we want to determine how many trials are needed to find the pattern

00100 if the only possible outcomes are 0 and 1 and they each have the same probability of

occurring.
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For this case, we have r = 5, p = 1
32 and an overlap of k = 2. We need to obtain E[I(5)I(8)]

and E[I(5)I(9)] as equation 4.8 sums the expected values over j = r− k to r− 1. We specifically

have j = 5− 2 = 3 and r − 1 = 5− 1 = 4. Equation 4.8 then becomes ∑4
j=3 E [I(r)I(r + j)] =

E[I(5)I(8)] + E[I(5)I(9)]. This results in

E [I(5)I(8)] = P(00100100) =
1

256

E [I(5)I(9)] = P(001000100) =
1

512

Again, invoking equations 4.7 and 4.8, we can see that

E(T∗) = 32

Var(T∗) = 322 − 9(32) + 2(32)3(
1

256
+

1
512

) = 1120

We can also consider the pattern 00 with r = 2, p = 1
4 and k = 1. This pattern yields

E [I(2)I(3)] =
1
8

E(T00) = E(T0) + 4

Var(T0) = Var(T0) + 16− 3(4) + 2
64
8

= Var(T0) + 20

As we now need to know about the simple pattern 0, we repeat this process once more with

r = 1 and p = 1
2 to see that E(T0) = 2 and Var(T0) = 2. This culminates in the following results:

[3]

E(T0) = 2

Var(T0) = 2

E(T00) = E(TH) + 4 = 6

Var(T00) = Var(TH) + 20 = 22

E(T) = E(T00) + 32 = 38

Var(T) = Var(T00) + 1120 = 1142

�
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Example 4.4 Consider P(Xn = i) = pi. If we are looking for the pattern 10232210, we have

p = p1 p0 p2 p3 p2 p2 p1 p0 = p2
1 p2

0 p3
2 p3 with r = 8 and an overlap of k = 2. We must first find

E[I(8)I(14)] and E[I(8)I(15)].

For E[I(8)I(14)], we have it equal to P(10232210232210) = p3
1 p3

0 p6
2 p2

3. Finding E[I(8)I(15)] is the

easier of the two, simply because that pattern cannot exist, so it evaluates to zero.

Then applying equations 4.5 and 4.7, we see that

E(T) = E(T10) +
1
p

since Ti1,...,ik = T10. Next, if we consider equations 4.6 and 4.8, we determine the variance of T

as

Var(T) = Var(T10) +
1
p2 −

15
p

+
2

pp1 p0
.

This pattern, 10, has no overlap, hence we do not need to use equation 4.5 to further break this

down like was necessary in the previous example.

To finish this example, we see that E(T10) =
1

p1 p0
and Var(T10) =

1
(p1 p0)2 − 3

p1 p0
. When we combine

our collected information, we end with [3]

E(T) =
1

p1 p0
+

1
p

Var(T) =
1

(p1 p0)2 −
3

p1 p0
+

1
p2 −

15
p

+
2

pp1 p0

�

4.4 Sets of Patterns

In the previous section, we considered cases consisting of only a single pattern. Let us now

consider what occurs when we have multiple patterns. Say there are s number of patterns, denoted

as A(1), A(2), . . . , A(s) and that care to find the mean time until one of the patterns occurs. We

also would like to determine the probability mass function of the first pattern. Assuming that we

may have an overlap, but that no A(i) is completely contained in any A(j) for i 6= j, we consider

the non-trivial cases.

Let T(i) denote the time it takes for A(i) to first occur, with i = 1, 2, . . . , s and let T(i, j) be the

additional time required for A(j), i 6= j to first be seen.

We can compute E(T(i, j)) by subtracting the time of overlap occurrence from the time of the

second pattern, keeping in mind that E(Ti1,...,ik ) = 0 in cases where there is no overlap.
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Now, it can be seen that [3]

T(i, j) = T(j)− Ti1,...,ik )

E(T(j)) = E(T(j))− E(Ti1,...,ik )

Example 4.5 Consider the patterns A(1) = dcbdab and A(2) = abcbd, then T(1, 2) = T(2)−

T(1). Since the completion of the first pattern is also the first occurrence of the overlap, we may

instead say that T(1, 2) = T(2)− Ti1,...,ik and so E(T(1, 2)) = E(T(2))− E(Tab).

�

If we are to assume that E(T(i)) and E(T(i, j)) have both been computed used the aforementioned

methods, we have the definitions

M = min
i

T(i)

P(i) = P(A(i) is the first pattern to occur ) = P(M = T(i)), i = 1, . . . , s

Note that we must find an equation for E(M) since we wish to know the mean time until the first

pattern. We may now determine the value of E(T(j)) as

E(T(j)) = E(M) + E(T(j)−M

= E(M) + ∑
i:i 6=j

E(T(i, j))P(i) , j = 1, . . . , s (4.9)

Since E(X) = ∑n
i E(X|Ai)P(Ai) for mutually exclusive and exhaustive Ai, allows us to state

equation 4.9 as a fact.

This, in conjunction with ∑n
i=1 P(i) = 1, gives us s + 1 equations with s + 1 unknowns which may

be solved to determine a value for E(M) as well as all values of P(i). [3]

Example 4.6 Say we flip a fair coin with the purpose of finding the pattern A(1) = tthh and

A(2) = hhtt. We can show that

E(T(1)) = 16

E(T(2)) = 16

E(T(1, 2)) = E(T(2))− E(Thh) = 16− (E(Th) + 4) = 10

E(T(2, 1)) = E(T(1))− E(Tht) = 16− (E(Th) + 4) = 10
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Using this, we can construct a series of equations, which when solved yield the values of P(1), P(2)

and E(M).

E(T(1)) = E(M) + E(T(2, 1))P(2) → 16 = E(M) + 10P(2)

E(T(2)) = E(M) + E(T(1, 2))P(1) → 16 = E(M) + 10P(1)

1 = P(1) + P(2)

Solving these equations gives us [3]

P(1) =
1
2

P(2) =
1
2

E(M) = 11

�

A unique fact concerning this example is that each pattern may occur first with the same probability

as each other. This happens even though the mean time for the first pattern exceeds that of the

second.

If we consider the case of zero overlap, we have E(Ti1,...,ik ) = 0 as stated previously. Note that

with this and with zero overlap, we have E(Ti, j)) = E(T(j)) which allows us to simplify 4.9 in

the following manner

E(T(j)) = E(M) + ∑
i 6=j

E(T(i, j))P(i)

= E(M) + ∑
i 6=j

E(T(j))P(i)

= E(M) + E(T(j))∑
i 6=j

P(i)

= E(M) + E(T(j))(1− P(j))

0 = E(M)− E(T(j))P(j)

P(j) =
E(M)

E(T(j))
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Summing both sides over all values of j gives us the equation

∑
j

P(j) = ∑
j

E(M)

E(T(j))

1 = E(M)∑
j

1
E(T(j))

E(M) =
1

∑j
1

E(T(j))

(4.10)

This may be further manipulated to find a definition for P(j).

P(j) =
1

E(T(j))∑j
1

E(T(j))

(4.11)

Consider, for a moment, what a powerful tool these equations are. Simply by having the mean

time until each pattern individually, we we are then able to compute the expected run time until

the first renewal as well as the individual probabilities of each pattern occurring first. To illustrate

this, let us consider a previous example. [3]

Example 4.7 Recall that we previously found

E(T) =
1− pn

pn(1− p)

where T was the number of tosses needed to obtain a sequence of n heads. This example can be

further generalized by instead defining T(i) a the time it takes to obtain the first occurrence of

pattern A(i) which has probability pi and length n(i). Now, we have

E(T(i)) =
1− pn(i)

i

pn(i)
i (1− pi)

If we then call on equations 4.10 and 4.11, we now have the following new information, [3]

E(M) =
1

∑s
j=1

[
pn(j)

j (1− pj)/(1− pn(j)
j )

]
P(i) =

pn(i)
i (1− pi)

(1− pn(i)
i )∑s

j=1

[
pn(j)

j (1− pj)/(1− pn(j)
j )

]
�
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4.5 Renewal Runs

Let Xi, i ≥ 1 be iid random variables that may take on any value 1, . . . , m with equal probability.

Suppose we observe these variables sequentially and choose T to denote the first occurrence of a

run of m consecutive values that includes the values 1, . . . , m. That is,

T = min(n : Xn−m−1, . . . , Xn are distinct)

The value of E(T) may be found by defining a renewal process with the first occurring at time

T. At this occurrence, start anew and let the next renewal occur after there is another run of m

consecutive distinct values. [3]

To illustrate this concept, let Xi = {1, 2, 3}. The value of m, in this case, is 3. If the trials were to be

as such:

3, 1, 1, 3, 2α, 2, 1, 2, 1, 3β, 1, 2, 2,

we would have renewals at time T = 5 (denoted by α) and at T = 10 (denoted by β).

Definition 4.3 The sequence of m distinct values that make up a renewal is defined as a renewal run.

Definition 4.4 Suppose for a given renewal process that we receive a reward each time there is a renewal,

which we identify as Rn for the nth renewal, with n ≥ 1. Rn is iid. We also have R(t) defined as the sum of

Rn over all n representing the total reward earned by a time t.

It is important to note that if E(Rn) < ∞ and the expected value of the random variable which Rn is

attributed to is also finite, say E(X) < ∞, then we can say that [3]

lim
t→∞

R(t)
t

=
E(R)
E(X)

lim
t→∞

E(R(t))
t

=
E(R)
E(X)

The idea of a renewal reward process can be transformed into a delayed renewal reward process

by assigning the reward at any time n ≥ m as long as the previous m values were distinct. As an

example of this, look back to our example of a renewal run, but we no longer start over at time

T = 5 and T = 9. Using the same data,

3, 1, 1, 3, 2γ, 2, 1, 2, 1, 3γ, 1, 2γ, 2,
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we assign rewards at T = 5, 10, and 12, shown by γ.

If we have Ri as the reward earned at time i, applying the limit definitions given when renewal

reward processes were defined, and if we let R = ∑n
i=1 Ri, we then have

lim
n→∞

E (∑n
i=1 Ri)

n
= lim

n→∞

E(R)
n

=
E(R)
E(T)

(4.12)

Now, consider A(i) to be the first set of i values of a renewal run and B(i) to be the first i values

following this renewal run. We can now show the following for R. [3]

E(R) = 1 +
m−1

∑
i=1

E( reward earned at time i after renewal)

= 1 +
m−1

∑
i=1

P(Ai = Bi)

= 1 +
m−1

∑
i=1

i!
mi

=
m−1

∑
i=0

i!
mi (4.13)

Asserting that i ≥ m, we can then say that E(Ri) = P(Xi−m−1, . . . , Xi are distinct ) = m!
mm , which

when used with equation 4.12 yields

lim
n→∞

E (∑n
i=1 Ri)

n
= lim

n→∞

∑n
i=1 E(Ri)

n

= lim
n→∞

∑n
i=1

m!
mm

n

=
m!
mm lim

n→∞

∑n
i=1 1
n

=
m!
mm

=
E(R)
E(T)

This can be used with equation 4.13 to derive a value of E(T). [3]

m!
mm =

E(R)
E(T)

E(T) =
mm

m!
E(R)

E(T) =
mm

m!

m−1

∑
i=0

i!
mi
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Next, we give an example showing how this method allows us to have another way to compute

the expected time until the appearance of a specified pattern.

Example 4.8 Say we want to find the pattern tthtt from a coin with P(heads) = p and

P(tails) = 1− p = q. We need to find E(T). Start the process over after the first renewal occurs. A

reward of 1 is earned each time we come across the pattern in our trials. If we say that R is the

reward earned between renewal start overs, we can then say that [3]

E(R) = 1 +
4

∑
i=1

E(reward received i units after the renewal)

= 1 + 0 + 0 + 1P(Bi = htt) + 1P(Bi = thtt)

= 1 + pq2 + pq3

We also have that E(Ri) = 1P(tthtt) = pq4 = E(R)
E(T) , which can be further manipulated to illustrate

that

E(T) =
E(R)
E(Ri)

E(T) =
1 + pq2 + pq3

pq4

�

Now, instead of seeking a run of distinct values, suppose we are seeking a run of some length

of increasing values. Choose a sequence of iid continuous random variables, X1, X2, . . . and

choose T to denote the first occurrence of a string of r consecutive increasing values; that is,

T = min(n ≥ r : Xn−r−1 < Xn−r−2 < · · · < Xn). [3]

To find E(T), we need to use a renewal process. Say the first renewal occurs at T1, start over and

consider the next renewal to occur when a string of r consecutive increasing values is seen. As an

example, if r = 3 and we have the data values

21, 3, 12, 13α, 18, 21, 9, 11, 17β, 16, 8, 15, 3, 6, 10γ, 13,

we have renewals occurring at T = 4, 9 and 15 as marked.

If we invoke the Elementary Renewal Theorem, by letting N(n) represent the number of renewals

by time n, we have that

lim
n→∞

E(N(n))
n

=
1

E(T)

31



RENEWAL THEORY ON PATTERN ANALYSIS

In order to compute E(N(n)), let us define a stochastic process such that Sk is representative of

the state at a given time k and equals the number of consecutive increasing values at the time.

That is to say, for 1 ≤ j ≤ k, Sk = j if Xk−j > Xk−j−1 < · · · < Xk−1 < Xk.

If we assume X0 = ∞ a renewal will occur at a time k if and only iff Sk = ir for some specific i ≥ 1.

[3]

Example 4.9 Say r = 3 and we have Xi, 1 ≤ i ≤ 8 such that X1 > X2 > X3 < X4 < X5 < X6 <

X7 < X8. We can determine that S3 = 1, S4 = 2, S5 = 3, S6 = 4, S7 = 5, and S8 = 6. Renewals

occur at T = k = 5 and T = k = 8.

�

However, if we have k > j, then we can assert that

P(Sk = j) = P(Xk−j > Xk−j−1 < · · · < Xk−1 < Xk)

= P(Xk−j−1 < · · · < Xk−1 < Xk)− P(Xk−j < Xk−j−1 < · · · < Xk−1 < Xk)

=
1
j!
− 1

(j + 1)!

=
(j + 1)!− j!

j!(j + 1)!

=
j!(j + 1)− j!

j!(j + 1)!

=
j

(j + 1)!

This equality comes about due to the fact that all possible orderings of the random variables are

just as likely as each other since all Xi are iid.

Before we find a final expression for E(T), first note the following fact regarding Cesàro means,

stated without proof.

lim
n→∞

∑n
k=1 ak

n
= lim

k→∞
ak

lim
n→∞

n
∑n

k=1 ak
= lim

k→∞

1
ak

(4.14)

Now an expression for E(T) may be found by first flipping the Elementary Renewal Theo-

rem.

E(T) = lim
n→∞

n
E(N(n))

=
n

∑n
k=1 P(renewal at time k)
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Using equation 4.14, we continue our derivation

E(T) = lim
k→∞

1
P(renewal at time k)

= lim
k→∞

1
∑∞

i=1 P(Sk = ir)

Then, by our most recent calculation of P(Sk = ir), we finally have [3]

E(T) = lim
k→∞

1

∑∞
i=1

ir
(ir+1)!

With this, we complete the description of the method that can be used to analyze runs of increasing

values.

33



RENEWAL THEORY ON PATTERN ANALYSIS

5. Conclusion

While information regarding patterns can be gathered on an individual basis, using the general

theorems and properties of renewal processes allows for application on a wide variety of patterns

with arbitrary interarrival times. Using this as the motivating factor, a renewal process was defined

as a counting process whose interarrival distribution is arbitrary. We were then able to make

statements about the relationship between the number of renewals and time as well as the expected

number of renewals and time.

These ideas were then applied to patterns with overlap zero or k, sets of patterns, and renewal

runs. For patterns with overlap (zero or k) and we found expressions for the expected time it will

take to receive it as well as the variance of this wait time. The same information was found for sets

of patterns, but we were able to extend this knowledge to find the individual probabilities that

each pattern would occur first, thus being deemed the winner and constituting a renewal.
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