
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Theses

5-6-2016

On Identification of Nonlinear Parameters in PDEs On Identification of Nonlinear Parameters in PDEs

Raphael Kahler
rak9698@rit.edu

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation Recommended Citation
Kahler, Raphael, "On Identification of Nonlinear Parameters in PDEs" (2016). Thesis. Rochester Institute of
Technology. Accessed from

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact
repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F9018&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/9018?utm_source=repository.rit.edu%2Ftheses%2F9018&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

On Identification of Nonlinear Parameters in PDEs

by

Raphael Kahler

A Thesis Submitted in Partial Fulfillment for the

Degree of Master of Science in Applied and Computational Mathematics

School of Mathematical Sciences

College of Science

Rochester Institute of Technology

Rochester, NY

May 6, 2016

Committee Approval:

Baasansuren Jadamba

School of Mathematical Sciences

Thesis Advisor

Date

Akhtar A. Khan

School of Mathematical Sciences

Thesis Co-advisor

Date

Patricia Clark

School of Mathematical Sciences

Committee Member

Date

Joshua Faber

School of Mathematical Sciences

Committee Member

Date

Elizabeth Cherry

School of Mathematical Sciences

Director of Graduate Programs

Date

Abstract

Inverse problems have been studied in great detail and optimization methods using objective functionals such

as output least-squares (OLS) and modified output least-squares (MOLS) are well understood. However,

the existing literature has only dealt with identifying parameters that appear linearly in systems of partial

differential equations. We investigate the changes that occur in the identification process if the parameter

appears nonlinearly. We extend the OLS and MOLS functionals to this nonlinear case and give first and

second derivative formulas. We further show that the typical convexity of the MOLS functional can not be

guaranteed when identifying nonlinear parameters. To numerically verify our findings we employ a C++

based computational framework. Discretization is done via the finite element method, and details are given

for the new results of the functionals and their derivatives. Since we consider nonlinear parameters, gradient

methods such as adjoint stiffness are not applicable to the OLS functional and we instead show computation

methods using the adjoint approach.

i

Contents

1 The Lost Convexity of the MOLS Functional 1
1.1 Introduction . 1

1.2 Main Results . 3

1.3 Conclusions . 12

2 A Scalar Problem with a Nonlinear Parameter 14
2.1 Problem Statement . 14

2.2 Inverse Problem Functionals . 15

2.2.1 Objective Functional for the Inverse Problem . 16

2.2.2 Derivate Formulas for the OLS Functional . 16

2.2.3 Adjoint Method . 17

2.2.4 Direct Method for the Second Derivative . 18

2.2.5 Second-Order Adjoint Method . 19

2.3 Finite Element Discretization . 20

2.3.1 Discretization of the Solution Space . 20

2.3.2 Discretization of the Parameter Space . 22

2.3.3 Discretized Varitational Form . 22

2.4 Discretized OLS . 24

2.4.1 OLS Derivative . 24

2.4.2 Second-Order Derivative by the Second-Order Adjoint Method 27

3 The Elastography Inverse Problem 29

ii

3.1 Elasticity Equations . 30

3.1.1 Near incompressibility . 30

3.1.2 Deriving the Weak Formulation . 31

3.1.3 A Brief Literature Review . 34

3.2 Inverse Problem Functionals . 35

3.3 Derivative Formulae for the Regularized OLS . 36

3.3.1 First-Order Adjoint Method . 37

3.3.2 A Direct Method for the Second-Order Derivative 38

3.3.3 Second-Order Adjoint Method . 39

3.4 Finite Element Discretization . 41

3.4.1 Discrete Derivative Forms . 43

3.4.2 Gradient Computation by a Direct Approach . 45

3.4.3 Gradient Computation by the First-Order Adjoint Method 46

3.4.4 Computation of the Hessian by the Direct Approach 47

3.4.5 Computation of the Hessian by the Second-order Adjoint Method 48

4 Computational Implementation 49
4.1 Numerical Results . 50

4.1.1 Scalar Problem . 50

4.1.2 MOLS Functional . 57

4.1.3 Elasticity Problem . 64

4.2 Performance Optimization Techniques . 66

4.2.1 Directional Stiffness Matrix . 66

4.2.2 Special improvements for Linear Parameters . 68

4.2.3 Heuristic Improvements for Nonlinear Parameters 69

Bibliography 71

iii

Chapter 1

The Lost Convexity of the MOLS
Functional

We begin by taking a look at the modified output-least squares (MOLS) functional that emerged as an

alternative to the generally non-convex output least-squares (OLS) functional. The MOLS has the desirable

property of being a convex functional, which was shown in [1]. However, the convexity of the MOLS has

only been established for parameters appearing linearly in the PDEs. The primary objective of this chapter

is to introduce and analyze a variant of the MOLS for the inverse problem of identifying parameters that

appear nonlinearly in general variational problems. We are interested in understanding what geometric

properties of the original MOLS can be retained for the nonlinear case. Besides giving an existence result

for the optimization formulation of the inverse problem, we give a thorough derivation of the first-order

and second-order derivative formulas for the new objective functional. The derivative formulae suggest that

the convexity of the MOLS cannot be retained for the parameters appearing nonlinearly without imposing

additional assumptions on the data involved.

1.1 Introduction

Applied models frequently lead to partial differential equations involving parameters attributed to physical

characteristics of the model. The direct problem in this setting is to solve the partial differential equation. By

contrast, an inverse problem seeks for the identification of the parameters when a certain measurement of a

1

solution of the partial differential equation is available.

For clarification, consider the following elliptic boundary value problem (BVP)

−∇ · (q∇u) = f in Ω, u = 0 on ∂Ω,

where Ω is a sufficiently smooth domain in R2 or R3 and ∂Ω is its boundary. The above BVP models

interesting real-world problems and has been studied in great detail. For instance, here u = u(x) may

represent the steady-state temperature at a given point x of a body; then q would be a variable thermal

conductivity coefficient, and f the external heat source. This system also models underground steady state

aquifers in which the parameter q is the aquifer transmissivity coefficient, u is the hydraulic head, and f is

the recharge. The inverse problem in the context of the above BVP is to estimate the coefficient q from a

measurement z of the solution u. This inverse problem has been the subject of numerous papers, see [2, 3, 4].

Various other inverse problems occur with complicated boundary problems and with diverse applications,

see [5, 6, 7, 8, 9, 10, 11, 12, 13].

It is convenient to investigate the inverse problem of parameter identification in an abstract setting

allowing for more general PDEs. Let B be a Banach space and let A be a nonempty, closed, and convex

subset of B. Given a Hilbert space V , let T : B × V × V → R be a trilinear form with T (a, u, v) that is

symmetric in u and v, and let m be a bounded linear functional on V . Assume there are constants α > 0 and

β > 0 such that for all u, v ∈ V the following conditions hold:

T (a, u, v) ≤ β ‖a‖B ‖u‖V ‖v‖V , ∀ a ∈ B, (1.1)

T (a, u, u) ≥ α ‖u‖2V , ∀ a ∈ A (1.2)

Consider the following variational problem: Given a ∈ A, find u = u(a) ∈ V such that

T (a, u, v) = m(v), for every v ∈ V. (1.3)

Due to the imposed conditions, it follows from the Riesz representation theorem that for every a ∈ A, the

variational problem (1.3) admits a unique solution u(a). In this abstract setting, the inverse problem of

identifying parameter now seeks a in (1.3) from a measurement z of u.

A common approach for solving the inverse problem is to pose it as a minimization problem through the

output least-squares (OLS) functional given by

Ĵ(a) =
1

2
‖u(a)− z‖2Z , (1.4)

where ‖ · ‖Z is the norm in a suitable observation space, z is the data (the measurement of u) and u(a) solves

the variational problem (1.3).

2

The functional (1.4) has a serious deficiency of being non-convex for nonlinear inverse problems. To

circumvent this drawback, in [1], the following modified OLS functional (MOLS) was introduced

J(a) =
1

2
T (a, u− z, u− z) (1.5)

where z is the data (the measurement of u) and u(a) solves (1.3). In [1], the author established that (1.5) is

convex and used it to estimate the Lamé moduli in the equations of isotropic elasticity. Studies related to

MOLS functional and its extensions can be found in [14, 15, 16, 17].

The first observation necessary for the convexity of the MOLS is that for each a in the interior of A, the

first derivative δa = Du(a)δa is the unique solution of the variational equation (see [1]):

T (a, δu, v) = −T (δa, u, v), for every v ∈ V, (1.6)

The authors in [1] proved the following derivative formulae:

DJ(a)δa = −1

2
T (δa, u(a) + z, u(a)− z), (1.7)

D2J(a)(δa, δa) = T (a,Du(a)δa,Du(a)δa). (1.8)

Due to the coercivity (1.2) of the trilinear form, the above formula for the second-order derivative

ensures that D2J(a)(δa, δa) ≥ α‖Du(a)δa‖2V , and hence the convexity of the modified output least-squares

functional in the interior of A follows.

A careful look at the proof of the above mentioned results reveal that for the convexity of the MOLS,

it is essential that the first argument of T be the parameter to be identified. On the other hand, interesting

applications lead to cases when the first argument of T in fact contains a nonlinear function of the sought

parameter (see [18]). The objective of this chapter is to introduce and analyze a variant of the MOLS for the

inverse problem of identifying parameter that appears nonlinearly in general variational problems. We are

interested in understanding what geometric properties of the MOLS can be retained for such a case.

1.2 Main Results

Let S ⊂ X be an open and convex subset of X . We say that a map f : S ⊂ X → Y is directionally

differentiable at x ∈ S in a direction δx ∈ X if the following limit exists

f ′(x; δx) = lim
t↓0

f(x+ tδx)− f(x)

t
.

The map f is said to be directionally differentiable at x if f is directionally differentiable at x ∈ S in every

direction u ∈ X . Given that f is directionally differentiable, the second-order directional derivative along

3

directions (δx1, δx2) ∈ X ×X is given by the following expression, provided that the limit exists:

f ′′(x; δx1, δx2) = lim
t↓0

f ′(x+ tδx2; δx1)− f ′(x; δx1)

t

Note that Df(x)(δx) = f ′(x; δx), D2f(x)(δx1, δx2) = f ′′(x; δx1, δx2) if f is differentiable, twice differ-

entiable at x, respectively.

Given an open S open and convex subset ofB, let g : S ⊂ B → B be a map such that range(g) ⊂ A, that

is, g(x) ∈ A for every x ∈ dom(g). Moreover, assume that g is continuous and directionally differentiable.

Given a ∈ A, consider the variational problem of finding u(a) ∈ V such that

T (g(a), u(a), v) = m(v), for every v ∈ V. (1.9)

Our objective is to identify the variable parameter a from a measurement z of u. Of course, a natural idea is

to define b(x) = g(a(x)) and consider the problem of identifying b(x) in (1.9) and then solve the nonlinear

equation b(x) = g(a(x)) to find a. Clearly, such an approach is, at best, heuristic and fails to give any insight

into the geometric properties of the associated MOLS.

We give the following continuity result for its later use.

Lemma 1.2.1. The following bounds are all valid:

‖u(a)− u(b)‖V ≤
β

α
‖u(a)‖V ‖g(b)− g(a)‖B,

‖u(a)− u(b)‖V ≤
β

α
‖u(b)‖V ‖g(b)− g(a)‖B,

‖u(a)− u(b)‖V ≤
β

α2
‖m‖V ∗‖g(b)− g(a)‖B.

Proof. For every v ∈ V , we have T (g(a), u(a), v) = m(v) and T (g(b), u(b), v) = m(v) implying that

T (g(a), u(a), v)− T (g(b), u(b), v) = 0 or

T (g(a), u(a)− u(b), u(a)− u(b)) = −T (g(a)− g(b), u(b), u(a)− u(b)).

Using (1.1) and (1.2), we get

‖u(a)− u(b)‖V ≤
β

α
‖u(b)‖V ‖g(a)− g(b)‖B,

proving the second of the desired bounds; the first is obtained by interchanging the roles of a and b. The fact

‖u(b)‖V ≤ α−1‖m‖V ∗ which is easy to prove, yields the third bound.

We introduce the following new modified output least squares

J(a) =
1

2
T (g(a), u− z, u− z), (1.10)

4

where z is the data (the measurement of u) and u(a) solves (1.9).

We can now formulate the inverse problem as an optimization problem using (1.10). However, due to

the known ill-posedness of inverse problems, we need some kind of regularization for developing a stable

computational framework. Therefore, instead of (1.10), we will use its regularized analogue and consider the

following regularized optimization problem: Find a ∈ A by solving

min
a∈A

Jκ(a) :=
1

2
T (g(a), u(a)− z, u(a)− z) + κR(a), (1.11)

where, given a Hilbert space H , R : H → R is a regularizer, κ > 0 is a regularization parameter, u(a) is the

unique solution of (1.9) that corresponds to the coefficient a, and z is the measured data.

In the following, we give an existence result for the regularized optimization problem (1.11).

Theorem 1.2.1. Assume that the Hilbert space H is compactly embedded into the space B, A ⊂ H is

nonempty, closed, and convex, the map R is convex, lower-semicontinuous and there exists α > 0 such that

R(`) ≥ α‖`‖2H , for every ` ∈ A. Then the optimization problem (1.11) has a nonempty solution set.

Proof. Since Jκ(a) is nonnegative for all a ∈ A, there exists a minimizing sequence {an} in A such that

limn→∞ Jκ(an) = inf{Jκ(a)| a ∈ A}. Therefore, {Jκ(an)} is bounded from above, and by the definition

of Jκ, there exists a constant c > 0 such that R(an) ≤ c which implies that {an} is bounded in H . Due to

the compact embedding of H into B, there exists a subsequence converging strongly in B. By keeping the

same notations for subsequences as well, we assume that an converges strongly some ā ∈ A. Moreover,

due to the continuity of g, we have g(an) → g(ā). By the definition of un, for every v ∈ V , we have

T (g(an), un, v) = m(v), which for v = un yields T (g(an), un, un) = m(un). Using (1.2), we get

α‖un‖2V ≤ ‖m‖V ∗‖un‖V

which ensures the boundedness of un = u(an). Therefore, there exists a subsequence of {un} that converges

weakly to some ū ∈ V . We claim that ū = ū(ā). By the definition of un, for every v ∈ V , we have

T (g(an), un, v) = m(v). This, after a simple rearrangements of terms, implies that T (g(ā), ū, v)−m(v) =

−T (g(an) − g(ā), un, v) − T (g(ā), un − u, v), which, when passed to the limit n → ∞, implies that

T (g(ā), ū, v) = m(v) as all the terms on the right-hand side go to zero. Since v ∈ V is arbitrary and

since (1.3) is uniquely solvable, we deduce that ū = ū(ā).

We claim that J(an)→ J(ā). The identities T (g(an), un−z, un−z) = m(un−z)−T (g(an), z, un−z)
and T (g(ā), ū− z, ū− z) = m(ū− z)− T (g(ā), z, ū− z), in view of the rearrangement

T (g(an), z, un − z)− T (g(ā), z, ū− z) = T (g(an)− g(ā), z, un − z)− T (g(ā), z, un − ū),

5

ensure that T (g(an), un − z, un − z)→ T (g(ā), ū− z, ū− z), and consequently,

Jκ(ā) = T (g(ā), ū− z, ū− z) + κR(ā)

≤ lim
n→∞

T (g(an), u(an)− z, u(an)− z) + lim inf
n→∞

κR(an)

≤ lim inf
n→∞

{T (g(an), u(an)− z, u(an)− z) + κR(an)} = inf {Jκ(a) : a ∈ A} ,

confirming that ā is a solution of (1.11). The proof is complete.

In the following, we assume that g and the parameter-to-solution map u : a → u(a) are directionally

differentiable at a ∈ A. Recall that u is directionally differentiable if the following limit exists:

u′(a, b) := lim
t→0+

u(a+ tb)− u(a)

t
.

The following theorem gives a derivative characterization.

Theorem 1.2.2. The parameter-to-solution map u : A ⊂ B → V is directionally differentiable. Moreover,

given any a ∈ A for each direction δa ∈ B the directional derivative u′(a; δa) is the unique solution of the

following variational equation

T
(
g(a), u′(a; δa), v

)
= −T

(
g′(a; δa), u(a), v

)
, for every v ∈ V. (1.12)

Furthermore, if g is differentiable, then u is differentiable.

Proof. The unique solvability of the variational equation is a direct consequence of the Lax-Milgram lemma.

Let a ∈ A, δa ∈ B be arbitrary. For any t > 0 and for every v ∈ V , we have

T (g(a+ tδa), u(a+ tδa), v) = m(v),

T (g(a), u(a), v) = m(v).

The above equations after a simple rearrangement of terms, yield

0 =
1

t
[T (g(a+ tδa), u(a+ tδa), v)− T (g(a), u(a), v)]

=
1

t
[T (g(a+ tδa), u(a+ tδa), v)− T (g(a), u(a+ tδa), v)]

+
1

t
[T (g(a), u(a+ tδa), v)− T (g(a), u(a), v)]

= T

(
g(a+ tδa)− g(a)

t
, u(a+ tδa), v

)
+ T

(
g(a),

u(a+ tδa)− u(a)

t
, v

)
,

and therefore, for an arbitrary v ∈ V , we have

T

(
g(a),

u(a+ tδa)− u(a)

t
, v

)
= −T

(
g(a+ tδa)− g(a)

t
, u(a+ tδa), v

)
. (1.13)

6

Let w ∈ V be the unique solution to the following variational equation

T (g(a), w, v) = −T
(
g′(a; δa), u(a), v

)
, for every v ∈ V. (1.14)

Clearly, the element w is well defined. Furthermore, combining (1.13) and (1.14), we have

T (g(a), δut − w, v) = −T
(
g(a+ tδa)− g(a)

t
− g′(a; δa), u(a+ tδa), v

)
− T

(
g′(a; δa), u(a+ tδa)− u(a), v

)
(1.15)

where we are denoting δut = t−1(u(a+ tδa)− u(a)). Taking v = δut − w in this expression, we get

α ‖δut − w‖2V ≤ T (g(a), δut − w, δut − w)

= −T
(
g(a+ tδa)− g(a)

t
− g′(a; δa), u(a+ tδa), δut − w

)
− T

(
g′(a; δa), u(a+ tδa)− u(a), δut − w

)
and hence

α ‖δut − w‖V ≤
∥∥∥∥g(a+ tδa)− g(a)

t
− g′(a; δa)

∥∥∥∥
B

‖u(a+ tδa)‖V +
∥∥g′(a; δa)

∥∥
B
‖u(a+ tδa)− u(a)‖V .

By taking the limit t → 0, the right-hand side tends to zero since u is continuous and g directionally

differentiable. We get

‖δut − w‖V → 0,

which implies that

t−1(u(a+ tδa)− u(a))→ w in V,

and hence u is directionally differentiable at a in the direction δa with u′(a; δa) = w.

To prove the differentiability, we first take a fixed a ∈ A. Define the linear operator T : B → V such that

for every δa ∈ B, T (δ) gives the unique solution to the following variational equation:

T (g(a), T (δa), v) = −T (Dg(a)(δa), u(a), v) , for every v ∈ V.

Since −T (g′(a; δa), u(a), ·) ∈ V ∗, T is well defined by the Riesz representation theorem. Furthermore, T

is bounded by applying the basic properties of the trilinear form:

α ‖T (δa)‖2V ≤ T (g(a), T (δa), T (δa))

= −T (Dg(a)(δa), u(a), T (δa))

≤ β ‖Dg(a)(δa)‖B ‖T (δa)‖V ‖u(a)‖V

7

Since g is differentiable ‖Dg(a)(δa)‖B ≤ C ‖δa‖B , and hence

‖T (δa)‖V ≤ (βC ‖u(a)‖V) ‖u(a)‖V .

On the other hand, following the previous calculation, we have

T

(
g(a),

u(a+ δa)− u(a)

‖δa‖B
, v

)
= −T

(
g(a+ δa)− g(a)

‖δa‖B
, u(a+ δa), v

)
,

and therefore

T

(
g(a),

u(a+ δa)− u(a)

‖δa‖B
, v

)
− T

(
g(a), T

(
δa

‖δa‖B

)
, v

)
=− T

(
g(a+ δa)− g(a)

‖δa‖B
, u(a+ δa), v

)
− T

(
Dg(a)

(
δa

‖δa‖B

)
, u(a), v

)
,

or equivalently,

T

(
g(a),

u(a+ δa)− u(a)− T (δa)

‖δa‖B
, v

)
=− T

(
g(a+ δa)− g(a)−Dg(a) (δa)

‖δa‖B
, u(a+ δa), v

)
+ T

(
Dg(a)

(
δa

‖δa‖B

)
, u(a+ δa)− u(a), v

)
.

If we denote ∆u = ‖δa‖−1
B (u(a+ δa)− u(a)− T (δa)), then by following the same reasoning as for

the previous case, we have

α ‖∆u‖2V ≤ T (g(a),∆u,∆u)

=− T
(
g(a+ δa)− g(a)−Dg(a)(δa)

‖δa‖B
, u(a+ δa),∆u

)
+ T

(
Dg(a)

(
δa

‖δa‖B

)
, u(a+ δa)− u(a),∆u

)
,

implying

α ‖∆u‖2V ≤
(
‖g(a+ δa)− g(a)−Dg(a)(δa)‖B

‖δa‖B
‖u(a+ δa)‖V

+

∥∥∥∥Dg(a)

(
δa

‖δa‖B

)∥∥∥∥
B

‖u(a+ δa)− u(a)‖V
)
‖∆u‖V

and hence

α ‖∆u‖V ≤
(
‖g(a+ δa)− g(a)−Dg(a) (δa)‖B

‖δa‖B
‖u(a+ δa)‖V

+

∥∥∥∥Dg(a)

(
δa

‖δa‖B

)∥∥∥∥
B

‖u(a+ δa)− u(a)‖V
)
.

8

Since u is continuous by hypothesis and g is differentiable, we have

‖g(a+ δa)− g(a)−Dg(a) (δa)‖B
‖δa‖B

‖u(a+ δa)‖V +

∥∥∥∥Dg(a)

(
δa

‖δa‖B

)∥∥∥∥
B

‖u(a+ δa)− u(a)‖V → 0,

for ‖δa‖B → 0. Finally, for ‖δa‖B → 0 and for any v ∈ V , we have

‖∆u‖V =
‖u(a+ δa)− u(a)− T (δa)‖V

‖δa‖B
→ 0.

and this ensures differentiability. The proof is complete.

Remark 1.2.1. The derivative characterization (1.12) is a natural extension of (1.6).

We have the following derivative formulas for the MOLS:

Theorem 1.2.3. The first-order derivative of the MOLS functional (1.10) is given by:

J ′(a; δa) = −1

2
T
(
g′(a; δa), u(a) + z, u(a)− z

)
. (1.16)

Proof. Denoting

∆J = 2
J(a+ tδa)− J(a)

t
,

we have

∆J

2
=

1

t
[T (g(a+ tδa), u(a+ tδa)− z, u(a+ tδa)− z)− T (g(a), u(a)− z, u(a)− z)]

=
1

t
[T (g(a+ tδa), u(a+ tδa)− z, u(a+ tδa)− z)− T (g(a), u(a+ tδa)− z, u(a+ tδa)− z)]

+
1

t
[T (g(a), u(a+ tδa)− z, u(a+ tδa)− z)− T (g(a), u(a)− z, u(a)− z)]

= T

(
g(a+ tδa)− g(a)

t
, u(a+ tδa)− z, u(a+ tδa)− z

)
+

1

t
[T (g(a), u(a+ tδa)− z, u(a+ tδa)− z)− T (g(a), u(a)− z, u(a)− z)]

= T

(
g(a+ tδa)− g(a)

t
, u(a+ tδa)− z, u(a+ tδa)− z

)
+

1

t
[T (g(a), u(a+ tδa)− z, u(a+ tδa)− z)− T (g(a), u(a)− z, u(a+ tδa)− z)]

+
1

t
[T (g(a), u(a)− z, u(a+ tδa)− z)− T (g(a), u(a)− z, u(a)− z)] .

9

Thus we get

∆J

2
= T

(
g(a+ tδa)− g(a)

t
, u(a+ tδa)− z, u(a+ tδa)− z

)
+ T

(
g(a),

u(a+ tδa)− u(a)

t
, u(a+ tδa)− z

)
+ T

(
g(a), u(a+ tδa)− z, u(a+ tδa)− u(a)

t

)
= T

(
g(a),

u(a+ tδa)− u(a)

t
, u(a+ tδa)− z

)
+ 2T

(
g(a), u(a+ tδa)− z, u(a+ tδa)− u(a)

t

)
= A1(t) +A2(t),

where

A1(t) = T

(
g(a+ tδa)− g(a)

t
, u(a+ tδa)− z, u(a+ tδa)− z

)
,

A2(t) = 2T

(
g(a),

u(a+ tδa)− u(a)

t
, u(a+ tδa)− z

)
.

In the limit as t goes to zero, the terms become the following:

lim
t→0

A1(t) = T
(
g′(a; δa), u(a)− z, u(a)− z

)
,

lim
t→0

A2(t) = 2T
(
g(a), u′(a; δa), u(a)− z

)
.

We therefore end up with

J ′(a, δa) =
1

2
lim
t→0

∆J =
1

2
lim
t→0

[A1(t) +A2(t)]

=
1

2
T
(
g′(a; δa), u(a)− z, u(a)− z

)
+ T

(
g(a), u′(a; δa), u(a)− z

)
=

1

2
T
(
g′(a; δa), u(a)− z, u(a)− z

)
− T (g′(a; δa), u(a), u(a)− z)

= −1

2
T
(
g′(a; δa), u(a) + z, u(a)− z

)
,

where Theorem 1.2.2 was used. The proof is complete.

Remark 1.2.2. The derivative characterization (1.16) is a natural extension of (1.7).

We now proceed to give compute the second-order derivative for the MOLS:

Theorem 1.2.4. The second-order derivative of the MOLS functional (1.10) is given by:

J ′′(a; δa1, δa2) = −1

2
T
(
g′′(a; δa1, δa2), u(a) + z, u(a)− z

)
+ T (g(a), u′(a, δa1), u′(a, δa2)). (1.17)

10

Proof. Recall that the second-order directional derivative is given by:

J ′′(a; δa1, δa2) = lim
t→0+

J ′(a+ tδa2; δa1)− J ′(a, δa1)

t
.

Setting

∆J =
J ′(a+ tδa2; δa1)− J ′(a; δa1)

t
,

by applying Theorem 1.2.3, we have

∆J =
−1

2T (g′(a+ tδa2; δa1), u(a+ tδa2) + z, u(a+ tδa2)− z)−
(
−1

2T (g′(a; δa1), u(a) + z, u(a)− z)
)

t

= −1

2

[
t−1
(
T
(
g′(a+ tδa2; δa1), u(a+ tδa2) + z, u(a+ tδa2)− z

)
− T

(
g′(a; δa1), u(a) + z, u(a)− z

))]
= −1

2

[
t−1
(
T
(
g′(a+ tδa2; δa1), u(a+ tδa2) + z, u(a+ tδa2)− z

)
−T (g′(a; δa1), u(a+ tδa2) + z, u(a+ tδa2)− z)

)]
− 1

2

[
t−1
(
T (g′(a; δa1), u(a+ tδa2) + z, u(a+ tδa2)− z)− T

(
g′(a; δa1), u(a) + z, u(a)− z

))]
= −1

2

[
T
(
t−1
(
g′(a+ tδa2; δa1)− g′(a; δa1)

)
, u(a+ tδa2) + z, u(a+ tδa2)− z

)]
− 1

2

[
t−1
(
T (g′(a; δa1), u(a+ tδa2)− z, u(a+ tδa2)− z)− T

(
g′(a; δa1), u(a) + z, u(a+ tδa2)− z

))]
− 1

2

[
t−1
(
T (g′(a; δa1), u(a) + z, u(a+ tδa2)− z)− T

(
g′(a; δa1), u(a) + z, u(a)− z

))]
= −1

2

[
T
(
t−1
(
g′(a+ tδa2; δa1)− g′(a; δa1)

)
, u(a+ tδa2) + z, u(a+ tδa2)− z

)]
− 1

2
T
[
g′(a; δa1), t−1 (u(a+ tδa2)− u(a)) , u(a+ tδa2)− z

]
− 1

2
T
[
g′(a; δa1), u(a) + z, t−1 (u(a+ tδa2)− u(a))

]
= −1

2
B1(t)− 1

2
B2(t)− 1

2
B3(t).

where

B1(t) = T
(
t−1
(
g′(a+ tδa2; δa1)− g′(a; δa1)

)
, u(a+ tδa2) + z, u(a+ tδa2)− z

)
B2(t) = T

[
g′(a; δa1), t−1 (u(a+ tδa2)− u(a)) , u(a+ tδa2)− z

]
B3(t) = T

[
g′(a; δa1), u(a) + z, t−1 (u(a+ tδa2)− u(a))

]
.

11

Since

lim
t→0

B1(t) = T
(
g′′(a; δa1, δa2), u(a) + z, u(a)− z

)
lim
t→0

B2(t) = T (g′(a; δa1), u′(a; δa2), u(a)− z)

lim
t→0

B3(t) = T (g′(a; δa1), u(a) + z, u′(a; δa2))

we have

J ′′(a, δa1, δa2) = lim
t→0

[
−1

2
B1(t)− 1

2
B2(t)− 1

2
B3(t)

]
= −1

2
T
(
g′′(a; δa1, δa2), u(a) + z, u(a)− z

)
− 1

2
T (g′(a; δa1), u′(a; δa2), u(a)− z)

− 1

2
T (g′(a; δa1), u(a) + z, u′(a; δa2))

= −1

2
T
(
g′′(a; δa1, δa2), u(a) + z, u(a)− z

)
− T (g′(a; δa1), u′(a; δa2), u(a)).

By applying Theorem 1.2.2, we obtain

J ′′(a, δa1, δa2) = −1

2
T
(
g′′(a; δa1, δa2), u(a) + z, u(a)− z

)
− T (g′(a; δa1), u′(a; δa2), u(a))

= −1

2
T
(
g′′(a; δa1, δa2), u(a) + z, u(a)− z

)
+ T (g(a), u′(a; δa1), u′(a; δa2)),

and the proof is complete.

Remark 1.2.3. Note that the sign of the first term in−1
2T (g′′(a; δa1, δa2), u(a) + z, u(a)− z) in the formula

for the second order derivative is undetermined. Therefore, for the positivity of the second-order derivative, it

is necessary to assume that

α‖u′(a, δa2)‖2V −
1

2
T
(
g′′(a; δa1, δa2), u(a) + z, u(a)− z

)
≥ 0, (1.18)

uniformly. If g coincides with the identity map, then g′′(a, ·, ·) = 0 and we recover the formula corresponding

to (1.8).

1.3 Conclusions

We have developed direct expressions for the MOLS functional that give the first derivative (1.16) and second

derivative (1.17). Moreover, we note that the first derivative of the MOLS functional has a direct expression

that does not depend on the derivative of u. This is a remarkable property that allows for a simple and direct

computation of the MOLS derivative. In comparison, the computation of the derivative Du(a)(δa) is the

12

main difficulty when using the alternative OLS functional. In the next chapters we discuss ways to overcome

this difficulty and compute the OLS derivatives using the adjoint method. However, the efforts for the OLS

functional to get past the derivative computation of u can be quite significant. The MOLS functional does not

suffer from this need and has the advantage of having a very simple and easily computable expression for its

first derivative. Thus it presents a good alternative to the more common OLS functional.

As remarked, the MOLS functional does not retain convexity for nonlinear parameters unless (1.18) can

be assumed. Convexity for linear parameters is a major strength of the MOLS functional. Therefore, for

nonlinear parameters more care is needed for the MOLS, just as for the generally non-convex OLS functional.

13

Chapter 2

A Scalar Problem with a Nonlinear
Parameter

We begin this chapter by introducing an exemplary scalar boundary value problem where the unknown

parameter appears in the form of a nonlinear map. Out goal is to develop expressions for the output-least

squares (OLS) functional together with its derivatives for this case of variational problems with nonlinear

parameters. We derive the formulas first in the continuous setting and then give discretization details.

2.1 Problem Statement

Consider the following problem

−∇ · (g(a)∇u) = f in Ω, u = 0 on ∂Ω. (2.1)

Define V = {u ∈ H1(Ω) | u = 0 on ∂Ω} as the space of solution functions u and A as the space of

admissible parameters a. We take A as a nonempty, closed, and convex subset of a Banach space B. The

parameter a ∈ A appears nonlinearly as governed by the parameter map g : A→ A. Let g be a continuous

and differential map that satisfies range(g) ⊂ A. To solve this system using finite element method, we first

bring the equation into its weak form. Taking equation (2.1) we can multiply both sides with a test function

v ∈ V as well as integrate both sides over the domain Ω without destroying equality. Doing so gives us

−
∫

Ω
∇ · (g(a)∇u) · v =

∫
Ω
f · v ∀ v ∈ V.

14

We can apply integration by parts to the left hand side and use Green’s identity to obtain∫
Ω
g(a)∇u · ∇v −

∫
∂Ω
g(a)v · ∂u

∂n
=

∫
Ω
f · v ∀ v ∈ V.

Now, the test function v lives in the space V as the solution variable u. Thus it also fulfills the same boundary

conditions as u, and in this case we have enforced homogeneous Dirichlet boundary conditions. This means

that the boundary integral on ∂Ω falls away since the test function v is zero along the entire boundary. We are

then left with the other two terms that together make up the weak form∫
Ω
g(a)∇u · ∇v =

∫
Ω
f · v ∀ v ∈ V. (2.2)

Notice that the solution variable u now only needs to be once differentiable, as opposed to (2.1) where

we needed u to be twice differentiable. To look at the inverse problems in a more abstract framework, we

can define T (g(a), u, v) =
∫

Ω g(a)∇u · ∇v and m(v) =
∫

Ω f · v. Then (2.2) is identical to the variational

problem

T (g(a), u, v) = m(v) ∀ v ∈ V. (2.3)

This formulation allows us to talk about general inverse problems that lead to a structure like this, and are

not limited to the specific equation (2.2). We require that the same assumptions hold as described for the

identical variational problem in Section 1.1, including the continuity and coercivity of T . Theorems 1.2.1

and 1.2.2 hold as well.

2.2 Inverse Problem Functionals

Given a variational problem such as (2.2), the forward problem consists of finding the solution function u

given that the parameter a and the load function f are known. The inverse problem of parameter identification,

on the other hand, aims at finding the parameter a given that the load function f is known and that we have a

measurement z of u. More descriptively, we want to find the parameter a such that the resulting solution u

from the variational problem (2.2) matches the measured solution z as closely as possible. Thus, we need

a way to quantify how well any given choice of a matches this requirement. Let ua be the solution of the

variational problem given a choice of a. Call J(a) the objective functional that tells us how large the error

between the solution ua and the measured solution z is. The process of solving the inverse problem then

becomes finding the coefficient a that minimizes J(a), that is finding

arg min
a∈A

J(a).

This is usually done with the help of iterative minimization methods such as Newton or Quasi-Newton

methods. The challenge then lies in finding the derivatives of the functional J(a) which are needed for the

15

minimization methods. Using a good iterative solver and having efficient ways of computing the derivatives

of J(a) are the main difficulties in solving an inverse problem.

2.2.1 Objective Functional for the Inverse Problem

The output least-squares (OLS) functional is given as

JOLS(a) =
1

2
〈u(a)− z, u(a)− z〉 =

1

2
‖u(a)− z‖2V .

As the name suggests, it quantifies the least-squares type of error between the output u(a) of the variational

problem and the measured solution z of u. The goal of the inverse problem is to determine the parameter a

for which u(a) most closely matches the measurement z.

Inverse problems are very ill-posed and, arising from that, are innately instable. Therefore it is necessary

to add a regularizer R(a) to the functional that can alleviate some the instabilities of the inverse problem.

The regularized OLS then becomes

JOLS(a) =
1

2
‖u(a)− z‖2V + κR(a), (2.4)

where the regularization parameter κ ∈ R is small positive constant. The key is to have κ small enough

so that the regularizer R(a) does not dominate the minimization process, yet large enough to reduce the

ill-posed nature of the inverse problem. We will use Tikhonov regularization of the form

R(a) = ‖a‖2D ,

where the choice of D can be the L2 norm, the H1 norm, or the H1 semi-norm. These norms are given as

‖a‖2L2
=

∫
Ω

(a · a),

‖a‖2H1-semi =

∫
Ω

(∇a · ∇a) = ‖∇a‖2L2
,

‖a‖2H1
=

∫
Ω

(a · a) + (∇a · ∇a) = ‖a‖2L2
+ ‖∇a‖2L2

.

(2.5)

2.2.2 Derivate Formulas for the OLS Functional

Now that we have defined the functionals J(a) we need a way to find the minimum of these functions. To

that end, we use iterative minimization methods that require us to compute the first (and possibly the second)

derivatives of J(a). Recall that the regularized OLS functional was given as

JOLS(a) =
1

2
‖u(a)− z‖2V + κR(a)

=
1

2
〈u(a)− z, u(a)− z〉+ κR(a).

16

The derivative of J at some a ∈ A in the direction δa can be found by use of the chain rule.

DJOLS(a)(δa) =
1

2
〈Du(a)(δa), u(a)− z〉+

1

2
〈u(a)− z,Du(a)(δa)〉+ κDR(a)(δa)

= 〈Du(a)(δa), u(a)− z〉+ κDR(a)(δa) (2.6)

Here, DR(a)(δa) is the derivative of the regularizer R(a) in the direction δa. By definition the regularizer

is simply the norm of the parameter, and as such, the derivative can be found directly and very easily. The

difficulty lies in finding Du(a)(δa), the derivative of the parameter-to-solution map u(a).

Several methods exists to find this derivative, including the direct—or classical—method, as well as

the popular adjoint method and adjoint stiffness method. The classical method is the most natural in that

it finds Du(a)(δa) by solving the variational problem from Theorem 1.2.2 for the direction δa. This leads

to the need of solving a forward problem once for each derivative direction δa which becomes quickly

intractable for large problems. A much more efficient alternative is the adjoint method which requires

only the solution of a single additional forward problem. Recent uses of the adjoint method can be found

in [18, 19, 20, 21, 22, 23, 24, 25], and a survey article of first and second-order adjoint methods is given by

Tortorelli and Michaleris [26]. The adjoint stiffness method builds on the adjoint equation but linearizes out

the parameter a. The derivative can then be found directly with a single matrix equations, versus the adjoint

method which has to evaluate Du(a)(δa) for each direction δa. The drawback of the adjoint stiffness method

is that by its nature it is only applicable to linear parameters a. We are dealing with nonlinearly appearing

parameters, and as such we can’t make use of the adjoint stiffness method. Instead we will utilize the adjoint

method and develop expressions for the nonlinear parameter case.

2.2.3 Adjoint Method

The idea behind the adjoint method is to avoid having to compute Du(a)(δa) directly. In order to achieve

this, an adjoint variable w ∈ V is introduced in such a way that its properties will allow us remove the

undesired termDu(a)(δa) from the calculation. To begin deriving the adjoint method, define a new functional

L : A× V → R as

L(a, v) = JOLS(a) + T (g(a), u, v)−m(v), (2.7)

where the terms T (, ,) amd m() are identical to the variational problem (2.3). Since equation (2.3) holds for

any u ∈ V , we have by construction that

L(a, v) = JOLS(a) ∀ v ∈ V.

Thus, we also have for any derivative direction δa that

∂aL(a, v)(δa) = DJOLS(a)(δa) ∀ v ∈ V. (2.8)

17

However, we can also differentiate (2.7) directly with respect to a to get

∂aL(a, v)(δa) = 〈Du(a)(δa), u(a)− z〉+ κDR(a)(δa)

+ T (Dg(a)(δa), u(a), v) + T (g(a), Du(a)(δa), v).
(2.9)

Now, consider some a ∈ A and introduce the adjoint variable w(a) as the solution to the variational problem

T (g(a), w, v) = 〈z − u(a), v〉 ∀ v ∈ V, (2.10)

where u(a) is the solution of the variational problem (2.3). Notice that the following holds by the symmetry

of T in the second and third arguments when we take v = Du(a)(δa) in (2.10).

T (g(a), Du(a)(δa), w) = T (g(a), w,Du(a)(δa))

= 〈Du(a)(δa), z − u(a)〉

= −〈Du(a)(δa), u(a)− z〉

Using this fact it is easy to see that, if we let v in (2.9) be the adjoint variable w, we get

∂aL(a,w)(δa) = 〈Du(a)(δa), u(a)−z〉+ κDR(a)(δa) + T (Dg(a)(δa), u(a), w) + T (g(a), Du(a)(δa), w)

= 〈Du(a)(δa), u(a)−z〉+ κDR(a)(δa) + T (Dg(a)(δa), u(a), w)− 〈Du(a)(δa), u(a)− z〉

= κDR(a)(δa) + T (Dg(a)(δa), u(a), w)

Now we can use fact (2.8) to get an expression for the derivative of JOLS that does not rely on Du(a)(δa)

DJOLS(a)(δa) = κDR(a)(δa) + T (Dg(a)(δa), u(a), w) (2.11)

Here we only have to compute the derivatives of R and g with respect to a. Both of these are functions that

depend directly on a and as such the derivatives can be computed easily. The process of finding the OLS

derivative DJOLS(a)(δa) using the adjoint method can thus be summarized in the following way:

Step 1. Find u(a) by solving (2.3).

Step 2. Find w(a) by solving (2.10).

Step 3. Compute DJOLS(a)(δa) from (2.11).

2.2.4 Direct Method for the Second Derivative

Taking the derivative expression (2.11) for DJOLS(a)(δa1) and applying another derivative in direction δa2

gives

D2JOLS(a)(δa1, δa2) = κD2R(a)(δa1, δa2) + T (D2g(a)(δa1, δa2), u, w)

+ T (Dg(a)(δa1), Du(a)(δa2), w) + T (Dg(a)(δa1), u,Dw(a)(δa2)).

18

This expression allows us to compute the second derivative D2JOLS(δa, δa), but it has the drawback that

it requires both derivatives δu = Du(a)(δa) and δw = Dw(a)(δa). The derivative δu is found through

direct computation using (1.12), whereas δw is found by taking the derivative of the adjoint variational

problem (2.10), giving

T (Dg(a)(δa), w, v) + T (g(a), Dw(a)(δa), v) = −〈Du(a)(δa), v〉 .

The direct method therefore requires us to solve two variational problems for each derivative direction δa,

one for δu and one for δw. This becomes the dominating factor in the computation process and makes the

method overall quite inefficient. A much better method is presented next which removes the need to calculate

δw.

2.2.5 Second-Order Adjoint Method

The second-order adjoint method uses a direct computation method for the first derivative of u(a) but utilizes

the adjoint method to avoid direct computation of the second derivative of u(a). The approach is very similar

to that of the first order adjoint method. We introduce the a new functional as

L(a, v) = DJOLS(a)(δa2) + T (g(a), Du(a)(δa2), v) + T (Dg(a)(δa2), u, v)

= 〈Du(a)(δa2), u− z〉+ κDR(a)(δa2)

+ T (g(a), Du(a)(δa2), v) + T (Dg(a)(δa2), u, v),

(2.12)

where we used the result (2.6) about the derivative DJOLS(a)(δa). It is clear from (1.12) that the last two

terms in L cancel out and we have

L(a, v) = DJOLS(a)(δa2) ∀ v ∈ V (2.13)

∂aL(a, v)(δa1) = D2JOLS(a)(δa1, δa2) ∀ v ∈ V, ∀ δa1 ∈ A (2.14)

A direct computation of the partial derivative of L with respect to a yields

∂aL(a, v)(δa1) =
〈
D2u(a)(δa1, δa2), u− z

〉
+ 〈Du(a)(δa2), Du(a)(δa1)〉

+ κD2R(a)(δa1, δa2)

+ T (Dg(a)(δa1), Du(a)(δa2), v) + T (g(a), D2u(a)(δa1, δa2), v)

+ T (D2g(a)(δa1, δa2), u, v) + T (Dg(a)(δa2), Du(a)(δa1), v).

(2.15)

Note the two occurrences of D2u(a)(δa1, δa2). We wish to eliminate these terms with the second order

derivatives of u. In order to do so, we again choose the adjoint variable w(a) as the solution of the variational

problem (2.10), that is

T (g(a), w, v) = 〈z − u, v〉 ∀ v ∈ V.

19

It follows again from symmetry of T in the second and third argument that

T (g(a), D2u(a)(δa1, δa2), w) = −
〈
D2u(a)(δa1, δa2), u− z

〉
.

This equation lets us cancel exactly the two unwanted terms in (2.15) if we let v = w. Keeping the remaining

terms gives us

∂aL(a, v)(δa1) = 〈Du(a)(δa2), Du(a)(δa1)〉+ κD2R(a)(δa1, δa2)

+ T (Dg(a)(δa1), Du(a)(δa2), w) + T (Dg(a)(δa2), Du(a)(δa1), w)

+ T (D2g(a)(δa1, δa2), u, w).

(2.16)

Using fact (2.14) gives us the formulation for the second order derivative of the OLS functional. Let

δu = Du(a)(δa), then we have in particular that

D2JOLS(a)(δa, δa) = 〈δu, δu〉+ κD2R(a)(δa, δa)

+ 2T (Dg(a)(δa), δu, w)

+ T (D2g(a)(δa, δa), u, w).

(2.17)

To compute the second-order derivative of the OLS functional D2JOLS(a)(δa, δa) in a direction δa using

the second-order adjoint method we therefore have the following steps.

Step 1. Find u(a) by solving (2.3).

Step 2. Find Du(a)(δa) from (1.12).

Step 3. Find w(a) by solving (2.10).

Step 4. Compute D2JOLS(a)(δa, δa) from (2.17).

2.3 Finite Element Discretization

In the variational problem (2.2) we have two function spaces to deal with. The space V for the solution u

and the space A for the parameter a. We will have to discretize both in order to be able to solve the problem

computationally.

2.3.1 Discretization of the Solution Space

Let T be a triangulation that covers the domain Ω. Triangulation is the historical term for the mesh or grid

on which the inverse problem will be solved. Traditionally, in two dimensional problems triangular grid

20

elements (cells) were used to build a mesh—hence the name triangulation—whereas we will be working

with quadrilateral cells instead. Now, define the finite dimensional counterpart of V to be the space Vh of

piecewise continuous polynomials of degree du relative to the triangulation T . Consider for a while the case

where du = 1 where we have piecewise linear polynomials. Then the grid points xi ∈ Ω on the vertices of

the cells correspond to the n degrees of freedom for the problem and they will be the locations on which we

discretize the system. Take the polynomials ϕi ∈ Vh given as

ϕi(x) =

1, x = xi

0, x = xj , j 6= i
, 1 ≤ i, j ≤ n. (2.18)

That is, ϕi is a piecewise linear polynomial that has a value of 1 on the triangulation grid point xi and has the

value 0 on all other triangulation grid points. The values ϕi(x) for all other points are then uniquely defined

through the constraint of piecewise linearity and are in effect linearly interpolated values of the adjacent grid

points xj . The polynomials ϕi are called basis functions and xj are called the support points of the basis

functions. The support of ϕi is the space on which ϕi(x) > 0 and covers the cells of T that are adjacent to

grid point xi.

In the case where degree du > 1 we need more information to uniquely define the polynomials of degree

du and this information comes in the form of using more support points xj . Having more support points

increases the number of degrees of freedom n and makes computations more expensive, but it allows for

a more accurate discretization. In practice there is a trade-off between accuracy and speed, and one often

chooses the lowest degree du that can represent the solution sufficiently well. In our case, we will be able to

use du = 1 most of the time.

It can be shown that the set {ϕ1, ϕ2, . . . , ϕn} forms a basis for Vh. We can therefore uniquely define any

function in Vh as a linear combination of basis functions ϕi. Thus, take uh ∈ Vh given as

uh(x) =
n∑
i=1

Uiϕi(x),

where Ui ∈ R are the coefficients for the linear combination of basis functions. We define uh to match the

solution function u ∈ V on the support points xi by requiring

uh(xi) = u(xi), 1 ≤ i ≤ n.

With this, uh is the finite element approximation of u that is uniquely defined by the coefficients Ui. By

construction of the basis functions in (2.18) we then have

u(xj) = uh(xj) =
n∑
i=1

Uiϕi(xj) = Uj ϕj(xj)︸ ︷︷ ︸
=1

+
∑
i 6=j

Ui ϕi(xj)︸ ︷︷ ︸
=0

= Uj .

21

The coefficients Uj are thus the representation of u on the finite element mesh points xj . We have hereby

transformed the problem of finding u in the infinite dimensional function space V to finding the vector

U ∈ Rn whose elements Uj describe the finite element discretization of u.

2.3.2 Discretization of the Parameter Space

We can discretize the parameter function a in exactly the same way as we dicretized the solution u. Define

TA as another triangulation over Ω to be used for the discretization of a. Let Ah be the space of piecewise

continuous polynomials of degree da with basis {χ1, χ2, . . . , χk}. Then let the finite element discretization

of a ∈ A be ah ∈ Ah where

ah(x) =

k∑
i=1

Aiχi(x). (2.19)

Then finding a is reduced to the task of finding the vector A ∈ Rk whose elements are the coefficients Ai.

Considerations for the meshes

It is possible to take TA = T and use the same mesh for solution and parameter. This makes computations

much simpler because the basis functions of the different spaces will be defined on the same regions. That is,

for every cell c ∈ T we also have c ∈ TA, and both basis functions ϕi and χi are defined for all support points

of the cell c. When computing the matrix system of the discretized variational problem the contribution from

each mesh cell can easily be computed since basis functions will be defined for each cell. On the other hand,

it can be argued as in [27] that the parameter a does not require as fine of a discretization as the solution u.

Having a coarser coefficient mesh TA reduces the overall size of the system and thereby the total number

of computations while also acting as a form of additional regularization. In this case when TA is coarser,

there will be cells cu ∈ T that do not exist on TA. To compute the contribution from a cell cu all ϕi are

defined on c, but some χi may be undefined on the cell cu 6∈ TA. Thus, it is necessary to map χi to the cell

cu which is itself a costly process. While having separate meshes also incurs this overhead from making the

computations themselves more complicated, the benefit from reducing the system size can outweigh these

problems, especially in a three dimensional setting. Separate meshes tie in very well with adaptive mesh

refinement, because the solution and parameter meshes can be refined independently. We will consider the

results for the case of TA = T .

2.3.3 Discretized Varitational Form

Consider a variational problem of the type (2.3) which was given as

T (g(a), u, v) = m(v) ∀ v ∈ V,

22

where u, v ∈ V and a ∈ A. Using our finite element approximation in the spaces Vh and Ah, we can replace

u with uh ∈ Vh and a with ah ∈ Ah. Furthermore, since the equation in the discretized space holds for all

vh ∈ Vh, it also holds for all basis functions ϕj ∈ Vh. We therefore have

T (g(ah), uh, ϕj) = m(ϕj), 1 ≤ j ≤ n,

T (g(ah),

n∑
i=1

Uiϕi, ϕj) = m(ϕj), 1 ≤ j ≤ n.

Using the linearity of T in the second argument, we get

n∑
i=1

UiT (g(ah), ϕi, ϕj) = m(ϕj), 1 ≤ j ≤ n,

which is equivalent to the matrix formulation

K(ah)U = F, (2.20)

where U ∈ Rn is the vector of coefficients Ui and K(ah) ∈ Rn×n and F ∈ Rn are given by

[K(ah)]i,j = T (g(ah), ϕi, ϕj), (2.21)

Fj = m(ϕj). (2.22)

Solving the discrete variational problem to find uh now consists of constructing the matrices K and F and

then solving the linear system (2.20) for U .

The particular form for the scalar problem Laplace problem (2.2) gives us

[K(ah)]i,j =

∫
Ω
g(ah)∇ϕi · ∇ϕj ,

Fj =

∫
Ω
f · ϕj .

These integrals are usually computed using a quadrature rule and can thus be replaced by a summation over

a set of quadrature points xq. This is straightforward in general, but we have to consider how to discretize

g(ah) in (2.21). Because of the nonlinearity of the map, we have to precompute the values of g(ah(xq)) for

all xq. In essence we have

g(ah(x)) = g

(
k∑
i=1

Aiχi(x)

)
.

To approximate the term g(ah), do the following for all quadrature points xq:

Step 1. Evaluate yq := ah(xq) =
k∑
i=1

Aiχi(xq).

23

Step 2. Evaluate zq := g(yq).

Then use zq as the precomputed values of g(ah(xq)). We will use this approach for all following occurrences

of g() or g′() in the discretized formulas.

2.4 Discretized OLS

Recall the definition (2.4) of the regularized output least-squares (OLS) functional. Let the discretized version

of z ∈ V on the triangulation T be given by
n∑
j=1

Zjϕj , with Z ∈ Rn as the vector of coefficients Zj . We have

JOLS =
1

2
〈u− z, u− z〉+ κR(ah) =

1

2

〈
n∑
i=1

(Ui − Zi)ϕi,
n∑
j=1

(Uj − Zj)ϕj

〉
+ κR(ah)

=
1

2

n∑
i=1

n∑
j=1

(Ui − Zi) 〈ϕi, ϕj〉 (Uj − Zj) + κR(ah)

= (U − Z)TM(U − Z) + κR(ah)

with Mi,j = 〈ϕi, ϕj〉 =
∫

Ω ϕi · ϕj . Note that M ∈ Rn×n matches the dimensions of U and Z.

To discretize R(ah), consider the matrices Ma,Ka ∈ Rk×k given as

[Ma]i,j = 〈χi, χj〉 ,

[Ka]i,j = 〈∇χi,∇χj〉 .

Then from (2.5) it follows that for a given choice of regularizer norm we get

R(ah)L2
=ATMaA,

R(ah)H1-semi =ATKaA,

R(ah)H1
=AT (Ka +Ma)A.

(2.23)

2.4.1 OLS Derivative

When computing the gradient DJOLS(ah)(δah), we necessarily have to compute the derivative of the

parameter ah. For this we want to consider ah =
k∑
i=1

Aiχi as a function of the coefficient vector A, that

is, we consider ah(A). For a linearly appearing coefficient the j-th partial derivative ∂jah for j = 1, . . . , k

24

becomes simply

∂jah =
∂

∂Aj
ah =

∂

∂Aj

k∑
i=1

(Aiχi) =

k∑
i=1

∂

∂Aj
(Aiχi)

=
k∑
i=1

∂

∂Aj
(Ai)χi +

∂

∂Aj
(χi)Ai =

∂Aj
∂Aj

χj = χj .

(2.24)

Because the coefficients appear linearly, the partial derivatives are either zero or one and we recover simply

the basis function χj as the j-th directional derivative of ∂jah. This makes it very simple to calculate the

derivative vector. Alternatively we can think of the derivative as

∂jah =
k∑
i=1

Xiχi, where Xi =

1, i = j

0, i 6= j
. (2.25)

In the case of nonlinear parameters with mapping g(ah) we have to now also consider the derivative of g.

Using the result from above we have

∂jg(ah) =
∂

∂Aj
g(ah) =

∂g(ah)

∂ah
· ∂ah
∂Aj

= g′(ah) · χj . (2.26)

In effect, we now have

∂jg(ah) =
k∑
i=1

Xiχi, where Xi =

g′(ah), i = j

0, i 6= j
. (2.27)

If we take the linear map g(ah) = ah, then g′(ah) = 1 and we recover equation (2.25).

The derivative DR(ah)(δah) is found by using (2.24). Call ∂jR(ah) the j-th partial derivative of the

regularizer. Taking the L2 norm as an example, we have for any one of the derivative directions 1 ≤ j ≤ k
that

∂jR(ah) = ∂j

(∫
Ω
ah · ah

)
= 2

∫
Ω
∂jah · ah = 2

∫
Ω
χj · ah = 2

k∑
i=1

Ai

∫
Ω
χj · χi.

Taking all derivative directions immediately gives us∇R(ah) = 2MaA for the L2 norm. The other norms

work analogously and we have
∇R(ah)L2

= 2MaA,

∇R(ah)H1-semi = 2KaA,

∇R(ah)H1
= 2(Ka +Ma)A.

(2.28)

25

The gradient formulation of the OLS functional via the adjoint method was given in (2.11). In the discrete

setting we have

DJOLS(ah)(δah) = κDR(ah)(δah) + T (Dg(ah)(δah), uh, wh).

The derivative of DR(ah) was given just above, so we will now consider the derivative expression of T . For

this we first need a way to compute the discrete adjoint variable wh. Recall that w was given as the solution

to the variational problem (2.10). In the discrete setting, this is equivalent to finding W , the coefficient vector

of wh, in the system

K(ah)W = M(Z − U), (2.29)

where Z is the discrete measured solution, U is the computed solution for a given ah using (2.20), and

Mi,j = 〈ϕi, ϕj〉 is the mass matrix for the solution variable. Take δah = At, that is the t-th derivative

direction of ah, then using (2.27) and the linearity of T in the second and third argument we get

T (Dg(ah)(At), uh, wh) = T (∂tg(ah), uh, wh)

= T (g′(ah)χt, uh, wh)

=
n∑
i=1

n∑
j=1

UiT (g′(ah)χt, ϕi, ϕj)Wj

= UTKt(ah)W, (2.30)

where the values of the directional stiffness matrix Kt(ah) in the direction At are given as

[Kt(ah)]i,j = T (g′(ah)χt, ϕi, ϕj). (2.31)

This directional stiffness matrix depends on the current value of ah because of the occurrence of the map

g′(ah). In the special case when we have the identity map g(ah) = ah, the derivative becomes g′(ah) = 1

and does not depend on ah. This case opens the way for algorithmic improvements in the computational

implementation that lead to major speed improvements, as discussed in Section 4.2.2.

Overall, the OLS derivative ∂tJOLS(ah) in the t-th derivative direction At is given as

∂tJOLS(ah) = κ∂tR(ah) + UTKt(ah)W. (2.32)

The gradient of the OLS derivative is given from the k partial derivatives as

∇JOLS(ah) = [∂1JOLS(ah), ∂2JOLS(ah), . . . , ∂kJOLS(ah)]T .

The steps to compute the OLS derivative are therefore:

Step 1. Compute U using (2.20).

Step 2. Compute W using (2.29).

Step 3. Compute∇JOLS(ah) by finding ∂tJOLS(ah) for all 1 ≤ t ≤ k using (2.32).

26

2.4.2 Second-Order Derivative by the Second-Order Adjoint Method

Taking result (2.17) for the continuous second-order OLS derivative, we get that the discrete version for

D2JOLS(ah)(δah, δah) at ah in the direction δah is given as:

D2JOLS(ah)(δah, δah) = 〈δuh, δuh〉+ κD2R(ah)(δah, δah)

+ 2T (Dg(ah)(δah), δuh, wh) + T (D2g(ah)(δah, δah), uh, wh).

Beginning with the regularizer derivative, we saw that for the L2 norm we have ∂jR(ah) = 2
∫

Ω χj · ah.

Thus, using (2.24) we get

∂2
j,jR(ah) = 2

∫
Ω
χj · ∂j(ah) = 2

∫
Ω
χj · χj .

That is∇2R(ah) = 2M . The other norms follow identically and we have in total

∇2R(ah)L2
= 2Ma,

∇2R(ah)H1-semi = 2Ka,

∇2R(ah)H1
= 2(Ka +Ma).

(2.33)

Next, consider the derivative of the parameter-to-solution map Duh(ah)(δah). Take the t-th derivative

direction of ah and let ∂tuh be the t-th partial derivative whose unique vector representation is

∇tU =
n∑
i=1

U tiϕi.

To find ∂tuh = Duh(ah)(At) in the t-th derivative direction of ah, we solve the discrete version of (1.12)

which amounts to

T (g(ah), ∂tuh, vh) = −T (∂tg(ah), uh, vh).

This is equivalent to solving the following matrix system for∇tU .

K(ah)(∇tU) = −Kt(ah)U (2.34)

The solution∇tU is the discrete representation of the derivative of U in the direction At. It follows that for

the t-th direction with δuh = ∂tuh we have

〈δuh, δuh〉 = (∇tU)M(∇tU). (2.35)

For the first-order derivative of the OLS functional we saw in (2.26) that ∂jg(ah) = g′(ah)χj . The second-

order derivative thus becomes

∂2
j,jg(ah) = ∂j(g

′(ah)χj) =
∂

∂Aj
g′(ah)χj

=
∂g′(ah)

∂ah
· ∂ah
∂Aj

· χj +
∂χj
∂Aj

· g′(ah) = g′′(ah) · χj · χj .
(2.36)

27

We therefore have that the second-order term of the discretized second-order adjoint method can be computed

as

T (∂2
t,tg(ah), uh, wh) =

n∑
i=1

n∑
j=1

UiT (g′′(ah) · χt · χt, ϕi, ϕj)Wj = UKtt(ah)W, (2.37)

where Ktt(ah) is the second-order directional stiffness matrix given as

[Ktt(ah)]ij = T (g′′(ah)χt · χt, ϕi, ϕj). (2.38)

Finally, the last term in the second-order adjoint method can be computed as

T (∂tg(ah), ∂tuh, wh) =

n∑
i=1

n∑
j=1

(U ti)T (g′(ah)χt, ϕi, ϕj)Wj = (∇tU)Kt(ah)W, (2.39)

where∇tU is the solution of (2.34) and Kt(ah) is the directional stiffness matrix as given in (2.31).

In total, the t-th second-order partial derivative ∂2
t,tJOLS(ah) without the regularizer term for 1 ≤ t ≤ k

is given as

∂2
t,tJOLS(ah) = (∇tU)M(∇tU) + 2(∇tU)Kt(ah)W + UKtt(ah)W. (2.40)

The Hessian is then formed from the partial derivatives as

[∇2JOLS(ah)]t,t = ∂2
t,tJOLS(ah).

For the sake of efficiency it makes sense to first compute the unregularized ∇2JOLS and then add the

regularizer∇2R(ah) afterwards since the regularizer can be computed in one step.

The process for the second-order adjoint method is thus:

Step 1. Compute U using (2.20).

Step 2. Compute W using (2.29).

Step 3. Compute∇tU by finding ∂tuh for all directions 1 ≤ t ≤ k using (2.34).

Step 4. Compute the unregularized ∇2JOLS by finding ∂2
t,tJOLS(ah) for all directions 1 ≤ t ≤ k us-

ing (2.40).

Step 5. Compute the regularizer term∇2R(ah) from (2.33) and add to∇2JOLS .

28

Chapter 3

The Elastography Inverse Problem

A popular application for the elastography inverse problem is to model the deformation of human muscle

tissue. Using, for example, elastography imaging, one can find measurements z of the tissue deformation ū

that occurs when applying a force to the tissue. Using these measurements z one would like to find the Lamé

parameters λ and µ which determine the elastic properties of the tissue. This method is used to detect breast

cancer in tissue and stems from the fact that healthy tissue has different elastic properties than tumorous tissue.

In this context it is often assumed that muscle tissue is incompressible, isotropic, and continuous so that the

elasticity equations hold. Strictly speaking, muscle tissue and most biological materials are anisotropic, but as

a simplification one can assume them to be isotropic [28], which is what we will do. The Lamé parameters are

assumed to be coupled by a constant τ through the equation λ = τµ. This reduces the number of parameters

to identify to one, but introduces a nonlinear term in the weak form of the system. Our goal is to extend

the general results from the previous chapter for dealing with nonlinearly appearing parameters in general

variational problems to the specific mixed variational problem of the elasticity system. We will first introduce

the elasticity equations in Section 3.1 and derive the weak form of the system. Next we will discuss the

output least-squares (OLS) functional in 3.2 followed by computation formulas for first and second order

derivatives of the regularized OLS via the adjoint method in Section 3.3 Finally we give discretization details

in 3.4 and show numerical results in 4.1.3.

29

3.1 Elasticity Equations

For the elastography inverse problem we will consider the following equations which describe the displace-

ment of elastic tissue under force.

−∇ · σ = f in Ω, (3.1a)

σ = 2µ ε(ū) + λ div ū I, (3.1b)

ū = g on Γ1, (3.1c)

σn = h on Γ2. (3.1d)

Here Ω is the domain of the system with the boundary given as ∂Ω = Γ1 ∪ Γ2. Usually, the equations are

considered for Ω ∈ Rd with d = 2 or 3. As such, the function ū(x) ∈ Ω describing the displacement of

the tissue is vector valued, with each component accounting for the displacement in one space direction.

That is, for Ω ⊂ R2 we have ū(x) =

[
u1(x)

u2(x)

]
where u1(x) is the displacement along the x-axis and u2(x)

is the displacement along the y-axis. Here, ε(ū) = 1
2

(
∇ū+∇ūT

)
is the linearized strain tensor of ū and

div ū = Tr(ε(ū)). The stress tensor σ is defined by the stress-strain equation (3.1b). The equation is a form

of Hooke’s law for isotropic materials that holds when the displacement ū remains small enough so that stress

and strain have a linear relationship. In such a case we have a system of so-called linear elasticity.

The force acting on the elastic tissue is governed by the vector valued function f , and boundary conditions

are set by the functions g and h. In detail, g describes the Dirichlet boundary conditions for ū on the boundary

Γ1 and h corresponds to Neumann boundary conditions on the boundary Γ2. Often times the case of

homogeneous Dirichlet boundary conditions where g = 0 is used to make calculations simpler.

The parameters that are of interest for the elasticity inverse problem are the Lamé parameters λ(x) and

µ(x) which describe the elastic behavior of the tissue. Parameter µ(x) is also known as the shear modulus of

a material. For a Young modulus E and a Poisson’s ratio ν, the Lamé parameters are given as [29, 18]

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
. (3.2)

It can be seen that λ does not necessarily have to be positive, but we will consider the case where it is. The

elasticity inverse problem consists of finding the values of the Lamé parameters λ and µ, given a measurement

z of the solution variable ū.

3.1.1 Near incompressibility

When the Poisson’s ratio ν → 1
2 , the tissue nears incompressibility and the parameter λ tends to infinity, as

can be seen from (3.2). In the case of near incompressibility where λ is still bounded, we nevertheless have

30

λ� µ. This nearly incompressible state causes a locking effect [30] when solving the elasticity system via

the finite element method that makes simple methods unable to find a solution. The locking effect can be

overcome with different techniques, one of them being the mixed finite element approach [31]. The idea is to

introduce a pressure variable p as

p = λ div ū. (3.3)

This pressure p now represents another unknown in the system, and has to be found together with ū. Note

that unlike the displacement ū which was vector valued, p is a scalar function.

Besides the complications of the locking effect, there are further difficulties involved in properly identify-

ing more than one parameter at the same time. See [32] for a discussion on the identification of both Lamé

parameters. Accurately recovering both λ and µ is quite hard to achieve, especially in the near incompressible

case where the two parameters can differ by several orders of magnitude. One simplification to the problem is

to simply take λ as a very large constant. This reduces the inverse problem to finding only µ. It can be argued

that this method is quite artificial and does not have much physical meaning. A different approach [18] is to

define a relation constant τ and assume that a linear relationship

λ(x) = τµ(x) (3.4)

holds for the Lamé parameters. We will apply this method and take the relation constant τ to be very large

(e.g. 105) in order to match the near incompressible case where λ� τ .

3.1.2 Deriving the Weak Formulation

To derive the weak form of (3.1) we will, for the time being, take g = 0 in (3.1c). With homogeneous

Dirichlet boundary conditions the space of test functions is then

V = {v ∈ (H1(Ω))
d | v = 0 on Γ1} (3.5)

where d is the space dimension of the problem. Taking equation (3.1a), we can multiply both sides by a test

function v ∈ V and integrate over the domain Ω.

−
∫

Ω
(∇ · σ) · v =

∫
Ω
f · v ∀ v ∈ V

−
∫

Ω
(∇ · σT) · v + σ : (∇vT) =

∫
Ω
f · v ∀ v ∈ V (3.6)

By definition from (3.1b), σ is symmetric so that σ = σT . We can thus apply the divergence theorem∫
Ω
∇ · σ =

∫
∂Ω
σn. (3.7)

31

Furthermore, note that because σ is symmetric we have

σ : (∇vT) =
1

2
σ : (∇vT) +

1

2
σT : (∇vT)

=
1

2
σ : (∇vT) +

1

2
σ : (∇v)

= σ :
1

2
(∇vT +∇v)

= σ : ε(v).

(3.8)

We can now apply (3.7) and (3.8) to (3.6). After that we can use Ω = Γ1 ∪ Γ2 and the boundary con-

straints (3.1c) and (3.1d) on the boundary integral. Recall that we have set g = 0 for now.∫
Ω
σ : ε(v)−

∫
∂Ω

(σn) · v =

∫
Ω
f · v∫

Ω
σ : ε(v)−

∫
Γ1

(σn) · v︸︷︷︸
=g=0 on Γ1

−
∫

Γ2

(σn)︸︷︷︸
=h on Γ2

·v =

∫
Ω
f · v

∫
Ω
σ : ε(v)−

∫
Γ2

h · v =

∫
Ω
f · v

Replacing σ with its definition from (3.1b) and rearranging we get∫
Ω

(2µ ε(ū) + λ div ū I) : ε(v) =

∫
Ω
f · v +

∫
Γ2

h · v∫
Ω

2µ ε(ū) : ε(v) +

∫
Ω
λ div ū I : ε(v) =

∫
Ω
f · v +

∫
Γ2

h · v

Finally, if we use I : ε(v) = Tr(ε(v)) = div v, we can get the weak form for the linear elasticity system:∫
Ω

2µ ε(ū) : ε(v) +

∫
Ω
λ div ū div v =

∫
Ω
f · v +

∫
Γ2

h · v ∀ v ∈ V (3.9)

This weak form by itself is not suited for the inverse problem because of the locking effect discussed earlier.

We therefore introduce the pressure variable p = λ div ū as defined in (3.3). Let Q = L2(Ω) be the space

that p lives in. Rearranging the terms of (3.3) and multiplying by a test function q ∈ Q gives the weak form

for the pressure variable. ∫
Ω

1

λ
p q =

∫
Ω

div ū q ∀ q ∈ Q (3.10)

The direct problem now consists of two unknowns ū and p that have to be found jointly. To get the final weak

form of the elasticity system we replace λ div ū = p in (3.9). Also, recall our assumption that λ = τµ for a

32

large constant τ . With this the weak form reads as follows: Find (ū, p) ∈ V ×Q such that∫
Ω

2µ ε(ū) : ε(v) +

∫
Ω
p div v =

∫
Ω
f · v +

∫
Γ2

h · v ∀ v ∈ V

∫
Ω

div ū q −
∫

Ω

1

τµ
p q = 0 ∀ q ∈ Q

(3.11)

In notation of a general mixed variational problem this is equivalent to

a(`, ū, v) + b(v, p) = m1(v) ∀ v ∈ V, (3.12a)

b(ū, q) − c(`, p, q) = m2(q) ∀ q ∈ Q, (3.12b)

where ` is the parameter that corresponds to µ in the elasticity problem and we have the separate terms are

given as

a(µ, ū, v) =

∫
Ω

2µε(ū) : ε(v),

b(v, p) =

∫
Ω
p div v,

b(ū, q) =

∫
Ω
q div ū,

c(µ, p, q) =

∫
Ω

1

τµ
pq,

m1(v) =

∫
Ω
f · v +

∫
Γ2

h · v,

m2(q) = 0.

In the context of the general mixed variational problem (3.12), define the following spaces. Take V and Q as

Hilbert spaces, B as a Banach space and A as a nonempty, closed and convex subset of B. The mappings

are assumed to have the following properties. Let the map a : B × V × V → R be a trilinear map, such

that it is linear in each one of its three arguments. Similarly, let b : V × Q → R be a bilinear map. The

map c : B ×Q×Q→ R is nonlinear in its first argument ` but is bilinear and symmetric in the second and

third arguments. The nonlinearity of c with respect to the unknown parameter ` is the novelty of this inverse

problem formulation for the elasticity problem. The right hand side maps m1 : V → R and m2 : Q → R
are assumed to be linear and continuous. It is further assumed that c is twice Fréchet differentiable with

respect to the first argument. The partial derivative with respect to ` is written as ∂`c(`, p, q) and is assumed

to be linear and symmetric with respect to the second and third arguments. Finally we assume the positive

33

constants κ0, κ1, κ2, ς1, and ς2 exists such that the following coercivity and continuity statements hold.

a(`, v̄, v̄) ≥ κ1 ‖v̄‖2 , ∀ v̄ ∈ V, ∀` ∈ A, (3.13a)

‖a(`, ū, v̄)‖ ≤ κ2 ‖`‖ ‖ū‖ ‖v̄‖ , ∀ ū, v̄ ∈ V, ∀` ∈ B, (3.13b)

c(`, q, q) ≥ ς1 ‖q‖2 , ∀ q ∈ Q, ∀` ∈ A, (3.13c)

‖c(`, p, q)‖ ≤ ς2 ‖p‖ ‖q‖ , ∀ p, q ∈ Q, ∀` ∈ B, (3.13d)

‖b(v̄, q)‖ ≤ κ0 ‖v̄‖ ‖q‖ , ∀ v̄ ∈ V, ∀q ∈ Q. (3.13e)

3.1.3 A Brief Literature Review

In the following we briefly review some of the related work done for simpler problems. In an interesting paper,

Lewis [23] discusses the limitations and the applicability of the first-order adjoint method. Domingueza,

Gibiatb, and Esquerrea [21] used the adjoint method for computing the topological gradient in work related

to ultrasonic target detection. Pingen, Evgrafov and Maute [33] presented an adjoint parameter sensitivity

analysis formulation and solution strategy for the lattice Boltzmann method. In another interesting work,

Resendiz and Pinnau [24] investigated the optimal control of particle controls in low Reynolds number flows

and used the adjoint approach for the derivative information. Knopoff, Fernández, Torres, and Turner [25]

applied the adjoint method for a tumor growth PDE-constrained optimization problem. Wang, Yang and

Zeng [34] applied the adjoint method for the inverse problem of option pricing. Ye, Li, and Liu [35]

developed an exact time-domain second-order adjoint-sensitivity computation for linear circuit analysis.

Recently Jensen, Nakshatrala, and Tortorelli [36] studied the consistency of adjoint sensitivity analysis for

structural optimization of linear dynamic problems. Kourounis, Durlofsky, Jansen, Aziz [22] employed

the adjoint approach for a gradient-based optimization of compositional reservoir flow. Volkov, Protas,

Liao, and Glander [37] developed adjoint-based optimization framework for thermo-fluid phenomena in

welding processes. Papadimitriou and Giannakoglou [38] used first- and second-order adjoint approach in

the context of aerodynamic shape optimization. Boger and Paterson [39] used continuous adjoint approach

to design optimization in cavitating flow using a barotropic model. Cioaca, Alexe, and Sandu [19] used

second-order adjoint method for solving some PDE-constrained optimization problems (see also [20]). Arens,

Rentropa, Stoll, and Wever [40] used the adjoint approach for an optimal design of turbine blades. Kennedy

and Hansen [41] studied a hybrid-adjoint approach for a semi-analytic gradient evaluation technique which

was applied to composite cure cycle optimization. Liu, Geier, Liu, Krafczyk, and Chen [42] devised a

discrete adjoint sensitivity analysis for fluid flow topology optimization based on the generalized lattice

Boltzmann method. Lozano [43] embarked on some issues related to discrete adjoint approach in inviscid flow

problem. Zanganeh, Kraaijevanger, Buurman, Jansen, and Rossen [44] applied adjoint-based optimization

to a surfactant-alternating gas foam process. Altaf, Gharamti, Heemink, and Hoteit [45] applied a reduced

34

adjoint approach to variational data assimilation. Oberai, Gokhale, and Feijoo [18] used first-order adjoint

method for elasticity imaging inverse problem, which is quite similar to ours, but without an explicit use of the

mixed variational formulation. An excellent survey article on adjoint methods of first-order and second-order

is by Tortorelli and Michaleris [26].

3.2 Inverse Problem Functionals

The goal of the elastography inverse problem is to determine the parameter ` ∈ A for which the solution

(u, p) of the variational problem (3.12) is as close as possible to a given measurement (z̄, ẑ) of (u, p). Let

u = u(`) = (ū(`), p(`)) ∈ W := V × Q be the computed solution for a given parameter `. The output

least-squares (OLS) functional for this problem takes the form

JOLS(`) =
1

2
‖u(`)− z‖2W =

1

2
‖ū(`)− z̄‖2V +

1

2
‖p(`)− ẑ‖2Q . (3.14)

Due to the ill-posed nature of inverse problems this functional will have to be regularized. TakeR(`) : H → R
as the regularizer of ` given a Hilbert spaceH and take κ > 0 as a regularization value. Adding the regularizer

to the OLS functional we can formulate the goal of the inverse problem as finding the minimizer of

arg min
`∈A

Jκ(`) := arg min
`∈A

1

2
‖ū(`)− z̄‖2V +

1

2
‖p(`)− ẑ‖2Q + κR(`). (3.15)

We have the following result concerning the solvability of the above optimization problem:

Theorem 3.2.1. Assume that the Hilbert space H is compactly embedded into the space B, A ⊂ H is

nonempty, closed, and convex, the map R is convex, lower-semicontinuous and there exists α > 0 such that

R(`) ≥ α‖`‖2H , for every ` ∈ A. Then (3.15) has a nonempty solution set.

Proof. Since Jκ(`) ≥ 0 for every ` ∈ A, there exists a minimizing sequence {`n} in A such that we have

limn→∞ Jκ(`n) = inf{Jκ(`)| ` ∈ A}. This confirms that {`n} is bounded in H . Therefore, there exists a

subsequence converging weakly in H , and due to the compact embedding of H in B, strongly converging in

B. Retaining the same notation for subsequences as well, let `n converge to some ˆ̀∈ A, where we used the

fact that A is closed. For the corresponding un = (ūn, pn), we have

a(`n, ūn, v̄) + b(v̄, pn) = m1(v̄), for every v̄ ∈ V,

b(ūn, q)− c(`n, pn, q) = m2(q), for every q ∈ Q.

The above mixed variational problem confirms that {un} remains bounded in W and hence there is a

subsequence converging weakly to some û. By manipulating the above mixed variational problem, it can be

35

shown that û = û(ˆ̀). Furthermore, using the coercivity (3.13) of the system terms, it follows that in fact

{un} converges to û = û(ˆ̀) strongly.

Finally, using the continuity of the norm, we have

Jκ(ˆ̀) =
1

2
‖û(ˆ̀)− z‖2 + κR(ˆ̀)

≤ lim
n→∞

1

2
‖un(`)− z‖2 + lim inf

n→∞
κR(`n)

≤ lim inf
n→∞

{
1

2
‖un(`)− z‖2 + κR(`n)

}
= inf {Jκ(`) : ` ∈ A} ,

confirming that ˆ̀ is a solution of (1.11). The proof is complete.

Remark 3.2.1. A natural choice of spaces and the regularizer involved in the above result is H = H2(Ω),

B = L∞(Ω) and R(`) = ‖ · ‖2H2(Ω). Evidently, this choice is only satisfactory for smooth parameters.

However, for discontinuous parameters total variation regularization can be employed and the framework

given in [17] easily extends to the case of non-quadratic regularizers.

Theorem 3.2.2. For each ` in the interior of A, u = u(`) = (ū(`), p(`)) is infinitely differentiable at `. The

first derivative of u at ` in the direction δ`, denoted by δu(`) = (Dū(`)δ`,Dp(`)δ`), is the unique solution

of the mixed variational problem:

a(`, δū, v̄) + b(v̄, δp) = −a(δ`, ū, v̄), ∀ v̄ ∈ V, (3.16a)

b(δū, q)− c(`, δp, q) = ∂`c(`, p, q)(δ`), ∀ q ∈ Q. (3.16b)

Proof. In [17] an equivalent theorem was given for the case of parameters appearing linearly. The proof

for case of nonlinear parameters can be obtained by applying the results from Theorem 1.2.2 to the results

in [17].

3.3 Derivative Formulae for the Regularized OLS

In this section, our objective is to derive a first-order adjoint method to compute the first-order derivative of

the regularized OLS, and a second-order adjoint approach for the computation of its second-order derivative.

We briefly mention a direct method for the second-order derivative but note that this method is inferior in

efficiency to the second-order adjoint method.

36

3.3.1 First-Order Adjoint Method

Since the regularized output least-squares functional is given by

Jκ(`) =
1

2
‖ū(`)− z̄‖2V +

1

2
‖p(`)− ẑ‖2Q + κR(`)

=
1

2
〈ū− z̄, ū− z̄〉+

1

2
〈p− ẑ, p− ẑ〉+ κR(`),

it follows, by using the chain rule, that the derivative of Jκ at ` ∈ A in any direction δ` is given by

DJκ(`)(δ`) = 〈Dū(`)(δ`), ū− z̄〉+ 〈Dp(`)(δ`), p− ẑ〉+ κDR(`)(δ`),

where Du(`)(δ`) = (Dū(`)(δ`), Dp(`)(δ`)) is the derivative of the parameter-to-solution map u and

DR(`)(δ`) is the derivative of the regularizerR, both computed at ` in the direction δ`. Finding the derivative

Du(`)(δ`) directly is a complicated and expensive process and we want to avoid having to do so. The adjoint

method gives a way to compute DJκ(`)(δ`) without needing to find Du(`)(δ`).

For an arbitrary v = (v̄, q) ∈W , we define the functional Lκ : B ×W → R by

Lκ(`, v) = Jκ(`) + a(`, ū, v̄) + b(v̄, p)−m1(v̄) + b(ū, q)− c(`, p, q)−m2(q),

where we added the terms of the mixed variational problem (3.12). We therefore have the equalities

Lκ(`, v) = Jκ(`) ∀ v ∈W (3.17)

∂`Lκ(`, v)(δ`) = DJκ(`)(δ`) ∀ v ∈W, ∀ δ`. (3.18)

The partial derivative of Lκ(`, v) with respect to ` yields

∂`Lκ(`, v)(δ`) = 〈Dū(`)(δ`), ū− z̄〉+ 〈Dp(`)(δ`), p− ẑ〉+ κDR(`)(δ`)

+ a(δ`, ū, v̄) + a(`,Dū(`)(δ`), v̄) + b(v̄, Dp(`)(δ`))

+ b(Dū(`)(δ`), q)− ∂`c(`, p, q)(δ`)− c(`,Dp(`)(δ`), q).

(3.19)

The key idea for the first-order adjoint method is to choose v to bypass a direct computation of δu =

Du(`)(δ`). To achieve this, fix ` ∈ A and let w(`) = (w̄(`), pw(`)) be the unique solution of the mixed

variational problem

a(`, w̄, v̄) + b(v̄, pw) = 〈z̄ − ū, v̄〉 , ∀ v̄ ∈ V, (3.20a)

b(w̄, q)− c(`, pw, q) = 〈ẑ − p, q〉 , ∀ q ∈ Q, (3.20b)

where the right-hand sides of (3.20a) and (3.20b) involve the solution u = (ū, p) of (3.12) and the measured

data z = (z̄, ẑ).

37

Note that if we let v = (v̄, q) = (Dū(`)(δ`), Dp(`)(δ`)) in (3.20) we get

a(`,Dū(`)(δ`), w̄) + b(Dū(`)(δ`), pw) = −〈ū− z̄, Dū(`)(δ`)〉 ,

b(w̄,Dp(`)(δ`))− c(`,Dp(`)(δ`), pw) = −〈p− ẑ, Dp(`)(δ`)〉 .

It is easy to see that these are exactly the terms that appear and cancel out if we let v = w in (3.19). The

remaining terms then amount to

∂`Lκ(`, w)(δ`) = κDR(`)(δ`) + a(δ`, ū, w̄)− ∂`c(`, p, pw)(δ`).

By equality (3.18) of the functionals we thus have an expression for the OLS functional derivative that does

not require the derivative of the parameter-to-solution map u:

DJκ(`)(δ`) = κDR(`)(δ`) + a(δ`, ū, w̄)− ∂`c(`, p, pw)(δ`). (3.21)

Summarizing, the following scheme computes DJκ(`)(δ`) for the given direction δ`:

Step 1. Compute u(`) = (ū(`), p(`)) by using (3.12).

Step 2. Compute w(`) = (w̄(`), pw(`)) by using (3.20).

Step 3. Compute DJκ(`)(δ`) by using (3.21).

3.3.2 A Direct Method for the Second-Order Derivative

The direct approach to find the second-order derivative D2Jκ(`)(δ`1, δ`2) is to take expression (3.21) for the

first derivative in direction δ`1 and differentiate it in another direction δ`2. This procedure is straightforward,

but leads to derivative expressions of both u and w.

D2Jκ(`)(δ`1, δ`2) = a(δ`1, Dū(`)(δ`2), w̄) + a(δ`1, ū, Dw̄(`)(δ`2))

− ∂`c(`,Dp(`)(δ`2), pw)(δ`1)− ∂`c(`, p,Dpw(`)(δ`2))(δ`1)

− ∂2
` c(`, p, pw)(δ`1, δ`2) + κD2R(`)(δ`1, δ`2)

(3.22)

For a given direction δ` the derivative δu = (δū, δp) = (Dū(`)(δ`), Dp(`)(δ`)) can be computed by

solving (3.16). The adjoint variable w = (w̄, pw) is the solution to system (3.20). Differentiating in direction

δ` gives a way to find δw = (δw̄, δpw) = (Dw̄(`)(δ`), Dpw(`)(δ`)) as the solution of

a(δ`, w̄, v̄) + a(`, δw̄, v̄) + b(v̄, δpw) = −〈δū, v̄〉 , ∀ v̄ ∈ V

b(δw̄, q)− ∂`c(`, pw, q)− c(`, δpw, q) = −〈δpw, q〉 , ∀ q ∈ Q
(3.23)

The steps for a direct computation of the second-order OLS derivative are therefore as follows.

38

Step 1. Compute u(`) = (ū(`), p(`)) by (3.12).

Step 2. Compute δu = (δū, δp) by (3.16).

Step 3. Compute w(`) = (w̄(`), pw(`)) by (3.20).

Step 4. Compute δw = (δw̄, δpw) by (3.23).

Step 5. Compute D2Jκ(`)(δ`, δ`) by (3.22).

It should be noted again that this method is very slow for large problems, due to the need of finding the

derivative of both the solution u and the adjoint variable w. In practice, this method does not have much

merit, and the second-order adjoint method presented next should be used instead.

3.3.3 Second-Order Adjoint Method

We now give a second-order adjoint method for the computation of the second-order derivative of the

regularized OLS functional. The objective is to give a formula for the second-order derivative that does

not involve the second-order derivative of the parameter-to-solution map u. The key idea is to compute

δu directly by using Theorem 3.2.2 while the computation of δ2u is avoided by using an adjoint approach.

Furthermore, this approach does not involve any derivative expressions of the adjoint variable w. Recall that

Jκ(`) =
1

2
〈ū− z̄, ū− z̄〉+

1

2
〈p− ẑ, p− ẑ〉+ κR(`),

DJκ(`)(δ`) = 〈Dū(`)(δ`), ū− z̄〉+ 〈Dp(`)(δ`), p− ẑ〉+ κDR(`)(δ`).

Next, consider the derivative of the variational problem (3.12) with respect to ` in direction δ`2.

a(δ`2, ū, v̄) + a(`,Dū(`)(δ`2), v̄) + b(v̄, Dp(`)(δ`2)) = 0, ∀ v ∈ V

b(Dū(`)(δ`2), q)− ∂`c(`, p, q)(δ`2)− c(`,Dp(`)(δ`2), q) = 0, ∀ q ∈ Q

Given a fixed direction δ`2 and an arbitrary v = (v̄, q) ∈W , we define a new functional by adding the above

derivative terms to the derivative of the OLS functional.

Lκ(`, v) = DJκ(`)(δ`2) + a(δ`2, ū, v̄) + a(`,Dū(`)(δ`2), v̄) + b(v̄, Dp(`)(δ`2))

+ b(Dū(`)(δ`2), q)− ∂`c(`, p, q)(δ`2)− c(`,Dp(`)(δ`2), q)

Evidently, by the definition of Lκ, for every v ∈W , and any direction δ`1, we have

∂`Lκ(`, v)(δ`1) = D2Jκ(`)(δ`1, δ`2). (3.24)

39

Computing the derivative of Lκ in the direction δ`1 directly, we have

∂`Lκ(`, v)(δ`1) =
〈
D2ū(`)(δ`1, δ`2), ū− z̄

〉
+ 〈Dū(`)(δ`2), Dū(`)(δ`1)〉

+
〈
D2p(`)(δ`1, δ`2), p− ẑ

〉
+ 〈Dp(`)(δ`2), Dp(`)(δ`1)〉

+ κD2R(`)(δ`1, δ`2) + a(δ`2, Dū(`)(δ`1), v̄)

+ a(δ`1, Dū(`)(δ`2), v̄) + a(`,D2ū(`)(δ`1, δ`2), v̄)

+ b(v̄, D2p(`)(δ`1, δ`2)) + b(D2ū(`)(δ`1, δ`2), q)

− ∂2
` c(`, p, q)(δ`1, δ`2)− ∂`c(`,Dp(`)(δ`1), q)(δ`2)

− ∂`c(`,Dp(`)(δ`2), q)(δ`1)− c(`,D2p(`)(δ`1, δ`2), q).

(3.25)

Introduce the adjoint variable w(`) = (w̄(`), pw(`)) and let it be the solution of the mixed variational

problem (3.20), that is,

a(`, w̄, v̄) + b(v̄, pw) = 〈z̄ − ū, v̄〉 , ∀ v̄ ∈ V,

b(w̄, q)− c(`, pw, q) = 〈ẑ − p, q〉 , ∀ q ∈ Q.

Taking the choice v = (v̄, q) = (D2ū(`)(δ`1, δ`2), D2p(`)(δ`1, δ`2)) in (3.20) gives

a(`,D2ū(`)(δ`1, δ`2), w̄) + b(D2ū(`)(δ`1, δ`2), pw) = −
〈
ū− z̄, D2ū(`)(δ`1, δ`2)

〉
,

b(w̄,D2p(`)(δ`1, δ`2))− c(`,D2p(`)(δ`1, δ`2), pw) = −
〈
p− ẑ, D2p(`)(δ`1, δ`2)

〉
.

The above equalities let us cancel exactly all the unwanted second-order terms if we let v = w in (3.25). The

remaining terms are:

∂`Lκ(`, v)(δ`1) = κD2R(`)(δ`1, δ`2) + 〈Dū(`)(δ`2), Dū(`)(δ`1)〉+ 〈Dp(`)(δ`2), Dp(`)(δ`1)〉

+ a(δ`2, Dū(`)(δ`1), w̄) + a(δ`1, Dū(`)(δ`2), w̄)

− ∂`c(`,Dp(`)(δ`1), pw)(δ`2)− ∂`c(`,Dp(`)(δ`2), pw)(δ`1)− ∂2
` c(`, p, pw)(δ`1, δ`2).

By (3.24) the above expression is directly equal to the second-order derivative of the OLS functional

D2Jκ(`)(δ`1, δ`2). Note that we have no appearance of second-order derivatives of u. Furthermore, there

are no derivatives of w altogether, unlike in the direct method for the second-order OLS derivative.

Finally, consider a derivative direction δ` and call δu = (δū, δp) = (Dū(`)(δ`), Dp(`)(δ`)) and

similarly δw = (δw̄, δpw) = (Dw̄(`)(δ`), Dpw(`)(δ`)). Then the second-order derivative D2Jκ(`)(δ`, δ`)

at a parameter ` in direction δ` is given by

D2Jκ(`)(δ`, δ`) = κD2R(`)(δ`, δ`) + 〈δū, δū〉+ 〈δp, δp〉

+ 2a(δ`, δū, w̄)− 2∂`c(`, δp, pw)(δ`)− ∂2
` c(`, p, pw)(δ`, δ`).

(3.26)

Summarizing, the following scheme computes the derivative D2Jκ(`)(δ`, δ`) for a given direction δ`:

40

Step 1. Compute u(`) = (ū(`), p(`)) by (3.12).

Step 2. Compute δu = (δū, δp) by (3.16).

Step 3. Compute w(`) = (w̄(`), pw(`)) by (3.20).

Step 4. Compute D2Jκ(`)(δ`, δ`) by (3.26).

3.4 Finite Element Discretization

The variational problem (3.12) has three function spaces that need to be discretized: the solution space

V of displacements, the pressure space Q, and the parameter space A. Note also that the displacement

function ū is vector valued, which means that we will have to discretize the displacements in each spatial

dimension. Let T and TL be triangulations on the domain Ω. Let the Vh and Qh be defined as the spaces

of piecewise continuous polynomials on T of degree du and dp respectively. Similarly, let Wh be the space

of piecewise continuous polynomials of degree d` relative to TL. Take the basis for spaces Vh, Qh, and

Wh to be {ϕ1, ϕ2, . . . , ϕn}, {ψ1, ψ2, . . . , ψm}, and {χ1, χ2, . . . , χk} respectively. For a given function `h

define L ∈ Rk as the vector of coefficients Li such that `h =
k∑
i=1

Liχi and Li = `h(xi) for i ≤ i ≤ k

where the points xi are the support points for the basis functions χi. That is, `h is the unique representation

of the discrete parameter ah as a linear combination of basis functions χi. Likewise, let P be the unique

representation of pressure function ph by taking Pi = ph(xi) so that 1 ≤ i ≤ m and ph =
m∑
i=1

Piψi. For the

vector valued displacement function ūh, let Ūd be the representation of the displacement in a single space

dimension as Ūdi = ūhd(xi) and ūhd =
m∑
i=1

Ūdi ϕi. The discretization of the complete displacement is then

the concatenation of the individual displacements. That is Ū = [Ū1, Ū2]
T in 2D or Ū = [Ū1, Ū2, Ū3]

T in

3D. Let n be the size of Ū , then for d space dimensions we get n = dm. The above gives an ordering of

Ū where all displacements in one space dimension follow all the displacements of anther space dimension.

An alternative is to interleave the displacements at each support point xi. The different orderings of the

vector elements in Ū all result in the same system but give different sparsity pattern of the matrices in the

system. Depending on the solution strategy, one ordering may be more appropriate than the other. For the

discretization details we will not assume any specific ordering of Ū and treat it as a single representation of

all displacements.

The discrete mixed variational problem seeks, for each `h, the unique (ūh, ph) ∈ Vh ×Qh such that

a(`h, ūh, v̄) + b(v̄, ph) = m1(v̄), for every v̄ ∈ Vh, (3.27a)

b(ūh, q)− c(`h, ph, q) = m2(q), for every q ∈ Qh. (3.27b)

41

We define S : Rk → Rn+m to be the finite element solution operator that assigns to each `h ∈W , the unique

discrete solution uh = (ūh, ph) ∈ Vh ×Qh. Then S(`h) = U , where U = [Ū , P]
T is given by[

K̂n×n(`h) BT
n×m

Bm×n −Cm×m(`h)

][
Ū

P

]
= F, (3.28)

where

K̂(`h)i,j = a(`h, ϕi, ϕj), i, j = 1, 2, . . . , n,

Bi,j = b(ϕj , ψi), i = 1, 2, . . . ,m, j = 1, 2, . . . , n

C(`h)i,j = c(`h, ψi, ψj), i, j = 1, 2, . . . ,m,

Fi = m1(ϕi), i = 1, 2, . . . , n,

Fj = 0, j = n+ 1, n+ 2, . . . , n+m.

Since a is linear in its first argument, we can compute the matrix K̂ as follows by splitting the parameter

variable into its finite elements.

K̂(`h)i,j = a(`h, ϕi, ϕj) = a(
k∑
t=1

Ltχt, ϕi, ϕj). =
k∑
t=1

Lta(χt, ϕi, ϕj)

The map c is nonlinear in its first argument, so it is not possible to linearize out the summation of basis

functions of `h. Instead we will have to precompute the values `h(xq) =
k∑
t=1

Lχ(xq) for each quadrature

point xq, and use the resulting `h(xq) in the quadrature of c(`h, ψj , ψi). Compare Section 2.3.3 for the

corresponding result of evaluating terms with nonlinear parameters in the scalar problem.

Computing the solution U for a given parameter `h then constitutes of building the matrices outlined

above and solving system (3.28) for [Ū , P]
T . While it is theoretically possible to solve the entire system at

once, the large block matrix usually has bad properties that make it unsuitable for iterative solvers. Instead,

we will solve the system using block elimination. In detail, our system has the two equations

K̂Ū +BTP = F,

BŪ − CP = 0.

Premultiplying the first equation by BK̂−1 and subtracting the second equation gives

BK̂−1BTP + CP = BK̂−1F.

This equation has P as the only unknown, so we can solve for it as a first step. In the second step we can

solve the first equation for Ū . Thus, the equations being solved are the following:(
BK̂−1BT + C

)
P = BK̂−1F, (3.29a)

K̂Ū = F −BTP (3.29b)

42

Here, BK̂−1BT + C is the Schur complement of the matrix block K̂.

Recall that the regularized partial OLS functional is given by

Jκ(`) =
1

2
‖ū(`)− z̄‖2V + κR(`),

where z̄ is the measured data and u(`) = (ū(`), p(`)) solves (3.12). The discrete analogue of the above

functional is given by

Jκ(`h) =
1

2
(Ū − Z̄)

T
M(Ū − Z̄) + κR(`h), (3.30)

where U solves the linear system (3.28) and M ∈ Rn×n is the mass matrix given by Mi,j = 〈ϕi, ϕj〉. The

regularizer term is computed equivalently to (2.23). With this we now have the tools to solve the variational

problem (forward problem) and evaluate the OLS functional for a given parameter choice `h in the discrete

setting. The next sections will deal with the derivative computation methods for the OLS functional.

3.4.1 Discrete Derivative Forms

To compute the first and second derivatives of the OLS functional, we need to construct the discrete forms of

terms that include derivatives of some variables. We will show discrete versions of these terms in this section

and then apply them to find the OLS derivative expressions in the next sections.

Consider first the regular stiffness matrix K̂(`h) given as

K̂(`h)i,j = a(`h, ϕi, ϕj).

Now, define the directional stiffness matrix K̂t(`h) in direction Lt, that is in the t-th derivative direction of

`h. Due to the fact that the map a, which leads to K̂, is linear in it first argument, we can use the analogous

result from (2.24) to get ∂t`h = χt and therefore

K̂t(`h) = a(∂t`h, ϕi, ϕj) = a(χt, ϕi, ϕj). (3.31)

Furthermore, the linearity allows us to consider the alternative representation via the so-called adjoint stiffness

matrix A which is defined by the following condition

K̂(L)V̄ = A(V̄)L, ∀ L ∈ Rk, ∀ V̄ ∈ Rn. (3.32)

The adjoint stiffness expression is only valid for the special case when the parameter appears linearly. In the

elasticity problem this is given for the displacement term K̂(L). The derivative result in derivative direction

δLt using the adjoint stiffness matrix then becomes

K̂t(L)V̄ = A(V̄)δLt, (3.33)

43

That is, if we use the adjoint stiffness matrix approach for the mapping a then we don’t have to compute the

matrix K̂t(`h) at all and can instead just reuse the adjoint stiffness matrix A. The adjoint stiffness method is

thus very efficient, but the approach works only for linearly appearing parameters such as in the map a.

The mapping c, on the other hand, is nonlinear in ` since we have c(`, p, pw) =
∫

Ω
1
τ`pq. The partial

derivative of this map with respect to ` is then

∂`c(`, p, pw) =

∫
Ω
− 1

τ`2
pq.

We have in a sense an explicit case g(`) = 1
` of the parameter map used in Chapter 2. Hence we get a similar

result to (2.25), so that the t-th partial derivative for our specific form becomes

∂t
1

`h
=

∂

∂Lt

(
1

`h

)
=

∂

∂`h

(
1

`h

)
∂`h
∂Lt

= − 1

`2h
χt. (3.34)

Thus, in the discrete setting we define Ct(`h) in the t-th direction as

[Ct(`h)]i,j = ∂tc(`h, ψi, ψj) =

∫
Ω
− 1

τ`2h
ψiψjχt, (3.35)

where again we want to precompute the values for `h at all quadrature points since it appears nonlinearly. For

the second derivative we have the analogous result to (2.36) and define Ctt(`h) in the t-th direction as

[Ctt(`h)]i,j = ∂2
t,tc(`h, ψi, ψj) =

∫
Ω

2

τ`3h
ψiψjχtχt, (3.36)

Essentially, the matrices C and its derivative versions are just explicit instantiations of the general results

presented in Chapter 2.

Consider next the derivative of the solution variable u(`), that is δu(`) = (δū(`), δp(`)), which by

Theorem 3.2.2, solves the following mixed variational problem

a(`, δū, v̄) + b(v̄, δp) = −a(δ`, ū, v̄), for every v̄ ∈ V,

b(δū, q)− c(`, δp, q) = ∂`c(`, p, q)(δ`), for every q ∈ Q.

By standard arguments it can be shown that the discrete version of the above system to find ∇tU for some `h
in the t-th derivative direction has the form[

K̂(`h) BT

B −C(`h)

][
∇tŪ
∇tP

]
=

[
−K̂t(`h)Ū

Ct(`h)P

]
. (3.37)

The block matrix on the left is identical to the one in (3.28). The matrix Ct(`h) is as defined in (3.35) and

K̂t(`h) is given in (3.31). The adjoint stiffness matrix approach (3.32) is also possible for K̂t(`h). Solving

the above system gives the discrete solution∇tU = (∇tŪ ,∇tP).

44

The discrete version of the adjoint variable w, given as W = (W̄ , Pw), can be computed by solving the

system [
K̂(L) BT

B −C(L)

][
W̄

Pw

]
=

[
Z̄ − Ū
Ẑ − P

]
. (3.38)

that is the discrete formulation of the adjoint variational problem (3.20). This linear system is analogous to

system (3.28) for finding U , but with a different right hand side. The system can therefore be solved using a

similar block elimination method as (3.29).

We also want to compute the discrete derivative of the adjoint variable w. The variational problem to find

Dw̄(`)(δ`) was given in (3.23) as

a(δ`, w̄, v̄) + a(`, δw̄, v̄) + b(v̄, δpw) = −〈δū, v̄〉 , ∀ v̄ ∈ V

b(δw̄, q)− ∂`c(`, pw, q)− c(`, δpw, q) = −〈δpw, q〉 , ∀ q ∈ Q

The discrete counterpart∇tW = (∇tW̄ ,∇tPw) for a parameter `h in the t-th derivative direction is given

by solving the following linear system[
K̂(`h) BT

B −C(`h)

][
∇tW̄
∇tPw

]
=

[
−K̂t(`h)W̄ −M(∇tŪ)

Ct(`h)Pw −MP (∇tP)

]
. (3.39)

Here Mi,j = 〈ϕi, ϕj〉 and [MP]i,j = 〈ψi, ψj〉 while the remaining matrices are identical to those in (3.37).

Note that we need to compute∇tU before we can find∇tW .

Finally we need to compute the regularizer terms in its derivatives. This is analogous to the scalar problem

in Chapter 2 and the gradient values∇R(`h) are identical to (2.28). The second derivatives∇2R(`h) are as

in (2.33).

We now have all the necessary discrete forms and move on to the gradient computation methods.

3.4.2 Gradient Computation by a Direct Approach

Out of the different gradient computation methods, the direct approach is the most natural and straightforward,

but also the least efficient. It requires the solution of variational problems for each derivative direction.

Solving the forward problem is an expensive process and doing so once for all k derivative directions `h
quickly becomes infeasible for larger problems. Other methods, such as the adjoint method which is presented

next, avoid the need to solve a variational problem for each derivative direction and are therefore much faster.

We cover the direct approach for completeness.

The first-order derivative of the regularized partial OLS functional

DJκ(`)(δ`) = 〈δū, ū− z̄〉+DR(`)(δ`), (3.40)

45

involves δu(`) = (δū(`), δp(`)). The construction of the discrete analogue ∇tU is given in (3.37). A

discretization of formula (3.40) is then given by

∂tJκ(`h) =
〈
∇tŪ , Ū − Z̄

〉
+ ∂tR(`h) =

(
Ū − Z̄

)T
M(∇tŪ) + ∂tR(`h).

The gradient ∇U = [∇1U, . . . ,∇kU]T ∈ R(n+m)×k is computed by solving k equations (3.37) in the

directions 1 ≤ t ≤ k. This leads to the the following expression for the OLS gradient:

∇Jκ(`h) =
(
Ū − Z̄

)T
M∇Ū +∇R(`h). (3.41)

Summarizing, the computation of the OLS gradient using the direct approach involves the following

steps:

Step 1. Compute U = (Ū , P) by solving linear system (3.29).

Step 2. Compute∇Ū by solving k linear systems (3.37).

Step 3. Compute∇Jκ(`h) by using formula (3.41).

This direct method has a severe inefficiency from the need of computing ∇Ū , which requires the solution of

system (3.37) in k directions. For large problem, both the linear system itself and k increase in size and the

computational effort needed to solve these systems quickly becomes unfeasible.

3.4.3 Gradient Computation by the First-Order Adjoint Method

We shall now give a scheme for computing the OLS gradient using the first-order adjoint approach. Recall

that the first-order adjoint approach led to the following formula for the first-order derivative (see (3.21))

DJOLS(`)(δ`) = κDR(`)(δ`) + a(δ`, ū, w̄)− ∂`c(`, p, pw)(δ`). (3.42)

where u = (ū, p) and w = (w̄, pw) are the solutions of (3.12) and (3.20), respectively. The discrete

counterparts of these elements are U = (Ū , P), which solves (3.28), andW = (W̄ , Pw), which solves (3.38).

To discretized version of the OLS derivative (3.42) is hence

∂tJκ(`h)(δLt) = ∂tR(`h) + ŪT K̂t(`h)W̄ − P TCt(`h)Pw. (3.43)

The derivative of the regularizer ∇R(L) is found identically as in the previous chapter; see (2.28) for the

computations in different norms. Evaluating the above expression in all derivative directions 1 ≤ t ≤ k gives

the elements of the gradient∇Jκ(`h) which is then formed as

∇Jκ(`h) = [∂1Jκ(`h), ∂2Jκ(`h), . . . , ∂kJκ(`h)]T .

We therefore have the following scheme for the derivative computation:

46

Step 1. Compute U = (Ū , P) by solving equations (3.29).

Step 2. Compute W = (W̄ , Pw) by solving linear system (3.38).

Step 3. Compute∇J(`h) by finding ∂tJκ(`h) in all directions 1 ≤ t ≤ k using formula (3.43).

3.4.4 Computation of the Hessian by the Direct Approach

The second-order derivative of the OLS by the direct approach is given in (3.22) as

D2Jκ(`)(δ`1, δ`2) = a(δ`1, Dū(`)(δ`2), w̄) + a(δ`1, ū, Dw̄(`)(δ`2))

− ∂`c(`,Dp(`)(δ`2), pw)(δ`1)− ∂`c(`, p,Dpw(`)(δ`2))(δ`1)

− ∂2
` c(`, p, pw)(δ`1, δ`2) + κD2R(`)(δ`1, δ`2)

This expression involves both derivatives of u(`) and w(`). In the discrete setting, the t-th second-order

partial derivative therefore becomes

∂2
t,tJκ(`h) = (∇tŪ)

T
Kt(`h)W̄ + (∇tW̄)

T
Kt(`h)Ū

− (∇tP)TCt(`h)Pw − (∇tPw)TCt(`h)P

− PCtt(`h)Pw + ∂2
t,tR(`h).

(3.44)

The matrices are defined as Kt(`h) as given in (3.31), Ct(`h) as in (3.35), and Ctt(`h) as in (3.36).

Summarizing, the following scheme can be used to compute the Hessian for the second-order adjoint

approach:

1. Compute U = (Ū , P) by solving linear system (3.29).

2. Compute ∇tU = (∇tŪ ,∇tP) in all directions 1 ≤ t ≤ k using formula (3.37).

3. Compute W = (W̄ , Pw) by solving linear system (3.38).

4. Compute ∇tW = (∇tW̄ ,∇tPw) in all directions 1 ≤ t ≤ k using formula (3.39).

5. Compute ∇2Jκ(`h) by finding ∂2
t,tJκ(`h) in all directions 1 ≤ t ≤ k using formula (3.44).

As with the direct approach for the first OLS derivative, this method suffers from the need of solving too

many linear systems. In this case we have to solve k systems to find ∇U and another k systems to find∇W .

The second-order adjoint method whose discretization is shown next does not need the derivative of the

adjoint variable and thus saves itself a lot of computations. It is hence preferable to the direct second-order

approach.

47

3.4.5 Computation of the Hessian by the Second-order Adjoint Method

We now consider the discrete formulation of the second derivatives for the OLS functional. The second-order

adjoint approach has the benefit of not requiring the second derivative of the parameter-to-solution map u(`),

and further it does not require any derivatives of w(`). We recall that the second-order adjoint approach led

to the following formula

D2Jκ(`)(δ`, δ`) = κD2R(`)(δ`, δ`) + 〈δū, δū〉+ 〈δp, δp〉

+ 2a(δ`, δū, w̄)− 2∂`c(`, δp, pw)(δ`)− ∂2
` c(`, p, pw)(δ`, δ`).

The discrete version of the second-derivative in direction At is therefore given as

∂2
t,tJκ(`h) = κ∂2

t,tR(`h) + (∇tŪ)
T
M(∇tŪ) + (∇tP)TMP (∇tP)

+ 2(∇tŪ)
T
Kt(`h)W̄ − 2(∇tP)TCt(`h)Pw − PCtt(`h)Pw.

(3.45)

We have the matrix Kt(`h) as given in (3.31), Ct(`h) as in (3.35), and Ctt(`h) as in (3.36). The procedure

for the computation of the Hessian of the regularized OLS is hence:

Step 1. Compute U = (Ū , P) by solving linear system (3.29).

Step 2. Compute W = (W̄ , Pw) by solving linear system (3.38).

Step 3. Compute∇tU = (∇tŪ ,∇tP) in all directions 1 ≤ t ≤ k using formula (3.37).

Step 4. Compute∇2Jκ(`h) by finding ∂2
t,tJκ(`h) in all directions 1 ≤ t ≤ k using formula (3.45).

48

Chapter 4

Computational Implementation

The computational implementation of the systems outlined in the previous was performed in C++ using

the deal.II library [46, 47]. The library provides many mathematical tools necessary for the finite element

method. An efficient modular framework was built to allow the the testing of different inverse problems. The

resulting program was used to produce all numerical results in this thesis.

Unless otherwise stated, the measured solution z for each of the following inverse problems is generated

computationally. To do so, a desired analytical solution aexact of the parameter is chosen and the corresponding

discrete parameter ah, exact computed exactly on the parameter mesh TA. Following that, the forward problem

is solved once to produce a solution uh, exact. To avoid committing the so-called inverse crime of taking

z = uh, exact a certain amount of random noise is added to z. The noise is created from a uniform distribution

on the interval [−α, α], where α is the noise level. A new random noise value ηi is computed for each

component of the solution vector. In essence, the coefficients Zi of the measured solution z are given by

Zi = Ui, exact + ηi, 1 ≤ i ≤ n.

Once the measured solution z is created in this fashion, the exact parameter ah, exact and solution uh, exact

are set aside and treated as unknown. The inverse problem is then solved using z as the measured solution

to produce a final parameter estimate ah with corresponding solution uh. These are then compared against

their exact counterparts, ah, exact and uh, exact, to judge the effectiveness of the reconstruction of the unknown

parameter.

49

4.1 Numerical Results

In the following we present numerous example problems which consist of finding the parameter a in (2.1).

Recall that we have imposed homogeneous Dirichlet boundary conditions along the entire boundary ∂Ω.

4.1.1 Scalar Problem

Example 4.1.1. Consider equation (2.1) in a 2D setting with domain Ω = [0, 1] × [0, 1]. Take the points

p1 = (0.6, 0.3) and p2 = (0.4, 0.75) and let the exact parameter function a and the load function f be given

by

a(x) = 1 +
0.5

1 + e50‖p1−x‖2−3
+

0.3

1 + e100‖p2−x‖2−2
,

f(x) = 1 + 4 ‖x‖ .

The following options for the parameter map are investigated:

g1(a) = a, g2(a) = a3, g3(a) =
1

a

The results of Example 4.1.1 are shown in Figures 4.1, 4.2, and 4.3. The first thing to note is that the

parameter is identified well for all choices of parameter map g, both for linear maps and for nonlinear maps.

This is a clear verification that the methods methods outlined in the earlier chapters for the identification of

nonlinear parameters indeed work as intended. The effect of the regularizer can be seen by the smoothed

out region between the two hills in ah(x), which is clearly visible in the results for the linear parameter

map g1 in Figure 4.1. The identified parameters for the two nonlinear maps g2 and g3 don’t experience as

much of an impact from the regularizer. As a result the final estimation is in a sense more accurate for the

nonlinear parameters. Yet, the costs of solving the inverse problem and the resulting runtimes when using

nonlinear maps such as g2 or g3 are significantly higher than for the linear map g1. The computational impact

of nonlinear parameters is discussed together with performance optimizations in Section 4.2. Note also, that

while the actual parameter ah (top left plots) is the same for all results, the resulting solution uh (lower right

plots) changes with each choice of the parameter map g.

Example 4.1.2. Consider equation (2.1) in a 2D setting with domain Ω = [0, 1] × [0, 1]. Let the exact

parameter function a and the load function f be given by

a(x) = 1 + e‖x‖,

f(x) = 0.5 + ‖x‖2 + 1.3 [sin(20 ‖x‖) + 1] ,

and let the parameter map options be:

g1(a) = a, g2(a) = a3, g3(a) =
1

a

50

Figure 4.1: Exact and estimated parameter ah, error in parameter ah, and estimated solution uh for Exam-
ple 4.1.1 with parameter map g1.

51

Figure 4.2: Exact and estimated parameter ah, error in parameter ah, and estimated solution uh for Exam-
ple 4.1.1 with parameter map g2.

52

Figure 4.3: Exact and estimated parameter ah, error in parameter ah, and estimated solution uh for Exam-
ple 4.1.1 with parameter map g3.

53

Figure 4.4: Exact (top left) and estimated (top right) parameter ah, error in parameter ah in bottom left, and
estimated solution uh in bottom right for Example 4.1.2 with parameter map g1. Regularization is done
using the H1 semi-norm with κ = 4 · 10−8. The reconstruction is partially disturbed by the noise of level
α = 0.001.

54

Figure 4.5: Exact (top left) and estimated (top right) parameter ah, error in parameter ah in bottom left, and
estimated solution uh in bottom right for Example 4.1.2 with parameter map g2. Regularization is done using
the H1 semi-norm with κ = 7 · 10−9. The reconstruction is corrupted due to the noise of level α = 0.001
which is of the same order of magnitude as the solution variable u.

55

Figure 4.6: Exact (top left) and estimated (top right) parameter ah, error in parameter ah in bottom left, and
estimated solution uh in bottom right for Example 4.1.2 with parameter map g3. Regularization is done
using the H1 semi-norm with κ = 7 · 10−9. The solution u is much larger in magnitude than the noise level
α = 0.001, and thus the reconstruction is mostly uncorrupted.

56

The results for Example 4.1.2 show nicely what effect the noise in the measured solution z has on the

reconstruction of a—see figures 4.4, 4.5, and 4.6. The magnitude of the solution u is very different for each

of the parameter maps g, so the effect of the added random noise, always with noise level α = 0.001, changes.

In the case of g3(a) = 1
a the solution is very large in value and much larger than the add noise. The noise

thus causes only little errors in the recovered parameter a. On the other hand, g2(a) = a3 causes the solution

variable to be very small in magnitude, on the same level as the noise. The corruption through the random

noise is therefore very pronounced and prevents a good reconstruction of a. The first case g1(a) = a lies in

between the other cases. The noise adds some noticeable corruption to the identified parameter a, but not as

strong as in the case of g3.

Example 4.1.3. We will solve equation (2.1) in a 3D domain Ω = [0, 1] × [0, 1] × [0, 1]. This example

is an extension of Example 4.1.1 for three dimensions. Take the points p1 = (0.6, 0.3, 0.3) and p2 =

(0.4, 0.75, 0.6) and let the exact parameter function a and the load function f be given by

a(x) = 1 +
0.5

1 + e50‖p1−x‖2−3
+

0.3

1 + e100‖p2−x‖2−2
,

f(x) = 1 + 4 ‖x‖ .

The following options for the parameter map are investigated:

g1(a) = a, g2(a) = a3, g3(a) =
1

a

4.1.2 MOLS Functional

Example 4.1.4. Consider equation (2.1) in a 2D setting with domain Ω = [0, 1]× [0, 1]. The position vector

is thus x = (x1, x2). The exact parameter a and the load function f are given by:

a(x) = 1.5 + 0.2x2
2 + 0.1(sin(20x1) + 1)

f(x) = 4 + 0.02(x2 − 0.5)2

The following options for the parameter map are investigated:

g1(a) = a, g2(a) = a3, g3(a) =
1

a

In figures 4.10, 4.11, and 4.12 the results of running Example 4.1.4 with the MOLS functional are

presented. For the tests, a uniformly refined grid of 128× 128 cells is used. The regularization value is set

as κ = 4 · 10−6, and the noise level for the measured solution is taken to be α = 10−5. Figures 4.10, 4.11,

and 4.12 show reconstructions of the parameter a using maps g1 and g2 respectively. The MOLS functional

57

Figure 4.7: Exact (top left) and estimated (top right) parameter ah, error in parameter ah in bottom left, and
estimated solution uh in bottom right for Example 4.1.3 with parameter map g1. The H1 semi-norm was used
with regularization value κ = 4 · 10−8 and a noise level α = 5 · 10−4 was applied to the measured solution.

58

Figure 4.8: Exact (top left) and estimated (top right) parameter ah, error in parameter ah in bottom left, and
estimated solution uh in bottom right for Example 4.1.3 with parameter map g2. The H1 semi-norm was used
with regularization value κ = 4 · 10−7 and a noise level α = 5 · 10−4 was applied to the measured solution.

59

Figure 4.9: Exact (top left) and estimated (top right) parameter ah, error in parameter ah in bottom left, and
estimated solution uh in bottom right for Example 4.1.3 with parameter map g3. The H1 semi-norm was used
with regularization value κ = 4 · 10−8 and a noise level α = 5 · 10−4 was applied to the measured solution.

60

Figure 4.10: Exact (top left) and estimated (top right) parameter ah, error in parameter ah in bottom left,
and estimated solution uh in bottom right for Example 4.1.4 with parameter map g1, regularization value
κ = 4 · 10−6 and noise level α = 10−5, using the MOLS functional.

gives good results, for both linear maps (g1) where the MOLS is convex and for nonlinear maps (g2, g3)

where it is not convex. This noise level is large enough to produce a visible degradation of the identified

parameter a, but still small enough to not render the inverse problem impossible. In the given examples, the

noise in the measured solution is the limiting factor in the accuracy of the solution.

61

Figure 4.11: Exact (top left) and estimated (top right) parameter ah, error in parameter ah in bottom left,
and estimated solution uh in bottom right for Example 4.1.4 with parameter map g2, regularization value
κ = 4 · 10−6 and noise level α = 10−5, using the MOLS functional.

62

Figure 4.12: Exact (top left) and estimated (top right) parameter ah, error in parameter ah in bottom left,
and estimated solution uh in bottom right for Example 4.1.4 with parameter map g3, regularization value
κ = 4 · 10−6 and noise level α = 10−5, using the MOLS functional.

63

4.1.3 Elasticity Problem

Example 4.1.5. Consider the elasticity problem as defined in (3.1). Define the problem domain in R2 as the

unit square Ω = [0, 1]× [0, 1]. The position vector is thus x = (x1, x2). Let the domain boundaries Γ1 be

the right boundary where x = 1 and Γ2 the remaining three sides. Take point p = (0.4, 0.5) and range value

r = 0.2. The exact parameter `, the load function f , and the boundary functions g on Γ1 and h on Γ2 are

given by:

`(x) =

0.1, if ‖x− p‖ < r

0.1 + 10(r2 − ‖x− p‖2), if ‖x− p‖ ≥ r

f(x) =

[
f1(x1)

f2(x2)

]
=

[
−0.1 sin(πx1)

0.1 cos(πx1)

]

g(x) = 0

h(x) =

[
h1(x1)

h2(x2)

]
=

[
0.01

0

]

As discussed in Section 3.1.1, the inverse problem consists of finding the elasticity parameter µ = `. The

second parameter λ is described by λ = τµ, where we take τ = 105 to simulate the near incompressible

case. The noise level added to the measured solution z is α = 0.001 and the regularization value is taken as

κ = 10−7.

Example 4.1.6. The problem considered is again (3.1), with the domain in R2 being defined as a ring

centered at the origin with inner radius r1 = 0.5 and outer radius r2 = 1.0. The inner boundary is defined as

Γ1 where the Dirichlet boundary conditions hold. The outer boundary is taken as Γ2. The Lamé parameter

µ that will be identified as ` in the equations is considered to be uniform throughout the domain except for

an area with higher intensity value centered at p = (0.725, 0.25) with radius r = 0.2. The load function is

chosen to resemble a shearing motion along the domain. The exact parameter `, the load function f , and the

64

Figure 4.13: Exact (top left) and estimated (top right) parameter `h, vector valued load function f in the
bottom left, and vector valued estimated displacement uh together with a color plot of the x-axis displacements
in the bottom right. Results come from Example 4.1.5 using a uniform mesh with 4096 cells.

65

boundary functions g on Γ1 and h on Γ2 are given by:

`(x) =

1.0, if ‖x− p‖ < r

1.0 + 50(r2 − ‖x− p‖2), if ‖x− p‖ ≥ r

f(x) =

[
f1(x1)

f2(x2)

]
=

[
−0.01x1

0.0025 sin(0.8πx1)

]

g(x) = 0

h(x) =

[
h1(x1)

h2(x2)

]
=

[
0.01

0

]

Again, we take λ = τµ with τ = 105, and attempt to reconstruct the Lamé parameter µ. The noise level

added to the measured solution z is α = 0.0001 and the regularization value is taken as κ = 8 · 10−10 for the

H1 norm.

4.2 Performance Optimization Techniques

When solving the inverse problem on a computer, not only do should the program be mathematically correct

and numerically accurate, but it should also run fast. Some factors that determine the speed of a program are

the programming language and the resulting execution of the program in machine code, as well as the choice

of mathematical algorithms. Yet, an additional factor is simply the efficiency of the actual implementation in

the code. In the following, we present a few optimization methods that are purely implementation based,

that is methods that do not change the numeric solution but only avoid doing redundant operations. These

methods should be applicable to implementations in any language. In our case the time improvements from

some of these methods were significant.

4.2.1 Directional Stiffness Matrix

Recall the formula (2.31) for the directional stiffness matrix Kt(ah) at a parameter ah in the direction At
was given by

[Kt(ah)]i,j = T (g′(ah)χt, ϕi, ϕj).

The computation follows exactly the same pattern as the regular stiffness matrix K(ah) which was seen

in (2.21) to be

[K(ah)]i,j = T (g(ah), ϕi, ϕj).

66

Figure 4.14: Exact (top left) and estimated (top right) parameter `h, vector valued load function f in the
bottom left, and vector valued estimated displacement uh together with a color plot of the x-axis displacements
in the bottom right. Results come from Example 4.1.6 using a mesh with 704 cells.

67

In essence, the same method can be used to compute both the regular and the directional stiffness matrix,

since all that changes is the first argument in T . However, the difference lies in the number of non-zero

entries in each of the matrices. For K(ah), the sparsity pattern of potential non-zero values is determined by

the mutual support of the basis functions ϕi and ϕj . In the case of Kt(ah), the non-zero values occur where

the supports of all three basis functions ϕi, ϕj , and χt intersect. The support of χt extends only over the cells

cl ∈ TA that are adjacent to the support point xt that defines the center of the basis function χt. Since χt is

fixed for a given direction At, the only non-zero values of Kt(ah) will be at entries i, j for which ϕi and ϕj
are defined on the cells cl. In other words, while the general sparsity patterns of K(ah) and Kt(ah) are the

same, the actual number of non-zero entries in Kt(ah) is minuscule. For large scale problems the general

sparsity pattern easily encompasses several million values, whereas the actual number of non-zero values

in Kt(ah) stays close to constant regardless of the size of the mesh and usually lies well below 100. If the

regular sparsity pattern gets used for Kt(ah), then the matrix multiplications have to go over all sparsity

pattern entries regardless if they are zero or not. If instead a data structure is used that only stores the actual

non-zero values of Kt(ah), call this data structure K̃t(ah), then that not only reduces the memory cost but

also speeds up computations by avoiding the unnecessary calculations with zero values.

4.2.2 Special improvements for Linear Parameters

In the variational problem (2.3) we use the adjoint method to compute the OLS gradient, due to the nonlinear

appearance of the parameter a in g(a). The framework we developed can handle any form of g(a), which

includes the possibility that g is actually linear (we use this case as parameter map g1 in the examples).

In that special case we can tremendously improve the runtime of the program. Recall that in the gradient

computation we have to compute the directional stiffness matrices in each derivative direction δa. In (2.31)

we had the following discrete formulation for the directional stiffness matrix in derivative direction At:

[Kt(ah)]i,j = T (g′(ah)χt, ϕi, ϕj).

If g is linear, then its derivative is constant and does not depend on ah. In other words, we know what the

derivative g′ looks like regardless of what ah is. The direct consequence is that even though we update ah in

step of the optimization method, the directional stiffness matrices Kt will be the same every time. Thus, we

can avoid redundant computations by computing each directional matrix Kt only once for each 1 ≤ t ≤ k
and then storing the matrix for later. This does not come at a large memory cost if we use the optimized data

structure K̃t for the stiffness matrices that was discussed in the previous Section 4.2.1. In essence we have a

map M of k elements given by

M(t) = K̃t, 1 ≤ t ≤ k

where each element M(t) = K̃t should only store the actually nonzero entries of Kt to avoid unnecessary

memory consumption. In the first step of the optimization method, we compute the matrices K̃t and store

68

them in the map M . After that, whenever we need to use any matrix Kt, we simply look up the corresponding

K̃t as the map element M(t). The benefit we get from an immediate matrix lookup as opposed to having to

manually construct the matrices can be immense. Using the map M produces identical results to not using

M (because we used a linear parameter map), but the time difference is quite drastic. In the results shown

in Table 4.1 the versions of the code using the map M to look up matrices run up to 80 times as fast as the

versions not using M . For larger problems, the matrix constructions become increasingly time consuming,

and thus the benefits of the map M become more and more pronounced as the problem size increases.

Remark 4.2.1. This method is also applicable to mesh refinement in the optimization process, but the map

M has to be cleared during the refinement step since the structure and the number of the stiffness matrices

Kt changes. After a refinement occurs the map can be recomputed for the new mesh and then again used

to look up the matrices until the mesh is refined once more. Filling in the matrix map is essentially for free

except for the memory cost needed for storage, so even if there are only two optimization steps between a

refinement, time will be saved. In a scheme such as described in [48] where the optimization process is run

without refinements for a period of time, until a desired convergence is reached and a mesh refinement is

triggered, the speedup gains from having a map M are still very good.

4.2.3 Heuristic Improvements for Nonlinear Parameters

The map M is not directly applicable to nonlinear maps g as Kt(ah) changes with ah in each optimization

step. It may be reasonable, however, to approximate Kt(ah) by the same matrix for a few iterations if ah is

known not to change too much during that time. In that case we could reinitialize the entries of M every z

time steps with the exact matrices for the current parameter ah, where z is a small integer. This would allow

us to use the efficient matrix lookup at the cost of degrading the quality of the descent directions. While this

is a heuristic approach, one can expect the performance gains to outweigh the potentially increased number

of iteration steps necessary to achieve the desired accuracy of ah. Preliminary results show that for certain

problems the correct search direction is important and using the approximate matrices Kt(ah) prevents the

solution from converging. On the other hand, some problems such as Example 4.1.4 work very well with the

approximation and the run time improvement from using this heuristic method is immense. See Table 4.2 for

numerical results. The mathematical validity of this heuristic method could be a part of future investigations.

69

exact optimizations for linear parameters

k
OLS runtime MOLS runtime

without M with M speed increase without M with M speed increase

1089 111.330s 3.927s 28.35 times 65.572s 2.567s 25.54 times
4225 1027.704s 17.120s 60.03 times 482.431s 10.658s 45.26 times

16641 9607.233s 116.157s 82.71 times 5550.554s 72.889s 76.15 times

Table 4.1: Runtimes for different mesh sizes, where k is the dimension of ah. The results are given for
running Example 4.1.4 with the linear parameter map g1. The different columns show the runtimes with
matrix lookup through M turned off where each stiffness matrix has to be recalculated each step and with
map M turned on where the matrices have to calculated only once. The results using M and not using M are
completely identical but their runtimes differ by the factor shown in the third columns.

different z values for map M for nonlinear parameters

z runtime reinitializations final residual

1 125m46.250s 437 1.33916e-05
5 37m52.516s 131 1.33916e-05

10 15m55.748s 51 1.33916e-05
20 7m06.918s 20 1.33916e-05
50 3m32.901s 8 1.33916e-05
80 2m26.260s 4 1.33916e-05

100 2m10.902s 3 1.33916e-05

Table 4.2: Runtimes for different values of z that describes the maximum number of times the matrix map M
can get reused for nonlinear parameters before it has to be reinitialized. The reinitialization count is shown in
the third column, and final OLS values in the last column. Results are given for Example 4.1.4 with parameter
map g3 using the MOLS functional, a regularization value of κ = 4 · 10−6, a noise value of α = 5 · 10−5,
and the H1 semi-norm. The dimension of ah and therefore the number of gradient directions in the map M is
k = 16641.
The final residual is limited by the noise and thus the final estimate is similar even when using large values
of z. The extra iterations that may be necessary for the heuristic approach clearly get outweighed by the
speed improvement of not having to reinitialize M at every step. However, using larger z values for the given
example than listed in the table causes the approximated gradient directions to become non-descent directions
and the inverse problem fails. The approximation thus works only up to a certain extent, but as can be seen
the values of z and the resulting time benefits can be quite large.

70

Bibliography

[1] Mark S. Gockenbach and Akhtar A. Khan. An Abstract Framework for Elliptic Inverse Problems: Part

1. An Output Least-Squares Approach. Mathematics and Mechanics of Solids, 12(3):259–276, June

2007.

[2] Robert Acar. Identification of the Coefficient in Elliptic Equations. SIAM Journal on Control and

Optimization, 31(5):24, September 1993.

[3] H. T. Banks and K. Kunisch. Estimation Techniques for Distributed Parameter Systems, volume 1 of

Systems & Control: Foundations & Applications. Birkhäuser Boston, Boston, MA, 1989.

[4] Ian Knowles. Parameter identification for elliptic problems. Journal of Computational and Applied

Mathematics, 131(1–2):175–194, June 2001.

[5] Giovanni Alessandrini. An identification problem for an elliptic equation in two variables. Annali di

Matematica Pura ed Applicata, 145(1):265–295, December 1986.

[6] Habib Ammari, Pierre Garapon, and François Jouve. Separation of Scales in Elasticity Imaging: A

Numerical Study. Journal of Computational Mathematics, 28(3):354–370, May 2010.

[7] H. W. Engl and P. Kugler. The influence of the equation type on iterative parameter identification

problems which are elliptic or hyperbolic in the parameter. European Journal of Applied Mathematics,

14:129 – 163, April 2003.

[8] B. Jadamba, A. A. Khan, and M. Sama. Inverse problems of parameter identification in partial

differential equations. pages 228–258. World Scientific, June 2011.

71

[9] Bangti Jin and Peter Maass. Sparsity regularization for parameter identification problems. Inverse

Problems, 28(12):123001, December 2012.

[10] Jingzhi Li and Jun Zou. A multilevel model correction method for parameter identification. Inverse

Problems, 23(5):1759–1786, 2007.

[11] Huipo Liu and Ningning Yan. Recovery type superconvergence and a posteriori error estimates for

control problems governed by Stokes equations. Journal of Computational and Applied Mathematics,

209(2):187–207, December 2007.

[12] S. Manservisi and M. Gunzburger. A variational inequality formulation of an inverse elasticity problem.

Applied Numerical Mathematics, 34(1):99–126, June 2000.

[13] L. W. White. Estimation of elastic parameters in beams and certain plates:H 1 regularization. Journal

of Optimization Theory and Applications, 60(2):305–326, February 1989.

[14] M. S. Gockenbach, B. Jadamba, and A. A. Khan. Numerical estimation of discontinuous coefficients by

the method of equation error. ResearchGate, 1:343–359, January 2006.

[15] Akhtar A. Khan and Mark S. Gockenbach. Identification of Lamé parameters in linear elasticity: a fixed

point approach. Journal of Industrial and Management Optimization, 1(4):487–497, October 2005.

[16] Mark S. Gockenbach and Akhtar A. Khan. An Abstract Framework for Elliptic Inverse Problems: Part

2. An Augmented Lagrangian Approach. Mathematics and Mechanics of Solids, 14(6):517–539, August

2009.

[17] B. Jadamba, A. Khan, G. Rus, M. Sama, and B. Winkler. A New Convex Inversion Framework for

Parameter Identification in Saddle Point Problems with an Application to the Elasticity Imaging Inverse

Problem of Predicting Tumor Location. SIAM Journal on Applied Mathematics, 74(5):1486–1510,

January 2014.

[18] Assad A. Oberai, Nachiket H. Gokhale, and Gonzalo R. Feijóo. Solution of inverse problems in elasticity

imaging using the adjoint method. Inverse Problems, 19(2):297, 2003.

[19] Alexandru Cioaca, Mihai Alexe, and Adrian Sandu. Second-order Adjoints for Solving PDE-constrained

Optimization Problems. Optimization Methods Software, 27(4-5):625–653, October 2012.

[20] Alexandru Cioaca and Adrian Sandu. An optimization framework to improve 4d-Var data assimilation

system performance. Journal of Computational Physics, 275:377–389, October 2014.

72

[21] N. Dominguez, V. Gibiat, and Y. Esquerre. Time domain topological gradient and time reversal analogy:

an inverse method for ultrasonic target detection. Wave Motion, 42(1):31–52, June 2005.

[22] Drosos Kourounis, Louis J. Durlofsky, Jan Dirk Jansen, and Khalid Aziz. Adjoint formulation and

constraint handling for gradient-based optimization of compositional reservoir flow. Computational

Geosciences, 18(2):117–137, January 2014.

[23] Robert Michael Lewis. Numerical Computation of Sensitivities and the Adjoint Approach. In Jeff

Borggaard, John Burns, Eugene Cliff, and Scott Schreck, editors, Computational Methods for Optimal

Design and Control, number 24 in Progress in Systems and Control Theory, pages 285–302. Birkhäuser

Boston, 1998. DOI: 10.1007/978-1-4612-1780-0_16.

[24] Edgar Reséndiz and René Pinnau. Adjoint-based optimization of particle trajectories in laminar flows.

Applied Mathematics and Computation, 248:567–583, December 2014.

[25] D. A. Knopoff, D. R. Fernández, G. A. Torres, and C. V. Turner. Adjoint method for a tumor growth

PDE-constrained optimization problem. Computers & Mathematics with Applications, 66(6):1104–1119,

October 2013.

[26] D. A. Tortorelli and P. Michaleris. Design sensitivity analysis: Overview and review. Inverse Problems

in Engineering, 1(1):71–105, October 1994.

[27] Tao Feng, Ningning Yan, and Wenbin Liu. Adaptive finite element methods for the identification of

distributed parameters in elliptic equation. Advances in Computational Mathematics, 29(1):27–53, July

2008.

[28] Yanning Zhu, T. J. Hall, and Jingfeng Jiang. A finite-element approach for Young’s modulus reconstruc-

tion. IEEE Transactions on Medical Imaging, 22(7):890–901, July 2003.

[29] I. Bijelonja, I. Demirdžić, and S. Muzaferija. A finite volume method for incompressible linear elasticity.

Computer Methods in Applied Mechanics and Engineering, 195(44–47):6378–6390, September 2006.

[30] Brian C. Winkler. Iterative methods for the elasticity imaging inverse problem. PhD thesis, Rochester

Institute of Technology, Rochester, NY, USA, July 2014.

[31] Daniele Boffi, Franco Brezzi, and Michel Fortin. Mixed Finite Element Methods and Applications.

Springer, Heidelberg ; New York, 2013 edition edition, July 2013.

[32] B. Jadamba, A. A. Khan, and F. Raciti. On the inverse problem of identifying Lamé coefficients in

linear elasticity. Computers & Mathematics with Applications, 56(2):431–443, July 2008.

73

[33] Georg Pingen, Anton Evgrafov, and Kurt Maute. Adjoint parameter sensitivity analysis for the

hydrodynamic lattice Boltzmann method with applications to design optimization. Computers &

Fluids, 38(4):910–923, April 2009.

[34] Shou-Lei Wang, Yu-Fei Yang, and Yu-Hua Zeng. The Adjoint Method for the Inverse Problem of

Option Pricing, The Adjoint Method for the Inverse Problem of Option Pricing. Mathematical Problems

in Engineering, Mathematical Problems in Engineering, 2014, 2014:e314104, March 2014.

[35] X. Ye, P. Li, and F. Y. Liu. Exact Time-Domain Second-Order Adjoint-Sensitivity Computation for

Linear Circuit Analysis and Optimization. IEEE Transactions on Circuits and Systems I: Regular

Papers, 57(1):236–248, January 2010.

[36] Jakob S. Jensen, Praveen B. Nakshatrala, and Daniel A. Tortorelli. On the consistency of adjoint sensi-

tivity analysis for structural optimization of linear dynamic problems. Structural and Multidisciplinary

Optimization, 49(5):831–837, November 2013.

[37] Oleg Volkov, Bartosz Protas, Wenyuan Liao, and Donn W. Glander. Adjoint-based optimization of

thermo-fluid phenomena in welding processes. Journal of Engineering Mathematics, 65(3):201–220,

April 2009.

[38] Dimitrios I. Papadimitriou and Kyriakos C. Giannakoglou. Aerodynamic Shape Optimization Using

First and Second Order Adjoint and Direct Approaches. Archives of Computational Methods in

Engineering, 15(4):447–488, December 2008.

[39] David A. Boger and Eric G. Paterson. A continuous adjoint approach to design optimization in cavitating

flow using a barotropic model. Computers & Fluids, 101:155–169, September 2014.

[40] K. Arens, P. Rentrop, S. O. Stoll, and U. Wever. An adjoint approach to optimal design of turbine blades.

Applied Numerical Mathematics, 53(2–4):93–105, May 2005.

[41] Graeme J. Kennedy and Jorn S. Hansen. The hybrid-adjoint method: a semi-analytic gradient evaluation

technique applied to composite cure cycle optimization. Optimization and Engineering, 11(1):23–43,

November 2008.

[42] Geng Liu, Martin Geier, Zhenyu Liu, Manfred Krafczyk, and Tao Chen. Discrete adjoint sensitivity

analysis for fluid flow topology optimization based on the generalized lattice Boltzmann method.

Computers & Mathematics with Applications, 68(10):1374–1392, November 2014.

[43] Carlos Lozano. Discrete surprises in the computation of sensitivities from boundary integrals in

the continuous adjoint approach to inviscid aerodynamic shape optimization. Computers & Fluids,

56:118–127, March 2012.

74

[44] M. Namdar Zanganeh, J. F. B. M. Kraaijevanger, H. W. Buurman, J. D. Jansen, and W. R. Rossen.

Challenges in adjoint-based optimization of a foam EOR process. Computational Geosciences, 18(3-

4):563–577, May 2014.

[45] M. U. Altaf, M. El Gharamti, A. W. Heemink, and I. Hoteit. A reduced adjoint approach to variational

data assimilation. Computer Methods in Applied Mechanics and Engineering, 254:1–13, February

2013.

[46] W. Bangerth, T. Heister, L. Heltai, G. Kanschat, M. Kronbichler, M. Maier, and B. Turcksin. The

deal.II library, version 8.3. Archive of Numerical Software, 4(100):1–11, 2016.

[47] W. Bangerth, D. Davydov, T. Heister, L. Heltai, G. Kanschat, M. Kronbichler, M. Maier, B. Turcksin,

and D. Wells. The deal.II library, version 8.4. preprint.

[48] Wolfgang Bangerth and Amit Joshi. Adaptive Finite Element Methods for Nonlinear Inverse Problems.

In Proceedings of the 2009 ACM Symposium on Applied Computing, SAC ’09, pages 1002–1006, New

York, NY, USA, 2009. ACM.

75

	On Identification of Nonlinear Parameters in PDEs
	Recommended Citation

	The Lost Convexity of the MOLS Functional
	Introduction
	Main Results
	Conclusions

	A Scalar Problem with a Nonlinear Parameter
	Problem Statement
	Inverse Problem Functionals
	Objective Functional for the Inverse Problem
	Derivate Formulas for the OLS Functional
	Adjoint Method
	Direct Method for the Second Derivative
	Second-Order Adjoint Method

	Finite Element Discretization
	Discretization of the Solution Space
	Discretization of the Parameter Space
	Discretized Varitational Form

	Discretized OLS
	OLS Derivative
	Second-Order Derivative by the Second-Order Adjoint Method

	The Elastography Inverse Problem
	Elasticity Equations
	Near incompressibility
	Deriving the Weak Formulation
	A Brief Literature Review

	Inverse Problem Functionals
	Derivative Formulae for the Regularized OLS
	First-Order Adjoint Method
	A Direct Method for the Second-Order Derivative
	Second-Order Adjoint Method

	Finite Element Discretization
	Discrete Derivative Forms
	Gradient Computation by a Direct Approach
	Gradient Computation by the First-Order Adjoint Method
	Computation of the Hessian by the Direct Approach
	Computation of the Hessian by the Second-order Adjoint Method

	Computational Implementation
	Numerical Results
	Scalar Problem
	MOLS Functional
	Elasticity Problem

	Performance Optimization Techniques
	Directional Stiffness Matrix
	Special improvements for Linear Parameters
	Heuristic Improvements for Nonlinear Parameters

	Bibliography

