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Abstract: 

 Many components of phylogenetic inference belong to the most computationally 

challenging and complex domain of problems. To further escalate the challenge, the 

genomics revolution has exponentially increased the amount of data available for 

analysis. This, combined with the foundational nature of phylogenetic analysis, has 

prompted the development of novel methods for managing and analyzing phylogenomic 

data, as well as improving or intelligently utilizing current ones. In this study, a novel 

alignment tree building algorithm using Quasi-Hidden Markov Models (QHMMs), 

Scrawkov-Phy, is introduced. Additionally, exploratory work in the design and 

implementation of an extensible phyloinformatics tool, EMU-Phy, is described. Lastly, 

features of the best-practice tools are inspected and provisionally incorporated into 

Scrawkov-Phy to evaluate the algorithm’s suitability for said features.  

 This study shows that Scrawkov-Phy, as utilized through EMU-Phy, captures 

phylogenetic signal and reconstructs reasonable phylogenies without the need for 

multiple-sequence alignment or high-order statistical models. There are numerous 

additions to both Scrawkov-Phy and EMU-Phy which would improve their efficacy and 

the results of the provisional study shows that such additions are compatible.  
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Introduction: 

 It is generally agreed by biologists that phylogenetic relationships can be foundational in 

the pursuit of many other fields of biology. Continued research and understanding of the 

evolutionary relationships between organisms and genes contributes to advancements in a 

plethora of biological fields. Drug design, proteomics, comparative genetics, epidemiology, 

immunology, biogeography, developmental biology, and, naturally, evolutionary biology all 

benefit from analysis of phylogenetic relationships. As a result of the foundational nature of 

phylogenetic systematics, the field itself has evolved markedly since its conception. 

 In its early stages, phylogenetics started as a series of hypothesizes founded in thought 

experiments and philosophy1–3, such as parsimony4,5. Today, it revolves largely around the 

application of mathematical models to molecular data, such as DNA sequence6–8. Indeed, the 

advent and development of high throughput sequencing techniques, also known as next 

generation sequencing (NGS) technologies, have completely revolutionized biology and its 

subdisciplines.9 While early methodologies relied heavily on morphological character traits10, 

evolutionary biology and systematics have been adapted to include molecular data and the use of 

molecular data is now standard in those fields when such data is available11. Use of molecular 

data, however, requires careful selection of segments of DNA to be considered for the estimation 

of phylogenetic relationships. As data becomes increasingly abundant, more information is 

capable of being incorporated into phylogenies. Due to the computational complexity of nearly 

every process involved in tree-building, phylogenetic methods have had to continually upgrade 

and change to account for the new sea of molecular data available. Some of the adaptations the 

field has seen include: the optimization of current approaches, alignment-free algorithms12 that 

promise whole genome phylogenies, improved supertree methods, etc. With ever expanding data 

and workflows available to more diverse set of users, phyloinformtics has emerged as a way to 

organize, incorporate, and synthesize the vast resources relevant to phylogenetic analysis. While 

the term isn’t used consistently in its definition and scope, a theme consistent to so-called 

phyloinformatic utilities is the organization of phylogenetically relevant data with emphasis on 

end-user ease.  
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Aims: 

This thesis project has three distinct aims. The first aim is the construction of an 

extensible phyloinformatic utility focused on tree-building that contains a number of 

features that accommodate users of varying computational literacy. These features will be 

based on the critique of other phyloinformatic utilities, as well as a vignette based survey 

of beta-testers of the utility itself. The second aim of this thesis project is the design and 

characterization of a novel alignment-free tree-building algorithm, Scrawkov-Phy, that 

serves as the default behavior of the phyloinformatic utility. The last aim of this project is 

to further develop Scrawkov-Phy by working to incorporate features common among the 

successful and modern phylogenetic analysis tools found in the literature.  
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Chapter 1 

  

Scrawkov-Phy: A Multi-State Quasi-Hidden Markov 

(QHMM) Approach for Constructing Alignment 

Free Gene and Species Phylogenies 
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Background: 

Necessity of Phylogenetic Methods 

 Many DNA sequence datasets are often invested in for reasons other than phylogeny. 

Indeed, much whole genome scale data is collected with the expectation of application beyond 

use in phylogenetic analysis. Largely, this is due to the complex and difficult problem with the 

computational alignment of genomic sequences13. Moreover, many methods developed to 

present day perform phylogenetic reconstruction using only a minuscule fraction (namely the 

homologous exons) of the genome. Due to these issues, as well as the relative cost, genome scale 

phylogenies have been difficult to construct and characterize.  However, with ever-prominent 

advancements in high-throughput sequencing technologies, molecular sequence data will 

undoubtedly become less scarce and projects featuring an ever-increasing number of organisms 

will more feasibly be able to incorporate such data, further compounding this challenge. 

Critically, a large number of other comparative biological studies require the construction of a 

phylogeny as a foundational step. Indeed, phylogenetic relationships represent fundamental 

hypotheses in many areas of the biological sciences including evolutionary biology. This 

combination of phylogenetics as a keystone element in biological studies, rapidly expanding 

sources of molecular data, and the limitations of both computing resources and of the algorithms 

themselves ensures the continued need for the development and characterization of phylogenetic 

methodologies.  

 Mo’ data, mo’ problems 

 Big data is a term generally applied across many disciplines. It generally refers to 

extremely large datasets that, when analyzed carefully, can elucidate non-obvious trends or 

associations14.  Regardless of the context in which it is discussed, the analysis of big data 

presents unique challenges in the sheer volume of often heterogeneous data used in studies 

thereof15. Traditional techniques or classic software used in the field may no longer feasibly be 

applied. Often, these reasons are computationally founded: There is simply not enough memory 

or time available to complete the task. Other times, it is logistically difficult to ascertain the types 

of analysis to perform to produce useful results16. It may also be statistically difficult to 
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determine the significance of a result or how to use the result in a meaningful way (knowledge 

discovery)17. As a result of these difficulties, novel methods are often needed to meet the 

challenges presented by big data and obtain relevant and meaningful results. DNA sequence data 

and the availability and analysis thereof undoubtedly falls under the larger umbrella of big data, 

generally speaking.18 The availability of data, both locally and through services like the National 

Center for Biotechnology Information (NCBI) or the European Bioinformatics Institute (EBI), 

allows even small labs to perform projects for which seminal approaches would be insufficient. 

Indeed, as seen in Figures 1A, 1B, and 1C (below) the number of sequences in these databases 

has increased exponentially and the doubling time of the EBI database is roughly linear. 

Phylogenetics embodies many of these challenges as traditional approaches require algorithms 

which fall in some of the most problematic classes of computational complexity.  
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Figure 1: The deposition of sequence data in Genbank over time with historical events as an 

overlay is shown in Figure 1A (top left)19. The deposition of sequences in the EBI’s European 

Nucleotide Archive (ENA) follows a similar pattern20, shown in a log scale graph in Figure 1B 

(top right). The ENA doubling time, however, is only weakly increasing at a linear rate and 

shows indications of being periodic as presented in Figure 1C (bottom). Biological data is 

becoming exponentially more abundant.  

 There has been much discussion on how to most effectively use big data, both in science 

on other disciplines. Generally, it is agreed that such data, especially in the sciences, should not 

be used without careful consideration and scrubbing of the data21. The exploration of big data 

and all it has to offer, however, is vital to determining its place in science.  

 

Computational Complexity, Computational Size, and Phylogenetics 

 In computer science, problems and algorithms are often categorized by their complexity 

by number of computations required to solve them22. While there are any number of measures of 

computational complexity, the discussion of which is beyond the scope of the present, they all 

typically refer to the runtime of an algorithm as a function of inputs. Best-case, worst-case, and 

average-performance metrics are often used and, depending on the limiting behavior of their 

solutions, problems are categorized into different classes, either by time or space22. The 

‘polynomial time’ or ‘P’ class of problems are the set of computational problems formally 

considered easy as there exist at least one algorithm that completes the decision problem in 

polynomial time. The ‘nondeterministic polynomial’ or ‘NP’ class of problems is a broader class 

of decision problems that include the ‘P’ class of problems and allow that an algorithm derive a 

solution in a non-deterministic manner but still be verified by a deterministic algorithm.23 The 

NP-complete class of problems include problems for which there is no proof against a 

polynomial time solution, but for which none are known. They are defined by their ability to 

solve or ‘complete’ all other NP problems in polynomial time if a polynomial time solution 

exists for it. To rephrase, if any NP-complete problem were to be solved, all NP problems could 

then be considered P problems, since it would provide a means of achieving polynomial time for 

every problem in NP. Although there are many types of problems, P, NP, and NP-complete refer 

only to decision problems. Since this system of classification is semantically simple and widely 

used, another class of problems was defined to make comparison to the aforementioned classes 

more straightforward. This class, called NP-hard, are any problems, whether they are decision 

problems or not, which are at least as hard as any problem in NP, including those that are NP-
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complete. Simply put, problems that are categorized as NP-complete or NP-hard are so 

computationally difficult that efficient and optimal algorithms for solving them are very unlikely 

to exist. As a result, the size of inputs used in such algorithms is extremely limited, requiring 

heuristic, or suboptimal, methods to complete in reasonable time or with reasonable 

computational space.23 Critically, many algorithms used in phylogenetic analysis fall into the 

classes of NP-complete or NP-hard. 

 There is no shortage of literature on the computational complexity of phylogenetic 

methods24–27. William H.E. Day, as well as many others, have shown the complexity of many 

algorithms used in phylogenetic analysis. Foulds and Graham showed that the Steiner Problem in 

Phylogeny (SPP) as it pertains to biology is an NP-complete problem28. The Steiner tree problem 

deals with minimizing the total length or weight of junctions between any set of objects. There 

are specific instances of Steiner-tree problem that have polynomial time solutions due to 

limitations in the domain in which the problem is being solved. Unfortunately, no such solution 

is available for phylogenetics and, thus, the SPP is also NP-complete, requiring all but the 

smallest phylogenies to be resolved using heuristic methods. The problem’s classification 

persists whether parsimony, dissimilarity matrices, or many other methods are used. Thus, 

suboptimal heuristics, often using dynamic programming, are typically used to combat the 

extreme combinatorics of the problems.29 As a result, most phylogenetic tree searches are non-

exhaustive. Moreover, most phylogeny recovering algorithms require a multiple sequence 

alignments to perform. These algorithms are affected both by the number of sequences, as well 

as the length of those sequences. The precise and optimal way of computing an alignment 

between sequences has a computational complexity of O(LN), where N is the number of 

sequences being aligned and L is the length of the sequences.29 Naturally, this absurdly 

exponential problem makes true alignment of sequences prohibitive for all but the smallest of 

datasets. Progressive multiple sequence alignment, a dynamic heuristic to the problem, reduces 

the complexity to a more reasonable figure. The development of more refined heuristics has 

popularized a number of heuristic multiple sequence alignment algorithms as sequencing data 

has become more abundant. Version 6 of MAFFT30 has a O(NL2)+O(N3) time complexity. 

MUSCLE31, generally, has a time complexity of O(N2L+NL2), though some parameters will 

cause it to run with an additional O(N3L). It is important to note that these are worst case 
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measures of run time and each program has cases in which they perform much better. For 

instance, MAFFT complexity drops to O(NL2) when comparing similar sequences. Despite these 

advancements in heuristic methods, many consider exponential run time to be insufficient. 

Indeed, for large numbers of long sequences, such as those on the scale of whole genomes, these 

methods still fall short of feasible. In addition, while not discussed at length here, memory space 

utilization also becomes a factor making both RAM resources and runtime considerations as 

investigators advance projects. While not the sole aim of improving phylogenetic analysis and 

alignment methodologies, whole genome phylogenies have a number of additional challenges 

that make traditional methods difficult to employ. For instance, when performing whole genome 

phylogeny, the genomes must all first be assembled. Then, traditionally, all true orthologous 

regions need to be identified and ordered before alignment and there are significant regions of 

unalignable (non-homologous) DNA (i.e. indels). Alignment is then subject to the same 

considerations previously mentioned, as is tree-building, along with additional considerations 

about the substitution rate etc. Alternative methodologies, including those which do not require 

multiple sequence alignment, have continuously been developed to address the challenges of the 

emerging field of phylogenomics.32  

Phylogenetics, Phylogenomics, and the Traditional Methods 

 The main distinction between phylogenetics and phylogenomics is scale. Phylogenomics 

lays at the union between evolutionary biology and genomic studies. There have been numerous 

methods developed for performing phylogenetic analysis and, as the field as called for more 

ways to handle genome-scale data, these methods have improved and evolved themselves to 

meet the challenge. To fully understand the limitations of the original implementation of these 

methods, as well as to understand why improvements need be made for phylogenomics 

applications, first briefly surveying the traditional methods is necessary. 

 Parsimony approaches are perhaps one of the oldest approaches. It follows the 

philosophy of Occam’s razor in which we shear away all unnecessary steps or events. In the 

specific instance of phylogeny, it implies that the tree that requires the fewest number of 

evolutionary events to occur is the most likely to be correct. It is, algorithmically, easy to 

determine the number of steps in a tree and evaluate a given tree on parsimony (that is, to score 
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it). However, there is no method for the generation of trees via this criteria, simply evaluation. A 

tree search must be performed. Exhaustive tree searches are computationally infeasible, so 

heuristics are often employed. Even when the most parsimonious tree is recovered, it is not 

guaranteed to be the correct tree, however, and such an approach performs poorly in certain 

conditions33. Typically, it will underestimate branch lengths. Naturally, a shortcoming invites 

alternative methods, such as the use of distance.  

 Alternatives to parsimony are the methods which may use distance to algorithmically 

construct a tree, instead of solely evaluating a tree for its goodness. Typically, distances are 

obtained using aligned genetic information by measuring dissimilarities. From here, there are a 

number of algorithms that can reconstruct a tree, such as UPGMA and Neighbor-Joining34. Some 

methods have optimality criteria, which means that they not only allow for the algorithmic 

construction of trees, but also the evaluation of the goodness of those trees. There are 

shortcomings in this method, however. As many methods rely on pairwise generation and 

clustering, information about individual characters is lost during the reduction of character stats 

to a distance35. Statistical methods may address some of these shortcomings. 

 Maximum likelihood trees are those produced under the statistical technique of the same 

name. Generally, the algorithm looks at the statistical likelihood of a particular tree, evaluating 

the probability of the data given the tree36. In this way, it is similar to maximum parsimony as it 

evaluates many trees, choosing the one that is most likely given its substitution model, rather 

than algorithmically constructing one. It also inherits same problem, where the number of 

possible trees exponentially increase with increasing numbers of taxa. There are a number of 

heuristics that are applied to mitigate this issue, a common one being splitting the tree into 

subtrees and finding the probability in this manner37. Bayesian approaches bear many similarities 

to maximum likelihood, as they both operate on statistical principles. However, Bayesian 

approaches assume a probability distribution and then use posterior probabilities to evaluate the 

tree as its optimality criteria, usually via simulation38. Bayesian approaches tend to be robust 

against simple stochastic variation, but, since they assume a model a priori, are a point of 

contention in the field39.  
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Alignment Free Methods: 

 As the name suggests, alignment free methodologies in phylogeny are techniques that can 

produce trees without the need to perform multiple sequence alignment. Such techniques are 

based on any number of statistical, computational, and biological principles. K-mer frequencies 

are often incorporated into profiles to measure informational entropy or feature frequency, which 

allows for statistical inference. While exact implementation of k-mer methods are variable, many 

of them incorporate Markov models to account for noise unrelated to the evolution of the region 

of interest. Such models allow for a numeric probability of the result to be obtained which has 

utility in evaluating the efficacy of the approach as well as individually generated trees40. Other 

general approaches correlate the information of regions of the sequence, measures string distance 

(such as Levenstein or Lempel-Ziv compress distances), or weighed graph searches. Regardless 

of the algorithm used, there are limitations to alignment free methods and critics of the approach 

often cite a lack of obvious or direct biological meaning underlying the method, beyond the 

nebulous claim of “information content”. Indeed, one of the strongest arguments for the 

traditional methods that utilize multiple sequence alignment is that it allows for the sufficiently 

reasonable conclusion that aligned sites (e.g. SNPs, loci, etc.) are orthologous in nature, meaning 

that the sites have a shared evolutionary history. While convergent evolution and other common 

plagues of phylogenetic analysis may obfuscate this evolutionary history, there are likelihood 

and other statistical methods traditionally used that characterize this risk and the results of these 

methods can be more straightforward in their interpretation (due in part to their seminal nature) 

compared to newer, less robustly tested alignment free methods. As one might expect, the 

traditional methods and alignment free methods each have their own respective strengths and 

weaknesses. Chan and Ragan32 performed an extensive comparative analysis of alignment based 

and alignment free methods. They contrasted generalizations of the two approaches verbosely. 

Alignment free methods do not and cannot assume any sort of contiguity of homologous regions, 

whereas this is the basis of alignment based methods. Alignment based methods are presently 

well characterized and their limitations fairly well described in the literature, whereas the limits 

of alignment free methods are still being discovered and debated. The pairwise comparison of 

whole sequences in the alignment based methods can increase runtime, whereas the alignment 

free methods often use subsequences which improve runtime at the cost of memory. Generally, 
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alignment free methods are less dependent of evolutionary models and more robust to biological 

stochastic effects. The huerisitc nature of MSA means that alignment scores alone are not 

particularly telling of homology, whereas the exact and deterministic methods often applied in 

alignment free methods are more directly comparable. In essence, alignment based methods are 

well characterized and come with a guarantee of homologous site comparison at the cost of 

efficiency. Alignment free methods are less described in biological context, but are resilient to 

some pitfalls in alignment based methods, especially that of runtime.  Neither outright guarantee 

the correct tree, so the exploration of both methods is justified.  

It is apparent that alignment free methods offer solutions to many qualms in 

phylogenetics, both biologically and computationally. The runtimes for these methods are almost 

universally better and often scale better than the traditional methods. The alignment free methods 

offer solutions to heterogeneous data that emerges as sequences approach whole genome size 

caused by chromosomal rearrangements and duplications32. These methods are also more 

resilient to randomness in the observed mutations (i.e. stochastic variations). Alignment is oft 

inaccurate for distantly related sequences, which introduces error before the tree search or 

construction even begins41,42. Moreover, the alignment-free methods tend to rely less on the 

assumption and parameterization of a molecular clock, which is a subject of active debate in the 

literature. Despite these strengths, the abstraction of the model from the biological system in 

conjunction with the ill-explored limits of these methods make further research into alignment 

free methods needed before widespread application is advisable. However the potential of 

alignment-free methods to improve throughput, solve long standing biological questions, and 

more fully utilize the big data emerging in biology make investigation into and development of 

such methods of value, even inspiring ‘Alignathons’43. Such was the motivation behind the 

development of Scrawkov-Phy. 

 

Gene Trees, Species Trees, and Incomplete Lineage Sorting: 

Simply stated, gene trees are phylogenetic representations of how homologous (most 

often orthologous) genes have evolved over time. Interestingly, it is not an uncommon fallacy for 

gene trees to be misinterpreted as being entirely representative of the evolution of a species. In 



 

 

14 

reality, gene trees represent just that—the inferred evolutionary relationship among particular 

genetic segments. In reality, the evolution of the species can be distinct from the evolution of any 

one particular gene, though obviously related. This view of species evolution has the underlying 

and widely accepted assumption that there are different evolutionary forces and, thus, history for 

different genes shared among species. The rate of mutation has been shown to vary throughout 

the genomes of taxa from all over the tree of life, likely due to the differing selective pressures 

on these regions. Other events, such as population bottlenecks or gene duplication, can influence 

the evolution of genes with a degree of independence from each other. Additionally, stochastic 

effects, which are well described in populations and genomes, contribute to the differencing 

evolutionary histories of genes within a clade. The construction of species trees, then, focuses on 

intelligently utilizing constituent gene data to infer a phylogeny of the species of interest. 

Naturally, there are cases where the true species tree is not represented in any or all of the 

constituent gene trees. One reason for this situation is incomplete lineage sorting.  

If one considers the tracing of the genealogy of multiple genes back to a common 

ancestor, incomplete lineage sorting can be thought of as the failure of these genes to merge 

within the species (before the speciation event during traceback, which is afterwards temporally). 

This results in one or more discordant gene trees, which confounds phylogenetic inference. 

While there are many other problems in phylogeny, such as homoplasy44, incomplete lineage 

sorting is an excellent example of an issue that both plagues and drives the search for robust 

methods for the construction of species trees.   

One approach for the construction species trees from constituent gene trees commonly 

used today is the use of the coalescent. The coalescent is a time reversible statistical theory used 

to model stochastic processes. Historically, it has been used in population genetics to model the 

stochastic processes involved in evolutionary drift45. However, it has also been applied to the 

creation of species trees via the assumption of an underlying gene genealogy in molecular 

data46,47. This is the underlying philosophy in the BEAST48 suite of algorithms, which avoids 

MSA by coalescing trees into a single topology. Alternatively, supertree49 and supermatrix50 

(superalignment), and simultaneous-analysis51 methods will also yield species trees by 

combining data, whether it be at the tree or score level52. For exceptionally large trees, 

concatenating methods are considerably more feasible than the coalescent53. Of course, while the 
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aforementioned are typical and well described methods, there exist a plethora of alternative 

methods for constructing species trees from gene trees, including one implemented in Scrawkov-

Phy.  

 

Principles behind Scrawkov-Phy: 

Scrawkov-Phy, presented here, is a novel alignment free method of generating both gene 

and species trees. The spiritual successor of the original Scrawkov, which attempts a Hidden 

Markov Model approach to taxonomic identification of species from cytochrome b sequences 

with principles similar to the popular program HMMER54, Scrawkov-Phy is named because the 

data used in early development was exclusively that of birds. The aim of Scrawkov-Phy is to 

take many of the aforementioned advantages offered by alignment free algorithms while keeping 

the reasoning more firmly rooted in tangible biological principles and phenomenon. The 

principles of the components of the algorithm are described below, while a more specific 

iteration through the algorithm can be found in the Methods section. 

QHMMs, Earthquakes, and Phylogeny:  Markov models are a class of timeless statistical 

models that deal in stochastic processes55,56. There are different flavors of Markov models 

depending on the observability of the state, as well as autonomy of the system being modelled57. 

Use of Markov models has become ubiquitous58–65. Common applications of Markov models 

scale all scientific disciplines and have great utility in modelling human decision making. In the 

biological sciences, the range of utility of Markov models run the gambit from Markov Chain 

Monte Carlo (MCMC) simulations in population genetics66 to the seminal gene finding 

algorithms67. When a Markov model has states that are at least partially hidden (i.e. not directly 

observable), it is classically designated as a special case of the Markov model called a Hidden 

Markov Model (HMM). Application of Bayes’ rule to Markov models falling into this definition 

allows for the determination of the probability of any sequence of hidden states given observable 

states. Traditionally, HMMs require the determination of transition probabilities, both hidden and 

observable, to be measured or calculated by empirical means. Except for a few experimental 

conditions, phylogenetic inference is not directly observable due to evolution working over deep 

time. While there are alignment free phylogenetic methods that utilize traditional HMMs, 
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Scrawkov-Phy, in the interest of more wholly adhering to the biology, does not use HMM in the 

traditional definition68. Instead, it draws inspiration from Wu’s work on the cluster analysis of 

earthquake catalogs.69 In the aforementioned work, quasi-hidden Markov models (QHMMs) are 

described and utilized to characterize, in terms of the mother-and-kids model and the domino 

model, the propagation and clustering of aftershocks (children) as a function of the first shock 

(mother). While the comparison of the problems of earthquake propagation and phylogenetic 

inference may not immediately seem logical, the connection becomes clearer when the temporal 

limitations, non-independence, and clustering aspects of each problem are considered. A 

challenge in earthquake predictions is that the main shock is defined by its intensity, not by its 

temporal occurrence (with foreshocks occurring before and aftershocks occurring after). That is, 

the main shock is defined by the magnitude of other shocks, which are not wholly independent of 

each other due to a common origin or neighborhood. As previously mentioned, construction of a 

phylogeny is inference due to the general inability to observe evolution occur. The evolution of 

each taxa is not wholly independent of each other and the branch lengths derived in a phylogeny 

are dependent on the other taxa being considered. Lastly, as tree building is a specific case of 

clustering, the two problems are somewhat semantically related. Minimally, the application of a 

QHMM using an iteratively constructed training set in a way inspired by this work merits 

exploration and may more closely represent the underlying biology than some other alignment 

free methodologies.  

GC Content:  One of the measures that Scrawkov-Phy uses to construct phylogeny is GC 

content. GC content is simply the measure of the amount of C or G base pairs in a given region 

of DNA. It has been shown to differ significantly, even among closely related taxa.70 The 

creation or degradation of isochores have been shown to evolutionarily driven and have been 

correlated with taxa life history and cytology71. It has been suggested that GC content played a 

role in the evolution of biota during large scale ecological changes.72 As GC content is a feature 

of the genome, and all subsets thereof, different areas of the genome may have evolved different 

GC contents at different points temporally. While the tendency of GC content to vary 

significantly makes its use in capturing phylogenetic signal difficult, there is evidence to suggest 

its utility in small genomes, especially that of bacteria73. Due to its ease of measurement and this 

potential evolutionary significance, GC content was incorporated into Scrawkov-Phy. It is 
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important to note that for particular ranges of taxonomy (namely, higher level organisms) this 

measure’s usefulness is limited. However, in these instances, the weight of GC-content will be 

minimalized by application of a hill-climbing algorithm.   

Di/Tri-nucleotide Frequency:  The frequency profiles describing which di/tri-nucleotides 

occur is a measure often used even in traditional alignment-based methods such as MEGA. 

Indeed, there has been work on a broad number of orgasms using not only di- and tri-nucleotide 

frequency, but also with oligomers of lengths upwards of 10 bases.74 Moreover, these k-mer 

frequency methods, while limited in the amount of signal they provide, retain that signal in 

differing statistical models. The resilience of information contained in di- and tri-nucleotide 

frequencies to a range of statistical models, their ease of computation, and precedent in the 

literature, as well as well-regarded programs, make this feature a prime candidate for inclusion in 

Scrawkov-Phy.  

Codon Bias: Codon usage bias refers to the preferential usage of a particular codon among 

synonymous codons within coding DNA. Codon bias has been observed in taxa at all levels of 

life. Additionally, codon bias profiles vary even among more closely related OTUs and have 

been shown to be under, minimally, weak selective pressure. The third nucleotide position, or the 

wobble position, is the source of much of the redundancy in the genetic code. The conservation 

of the use of particular codons is explained by a number of biological systems. Synonymous 

codons have been shown to affect both DNA and RNA polymer structure and flexibility.75 Thus, 

maintenance of the macromolecular properties, rather than simply the protein coding 

information76, are supported by selection over deep evolutionary times77. mRNA secondary 

structure is influenced by the composition of the codons and third position nucleotide 

distribution largely impacts this even over shorter periods of evolutionary time, as evidenced in 

the Drosophilids.78 These functional constraints are observed among many groups of organisms, 

both prokaryotes and eukaryotes. Due to the prevalence of codon bias, its persistence even in 

deep evolutionary time79, and its subjugation to evolutionary forces79,80, codon usage bias, as a 

measure, has the biological context and ease of computation necessary for incorporation into an 

alignment free phylogeny algorithm and was included in Scrawkov-Phy. 

Trinucleotide Transition Probabilities: Historically, the probability of observing a codon 

given a preceding codon is widely used in gene finding programs. Indeed, many courses that 
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teach bioinformatics algorithms or genomics tend to use this seminal approach as an exercise. 

However, even modern gene finders incorporate codon transition probabilities in their algorithm. 

For instance, GENSCAN81 utilizes a ‘three-periodic’ 5th order Markov model of coding regions 

to build their model for predicting eukaryotic genes. For GENSCAN, the authors shied away 

from the use of the term ‘codon’, and instead referred to them in term of their frame (i.e. three 

periodic, as aforementioned). Likewise, the term trinucleotide will be used here to mean sets of 

three nucleotides without the connotations associated with codons as Scrawkov-Phy does not 

assume that all sequences used with it contain only exons. Triplets of nucleotides, the basis of 

codons, are fundamental to information flow as per the Central Dogma. However, they may also 

contain structural information in the form of DNA and RNA structure, stability, and flexibility 

through a summation of local biophysical properties. As such, regardless of if the sequence is 

purely exon in nature, the incorporation of trinucleotide transition information into the 

algorithmic determination of phylogeny may be of merit and has basis in both the literature and 

biology.  

Dinucleotide Transition Probabilities: Much like the trinucleotide case described above, 

dinucleotide transition probabilities likely guard structural information as the result of aggregate 

local effects. Evidence of this is shown in work showing that structural RNAs have lower folding 

energy than random RNAs, even if the dinucleotide composition is the same. The implications of 

this finding are, minimally, two-fold. Firstly, in the context of information theory, entropy is 

roughly related to the amount of information derivable from the probability distribution of a 

series of events.  The lower-folding energetics of the non-random RNAs is indicative that a 

signal containing information may be present due to the non-random distribution of 

dinucleotides. Secondly, due to the lower folding energy and biological essentialness of 

structural RNAs, it is likely that the system is under selective pressure and that dinucleotide 

frequencies may provide an evolutionary signal from which a phylogeny may be constructed. 

Chaos game representations of DNA sequences often have patterns that are explainable in terms 

of dinucleotides and trinucleotides82, which may support the presence of a useable and 

biologically relevant signal. While the exact nature of the biological significance is not fully 

described in both DNA and RNA contexts, there are biophysical works that support the claim 

that dinucleotide distribution is functionally conserved83 and, thus, a measure of this was 
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incorporated into Scrawkov-Phy. Notably, single nucleotide transition probabilities and 

distributions were excluded from the algorithmic construction of phylogeny as they are 

historically noisier and contain less local information than either dinucleotide or trinucleotide 

features.  

Hill-climbing algorithms: Due to the need to have many genomic features incorporated into 

Scrawkov-Phy, a way to weigh the different features in terms of importance was needed. A 

rough hill climbing algorithm was employed on a well resolved tree to tune the parameters to 

reconstruct said tree, acting much like a seed tree in other popular methods. As a beneficial side 

effect, the non-QHMM features need not be converted to log space to match the QHMM 

features. Hill climbing algorithms, fundamentally, score a population of solutions to a problem 

and change the parameters of the solutions to maximize the output of the scoring function. As a 

rudimentary form of machine learning, hill-climbing algorithms have a variety of strengths and 

weaknesses. As heuristics, they are not guaranteed to find the best solution and may fall into 

local maxima solutions to a problem. However, as heuristics, they are also more likely to finish 

in reasonable computational time. Ultimately, a hill-climbing approach was chosen to weigh 

parameters in Scrawkov-Phy. 

A Greedy Approach to Species Trees:  As previously discussed, the computational 

construction of species trees from molecular data is a complex problem with no clear solution. 

All methods currently have their merits and pitfalls. Perhaps somewhat oversimplified, the 

coalescent can be difficult to compute, especially with limited statistical expertise, and supertrees 

lack the mathematical rigor provided by the coalescent or similar methods84. Due to Scrawkov-

Phy’s aim as an alignment free method is to reduce runtime, the coalescent was not used in 

interest of improving runtime. Likewise, a concatenating method was not used. Instead, 

Scawkov-Phy favors an alternative heuristic that scales all the genes to the minimum and 

maximum semi-log scores used as a surrogate distance and obtains the one with the maximum 

probability by means of selecting locally minimum scores. The result is, in essence, a greedy 

algorithm for constructing species trees from gene trees. 
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Methods:  

Components of Scrawkov-Phy 

 Scrawkov-Phy was written entirely in the Java language and requires Java 7 or later to 

run properly. Scrawkov-Phy is composed of three classes, described in Table 1, below. The 

source code, as well as Javadoc, are available under a GNU GPL v.3 license at 

https://github.com/nickjfisk/Scrawkov_PHY, by email at nick.j.fisk@gmail.com, or in the 

supplemental figure section of the present.  

Table 1: The Java classes of Scrawkov-Phy 

 Java Class Description Used in which process 

Bird The Bird class is the programmatic representation of a 

single taxa to be included in the phylogenetic tree. The 

class stores information about the DNA sequence and 

taxa from which it was derived and defines methods that 

act on the sequence in the algorithmic determination of 

phylogeny. 

Scoring of parameters 

used to create the 

composite index from 

which the tree is 

constructed 

Node Used in tree building after all scoring, normalizing, and 

composition aspects completed  

Tree-building from 

composite index 

Scrawkov-Phy 

(main) 

Contains the main functional elements of the program. It 

creates the main data structures that keep all the 

information about and contained in instances of the Bird 

class organized. It calls on methods defined in both 

Node and Bird to construct a Newick formatted 

phylogenetic tree. 

Integration, normalization, 

and maximizing of the 

scores.  

Construction of main data 

structures 

General program flow 
Fisk 2016   

 

Algorithmic Composition of Scrawkov-Phy: 

Algorithmically, Scrawkov-Phy is fairly simple and straightforward. The algorithm is 

detailed in text in the subsequent text and visually in Figure 2. First, the base algorithm is 

described, though it can be adjusted with command line parameters. 

https://github.com/nickjfisk/Scrawkov_PHY
mailto:nick.j.fisk@gmail.com
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Figure 2: Schematic drawing of the programmatic flow of Scrawkov-Phy. Notably, aspects of 

code are reused between species and gene trees, including the final generation of the Newick 

formatted tree. Diamonds represent command line arguments that alter the flow of execution or 

the calculation of particular elements. Rectangles represent methods called to perform particular 

functions.  

Calculation of GC Content: GC content of each sequence was scored by simply obtaining the 

proportion of the bases that were either Guanine or Cytosine. 

Calculation of Trinucleotide Transition Frequencies: Trinucleotide transition frequencies 

were measured by crawling down the DNA sequence in three nucleotide partitions sliding three 

positions, similar to how codons are interpreted by cellular machinery. At each partition, the 

bases in the upcoming partition are observed and recorded relative to the times they were 

preceded by the current partition. The partition then slides. At the end of the crawl, each count is 

divided by the total number of partitions observed to obtain a frequency 
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Calculation of Dinucleotide Transition Frequencies: Calculation of the dinucleotide 

transition probabilities were performed in the same manner as the trinucleotide frequencies, but 

in partitions of two, rather than three.  

Measurement of Codon Bias: Codon bias was measured by crawling down the DNA sequence in 

partitions of three nucleotides and translating the trinucleotide sequence into the appropriate 

amino acid representation. For each amino acid translated, a count of the codon of origin was 

incremented. The frequency at which a particular codon was used for a particular amino acid was 

obtained by dividing the count of the times that codon was used by the total number of times that 

amino acid was encoded.  

Pairwise Comparison of Taxa GC Content:  The pairwise score for GC content is simply 

the absolute value of the difference in proportion between a pair of sequences.  

Pairwise Comparison of Taxa Trinucleotide Transition Probability : The observed 

trinucleotide frequencies are incorporated into a second order QHMM with an iteratively 

constructed training set, as described in the discussion of QHMMs above. The log-base-two 

probabilities of the emission of a sequence given the assumption that the two sequences being 

compared share the most common ancestor is determined and treated as the score for this feature.   

Pairwise Comparison of Taxa Dinucleotide Transition Probability:  The 

comparison of dinucleotide transition probability is performed in the same manner as the 

trinucleotide case described above. Notably, however, a separate QHMM is used for each.  

 

Pairwise Comparison of Taxa Codon Bias:  The comparison of Codon Bias is achieved 

by the summation of the absolute value of the difference of proportions of codon usage 

frequency across all possible amino acids.  

Maximization of Scores from Initial Reading Frame: Notably, alignment free methods 

suffer from not knowing whether two sequences begin in the reading frame or stay in the same 

reading frame. For the present algorithm, this is a particularly detrimental limitation of the 

approach. Thus, to account for this, the algorithm runs its feature search several times with the 

sequences being assumed in different frames and the frame resulting best (here assumed to be 
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most parsimonious) is saved and used in the next steps of the algorithm. Under this assumption, 

the result is the assurance of the maximum, if unknown, orthologous sites being comparted and 

that two sequences falling out of the same reading frame still provides signal on which the 

algorithm operates.   

Obtaining the Markov Chain Composite Index:  The surrogate distance metric used in 

Scrawkov-Phy is a composite score in which all measures are weighted and then incorporated 

into a single score, here called the Markov Chain Composite Index (MCCI). The calculation of 

the score is simply the summation of all the feature scores after the application of the weight.  

Obtaining the Parameter Weights: Weights for the parameters were obtained via a simple hill-

climbing algorithm. Sequences of a simple and well-defined training were evaluated for their 

MCCI. The parameters were then weighed with random numbers and a tree constructed. The tree 

was checked for correct topology. If the topology of the tree was correct, then the weights were 

kept. After ten correct tree topologies were obtained, the weights were averaged to obtain the 

value in the current model. The tree used in the hill climbing algorithm is shown in Figure 3 

below.  
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Figure 3: The tree whose topology was used to train the hill-climbing algorithm. The species 

represented are fairly widely divergent and no microbial or viral taxa are represented.  

 

Constructing the Gene Tree: Gene trees are constructed via a simple UPGMA approach where 

MCCI is used as a surrogate for distance. Ties, which are incredibly unlikely to occur in non-

contrived datasets, are broken arbitrarily.   

Constructing a Species Tree from Gene Trees: If a species tree is desired, the MCCI scores 

from which each gene tree is derived are held until all gene trees are computed. The default 

behavior, which can be disabled via a command line parameter, is to then scale the all the scores 

to the gene with the greatest mathematical range in the scores between any taxa. Ultimately, the 

average score between each pair of taxa over all genes is obtained and used to build the species 

tree.  Notably, not all taxa need have data for each gene and the number of genes available is 

factored into the determination of the average MCCI.  
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Results: 

A variety of trees were produced using Scrawkov-Phy. Accompanying each tree is either 

a tree constructed via accepted methods or a tree from a paper from which the data was 

presented. Unless otherwise noted, the programs were run with default parameters. Trees were 

visualized in FigTree85 unless otherwise noted.  

Primate NADH Dehydrogenase Gene Trees 
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Figure 4:  The resultant gene tree from the NADH dehydrogenase mitochondrial gene from 

selected primate taxa.  From top to bottom, the trees were generated using the following methods 

respectively: an outdated version of Scrawkov-Phy, the current version of Scrawkov-Phy through 

the EMU-Phy interface, a tree generated from a T-coffee MSA fed to ClustalW286,87, and a tree 

generated from a ClustalOmega MSA fed to ClustalW2. All trees were generated using UPGMA 

methods. Notably, while the current version of Scrawkov-Phy recovers the accepted gene tree 

topology, the older version of Scrawkov-Phy implemented without the QHMM mistakenly 

inverts the placement of Hylobates and Pongo.  
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Figure 5: Radial trees of a 181 taxa primate species tree constructed with Scrawkov-Phy by two 

methods. The top tree is with the normalization parameter on and the bottom tree with it off. 

Shrews were used to root the trees. The more traditional cladogram view of the trees can be 

found in supplemental figure SF1. 
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Filovirus Tree 
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Figure 6: The phylogeny of the filoviruses was constructed by two methods using the whole 

genome of 33 taxa. Scrawkov-Phy (top) was run with the default parameters and completed the 

task in under a minute. A Maximum Likelihood consensus tree (bottom) was constructed in 

MEGA88. The consensus is the result of 100 bootstrapping iterations. Alignment was done using 
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the muscle algorithm in CodonCode Aligner. The genomic data was obtained from GenBank 

using the compiled list presented in work by Barrette et al.89 Highlighted regions in the tree 

generated by Scrawkov-Phy represent groupings which were not in conflict with the tree 

recovered by Barrette et al. The orange highlighted branches represent conflicts that had a 

bootstrap value of below 80, but above 70. The red highlighted branches represent a conflict of 

above 80 in the tree. Notably, only one pairing falls into this category and still falls well within 

the larger Marburgvirus clade. It is essential to note that the trees are not comparable beyond a 

surface level since the Scrawkov-Phy tree was generated using UPGMA, which will almost 

assuredly yield an inferior tree. Incongruence observed may be an artifact of the use of UPGMA.  

 

Passerine Cytochrome b Tree 
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Figure 7: The radial tree of assorted passerine cytochrome b sequences. The top tree is the tree 

resolved by Scrawkov-Phy while the bottom tree was constructed from a ClustalOmega MSA 

fed to ClustalW2. The traditional cladogram view of the trees are available in Supplemental 

Figures SF3 and SF4. 

 

 

 

 

Figure 8: The Scrawkov-Phy tree (top) placement of the narcissus flycatcher (red) replicates the 

same paraphyly noted by Sangster et al,90 though its placement does not agree with the tree 
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generated by ClustalOmega and ClustalW2. Without a follow-up bootstrap analysis further 

comparison is impossible, as the conflicting nodes cannot be verified as well-resolved in either 

analysis.  

 

Whole Genome E.coli Trees 
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Figure 9: Scrawkov-Phy (top) was used to reconstruct the phylogeny of 29 whole E.coli and 

Shigella genomes. This dataset was used to benchmark another alignment free method, Co-

Phylog (bottom right), comparing it to the assembled and aligned genome tree (bottom left).91  
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Discussion: 

Primate Trees:  The gene tree of the primate NADH dehydrogenase shown in 

Figure 4 demonstrates the efficacy of Scrawkov-Phy at resolving a small-single gene dataset. It 

also highlights that the algorithm was improved iteratively over time. The most current version 

of the algorithm recovers the accepted topology for the gene, despite the early version of the 

algorithm generating a tree the conflicts with the placement of Pongo and Hylobates. This initial 

success was a key proof of concept in the development of the algorithm, inspiring the 

construction of a primate species tree from the data provided by Perelman et al92.  

 The species tree, shown in Figure 5, contains 181 taxa represented across 52 loci. The 

topology recovered was not in complete agreement with the study from which the study came. 

However, both the normalized and un-normalized runs of the algorithm resolved the core 

families well. Many groups, such as the Eulemars and Callithrix clades, clustered perfectly. 

Additionally, the shrew outgroup used to root the published tree was also naturally placed as an 

outgroup in Scrawkov-Phy. However, there are a few cases of paraphyly observed. Cacajao 

calvus, for instance, is not monophyletic in either the normalized or un-normalized attempts by 

Scrawkov-Phy. The two taxa did not cluster with each other or with the Chiropotes as they do in 

the published tree. Interestingly, the result for the un-normalized iteration of Scrawkov-Phy 

seemingly conflicted less with the published tree than did the normalized iteration. This is likely 

due to the large number of genes used in the study, with varying amounts of relevant 

evolutionary signal. Indeed, the authors of the original paper state that these loci account for 

nearly 90% of the diversity of the taxa used in the study, each with, presumably, differing 

amounts of phylogenetic signal. Thus, since it is well-reasoned that the genes may contain vastly 

different amount of signal, the normalization of scores was unnecessary. The runtime for the 

gene tree in Figure 4 was essentially instant. The species tree had a run-time of roughly half an 

hour. Example gene trees from which the species tree is derived can be seen in Supplemental 

Figure 6. It is, again, important to note that since there is no bootstrapping analysis presented, the 

conflicts and agreement cannot be confirmed. 

Filovirus Whole Genome Gene Tree:  The filovirus tree, shown in Figure 6, resolved 

surprisingly well. It barely conflicts with the publication tree and all but one of the areas were in 
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areas with less than 90% bootstrapping confidence. This result is particularly surprising because 

the hill-climbing algorithm was not tuned to viral or microbial sequences. Ultimately, the result 

may be due to the level relatedness between the viral sequences used in the study. It has been 

shown that phylogenetic signal is more difficult to resolve at the both extremes of dissimilarity. 

The sweet spot is between highly conserved, highly similar sequences and the so-called twilight 

zone of poorly conserved, highly dissimilar sequences. It is possible that, though the viruses used 

in the study are closely related, the high viral mutation rate put the sequence in the sweet spot for 

detection of phylogenetic signal. Of course, without a rigorous test for branch support, such as 

bootstrapping or jackknifing, the confidence in the tree is speculative at best. Despite this, the 

undeniable topology similarity lends, minimally, support in the potential of the algorithm.  

 Of the viral samples that were in at least partial conflict with the publication tree, two of 

them belonged to outbreaks which were not widespread geographically. They belonged to 

independent outbreaks, which may partially explain the difficulty in resolving them in the same 

way as the publication tree. Additionally, while the topology doesn’t match, the 2 Marburg 

sequences that are in conflict (greater that 90% bootstrap) with the publication tree are only one 

“speciation event” or layer deep in the tree from being in concordance with the published tree. 

The same holds with the singular Restonvirus that disagrees to some extent (greater than 70% 

bootstrap). These are arguably near misses. Tuning the weights using a hill-climbing algorithm 

with a viral tree may improve the ability of Scrawkov-Phy to even better reconstruct the accepted 

phylogeny. 

Bacterial Whole Genome Tree: Unlike the filoviruses, Scrawkov-Phy did not recover 

something very close to the benchmarking tree. However, the Shigella strains all clustered 

together (highlighted blue in Figure 9, above), which is a promising result. The Shigella 

dysemteriae branch did not cluster with the other Shigella strains in the accepted tree nor in the 

tree recovered by Co-Phylog, though it was in the case of Scrawkov-Phy. The literature supports 

this placement of Shigella dysemteriae outside of the Shigella cluster93, so the placement of the 

taxon by Scrawkov-Phy is aberrant. Indeed, the dataset was originally selected in the Co-Phylog 

to test the robustness of their method to this result. While the debate on the taxonomic status of 

Shigella species is an interesting and impactful topic, further detail is beyond the scope of the 

present.  Essentially, Scrawkov-Phy is not as robust as Co-Phylog, but clusters many things well. 
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For instance, all 4 K12 E. coli strains used clustered together, which was a consistent with the 

results of the original paper. There were a number of topological differences and the resultant 

tree was not nearly as high quality as the one obtained by Co-Phylog. However, it is notable that 

Scrawkov-Phy completed the analysis in just over a day of run time on a machine with 12GB of 

RAM, despite 29 whole genomes being utilized in the study. Further work would be needed to 

truly benchmark the memory usage of Scrawkov-Phy, but these initial results are promising. If 

the tree used to weigh the feature weights were constructed using some or exclusively microbial 

taxa, the tree might resolve better. As it stands now, however, the tree recovered by Scrawkov-

Phy should be scrutinized before any biological interpretation be made from it. Reconstructing 

the tree using a more eloquent tree building method, such as neighbor joining, may result the 

recovery of a better topology.  

Paraphyly in the Passeriformes cytochrome b tree:   The taxonomy of avian species, 

especially the songbirds, is and has been historically, an area of focus for ornithologists. This 

effort has been particularly difficult as there is notable incongruence between the seminal 

character-based trees and those derived from molecular data. Furthermore, even within 

molecular data, paraphyly and polytomy are common issues among many bird studies. For 

instance, Sangster et al noted that there was paraphyly in their classification of Passeriformes 

according to cytochrome b and nuclear gene evidence. While there are systemic reasons that 

different genes may have different trees94, their work implied that the paraphyly was inherent to 

the dataset rather than a limitation of the methods used. Thus, Scrawkov-Phy was run on the 

dataset, with additional taxa taken from NCBI, to discover if the same paraphylies were 

observed. Ultimately, many of the same limitations of the dataset were seen in Scrawkov-Phy. 

 In both Scrawkov-Phy and the alignment-based tree, there were cases of paraphyly. For 

instance, the narcissus flycatcher did not cluster with the other flycatchers, as seen in Figure 8. 

Interestingly, the traditional tree placed the hermit thrush very closely with other the thrushes, 

whereas Scrawkov-Phy resulted in a paraphyly for this taxon. However, work that came after the 

study from which the data was obtained has shown unusual paraphyly in the hermit thrush across 

multiple loci. Ultimately, the placement of the hermit thrush must remain speculative as neither 

Scrawkov-Phy nor the publication tree provided a bootstrapping confidence for the branches. 
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This is particularly problematic as there are a number of disparities between the trees, though 

clustering at the family level is fairly similar.  

Limitations and Future Work: Needless to say, the algorithm used in Scrawkov-Phy is 

imperfect. While it aims to stay more firmly rooted in biology and less in statistics than its 

predecessor alignment-free methods, many of the principles on which they are based are not 

universally accepted. The algorithm itself is highly experimental and, despite the success of the 

algorithm in reconstructing trees and known phenomenon in its namesake clade, there is still 

much uncharacterized about Scrawkov-Phy. Indeed, there are a number of shortcomings in the 

algorithm in its current form.  

Currently, the weight parameters are only constructed based on tree topology; branch 

length is not factored into the hill climbing algorithm. To improve Scrawkov-Phy’s performance, 

the parameters should be weighed either in a similar manner as presented here incorporating such 

an addition or a more verbose statistical method should be employed, such as maximum 

likelihood. Since the weighted parameters are not determined at runtime (though they are 

alterable as command line arguments), the additional runtime would be negligible as it would 

only need to be computed once.  

Another consideration concerning the efficacy and future development of Scrawkov-Phy 

is that, in the form presented here, it does not take into account any features on the strand not 

explicitly provided by the user. Similarly, codon bias is incorporated into the model despite 

having no guarantee of being in a coding region or in frame. While there are optional subroutines 

that alleviate the concern of frame, they remain heuristics that do not truly compare all 

orthologous sites. Computationally, the algorithm could receive a marked speed-up and 

reduction in memory usage if matrices were used for some of the underlying data structures.  

UPGMA has been shown to be an inferior tree building method when comparted to 

almost any other established method95. The major flaw of UPGMA is that it assumes equal 

branch length and distance, which is biologically unfounded. This can systemically result not 

only in incorrect branch lengths, but incorrect placement and grouping of taxa. While the ease of 

implementation made it ideal for developing Scrawkov-Phy, it severely limits the conclusions 

that can be drawn from resultant trees, even though obtained MCCIs may work reasonably well 
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as distance measures. Use of an external tree building program or implementation of a better 

method is necessary to improve the ability to characterize Scrawkov-Phy and derive biological 

significance from its results.  

Horizontal gene transfer is notably excluded a priori from the present algorithm. Indeed, 

many general use algorithms do not factor horizontal gene transfer into their calculations, though 

there are plenty of known algorithms that do. These algorithms, however, tend to be optimized 

for bacterial sequences, rather than general use, as Scrawkov-Phy was intended. As previously 

stated, this exclusion may be responsible for disagreement seen in the whole genome E.coli tree 

presented in Figure 9.  

Despite the status of the coalescent as the frontrunner for species tree construction, 

Scrawkov-Phy does not attempt to use it, favoring, instead, a greedy algorithm that maximizes 

probability stepwise. As such, the construction of species trees using the algorithm presented 

here is likely not as rigorous as the presently accepted methods. However, it is important to note 

that the construction of gene trees can be performed in Scrawkov-Phy and piped into a program 

implementing a rigorous coalescent method, such as *BEAST. Ultimately, the feature was not 

implemented here largely because the current implementations are of a quality far exceeding that 

achievable in the scope of this project.  

Polytomy, which may be a natural result of a dataset, is avoided in this algorithm and no 

test for the significance of a branch (such as bootstrapping) currently exists within Scrawkov-

Phy. Scrawkov-Phy operates on the assumption of bifurcation, which there may not be statistical 

evidence to show. Thus, branches with a particularly short length in Scrawkov-Phy should be 

examined critically before conclusions are drawn. Such branches should be verified with a 

method such as bootstrapping or collapsed into a polytomy.  

The input which Scrawkov-Phy takes is relatively strict and it does not parse relevant 

information from the meta-data provided in many FASTA headers. Thus, a limitation is 

presented in that datasets must be manually proceeded by the user for readable output, especially 

for species trees. This is due to Scrawkov-Phy requiring that all taxa be named identically within 

each input gene file. Compared to other, comparable methods, this is a considerable shortcoming 

of the program and future work should prioritize effective parsing of the input. Minimally, the 
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information presented within each FASTA header can be more neatly presented. One way to 

accomplish this would to enable the output of nexus files, in addition to newick files.  

GC content can be more effectively utilized in the algorithm than is currently 

implemented. Scrawkov-Phy is limited in to the global use of GC content. However, CpG islands 

themselves have been shown to be evolutionarily significant. In essence, only global measures of 

GC usage by taxa are used, whereas it is likely that incorporating local measures of GC usage 

could improve the efficacy of the algorithm’s ability to recover meaningful phylogenies, 

especially in whole genome datasets or species tree construction.  

Arguably, the use of both dinucleotide and trinucleotide frequencies in the algorithm 

could be considered redundant96. While both of these parameters have previously been shown to 

be significant biologically and are used extensively in well-known programs like those 

incorporated in MEGA, the signal is undoubtedly mixed. This is problematic due to the hill-

climbing approach for weighing the features used in the determination of phylogeny. This 

method does not separate the effects of mixed signals particularly well, as compared to other 

machine learning methods. Thus, the evolutionary signal present in the dinucleotide and 

trinucleotide methods may be overrepresented in the final calculation of the MCCI. A more 

sophisticated genetic algorithm may alleviate this signal promiscuity97, though there are a 

number of machine learning methods more suited to handle mixed signals98. 

A glaring issue that has yet to be addressed is that of k-mer homoplasy. Homoplasy, in a 

general sense, is similarity due to convergent evolution or reversion, rather than through 

ancestry. On a nucleotide scale, homoplasy is described as the independent acquisition of the 

same base at the same position over separate evolutionary lines. K-mer homoplasy refers to the 

situation that arises when identical k-mers are not derived from regions of the genome that are 

not homologous physically, evolutionarily, or functionally12. Fan et al describe the honeypot that 

Scrawkov-Phy falls into. Short k-mers are more likely to be resistant to multiple evolutionary 

events, sensing them each individually. However, shorter sequences are also more likely to occur 

due to chance and not be comparable as homologous in any sense. There exists, then, some 

equilibrium or balance in k-mer length used in alignment free methods.  As previously described, 

Scrawkov-Phy essentially uses 2-mers and 3-mers to infer phylogeny (via the QHMM). In this 

respect, Scrawkov-Phy is likely to fall victim to inaccuracies due to k-mer homoplasy. 
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Another shortcoming of the method as it exists here is that the branch lengths are not 

directly comparable to trees constructed by traditional methodologies. The MCCI is presented as 

a semi-log aggregate score, which results in non-linear scaling of the branches. Additionally, 

since no formal substitution model is used, this method cannot be tuned to a molecular clock to 

resolve the branch lengths temporally. Thus, only limited information about the timeline of the 

evolution of the species can be recovered and the branch lengths are not well-suited for 

comparison to traditional methods. A means of improving the comparability of the algorithm is 

to obtain LOD scores for all of the parameters, not just those used in the QHMM.  

Though not performed here, a standard in the field is to test tree building methods not 

only on real biological data, but on simulated data for which the true phylogeny is known99. 

While the model used to simulate the data would be non-trivial in the accuracy of the results of a 

method tuned to particular biological parameters, it is nonetheless a standard and future 

characterization of Scrawkov-Phy should include exploratory work with simulated sequences.  

While Scrawkov-Phy uses particular biophysical principles to justify particular genomic 

features being used in the calculation of the MCCI, it does not use any proper biophysical 

measure as a feature. For instance, Shannon’s entropy would be an easily computable measure 

that could be incorporated in the determination of MCCI. Additionally, while the chaos 

representation of RNAs was used to justify the use dinucleotide transition properties in the 

QHMM, the calculation of chaos was not calculated. While this calculation may slow the 

algorithm down, it would likely lead to cleaner signals than the surrogate presently used in the 

QHMM.  

Runtime of the algorithm, as presented here, is by no means slow compared to the 

traditional methods. However, the algorithm essentially runs several times to determine the 

starting frame that results in the maximum score. However, due to there being several factors 

used in the computation of the MCCI, there could be checkpoints after the calculation of each of 

the respective components. These checkpoints could compare the current MCCI score to the best 

score. Since the algorithm aims to minimize MCCI, if the current frame’s partial MCCI is greater 

than the current best MCCI, then computation can terminate for this frame, saving runtime and 

memory. The result would be an effective pruning of the search space not unlike that of branch 

and bound approaches. In this case, however, it is important to note that the order in which the 
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components are calculated is non-trivial. Optimally, the feature that is most heavily represented 

in the final MCCI would be computed first, thus maximizing the chance that a disparity between 

frames would become apparent in the fewest number of computational steps. The order of 

calculation in Scrawkov-Phy in its current form, however, is trivial and there is no in-place 

framework to change the order of calculations because the weights can be changed via the 

command line arguments. As a result, the order for the algorithm’s calculations that are most 

optimal for pruning is not known. In future releases of Scrawkov-Phy, if such pruning is 

incorporated, it would be prudent to include a feature which allows the user to change the 

ordering of the calculation via command line arguments.  

While Scrawkov-Phy did not fail to run on any system it was run on due to memory 

restraints, there are still a number of areas that could reduce the memory usage of the algorithm. 

Specifically, the sequences should not be stored after the features therein have been measured. 

For the generation of species trees, the algorithm holds onto more sequence information than is 

necessary. Instead, the algorithm might be better off having a command line argument that lets 

the user toggle the ability to read the sequences from ROM when they are needed, rather than 

holding them in RAM. This would allow for use of larger still datasets.  

An additional area for consideration in this algorithm is the normalization of gene 

MCCI’s to maximum and minimum scores in the computation of species trees. On one hand, the 

normalization of scores across differing genes seems intuitive. This allows for dissimilar data 

(long versus short genes, closely related versus distantly related taxa, etc.) to be compared 

without skewing the data towards outliers or oddities. On the other hand, however, this 

normalization assumes that each component gene contributes equally to the phylogenetic signal. 

This assumption is, of course, false as differing rates of mutations and selective pressures have 

been described in different genes in a broad spectrum of organisms verbosely. Thus, the ability 

to turn normalization, which is available as a command line parameter, is crucial. Unfortunately, 

it is difficult to programmatically assay the heterogeneity of the input data, which results in the 

end user needing to know their dataset and the role of the normalize argument well in order to 

effectively utilize this tool. Notably, this is likely a strength that alignment-based methods have 

over Scrawkov-Phy, due to the emphasis on the direct comparison on orthologous sites.  
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The parsing of standard FASTA formatted file headings would be essential in future 

work concerning Scrawkov-Phy. The comparison of the results of trees is significantly more 

difficult without conforming to the standard. However, due to NCBI announcing the retirement 

of the ‘gi’ identification system, a conscious effort was made to wait until the phasing out was 

completed.    

 Not all improvements to the algorithm need be borne of limitations presented here. For 

instance, MEGA uses differences in the trinucleotide and dinucleotide compositions as part of its 

algorithm, but does it in an apparently more sophisticated way using a matrix based approach. 

Biophysical or epigenetic profiles could conceivably be incorporated in future iterations of the 

algorithm. Regardless of the component or motivation for incorporation of addition features, it is 

important to note that there may be redundancy in the signals caused by such incorporation. This 

sort of redundancy in signals has been noted as a challenge in the feature selection subset 

problem in machine learning since it has become feasible to employ such methods. While there 

has been work describing automated selection of such features, the hill-climbing algorithm is an 

acceptable compromise for direct biological context and feature optimality. Needless to say, 

addition of additional features to the algorithmic determination of phylogeny should be 

considered carefully as to not loose biological context, not over represent a signal through 

redundancy, and to not fit the elephant with an overly parameter-rich model.  

 Despite its limitations, Scrawkov-Phy utilizes a promising algorithm that demonstrates 

that there is strength in using simple models in alignment-free phylogeny. While the algorithm’s 

limitations have not been rigorously studied, the initial findings presented here suggest that 

alignment-free methods need not necessarily be based on high order statistical models from 

which biological context may be lost. Ultimately, it is up to the end user to intelligently utilize 

the tool and its options to maximize its efficacy.  
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Chapter 2 

  
EMU-Phy: An Extensible Management Utility for 

Phyloinformatics 
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Background: 

 

Phyloinformatics: 

 Phylogenetic inference is playing an ever larger role in nearly all fields in biology. 

Naturally, the extent of this role varies, from integration into a full systems biology analysis of a 

phenomenon to the enrichment of a few taxa of interest. One thing is clear, however.  There are 

an increasing number of methods available for performing phylogenetic inference. This, coupled 

with ever growing sources of molecular data, has facilitated sophisticated phylogenetic analysis. 

However, new challenges in assembling, organizing, and connecting the various software and 

datasets have arisen from this bounty of phylogenetic resources. Enter phyloinformatics. 

Phlyoinformatics, a term which has some ambiguity in its meaning, generally is a field whose 

goal is to streamline phylogenetic analysis computationally. Different phyloinformatics utilities 

approach this goal differently. Some phyloinformatic applications focus on data mining common 

biological databases for relevant information. Others aim to incorporate metadata in to enrich the 

standard analyses. A modified diagram from Roderic D.M. Page100 details a potential 

phyloinformatics database design, in Figure 1, below. 

 

Figure 1: A schematic diagram depicting a hypothetical phyloinformatics database optimized for 

data mining and learning.  
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Regardless of the approach, the theme remains the same: Phyloinformatics consists of 

largely connecting or repurposing existing tools into pipelines to conduct meaningful analyses on 

large and dynamic data. The Extensible Management Utility for Phyloinformatics (EMU-Phy) 

presented here aims to provide a simple, but adaptable, phyloinformatics tool that focuses on 

organization and maintenance of phylogenetic oriented data with appeal to those comfortable 

with command line tools, as well as novices.  

 

TreeBASE and Phyutility—Inspiration for EMU-Phy: 

 In the domain of phyloinformatics, TreeBASE101 and Phyutility102 are among the most 

well-known applications. They both approach the ultimate goals of phyloinformatics quite 

differently, placing different focus on different aspects of phyloinformatics. For instance, 

TreeBASE, at its base, operates very much like a standard, centralized database. It allows users 

to pull down data on phylogeny, character evolution, biogeography, and, of course, molecular 

datasets. However, the project has, over time, added a series of applications that allow for 

analysis of data in place. These applications facilitate or perform analyses such as method 

comparisons, supertree construction, and co-evolution based on data contained in the database. 

Thus, it can be argued that the functionality of TreeBASE was focused on application 

extensibility and user ease while providing a central database. While this makes TreeBASE an 

incredibly useful resource, it is not as straightforward when novel data is generated and a user 

wishes to analyze it. In scenarios such as this, Phyutility may be a more promising candidate. 

 Phyutility is another application that can be categorized as phyloinformatic. It focuses on 

providing a local, command line interface that connects a number of existing phylogenetic 

software. Additionally, it prides itself on the ability to manipulate tree topology (re-rooting 

multiple trees) and summarizing the variation of tree topology. Like many other programs, it has 

the ability to fetch data from the NCBI and can handle a variety of phylogenetic file formats, like 

the Nexus and newick formats. While its scope is limited, its limitations and purposes are well 

defined, making the program well respected and containing great utility. Ultimately, EMU-Phy 

draws philosophic inspiration from both Phyutility and TreeBASE. 
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 EMU-Phy, like Phyutility and TreeBASE, has its own approach to phyloinformatics. It is 

considerably more lightweight than either Phyutility or TreeBASE. Similar to Phyutility, 

however, EMU-Phy is instantiated on individual machines, making it more of a tool for handling 

data a lab has generated, rather than datamining as TreeBASE allows for. However, like 

TreeBASE, EMU-Phy was designed for the addition of new modules. Thus, an interface 

allowing extensibility of the program was created. Perhaps most importantly, EMU-Phy differs 

from both Phyutility and TreeBASE in that the directory structure is purposefully simple. This 

allows for advanced users (i.e., those with programming ability) to use their own skills to 

customize their experience easily, while still facilitating ease of use for novice users (e.g. by 

making the locations of images and trees intuitive).  

Software Design Principles: 

 Java is an exceptionally popular object oriented programming language developed and 

supported by Oracle. The Java language depends heavily on the Java Virtual Machine (JVM), 

which is an abstract computing machine that facilitates the design goals laid out at its conception. 

The famous five goals103 of the Java language are for the language to be: “Simple, Object 

Oriented, and Familiar”, “Robust and Secure”, “Architecture Neutral and Portable”, “High 

Performance”, and “Interpreted, Threaded, and Dynamic”. These design goals were achieved and 

incorporated into the language as it is known today. Due to this, a number of properties are 

inherent to Java and code written in it.  

 

System Independence:  

 Java is considered a platform independent language. In layman’s terms, it means that 

Java code written on a machine running a Windows OS will run on a machine running OSX 

without any alterations. This is in stark contrast to languages such as C or FORTRAN, which are 

platform dependent—code written and compiled on one machine is not guaranteed to run on 

another, even if the operating system is the same. Java accomplishes this via the Java Virtual 

Machine which acts as a pseudo-platform for which code to run on. It is a universal interface to 

the machine on which code is being executed.   
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 This property of platform independence makes it invaluable for developers of 

applications which may be used by a wide variety of users running a wide variety of operating 

systems on a wide variety of machine architectures. Scientists, including biologists, fit this 

description well as science is carried out on the global scale. Indeed, the use of a programming 

language which promises platform independence ensures consistency in the analysis of scientific 

data—a tenant which is fundamental to the advancement of science. This makes Java a great 

candidate for biologically oriented software, including those used in phyloinformatics. System 

independence is not the only quality qualifying Java for the development of a phlyoinformatics 

application.  

 

  Extensibility: 

 Extensibility, simply put, is the ability of a program, software, or system to be improved 

upon via new function. A software system is extensible if significant extension of its scope or 

capabilities can be incorporated with little to no alteration of the base code. Extensibility is a 

software design principle. That is, for a system to be extensible, the code must be designed and 

implemented with this intent. Java makes the design of extensible code approachable with Java 

interfaces and abstract classes, which are made practical with the hierarchical class system in 

place in the Java language.104  

 Extensibility is another property invaluable to programming for the sciences. 

Fundamentally, scientific achievement is built upon previous findings, given those findings have 

been robustly tested and reviewed. Good code for scientific application, then, should follow the 

same principles. Extensible code would, ideally, be able to grow and adapt as relevant 

knowledge becomes known, thus minimizing the overhead of creating new code from scratch. 

This would aid the progression of research by allowing a community of developers to continue to 

work on a single project without the need to restart as science advances. This paradigm is even 

more important for databases and database management systems, as their entire purpose is the 

archival and retrieval of data over time. Needless to say, this applies to data relevant to 

phyloinformatics as well. This, combined with the other aforementioned properties, make Java 

an excellent candidate language for the development of EMU-Phy.   
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Programs Integrated: 

In the iteration of EMU-Phy described here, 4 software pertaining to the construction of 

phylogenetic trees were considered for module/interface development. Scrawkov-Phy, which 

was developed concurrently with EMU-Phy, is an alignment free phylogeny algorithm capable 

of creating gene and species trees written in Java. While its efficacy is still being explored, the 

familiarity and system independence of the software made it ideal for integration into EMU-Phy. 

ClustalW, a well-regarded and simple alignment software, was also chosen to have a module 

constructed. PHYLIP, which is a series of programs containing methods for phylogenetic 

analysis, is also represented.105 Specifically, dnadist, a program for calculating DNA distances 

using different substitution models, and neighbor, which creates a neighbor-joining tree given a 

matrix of DNA distances, were chosen. Lastly, the coalescent species tree building program, 

*BEAST, was also chosen to ensure that both gene and species trees could be constructed. 

*BEAST is a module of BEAST, which deals with the construction of phylogenetic trees from 

Bayesian models.  
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Methods: 

Development:   EMU-Phy was developed on a Windows 8 system using Java 7. The 

manipulation of the flat-file database maintained by EMU-Phy is entirely system independent. 

However, depending on the implementation of the interface, system independence cannot be 

assured because the software which is being called may not be available for all operating 

systems. The classes which comprise the base EMU-Phy package are shown in Table 1, below. 

The source code and Javadoc are available under a GNU GPL v.3 license at 

https://github.com/nickjfisk/EMU_PHY,by email at nick.j.fisk@gmail.com, or in the 

supplementary materials of the present. Notably, no protein methods were explored in the 

present work.  

Table 1: Java classes and interfaces of EMU-Phy 

Java Class Description Used in which process 

geneTreeMethod 

(interface) 

geneTreeMethod is a Java interface that, when 

implemented, uses the operating system to call the  

Creation of gene trees 

using the method of choice 

speciesTreeMethod 

(interface) 

  

alignmentMethod 

(interface) 

Used in tree building after all scoring, 

normalizing, and composition aspects completed  

Tree-building from 

composite index 

EMUPhy (main) Contains the main functional elements of the 

program. It creates the main data structures that 

keep all the information about and contained in 

instances of the Bird class organized. It calls on 

methods defined in both Node and Bird to 

construct a Newick formatted phylogenetic tree. 

Integration, normalization, 

and maximizing of the 

scores.  

Construction of main data 

structures 

General program flow 
Fisk 2016   

  

Testing : The base EMU-Phy data management system was tested on machines running 

Windows (7, 8, and 10), OSX (Mavericks), and Linux (Ubuntu and Fedora). Manipulation of the 

data was robustly tested for a reasonable number of datasets of varying scope and size. A list of 

commands available in the base EMU-Phy is shown below in Table 2.  

 

 

https://github.com/nickjfisk/EMU_PHY
mailto:nick.j.fisk@gmail.com
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Table 2: Selected commands available in the base EMU-Phy program.  

Command Options Description 

Help N/A Displays the help message. Within some 

interactive commands, help will also 

provide the options specific to that 

command.   

Quit N/A Prompts the user to verify if they want to 

exit the program and, if so, exits.  

Install Examples Initializes the filesystem for use. If 

examples are desired, a limited primate 

dataset is unpacked into the system.  

Update N/A If the file structure differs from the internal 

record of the program, update will attempt 

to change the contents of the database to 

reflect the internal record.  

Redo N/A Calls the analysis functions for a particular 

experiment, erasing previous entries if they 

exist. 

Validate N/A If the file structure differs from the internal 

record of the program, validate will change 

the internal record to reflect the data that is 

actually present. This command must be 

run if outside scripting is used to place data.  

Add Gene, taxa, group, primer, taxonomy, 

done, cancel 

Prompts the user to enter the appropriate 

information to create the selected option. 

Some options, such as genes, support being 

added from another location on the 

filesystem. The internal record will be 

updated without calling ‘validate’ 

Show Gene, taxa, group, primer, taxonomy, 

done, cancel 

Displays a list of items in the database, 

depending on the option selected.  

Delete Gene, taxa, group, primer, taxonomy, 

done, cancel 

Permanently removes the selected item, 

given an option. The internal record will be 

updated without calling ‘validate’.  

<shortcuts> Many Shortcut commands that allow the user to 

add or remove items without layers of 

interaction as required by the ‘add’ or 

‘remove’ commands. See the 

documentation for specific commands.  
Fisk 2016   

 

Testing of the modules still in development was performed on the systems for which the module 

was developed and reasonably available. A summary the datasets used for testing is shown in 

Table 3, below.  
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Table 3: Description of the datasets used in the testing of EMU-Phy 

Dataset Description Used to Test Notes 

Primates A 181 taxa dataset consisting 

of 52 loci each.  

Scrawkov, ClustalW, 

PHYLIP, *BEAST 

Often, subsets of this 

data were used, 

including single genes 

chosen arbitrarily.  

Birds A 50+ taxa dataset of 

cytochrome b sequences 

Scrawkov-Phy, ClustalW, 

PHYLIP 

Relatively short 

sequences 

Filovirus Whole viral genome of 33 taxa Scrawkov-Phy  Sequences likely too 

long to be handled by 

ClustalW easily 

E.coli/Shigella Whole genome of 29 taxa Scrawkov-Phy Sequences likely too 

long to be handled by 

standard programs 

easily 

Mammal A 12 taxa dataset of NADH 

dehydrogenase sequences.  

Scrawkov-Phy, ClustalW, 

PHYLIP 

Small dataset good for 

prototyping. 
Fisk 2016    
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Results: 

 

Base EMU-Phy:  The results of testing the base program for EMU-Phy were as expected. 

Due to careful software design and use of system independent methods, EMU-Phy encountered 

no issues running internal commands as described. All internal commands were tested on 

multiple phylogenetic datasets. Importantly, the database filesystem also remained functional 

when acted upon by external scripts. Namely, the bash shell script to migrate the large primate 

data from chapter one of the present document into the filesystem was integrated flawlessly upon 

calling the ‘update’ command, as intended. A visual representation of the filesystem is presented 

in Figure 2, below. It is important to note that the flow of the initial input is not depicted for the 

sake of clarity and readability.  

EMU-Phy Modules: The results of testing the modules on their intended systems were of mixed 

quality. In cases which the call to the module resulted in error, the base EMU-Phy system would 

often crash. A summary of the results of testing the modules is shown in Table 4.  

Table 4: Summary of Module Testing 

Method Operation OS Result Notes 

Scrawkov-

Phy  

Gene Tree  Windows (7,8,10) Success Unconditional Success 

Scrawkov-

Phy 

Species Tree  Windows (7,8,10) Success Unconditional Success 

Scrawkov-

Phy 

Gene Tree  Linux 

(Ubuntu/Fedora) 

Success Unconditional Success 

Scrawkov-

Phy 

Species Tree Linux 

(Ubuntu/Fedora) 

Success Unconditional Success 

 

Scrawkov-

Phy 

Gene Tree  OSX (Mavericks) Success Unconditional Success 

Scrawkov-

Phy 

Species Tree OSX (Mavericks) Success Unconditional Success 

ClustalW Alignment Linux (Ubuntu, 

Fedora) 

Success Unconditional Success 

PHYLIP dnadist Linux (Ubuntu, 

Fedora) 

Conditional 

Success 

Success conditional upon Perl 

installation 

PHYLIP neighbor Linux (Ubuntu, 

Fedora) 

Conditional 

Success 

Success conditional upon Perl 

installation 

PHYLIP dnadist Windows Failure Failure, even with installation of 

Strawberry Perl 
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PHYLIP neighbor Windows Failure Failure, even with installation of 

Strawberry Perl 

BEAST *BEAST 

(Species Tree) 

OSX Failure Tutorials include BEAUti, limited 

tutorials on command line interface 
Fisk 2016     

 

 

 

Figure 2: Schematic Diagram of the filesystem used in EMU-Phy. Circles represent directories 

and squares represent files. Arrows from circles all indicate subdirectories or links. Arrows from 

squares represent transfer or copying of data. The sole diamond represents system level 

interactions with external programs via Java system calls.  For simplicity, the input connections 

are not shown.  

Below are selected screenshots of the program being executed and interacted with. 

Associated above each screenshot are captions describing the process being depicted, as well as 

comments if anything of particular note, is shown.  
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The welcome prompt upon instantiation of EMU-Phy: 

 

 

Installation of the internal file system used by EMU-Phy. The optional example data is installed 

 

 

The show command used in two different manners--First with the show and the option selected 

separately and secondly with the command truncated into one line.  
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Addition of a new group to the database 

 

 

Displaying the groups in the database. Note the cancel command to terminate the addition of 

multiple groups 

 

 

Manual addition of a gene to a taxon via the direct method. Alternatively, a path to a FASTA 

formatted file would be accepted.  
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Display of the genes available for a particular taxon. Note that the available taxa can be listed 

by the display command within the show command.  

 

 

Figure 3: A collection of sample internal commands available in EMU-Phy. For a full list of 

commands available, see the documentation available at the aforementioned GitHub or use run 

the program and enter ‘help’.  
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Discussion:  

 Ultimately, the base EMU-Phy program is complete and ready for release. It has 

particularly useful in repeating analyses as new data trickles in. However, the module 

components are lacking in both complete functionality and volume, severely limiting its utility. 

Naturally, Scrawkov-Phy worked easily as it was developed concurrently with EMU-Phy. 

Indeed, most of the tests performed in the development and characterization of Scrawkov-Phy 

were performed using EMU-Phy. Additionally, the simplicity of the ClustalW command line 

interface made the construction of a module for it relatively straightforward. Other modules, 

however, did not achieve nearly the desired level of functionality due to various obstacles. 

 EMU-Phy operates on the assumption that a user attempting to use a module has the 

underlying program installed on their machine. Thus, a logical approach that was utilized here 

was to use system calls from Java to run the programs and then redirect the output into the 

location it needed to be in the file system. However, PHYLIP, while command line based, still 

requires user interaction for proper function, even if the input and output files are provided 

explicitly. Thus, a simple operating system call from Java is insufficient for the module for 

dnadist and neighbor. However, utilization of a Perl script which passes in input to the program 

granted success in the Linux cases. However, Windows does not natively support Perl and, even 

when the popular Strawberry Perl is present on the machine, the script will not function properly 

and the call to PHYLIP fails. Thus, a Java based analog to this Perl script need be developed for 

the module to be fully realized.  *BEAST is a beast of a program which is part of a larger suite of 

programs. While a large number of tutorials exist for the program, most of them are for tools as 

used through their BEAUti106 GUI interface, which made the development of a module more 

difficult than anticipated.  

 There are a number of features that, if implemented, would greatly improve the efficacy 

and utility of EMU-Phy as a tool. Firstly, a vignette could be constructed that highlights the key 

features of using, and potentially developing for, EMU-Phy. The infrastructure for such a 

walkthrough was included, as the installation optionally includes example files on which such a 

vignette could be based. This will allow users to more effectively and quickly learn the basics of 

the tool, which is imperative if a widespread audience is to be reached. Furthermore, the program 
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could be given to testers with differing levels of command line experience. The program could 

then be iteratively improved based on the feedback of the testers. 

 While Scrawkov-Phy has potential as a tool, it is by no means a well-fleshed or 

universally accepted tool for phylogenetic analysis. An improvement upon EMU-Phy would be 

the bundling of additional software for this analysis along Scrawkov-Phy. Preferably, such a 

program would be relatively portable and generally well regarded. PHYLIP, in this case, fits the 

bill, as all it requires is a C compiler to install. Additionally, the most recent release of the 

PHYLIP source code was released under a license that would allow such a bundling to occur, in 

contrast to previous releases. The coupling of a more mature program, such as PHYLIP, with 

EMU-Phy would significantly enrich the tool. 

 A key functionality held by many phyloinformatic applications is the ability the interface 

with NCBI to retrieve sequences. The ability of a user to add genes or taxonomy using NCBI’s 

nucleotide and taxonomy databases respectively would make the tool more diverse and useful in 

its input. Luckily, there is a Java ABI available for interfacing with Entrez that could likely be 

implemented in EMU-Phy with relative ease in the future.  

 Critically, EMU-Phy does not have any modules developed for it that allow for the use of 

protein sequences. Undoubtedly, if the tool is allowed to mature, implementations for protein 

based phylogeny methods would need to be realized. There are several candidates that may allow 

for protein trees in EMU-Phy, such as RAxML or PhyML.  

 Ultimately, though the base program is fully functional, the lack luster performance of 

modules presented here prevents EMU-Phy from proceeding out of development. However, the 

program itself reasonably achieves the scope and principles laid out in its software design goals. 

The infrastructure was designed with extensibility in mind. Additionally, the filesystem is simple 

enough for advanced users to script large datasets, such as the full primate dataset, without using 

the tool to add data, while retaining a simple user interface for the uninitiated. Largely, projects 

such as EMU-Phy are initiated as community projects, either with groups of like-minded 

individuals or scientific collaborators. If EMU-Phy is ever to grow and be used, the interfaces 

must be clearer, more robust, and follow an easily explainable API so that a community, rather 

than a single developer, can construct usable modules for it.  
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 All and all, EMU-Phy provides a solid data management system that falls flat on the 

analytics aspect of phyloinformatics. It has potential for easing users into a command line 

environment and provides a number of features that would be appreciated by advanced and 

novice informaticians. EMU-Phy is an ambitious phyloinformatics project that will ultimately 

require community support if it is ever realistically going to catch on. However, the small scale 

implementation of such a tool is a useful exercise for those interested in phyloinformatics and, 

thus, EMU-Phy has additional potential as an educational tool or exercise.  
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Chapter 3 

  
Work Toward the Development of Scrawkov-Phy 

into a Competitive Method for Phylogenetic 

Inference 
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Background: 

 

Scrawkov-Phy: Scrawkov-Phy is an alignment free phylogeny tool that uses a second 

order Quasi-Hidden Markov model (QHMM) and six genomic features in-lieu of traditional 

comparison of orthologous sites. As discussed in the Chapter One of this document, Scrawkov-

Phy has a number of improvements that needed to be made in order for the algorithm to be fully 

tested for robustness and potentially ascend to become a competitive or, minimally, useful tool. 

The foremost of the improvements that merit priority are the parallelization of the algorithm and 

the introduction of a non-parametric sampling methodology to allow for a metric of confidence 

for particular nodes, as well as more meaningful comparisons to other trees.  

Parallelism and Scrawkov-Phy: Parallel computing is the truly concurrent execution of 

multiple commands on a computing system. With the exception of abstract cores like those used 

in hyperthreading, in general, each core of a processor may execute a single command at a time. 

These cores can be virtual, physical, or even part of a GPU. Parallel programming takes 

advantage of the existence of several cores in a system to execute code more quickly. The design 

of parallel programs requires careful consideration of the problem. The minimization of context 

switches, effective implementation of instruction lookaheads, and efficient use of cores are just a 

few examples of design aspects which merit attention in the creation of parallel programs. 

However, not every problem lends itself to parallel approaches. There are a number of 

characteristics a problem or algorithm should display if a parallel approach is to be considered. If 

the problem requires largely serial code to be executed often, the overhead of threading the 

operations or writing the code itself may not be worth the return. Parallel computing has become 

a necessity for handling big data, like that caused by the genomic revolution in biology. Many 

problems that are infeasible with serial computing suddenly become plausible or even easy with 

well-designed parallel implementations.  Luckily, Scrawkov-Phy and phylogeny reconstruction 

itself lend themselves well to parallel solutions.  
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 The idea of parallelizing code in phylogenetic reconstruction is far from novel. Any 

number of methods use parallel computing in at least some aspect of their algorithm. Version 2 

of BEAST, which infers phylogenies based on Bayesian statistics, has become increasingly 

popular due to its highly parallelized approach resulting in phenomenal speedup in a robust 

methodology that would otherwise take large sums of time. Notably, the Bayesian estimation of 

trees is traditionally and almost exclusively carried out by Markov chain Monte Carlo (MCMC) 

methods, such as the Metropolis coupled MCMC [(MC)3].107 BEAST and MrBayes108, then, take 

advantage of properties of the problem and their mathematical approach to the solution to 

implement impressive parallel solutions to phylogenetic inference. Many of these properties are 

shared by Scrawkov-Phy, which uses a QHMM and shares the Markov namesake with MCMCs. 

 A model or system demonstrates the Markov property if the probability distribution of 

future states are dependent only upon the state currently being observed. MCMCs, much like the 

coalescent, are popular in population genetics and were highly adaptable for phylogenetic 

analysis. Similarly, QHMMs display this Markov property of timelessness. This property is key 

for the parallelization of Scrawkov-Phy. Since the transition probabilities used in the QHMM do 

not rely on any previous information about prior states, the calculation of log probabilities can be 

threaded and solved in subsets before ultimately being incorporated into the Markov Chain 

Composite Index (MCCI) used in the phylogenetic reconstruction. Timelessness and 

independence of common computing resources make this calculation a desirable target for 

parallelization. There are other aspects of Scrawkov-Phy that lend themselves to parallelization 

as well. 

 The construction of species trees in Scrawkov-Phy is dependent upon the calculation of 

individual, constituent gene trees. However, the construction of these trees are independent of 

each other. Thus, the calculations leading to the construction of each individual gene tree can 

also be run in parallel. Though all trees would need to be calculated for the species tree to run, 

the necessary sub-problems (e.g. the gene trees) could be run in parallel, rather than serially. 

Moreover, 5 of the 6 features (the exception being GC content) lend themselves to being 

parallelized as well. The DNA sequence can be fragmented into pieces and the measured 

properties can be measured independently of other features. While breaking each of these 5 

calculations into several sub-problems may cause unnecessary overhead in short sequences, it 
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may be invaluable in increasing the throughput of whole genome data. Furthermore, each of the 

6 feature measurements are independent from each other in the current implementation. This 

suggests that, minimally, each of the 6 features can be measured concurrently, even if the 

measurements are not broken up for parallelization.  The other improvement discussed in the 

present, non-parametric resampling, would also be a great target for parallelization as each 

subsample can be analyzed independently of each other.   

Bootstrapping, Jackknifing, and Scrawkov-Phy: Non-parametric resampling methods are 

cornerstone methods for constructing and evaluating phylogenetic trees. While parametric 

methods exist, they have yet to have the support of the community and the comparative efficacy 

of each of the methods is a topic of active debate. Of the non-parametric resampling methods, 

bootstrapping and jackknifing are the well-established methods commonly employed for 

consensus tree generation. Bootstrapping and jackknifing are extremely similar in design and 

execution, though they vary in philosophical and statistical justifications. Simply put, the 

difference between the two is simply that bootstrapping methods allow for replacement while 

jackknifing methods do not. For the purpose of this paper, only bootstrapping will be considered, 

as it is more popular among competitive phylogenetic inference programs, though many of the 

same principle undoubtedly apply to both.  

 Bootstrapping, in the context of phylogenetic analysis, is used to test the reliability of a 

phylogenetic tree. Originally described by Felenstein109, this bootstrap test has become 

widespread in its application and some software will even collapse groupings into polytomies if 

the bootstrap value is unsatisfactory. Bootstrapping is performed by sampling some length of 

nucleotides or amino acids from every sequence and performing the inference analysis with at 

these samplings some number of times. While the implementation of the sampling is method 

dependent (i.e. selection of values from a matrix, etc.), the result is typically the same: A large 

quantity of trees are generated from the sampling sequences. The topology of each of these trees 

is then compared to the topology of the original tree. A percent agreement of the topology of the 

original tree to all the sampled trees is calculated for each interior branch and displayed. While 

the exact percentage for significance is oft debated, the higher the percentage agreement, the 

more confidence can be had in that interior branch. Due to this method being one of few extant 

methods for tree comparison, having widespread implementation, and generally being positively 
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received, any method aiming to compete with the current methods must have nonparametric 

sampling as a requisite.  

Challenges in Bootstrapping and Parallelization: As has been verbosely established, if a 

method is to become competitive or widely applied in the field of phylogenetics as it exists 

today, the said method must be parallelizable and either contain a method or support a method 

that allows for tree evaluation through non-parametric sampling. However, there are notable 

challenges that come with incorporating these features into Scrawkov-Phy.  

 As previously stated, typically the most effective parallel programs are those who have 

been implemented with parallel design principles ab initio. The adaptation of existing programs 

to support parallelization often requires an entirely new development period as much of the code 

or subroutines are not of a framework well suited for parallelization. One strategy for the 

implementation of parallel code in an existing software is to implement parallel computation 

where it is naturally facilitated already within the framework of the code. Then, when a new-full 

blown release of the program is released, a proper parallel implementation can be included. 

However, the speedup gained by such an approach is limited and does not scale as well. Instead, 

it reduces the overhead of creating new code, creating a compromise between developing time 

and run time. Scrawkov-Phy was not designed with a parallel implementation in mind. Thus, the 

internal data structures may limit the parallel implementation, despite its mathematical model 

being so highly conducive to it.  The lack of a parallel framework is not the only challenge that 

Scrawkov-Phy faces if it is to become more competitive.  

 Bootstrapping was implemented and described over 30 years ago and has held as a 

method for traditional tree-building since109. The approach is robust and has been shown to be 

relevant to phylogenetic inference, despite critiques110.  However, it is largely unexplored if this 

approach would hold the same significance when applied to alignment free systems which do not 

rely on the direct comparison of orthologous sites. The underlying biological principles are 

different, though the true signal each method attempts to measure should be the same. The 

discussion of the statistical relevance of parametric versus non-parametric methods and their 

efficacy when used on alignment free approaches is beyond the scope of the present. However, it 

is important to note that the branches with high support by bootstrapping Scrawkov-Phy do not 

necessarily imply the correctness of the recovered tree, nor does low-branch support necessarily 
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disqualify the tree. Until the mathematical models are more fully explored and linked to the 

biology, limited conclusions should be drawn. However, the need to evaluate the efficacy of 

bootstrapping on alignment free models necessitates the implementation thereof—a method that 

does not exist cannot be tested.  

Other Improvements to Scrawkov-Phy In addition to paralleization and bootstrapping, 

there are a number of other improvements to Scrawkov-Phy that would vastly improve its utility, 

many of which are discussed in Chapter One of the present. The ability to write the MCCI as a 

PHYLIP formatted distance matrix would allow for more sophisticated tree-building methods to 

be used, subverting the issues caused by UPGMA. Likewise, incorporating the basic Neighor-

Joining34 method in Scrawkov-Phy will allow for better characterization of the method and better 

facilitate its comparison to other methods. Lastly, the option to alter the k-mer size used in the 

QHMM to a larger length to better account for k-mer homoplasy is introduced.  
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Methods: 

Due to the design aim of Scrawkov-Phy being system independent and completely self-

contained, development of the parallel version of Scrawkov-Phy was continued in Java. To 

enhance the rate in which a parallel version could be developed, an external library is used. The 

Parallel Java 2 library, written by Alan Kaminsky111, is an entirely Java library that facilitates the 

development of parallel code in Java and is available under a GNU GPL v.3 license. It is 

middleware that significantly reduces the overhead involved in parallel programming as it is 

available in Java. Likewise, the bootstrapping tree functionality is being designed as a method 

within the main Scrawkov-Phy Java file, taking advantage of the in-place infrastructure to 

generate the trees. Both functionalities are partially completed.  

The neighbor-joining tree method implemented was tested with the small primate NADH 

dataset and with the larger, whole genome filovirus dataset. The ability to use k-mers of any 

length were tested using the whole genome filovirus dataset. K-mers used were of size 12 and 

20. These trees were all constructed using the aforementioned neighbor-joining implementation.  
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Results: 

Parallelization: The computation of the codon bias feature as determined by Scrawkov-

Phy was completed. The function was tested and the improved speedup of the function was 

tested iteratively. The function was run with 4 cores on a single node on the RIT Research 

Computing Cluster. The results are shown graphically in Figure 1, below. 

 

Figure 1: The average speedup observed in the codon bias computation as a function of 

increasing number of taxa. All computation was performed on the BRCA2 gene sequences from 

the primate dataset. 30 iterations were performed. 

 

In addition to the parallelization of the codon bias computation, the creation of species trees was 

parallelized by running the constituent gene tree calls equally among available cores. The species 
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tree method was run with 4 cores on a single node on the RIT Research Computing Cluster. The 

results are shown graphically in Figure 2, below. 

 

 

Figure 2: The average speed-up of the construction of a species tree over an increasing number 

of taxa. The same 4 genes from the aforementioned primate study were used in each iteration: 

ABCA, BRCA2, CNR1, and MBD5. 30 iterations were performed.  

 

Bootstrapping:  Scrawkov-Phy now has the ability to create bootstrapping trees 

from gene tree datasets. It uses the infrastructure in place, as well as some new command line 

arguments to do so. The generation of the data subsets is performed as a call to the ‘gene’ 

functionality with an additional argument: 

java ScrawkovPHY gene nameOfInput.fasta -o treeOutputFilename.nwk --bootSeq true –numBoots 100 

 The above command will generate a gene tree with the data to the desired output filename. 

Additionally, with the bootSeq argument, a bootstrapping dataset is created and saved to a 

temporary directory. The numBoots argument allows control of the number of iterations for 
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bootstrapping. To complete the creation of the bootstrapping trees, a second command must be 

executed, this time using the ‘species’ functionality: 

java ScrawkovPHY species --folder tmp --outputAll true --bootSeq true 

The above command will generate gene trees for each of the bootstrapping samples contained in 

the tmp directory. The outputAll argument, which is also available in the regular function of the 

species tree command, indicates to the program that all constituent gene trees of the species tree 

should be saved to file. In the case of this species tree command, bootSeq instructs the program 

to not construct a final species tree, as it would have little practical application here, though the 

functionality is preserved. The result are a large number of bootstrapped trees ready for 

comparison to the tree that was also generated in the first command.  

 The programmatic determination of the percent bootstrapping support is still in 

development. Newick formatted files may contain information about bootstrapping confidence 

and are also the proper format needed for such a comparison. However, the internal data 

structure used in the construction of the constituent trees may provide a faster alternative than 

reading the files in and parsing them back out. A sample set of 10 bootstrapping trees for the 

NADH dehydrogenase gene in a subset of primates was constructed and manually examined for 

efficacy. 9 of the 10 bootstrapped trees matched the topology of the gene tree precisely. The 

other tree conflicted only in the resolution of humans, chimps, and gorillas. It inverted the 

placement of gorillas and chimps.   

Neighbor-Joining and Variable Length K-mer: The neighbor joining tree generated by 

Scrawkov-Phy for the small primate NADH gene is shown below in Figure 3.  
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Figure 3: The result of applying the in-place neighbor joining algorithm to a small NADH 

dataset in select primates. Note that the tree topology is the same as that obtained in Chapter 1, 

but the branches are now of a variable length. 

 

Additionally, the program can now write out the distance to a PHYLIP formatted distance matrix 

file, either mirrored or just the diagonal, as shown in Figure 4.  
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Figure 4: Scrawkov-Phy is capable of generating and writing PHYLIP style distance formatted 

matrices, be it fully mirrored (top) or along the diagonal (bottom). The file was capable of being 

read and used by PHYLIP’s neighbor program. The flag ‘—diagMat’ controls which is 

outputted.  

To test the k-mer method, which was implemented to address the possible issue of 

homoplasy, a neighbor joining tree was produced for the original method, the method using a 12-

mer, and using a 20-mer. All three trees are visualized in Figure XX below.  
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Figure 5: Three NJ trees reconstructed from whole Filovirus genomes. The original Scrawkov-

Phy (top) did not recover quite as nice as a topology as the 12-mer (middle) and 20-mer (bottom) 

methods. As described by Fan et al12, there appears to be a delicate balance in the selection of K-

mer size, as the 12mer seemingly recovers a better tree than the 20-mer method. Of course, this 

conjecture needs validation by bootstrapping. 
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Discussion: 

 The continued development of Scrawkov-Phy is underway and tangible progress has 

been made on both the evaluation of tree quality via non-parametric sampling and in the 

parallelization of the code. There are still a number of principles that must be described in order 

to consider the method robust, especially concerning the efficacy of using sampling to evaluate 

tree quality. On one hand, the bootstrap is a standard used widely in phylogenetics. On the other 

hand, QHMMs are a basic form of machine learning which construct better and better models the 

more data is present. Individual genes can be short and the further generation of sequence subsets 

may severely limit the algorithm’s ability to learn. Using bootstrapping may be more appropriate 

with large, genome size data so that features may still be properly characterized. While principles 

such as k-fold validation exist in machine learning, further research will be necessary to 

determine if and when approaches should be used and if they would be comparable to the 

bootstrap as it is used in other applications.  

 The result of the prototyped bootstrapping testing set was interesting. In this case, the 

gene tree constructed with Scrawkov-Phy (which is also supported by other methods, as shown 

in Chapter 1 of the present document) was in almost total agreement with its bootstrapping trees. 

The placement of Pan versus Gorilla with humans is not uncommon among particular datasets, 

which made the resolution of the primate tree difficult for some time. This near-miss is notable 

because it has been previously described and has biological relevance.  

 The parallelization of the codon bias method resulted in a method that was softly parallel. 

The return on cores was not one to one, even as the number of taxa increased. This is an 

expected result, as the method was not written with parallel design principles in mind. Additional 

cores may improve the return, but it is notable that the number of taxa steadily and significantly 

improved the speedup, perhaps implying that parallelization may be best utilized for datasets 

with large number of taxa. The species tree method, on the other hand, did not return on the 

number of cores as well as was expected. Since each gene tree is constructed independently and 

due to the relative simplicity of the method used to construct the final species tree from gene 

trees, the speedup was expected to be closer to the number of cores used. This method had a 

better speedup than the codon bias function, but it was still not nearly as scalable to cores as is 
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desirable. Interestingly, the same trend was observed in the species tree and codon bias methods, 

where the number of taxa results in a better overall speedup, again implying that parallelization 

may best suited to trees with large numbers of taxa.  

 In the continued development of the bootstrapping function, an opportunity to repurpose 

old code has been identified. In essence, the hill-climbing algorithm (described in chapter one of 

the present) compares the topology of generated trees to well resolved tree to generate parameter 

weights for the algorithmic determination of phylogeny. This comparison of topology is crucial 

for the next step in implementing a bootstrapping method and would require only minor 

alterations to achieve the desired result. Likewise, jackknifing can be implemented simply by 

changing the way the current method subsamples sequences.  

 All in all, the prototype methods for parallelism and bootstrapping were modestly 

successful. This modest success is an indicator that development of the methods should continue. 

If the example parallelization had been arduous to develop or had minimal return, that result 

would have been an indicator to either abandon the prospect or rework the framework to enable 

parallelization. Likewise, if there was not a way to easily utilize the existing functions available 

in Scrawkov-Phy, the bootstrapping tree generation may have been better off as a separate 

program. Similarly, if the programmatic evaluation of the bootstrapping trees does not fit within 

the framework provided by Scrawkov-Phy, it may be more prudent to include the function as a 

separate program to best conform to best practices in code design. It may also be wise to narrow 

the taxonomic focus of the algorithm, perhaps focusing more on prokaryotes, as the demand and 

approach may better apply.  

 Neighbor-joining was successfully implemented and incorporated into Scrawkov-Phy. 

This incorporation was necessary as the UPGMA method is generally not accepted as being a 

rigourous tree-building method by many due to its reliance on mid-point rooting. Such rooting 

assumes ultrametric evolution, which is not a biologically rigourous assumption and yields sub-

par and inconsistent results112.While neighbor-joining has its faults, it is a standard for distance 

approaches to phylogenetic reconstruction. Though algorithm can recover the same topology, as 

shown in the primate dataset. Notably, implementing the NJ also allows for the collapse of nodes 

into a polytomy when distance is short and no bootstrapping test has been performed occurred.  

It is interesting to note that, for the filovirus data set, the default Scrawkov-Phy did not produce a 
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high-quality NJ-tree. In that instance, the UPGMA tree displayed in Chapter 1 recovered a 

topology more closely representing the natural history of the family.  This is remedied, however, 

by increasing the k-mer length. The 12-mer method recovered correct clustering for all the 

families—a notable improvement from the UPGMA tree in Chapter 1.  

There are still many things to improve upon if Scrawkov-Phy if it is ever to be a 

competitive tool for phylogenetic analysis, but the modest successes presented here show that 

such improvements are possible. Neighbor joining and the ability to use any length k-mer were 

completed in their entirety and incorporated into the program. The provisional success of the 

bootstrapping and parallel components suggest that further improvements of this nature will be 

compatible with the algorithm and that there is merit in performing such improvements.  
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Closing Remarks 

 This work ties together, at some level, many facets of the field of phylogenetics as it 

exists today. Within it are attempts at the creation of new methods and data management 

techniques, but also exploration of the traditional methods and the biology on which they are 

based.  Many of the methods used in phylogenetic analysis today were described decades ago 

and are still used today, with computational improvements. The introduction of big data has led 

to paradigm shifts and novel methods for managing phylogenetic data and analyzing it when 

traditional methods fail. In these ways, phylogenetics is both a very old field and a very new one. 

There are and will continue to be disagreements in the field about proper methods, the limitations 

of inference, and the interpretation of results. However, this is also a field that contains a set of 

some of the most unique challenges in addressing some of the most interesting questions about 

an unobservable past. While phylogenetic inference is just that—inference—the foundational 

nature of the field, the questions it poses, and its application in such a wide range of disciplines 

promise that the field will continue to mature, modernize, and motivate for generations.  
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Supplemental Material 

SF1: The species tree by Scrawkov-Phy of the 181 primate species over 52 loci in a traditional 

cladogram view. A full size pdf or png file is available request. Each of the subsequent 4 pages 

contains a piece of the figure, taken from top to bottom.   
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SF2: Filovirus whole genome tree from original study 
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SF3: The cladogram view of the Passeriformes CYTB tree as constructed by Scrawkov-Phy. A 

full size png/pdf file is available upon request. This and the subsequent 2 pages contain the tree, 

top to bottom.  
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SF4: The cladogram view of the Passeriformes CYTB tree as constructed by Clustal. A full size 

png/pdf file is available upon request. This and the subsequent 2 pages contain the tree, top to 

bottom. 
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SF5: Example gene trees created en route to the primate species tree by Scrawkov-Phy.  
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Code used in Scrawkov-Phy  
(all code is stylistically minimal to decrease print-size. Properly stylized code can be found at the github under the 

user nickjfisk) 

 
///ScrawkovPHY.java 
import java.io.BufferedReader; 
import java.io.File; 
import java.io.FileNotFoundException; 
import java.io.FileReader; 
import java.io.FileWriter; 
import java.io.IOException; 
import java.io.PrintWriter; 
import java.io.UnsupportedEncodingException; 
import java.util.ArrayList; 
import java.util.Collections; 
import java.util.HashMap; 
import java.util.HashSet; 
import java.util.Set; 
/** 
 *  
 * @author J. Nick Fisk 
 * Main class for the alignment free phylogeny algorithm, Scrawkov-Phy. 
 */ 
public class ScrawkovPHY{ 
 //all the data from one file (as separated by newlines) 
 public static ArrayList<String> allData=new ArrayList<String>(); 
 //the names of the taxa in order of appearance (to conserve sequence, name order) 
 public static ArrayList<String> finchInOrder=new ArrayList<String>(); 
 //sequences in name-sequencce order in the desired format  
 public static ArrayList<String> formatedSeqList=new ArrayList<String>(); 
 //ID to bird object pairings. Basically ID sequence pairs.  
 public static HashMap<String, Bird> birdMap=new HashMap<String, Bird>(); 
 //contains all of the standard codons.  
 public static ArrayList<String> allCodons=new ArrayList<String>(); 
 //contains all of the standard dinucs 
 public static ArrayList<String> allDinucs=new ArrayList<String>(); 
 //key for going from codons to AA 
 public static HashMap<String,String> codonAAMap=new HashMap<String,String>(); 
 //goes from AA to a list of possible codons 
 public static HashMap<String,ArrayList<String>> AAcodonMap=new HashMap<String, 
ArrayList<String>>(); 
 //has the scores for one gene tree. 
 public static HashMap<String,HashMap<String,Double>>initScores=new 
HashMap<String,HashMap<String,Double>>(); 
 //public static HashMap<String,HashMap<Integer,HashMap<String,Double>>> QHMMTri=new 
HashMap<String,HashMap<Integer,HashMap<String,Double>>>(); 
 //public static HashMap<String,HashMap<Integer,HashMap<String,Double>>> QHMMDi=new 
HashMap<String,HashMap<Integer,HashMap<String,Double>>>(); 
 public static HashMap<String,HashMap<String, Double>> QHMMTri_final=new 
HashMap<String,HashMap<String, Double>>(); 
 public static HashMap<String,HashMap<String, Double>> QHMMDi_final=new 
HashMap<String,HashMap<String, Double>>(); 
 public static HashMap<String,HashMap<String,HashMap<String,Double>>> allScoresByGene= new 
HashMap<String,HashMap<String,HashMap<String,Double>>>(); 
  
 public static int k=-1; //kmer size. If negative (default), two will be used.  
 private static boolean doNJ=true; //NJ tree desired 
 private static String njOut=""; //name of njOut file 
 public static boolean maxByPair=true; //default behaviour should be true 
 private static boolean normalize=true; //default should be true 
 private static String geneOrSpecies="gene"; //default to gene 
 private static ArrayList<String> fastaFiles=new ArrayList<String>(); //keep track of all the files 
for species trees 
 private static String outputFile=null; //UPGMA output 
 private static String usage="Usage: java ScrawkovPHY <treetype> <inputFasta> <optionalParams>"; 
 private static double weightGC=10;  
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 private static double weightBias=.01; 
 private static double weightTriFreq=1; 
 private static double weightDiFreq=1; 
 private static double weightTriQHMM=.00005; 
 private static double weightDiQHMM=.00005; 
 private static boolean outputAll=false; 
 private static boolean bootSeq=false; 
 private static String outBoot=null; 
 private static boolean diag=false; 
  
 
 //Globally available parameters 
 /** 
  * Parses the command line arguments and sets globals accordingly 
  * @param params are the command line arguments in a arraylist 
  */ 
 private static void parseParams(ArrayList<String> params){ 
  //ask the magic counch 
  //"Nothing." 
  //THE COUNCH HAS SPOKEN! 
  if(params.get(0).equals("gene")||params.get(0).equals("Gene")){ 
   geneOrSpecies="gene"; 
   params.remove(0); 
   fastaFiles.add(params.get(0)); //only one fasta file 
   params.remove(0); 
   File f = new File(fastaFiles.get(0)); 
   if(!f.exists()){ 
    System.err.println("File does not exist"); 
    System.err.println(usage); 
    System.exit(1);} 
   if(f.isDirectory()){ 
    System.err.println("Input file is actually directory"); 
    System.err.println(usage); 
    System.exit(1);}} 
  else if(params.get(0).equals("species")||params.get(0).equals("Species")){ 
   geneOrSpecies="species"; 
   params.remove(0); 
   if(params.isEmpty()){ 
    System.err.println("No input files provided"); 
    System.err.println("Exiting..."); 
    System.err.println(usage); 
    System.exit(1);} 
   if(params.get(0).equals("--folder")){ 
    File folder=new File(params.get(1)); 
    File[] listOfFiles=folder.listFiles(); 
    for(int i=0; i<listOfFiles.length;i++){ 
     if(listOfFiles[i].isFile()){ 
      fastaFiles.add(listOfFiles[i].getAbsolutePath());}} 
    params.remove(0); 
    params.remove(0);} 
   String curFile=params.get(0); 
   while((curFile.charAt(0)=='-')==false){ 
    fastaFiles.add(curFile); 
    params.remove(0); 
    curFile=params.get(0);} 
   for(String i:fastaFiles){ 
    File f = new File(i); 
    if(!f.exists()){ 
     System.err.println("File does not exist"); 
     System.err.println(usage); 
     System.exit(1);} 
    if(f.isDirectory()){ 
     System.err.println("Input file is actually directory"); 
     System.err.println(usage); 
     System.exit(1);}}} 
  else if(params.get(0).equals("--help")||params.get(0).equals("-h")){ 
   printHelp(); 
   System.exit(0);} 
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  else{ 
   System.err.println("Invalid tree type. Valid values are 'gene' and 'species'"); 
   System.err.println(usage); 
   System.exit(1);} 
  while(!params.isEmpty()){ 
   String curFlag=params.get(0); 
   params.remove(0); 
   if(params.isEmpty()){ 
    System.err.println("Unpaired flag "+ curFlag); 
    System.err.println("Exiting..."); 
    System.err.println(usage); 
    System.exit(1);} 
   String curValue=params.get(0); 
   params.remove(0); 
   switch(curFlag){ 
    case "--maxByPair": 
     switch(curValue){ 
      case "T": 
       maxByPair=true; 
       break; 
      case "t": 
       maxByPair=true; 
       break; 
      case "true": 
       maxByPair=true; 
       break; 
      case "True": 
       maxByPair=true; 
       break; 
      case "TRUE": 
       maxByPair=true; 
       break; 
      case "F": 
       maxByPair=false; 
       break; 
      case "f": 
       maxByPair=false; 
       break; 
      case "false": 
       maxByPair=false; 
       break; 
      case "False": 
       maxByPair=false; 
       break; 
      case "FALSE": 
       maxByPair=false; 
       break; 
      default: 
       System.err.println("Invalid value for 
maxByPair"); 
       System.err.println("Exiting..."); 
       System.err.println(usage); 
       System.exit(1); 
       break; 
     } 
     break; 
    case "--outputFile": 
     outputFile=curValue; 
     break; 
    case "-o": 
     print(curValue); 
     outputFile=curValue; 
     break; 
    case "--kSize": 
     k=Integer.parseInt(curValue); 
     break; 
    case "--doNJ": 
     switch(curValue){ 
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      case "T": 
       doNJ=true; 
       break; 
      case "t": 
       doNJ=true; 
       break; 
      case "true": 
       doNJ=true; 
       break; 
      case "True": 
       doNJ=true; 
       break; 
      case "TRUE": 
       doNJ=true; 
       break; 
      case "F": 
       doNJ=false; 
       break; 
      case "f": 
       doNJ=false; 
       break; 
      case "false": 
       doNJ=false; 
       break; 
      case "False": 
       doNJ=false; 
       break; 
      case "FALSE": 
       doNJ=false; 
       break; 
      default: 
       System.err.println("Invalid value for doNJ"); 
       System.err.println("Exiting..."); 
       System.err.println(usage); 
       System.exit(1); 
       break;} 
      break; 
    case "--diagMat": 
     switch(curValue){ 
      case "T": 
       diag=true; 
       break; 
      case "t": 
       diag=true; 
       break; 
      case "true": 
       diag=true; 
       break; 
      case "True": 
       diag=true; 
       break; 
      case "TRUE": 
       diag=true; 
       break; 
      case "F": 
       diag=false; 
       break; 
      case "f": 
       diag=false; 
       break; 
      case "false": 
       diag=false; 
       break; 
      case "False": 
       diag=false; 
       break; 
      case "FALSE": 
       diag=false; 
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       break; 
      default: 
       System.err.println("Invalid value for diagMat"); 
       System.err.println("Exiting..."); 
       System.err.println(usage); 
       System.exit(1); 
       break;} 
      break; 
    case "--njOut": 
     njOut=curValue; 
     break; 
    case "--bootSeq": 
     switch(curValue){ 
      case "T": 
       bootSeq=true; 
       break; 
      case "t": 
       bootSeq=true; 
       break; 
      case "true": 
       bootSeq=true; 
       break; 
      case "True": 
       bootSeq=true; 
       break; 
      case "TRUE": 
       bootSeq=true; 
       break; 
      case "F": 
       bootSeq=false; 
       break; 
      case "f": 
       bootSeq=false; 
       break; 
      case "false": 
       bootSeq=false; 
       break; 
      case "False": 
       bootSeq=false; 
       break; 
      case "FALSE": 
       bootSeq=false; 
       break; 
      default: 
       System.err.println("Invalid value for bootSeq"); 
       System.err.println("Exiting..."); 
       System.err.println(usage); 
       System.exit(1); 
       break;} 
      break;  
      
    case "--outputAll": 
     switch(curValue){ 
      case "T": 
       outputAll=true; 
       break; 
      case "t": 
       outputAll=true; 
       break; 
      case "true": 
       outputAll=true; 
       break; 
      case "True": 
       outputAll=true; 
       break; 
      case "TRUE": 
       outputAll=true; 
       break; 
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      case "F": 
       outputAll=false; 
       break; 
      case "f": 
       outputAll=false; 
       break; 
      case "false": 
       outputAll=false; 
       break; 
      case "False": 
       outputAll=false; 
       break; 
      case "FALSE": 
       outputAll=false; 
       break; 
      default: 
       System.err.println("Invalid value for 
outputAll"); 
       System.err.println("Exiting..."); 
       System.err.println(usage); 
       System.exit(1); 
       break;} 
      break; 
    case "--normalize": 
     switch(curValue){ 
      case "T": 
       normalize=true; 
       break; 
      case "t": 
       normalize=true; 
       break; 
      case "true": 
       normalize=true; 
       break; 
      case "True": 
       normalize=true; 
       break; 
      case "TRUE": 
       normalize=true; 
       break; 
      case "F": 
       normalize=false; 
       break; 
      case "f": 
       normalize=false; 
       break; 
      case "false": 
       normalize=false; 
       break; 
      case "False": 
       normalize=false; 
       break; 
      case "FALSE": 
       normalize=false; 
       break; 
      default: 
       System.err.println("Invalid value for 
normalize"); 
       System.err.println("Exiting..."); 
       System.err.println(usage); 
       System.exit(1); 
       break;} 
     break; 
     //--weightGC --weightCodon --weightTri --weightDi 
    case "--weightGC": 
     if(isDouble(curValue)){ 
      weightGC=Double.parseDouble(curValue);} 
     else{ 
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      System.err.println("Invalid value for weightGC"); 
      System.err.println("Exiting..."); 
      System.err.println(usage); 
      System.exit(1);} 
     break; 
    case "--weightBias": 
     if(isDouble(curValue)){ 
      weightBias=Double.parseDouble(curValue);} 
     else{ 
      System.err.println("Invalid value for weightBias"); 
      System.err.println("Exiting..."); 
      System.err.println(usage); 
      System.exit(1);} 
     break; 
    case "--weightTriQHMM": 
     if(isDouble(curValue)){ 
      weightTriQHMM=Double.parseDouble(curValue);} 
     else{ 
      System.err.println("Invalid value for weightTriQHMM"); 
      System.err.println("Exiting..."); 
      System.err.println(usage); 
      System.exit(1);} 
     break; 
    case "--weightDiQHMM": 
     if(isDouble(curValue)){ 
      weightDiQHMM=Double.parseDouble(curValue);} 
     else{ 
      System.err.println("Invalid value for weightDiQHMM"); 
      System.err.println("Exiting..."); 
      System.err.println(usage); 
      System.exit(1);} 
     break; 
    case "--weightTriFreq": 
     if(isDouble(curValue)){ 
      weightTriFreq=Double.parseDouble(curValue);} 
     else{ 
      System.err.println("Invalid value for weightTriFreq"); 
      System.err.println("Exiting..."); 
      System.err.println(usage); 
      System.exit(1);} 
     break; 
    case "--weightDiFreq": 
     if(isDouble(curValue)){ 
      weightDiFreq=Double.parseDouble(curValue);} 
     else{ 
      System.err.println("Invalid value for weightDiFreq"); 
      System.err.println("Exiting..."); 
      System.err.println(usage); 
      System.exit(1);} 
     break; 
    case "--help": 
     printHelp(); 
     System.exit(0); 
     break; 
    default: 
     System.err.println("Invalid flag"); 
     System.err.println("Exiting..."); 
     System.err.println(usage); 
     System.exit(1); 
     break;}}} 
 
 /** 
  * The main function of the program, calling gene or species tree methods. 
  * It also instantiates all of the reference data structures.  
  * @param args command line arguments 
  * @throws IOException 
  */ 
 public static void main(String[] args) throws IOException { 
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  //populate some internal data structures 
  popAllCodons(); 
  popAllDinucs(); 
  popCodonMap(); 
  popAAtoCodonMap(); 
  //get the parameters into an arrayList 
  ArrayList<String> params=new ArrayList<String>(); 
  int parCount=0; 
  while(parCount<args.length){ 
   params.add(args[parCount]); 
   parCount+=1;} 
  //parse the params 
  parseParams(params); 
  if(geneOrSpecies.equals("gene")||geneOrSpecies.equals("Gene")){ 
   doGeneTree(params,fastaFiles.get(0));//get fasta for now 
   System.exit(0);} 
  else if(geneOrSpecies.equals("species")||geneOrSpecies.equals("Species")){ 
   doSpeciesTree(params); 
   ArrayList<String> allGeneTrees=new ArrayList<String>(allScoresByGene.keySet()); 
   ArrayList<String> allOrgs=new ArrayList<String>(); 
   for(String i: allGeneTrees){ 
    allOrgs.addAll(allScoresByGene.get(i).keySet());} 
   Set<String> allOrgsSet=new HashSet<String>( allOrgs); 
   allOrgs=new ArrayList<String>(allOrgsSet); 
   HashMap<String,HashMap<String,Double>>finScores=new 
HashMap<String,HashMap<String,Double>>(); 
   HashMap<String,HashMap<String,Integer>> countMap=new 
HashMap<String,HashMap<String,Integer>>(); 
   for(String i: allOrgs){ 
    HashMap<String,Double>tempu=new HashMap<String,Double>(); 
    HashMap<String,Integer>tempu2=new HashMap<String,Integer>(); 
    for(String j: allOrgs){ 
     if(i.equals(j)==false){ 
      tempu.put(j, 0.0); 
      tempu2.put(j,0);}} 
    finScores.put(i, tempu); 
    countMap.put(i,tempu2);} 
   //only valid for species tree construction 
   if(normalize==true){ 
    double max=getMaxScore(); 
    double miniMax=Double.MIN_VALUE; 
    for(String i: allScoresByGene.keySet()){ 
     for(String j: allScoresByGene.get(i).keySet()){ 
      for(String k: allScoresByGene.get(i).get(j).keySet()){ 
       if(miniMax<allScoresByGene.get(i).get(j).get(k)){ 
        //find the largest element in the map 
       
 miniMax=allScoresByGene.get(i).get(j).get(k);}}} 
     //normalize everything to be proportional 
     for(String j: allScoresByGene.get(i).keySet()){ 
      for(String k: allScoresByGene.get(i).get(j).keySet()){ 
       allScoresByGene.get(i).get(j).put(k, 
(allScoresByGene.get(i).get(j).get(k)*(max/miniMax)));}}}} 
   //sum all the scores 
   for(String j: allScoresByGene.keySet()){ 
    for(String q: allScoresByGene.get(j).keySet()){ 
     for(String h: allScoresByGene.get(j).get(q).keySet()){ 
      finScores.get(q).put(h, 
finScores.get(q).get(h)+allScoresByGene.get(j).get(q).get(h)); 
      countMap.get(q).put(h, countMap.get(q).get(h)+1);}}} 
   //normalize by number of times a species appears. 
   ArrayList<String>allSpeciesOccurances=new ArrayList<String>(); 
   for(String i: allScoresByGene.keySet()){  
    allSpeciesOccurances.addAll(allScoresByGene.get(i).keySet());} 
   for(String i: countMap.keySet()){ 
    for(String j: countMap.get(i).keySet()){ 
     if(countMap.get(i).get(j)!=0){ 
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      finScores.get(i).put(j, 
(finScores.get(i).get(j)/countMap.get(i).get(j)));}}} 
   initScores=finScores; 
   //build the UPGMA Tree 
   HashMap<String,HashMap<String,Double>> wkMap=new 
HashMap<String,HashMap<String,Double>>(initScores); 
   HashMap<Node,HashMap<Node,Double>>nodeDist=new 
HashMap<Node,HashMap<Node,Double>>(); 
   for(String s: initScores.keySet()){ 
    Node sn=new Node(s); 
    nodeDist.put(sn, new HashMap<Node,Double>()); 
    for(String r: initScores.keySet()){ 
     if(s.equals(r)==false){ 
      Node rn=new Node(r); 
      nodeDist.get(sn).put(rn, initScores.get(s).get(r));}}} 
   ArrayList<String> allNames=new ArrayList<String>(wkMap.keySet()); 
   Node curMinNode1=null; 
   Node curMinNode2=null; 
   double curMinScore=Double.MAX_VALUE; 
   HashMap<String,Boolean>inNode=new HashMap<String,Boolean>(); 
   for(String i: initScores.keySet()){ 
    inNode.put(i, false);} 
   ArrayList<Node>nodeList=new ArrayList<Node>(); 
   while(nodeDist.keySet().size()>1){ 
    curMinScore=Double.MAX_VALUE; 
    for(Node i: nodeDist.keySet()){ 
     for(Node ent:nodeDist.get(i).keySet()){ 
      if(nodeDist.get(i).get(ent)<curMinScore){ 
       curMinNode1=i; 
       curMinNode2=ent; 
       curMinScore=nodeDist.get(i).get(ent);}}} 
    Node nw2=new Node((Node)curMinNode1,(Node)curMinNode2, curMinScore); 
    nodeDist.remove(curMinNode1); 
    nodeDist.remove(curMinNode2); 
    for(Node n: nodeDist.keySet()){ 
     if(nodeDist.get(n).containsKey(curMinNode1)){ 
      nodeDist.get(n).remove(curMinNode1);} 
     if(nodeDist.get(n).containsKey(curMinNode2)){ 
      nodeDist.get(n).remove(curMinNode2);}} 
    nodeDist.put(nw2, new HashMap<Node,Double>()); 
    for(Node n: nodeDist.keySet()){ 
     if(n.equals(nw2)==false){ 
      //calc dist and put 
      double calcDist=Node.calcDistance(nw2, n); 
      nodeDist.get(nw2).put(n, calcDist); 
      nodeDist.get(n).put(nw2, calcDist);}}} 
   for(Node fin: nodeDist.keySet()){ 
    print("Printing UPGMA Tree"); 
    print(fin.newick+";"); 
    if(outputFile!=null){ 
     PrintWriter out = new PrintWriter(outputFile+".newick"); 
     out.print(fin.newick+";"); 
     out.close();}}}} 
  
 /** 
  * Constructs a single gene tree from a single fasta file 
  * @param params, the command line arguments as an arraylist 
  * @param file, the fasta file 
  * @throws IOException 
  */ 
 public static void doGeneTree(ArrayList<String> params, String file) throws IOException{ 
  //initialize data structures 
  ArrayList<String> allData=new ArrayList<String>(); 
  formatedSeqList=new ArrayList<String>(); 
  HashMap<String, Bird> birdMap=new HashMap<String, Bird>(); 
  initScores=new HashMap<String,HashMap<String,Double>>(); 
  FileReader fr = new FileReader(new File(file));  
  BufferedReader br = new BufferedReader(fr);   
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  String line; 
  //read in sequence 
  while((line = br.readLine()) != null){  
      line = line.trim(); // remove leading and trailing whitespace 
      allData.add(line);} 
  String holdMe = ""; 
  for (String element : allData) { 
   if (element.charAt(0) == '>') { 
    if (holdMe != "") { 
     formatedSeqList.add(holdMe); 
     holdMe = "";} 
    formatedSeqList.add(element);} 
   else { 
    holdMe += element;}} 
  formatedSeqList.add(holdMe); 
  fr.close(); 
  //make Bird Objects 
  for(int i=0; i<formatedSeqList.size(); i++){ 
   String id=formatedSeqList.get(i); 
   String seq=formatedSeqList.get(i+1); 
   Bird newbie=new Bird(id,seq); 
   birdMap.put(id,newbie); 
   i+=1;} 
  if(bootSeq==true){ 
   genBootstrapSeqs(true, 3, .85, birdMap);} 
  //populate hidden markov model measures 
  QHMMALL(birdMap); 
  HashMap<String,ArrayList<String>>keepTrack=new HashMap<String,ArrayList<String>>(); 
  //score all 
  for(String id: birdMap.keySet()){ 
   for(String id2:birdMap.keySet()){ 
    if(id.equals(id2)==false){ 
     if(keepTrack.containsKey(id)){ 
      if(keepTrack.get(id).contains(id2)==false){ 
       Double 
d=computeANDcombine(birdMap.get(id),birdMap.get(id2)); 
       if(initScores.containsKey(id)==false){ 
        initScores.put(id, new 
HashMap<String,Double>());} 
       initScores.get(id).put(id2, d);}} 
     else{ 
      keepTrack.put(id, new ArrayList<String>()); 
      keepTrack.get(id).add(id2); 
      initScores.put(id, new HashMap<String, Double>()); 
      if(keepTrack.containsKey(id2)==false){ 
       keepTrack.put(id2, new ArrayList<String>()); 
       keepTrack.get(id2).add(id); 
       Double d= 
computeANDcombine(birdMap.get(id),birdMap.get(id2)); 
       initScores.get(id).put(id2, d);}}}}} 
  for(String i: initScores.keySet()){ 
   for(String j: initScores.keySet()){ 
    if(i.equals(j)==false){ 
     if(initScores.get(i).get(j)==null){ 
      initScores.get(i).put(j, initScores.get(j).get(i));}}}} 
  /////CLUSTERING AND TREE BUILDING NEXT!///// 
  HashMap<String,HashMap<String,Double>> wkMap=new 
HashMap<String,HashMap<String,Double>>(initScores); 
  HashMap<Node,HashMap<Node,Double>>nodeDist=new HashMap<Node,HashMap<Node,Double>>(); 
  for(String s: initScores.keySet()){ 
   Node sn=new Node(s); 
   nodeDist.put(sn, new HashMap<Node,Double>()); 
   for(String r: initScores.keySet()){ 
    if(s.equals(r)==false){ 
     Node rn=new Node(r); 
     nodeDist.get(sn).put(rn, initScores.get(s).get(r));}}} 
  toMatrix(nodeDist); 
  Node curMinNode1=null; 
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  Node curMinNode2=null; 
  double curMinScore=Double.MAX_VALUE; 
  while(nodeDist.keySet().size()>1){ 
   curMinScore=Double.MAX_VALUE; 
   for(Node i: nodeDist.keySet()){ 
    for(Node ent:nodeDist.get(i).keySet()){ 
     if(nodeDist.get(i).get(ent)<curMinScore){ 
      curMinNode1=i; 
      curMinNode2=ent; 
      curMinScore=nodeDist.get(i).get(ent);}}} 
   Node nw2=new Node((Node)curMinNode1,(Node)curMinNode2, curMinScore); 
   nodeDist.remove(curMinNode1); 
   nodeDist.remove(curMinNode2); 
   for(Node n: nodeDist.keySet()){ 
    if(nodeDist.get(n).containsKey(curMinNode1)){ 
     nodeDist.get(n).remove(curMinNode1);} 
    if(nodeDist.get(n).containsKey(curMinNode2)){ 
     nodeDist.get(n).remove(curMinNode2);}} 
   nodeDist.put(nw2, new HashMap<Node,Double>()); 
   for(Node n: nodeDist.keySet()){ 
    if(n.equals(nw2)==false){ 
     //calc dist and put 
     double calcDist=Node.calcDistance(nw2, n); 
     nodeDist.get(nw2).put(n, calcDist); 
     nodeDist.get(n).put(nw2, calcDist);}}} 
  for(Node fin: nodeDist.keySet()){ 
   print("Printing UPGMA Tree"); 
   print(fin.newick+";"); 
   if(outputFile!=null){ 
    if(geneOrSpecies.equals("gene")){ 
     PrintWriter out = new PrintWriter(outputFile); 
     out.print(fin.newick+";"); 
     out.close();}} 
   if(outputAll==true){ 
    if(geneOrSpecies.equals("species")){ 
     File f = new File("geneTreesForSpeciesTree"); 
     if (f.exists() && f.isDirectory()) { 
        PrintWriter out=new PrintWriter(file+"gene_tree.newick"); 
        out.print(fin.newick); 
        out.close();} 
     else{ 
      f.mkdir(); 
      PrintWriter out=new 
PrintWriter(f+file+"_gene_tree.newick"); 
      out.print(fin.newick); 
      out.close();}}}}} 
 /** 
  * Formats a HashMap of Distances to a PHYLIP formatted distance matrix 
  * @param nodeDist 
  */ 
 private static void toMatrix(HashMap<Node, HashMap<Node, Double>> nodeDist) {   
  ArrayList<Node> nodes=new ArrayList<Node>(nodeDist.keySet()); 
  int matSize=nodes.size(); 
  double [][] scoreMatrix=new double[matSize][matSize]; 
  ArrayList<String> stringsToWrite=new ArrayList<String>(); 
  ArrayList<String> namesList=new ArrayList<String>(); 
  for(Node n : nodes){ 
   String temp=n.names.get(0).substring(1, n.names.get(0).length()); 
   namesList.add(temp); 
   temp=temp+"          "; 
   if(temp.length()>10){ 
    temp=temp.substring(0,10);} 
   stringsToWrite.add(temp+" ");} 
  try { 
   PrintWriter write=new PrintWriter("distanceMatrix.txt","UTF-8"); 
   write.println(" "+matSize); 
   //i is row and j is col 
   for(int i=0; i< nodes.size();i++){ 
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    Node n=nodes.get(i); 
    for(int j=0; j<nodes.size();j++){ 
     if(i==j){ 
      scoreMatrix[i][j]=0.0;} 
     else{ 
      Node n2=nodes.get(j); 
      scoreMatrix[i][j]=Node.calcDistance(n, n2);}}} 
   //diagonal formmat of phylip distance matrix 
   if(diag){ 
    int count=matSize; 
    for(int i=0; i<matSize;i++){ 
     String tmpStr=stringsToWrite.get(i); 
     for(int j=0+count;j<matSize;j++){ 
      if(j!=matSize-1){ 
       tmpStr=tmpStr+scoreMatrix[i][j-count]+" ";} 
      else{ 
       tmpStr=tmpStr+scoreMatrix[i][j-count];}} 
     count=count-1; 
     write.println(tmpStr);}} 
   else{ 
    for(int i=0;i<matSize;i++){ 
     String tempStr=stringsToWrite.get(i); 
     for(int j=0;j<matSize;j++){ 
      if(j!=matSize-1){ 
       tempStr=tempStr+scoreMatrix[i][j]+" ";} 
      else{ 
       write.println(tempStr+scoreMatrix[i][j]);}}}} 
   write.close(); 
  } catch (FileNotFoundException | UnsupportedEncodingException e) { 
   // TODO Auto-generated catch block 
   e.printStackTrace();} 
  if(doNJ==true){ 
   doNJTree(scoreMatrix,nodeDist,matSize,namesList);}} 
/** 
 * Constructs a neighbor joining tree in newick format 
 * @param scoreMatrix 
 * @param nodeDist 
 * @param matSize 
 * @param namesList 
 */ 
 public static void doNJTree(double[][] scoreMatrix, HashMap<Node, HashMap<Node, Double>> 
nodeDist,int matSize,ArrayList<String> namesList){ 
  //i is row, j is column 
  HashMap<NJNode,HashMap<NJNode,Double>> NJNodeMap=new 
HashMap<NJNode,HashMap<NJNode,Double>>(); 
  ArrayList<NJNode> NJList=new ArrayList<NJNode>(); 
  ArrayList<ArrayList<Double>> M=new ArrayList<ArrayList<Double>>(); 
  ArrayList<ArrayList<Double>> Mp=new ArrayList<ArrayList<Double>>(); 
  for(int i=0; i<namesList.size(); i++){ 
   NJNode tmp=new NJNode(namesList.get(i)); 
   NJList.add(i,tmp);} 
  for(int i=0; i<NJList.size();i++){ 
   for(int j=0;j<NJList.size();j++){ 
    if(i!=j){ 
     if(NJNodeMap.containsKey(NJList.get(i))==false){ 
      NJNodeMap.put(NJList.get(i), new 
HashMap<NJNode,Double>());} 
    
 if(NJNodeMap.get(NJList.get(i)).containsKey(NJList.get(j))==false){ 
      NJNodeMap.get(NJList.get(i)).put(NJList.get(j), 
scoreMatrix[i][j]);}}}} 
  while(NJNodeMap.keySet().size()>2){ 
   HashMap<NJNode,HashMap<NJNode,Double>> Q=new 
HashMap<NJNode,HashMap<NJNode,Double>>(); 
   HashMap<NJNode,Double> T=new HashMap<NJNode,Double>(); 
   //compute T, the sum total of rows 
   double totalRow=0; 
   for(NJNode i: NJNodeMap.keySet()){ 
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    for(NJNode j: NJNodeMap.keySet()){ 
     if(!i.equals(j)){ 
      totalRow+=NJNodeMap.get(i).get(j);}} 
    T.put(i, totalRow); 
    totalRow=0;} 
   NJNode curMinNode1=null; 
   NJNode curMinNode2=null; 
   double curMinScore=Double.POSITIVE_INFINITY; 
   //compute Q, the transformed matrix for neighbor joining minimal selection 
   for(NJNode i: NJNodeMap.keySet()){ 
    Q.put(i, new HashMap<NJNode,Double>()); 
    for(NJNode j:NJNodeMap.keySet()){ 
     if(!i.equals(j)){ 
      if(Q.containsKey(j)==false){ 
       Q.put(j, new HashMap<NJNode, Double>());} 
      double tmp=(((NJNodeMap.keySet().size()-
2)*NJNodeMap.get(i).get(j))-T.get(i)-T.get(j)); 
      Q.get(i).put(j,tmp); 
      Q.get(j).put(i, tmp); 
      if(tmp<curMinScore){ 
       if(!i.equals(j)){ 
        curMinNode1=i; 
        curMinNode2=j; 
        curMinScore=tmp;}}}}} 
   Q.clear(); 
   //Find branch lengths 
   double deltaIJ=((T.get(curMinNode1)-T.get(curMinNode2))/(NJNodeMap.size()-2)); 
   double LLi=0.5*(NJNodeMap.get(curMinNode1).get(curMinNode2)+deltaIJ); 
   double LLj=0.5*(NJNodeMap.get(curMinNode1).get(curMinNode2)-deltaIJ); 
   //make new node 
   NJNode tempuNode=new NJNode(curMinNode1,curMinNode2,LLi,LLj); 
   //compute new distances to other nodes and add to map. 
   double joinDist=0; 
   HashMap<NJNode, Double> joinMap=new HashMap<NJNode,Double>(); 
   for(NJNode n: NJNodeMap.keySet()){ 
    if(!n.equals(curMinNode1)){ 
     if(!n.equals(curMinNode2)){ 
     
 joinDist=(NJNodeMap.get(n).get(curMinNode1)+NJNodeMap.get(n).get(curMinNode2)-
NJNodeMap.get(curMinNode1).get(curMinNode2))/2; 
      joinMap.put(n, joinDist);}}} 
   //remove the two old nodes... 
   NJNodeMap.remove(curMinNode1); 
   NJNodeMap.remove(curMinNode2); 
   for(NJNode n: NJNodeMap.keySet()){ 
    if(NJNodeMap.get(n).containsKey(curMinNode1)){ 
     NJNodeMap.get(n).remove(curMinNode1);} 
    if(NJNodeMap.get(n).containsKey(curMinNode2)){ 
     NJNodeMap.get(n).remove(curMinNode2);}} 
   //add new nodes 
   for(NJNode n: NJNodeMap.keySet()){ 
    NJNodeMap.get(n).put(tempuNode, joinMap.get(n));} 
   NJNodeMap.put(tempuNode, joinMap);} 
  ArrayList<NJNode>tmp2=new ArrayList<NJNode>(NJNodeMap.keySet()); 
  NJNode fin=tmp2.get(0); 
  NJNode fin2=tmp2.get(1); 
  print("Printing NJ Tree"); 
  String newickNJTree="("+fin2.newick+":"+NJNodeMap.get(fin).get(fin2)+","+fin.newick+");"; 
  print(newickNJTree); 
  if(njOut.equals("")==false){ 
   PrintWriter write; 
   try { 
    write = new PrintWriter(njOut,"UTF-8"); 
    write.write(newickNJTree); 
    write.close(); 
   } catch (FileNotFoundException | UnsupportedEncodingException e) { 
    e.printStackTrace();}} 
  else{ 
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   PrintWriter write; 
   try { 
    write = new PrintWriter("NJ_Tree.nwk","UTF-8"); 
    write.write(newickNJTree); 
    write.close(); 
   } catch (FileNotFoundException | UnsupportedEncodingException e) { 
    e.printStackTrace();}}} 
 
 //START SPECIES TREE CONSTRUCTION (resumed in main for adaptive scope reasons)//// 
 /** 
  * Scores every gene tree needed for the construction of a species tree 
  * by calling the doGeneTree method and storing the result in a global hashmap 
  * @param params parameters in ArrayList that will affect the settings of the tree building 
algorithm 
  * @throws IOException 
  */ 
 public static void doSpeciesTree(ArrayList<String>params) throws IOException{ 
  for(String name : fastaFiles){ 
   doGeneTree(params,name); 
   allScoresByGene.put(name, initScores);} 
  for(String o : allScoresByGene.keySet()){ 
   HashMap<String, HashMap<String,Double>>temp=allScoresByGene.get(o); 
   print(temp.keySet()); 
   print("");}} 
 /** 
  * Finds the largest score of any tree for any gene 
  * Used only in species tree method with scaling enabled 
  * @return a double of the highest score observed 
  */ 
 public static double getMaxScore(){ 
  double curMax=Double.MIN_VALUE; 
  for(String i: allScoresByGene.keySet()){ 
   for(String j: allScoresByGene.get(i).keySet()){ 
    for(String k: allScoresByGene.get(i).get(j).keySet()){ 
     if(allScoresByGene.get(i).get(j).get(k)>curMax){ 
      curMax=allScoresByGene.get(i).get(j).get(k);}}}} 
  return curMax;} 
  
 /** 
  * Calculates the scores for each of the components of 
  * the algorithm and combines them to get a composite score 
  * @param bird1 taxa 1 to get the score between 
  * @param bird2 taxa 2 to get the score between 
  * @return the composite score 
  */ 
 public static double computeANDcombine(Bird bird1, Bird bird2){ 
  return 
((scoreBirdCodon(bird1,bird2)*weightTriFreq)+(scoreBirdDinuc(bird1,bird2)*weightDiFreq)+ 
  +(scoreGC(bird1,bird2)*weightGC)+(scoreCodonBias(bird1,bird2)*weightBias)+ 
 
 (QHMMTri_final.get(bird1.id).get(bird2.id)*weightTriQHMM)+(QHMMDi_final.get(bird1.id).get(bird2.id
)*weightDiQHMM));   
 } 
  
 /** 
  * Computes the score for the difference in codon usage (codon bias) 
  * between two taxa. 
  * @param bird1 taxa 1 
  * @param bird2 taxa 2 
  * @return the score, stored as a double 
  */ 
 public static double scoreCodonBias(Bird bird1, Bird bird2){ 
  double totalScore=0.0; 
  double protScore=0.0; 
  int numPotCodons=0; 
  double scoreLogCheck=0.0; 
  for(String aa1:AAcodonMap.keySet()){ 
   protScore=0; 
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   if(bird1.biasMap.containsKey(aa1)==false){ 
    //bird one doesnt, but bird 2 does 
    if(bird2.biasMap.containsKey(aa1)==true){ 
     numPotCodons=bird2.biasMap.get(aa1).keySet().size(); 
     for(String cod:bird2.biasMap.get(aa1).keySet()){ 
     
 protScore+=Math.abs(log2(bird2.biasMap.get(aa1).get(cod)/numPotCodons));} 
     totalScore+=protScore;} 
    //neither do 
    else{ 
     //pass, rather, add 0 to total. 

}} 
   //bird1 has the aa1 
   else{ 
    //bird 2 doesn't 
    if(bird2.biasMap.containsKey(aa1)==false){ 
     numPotCodons=bird1.biasMap.get(aa1).keySet().size(); 
     for(String cod:bird1.biasMap.get(aa1).keySet()){ 
     
 protScore+=Math.abs(log2(bird1.biasMap.get(aa1).get(cod)/numPotCodons));} 
     totalScore+=protScore;} 
    //they both have aa of interest 
    else{ 
     Set<String> unionCodons=new HashSet<String>(); 
     unionCodons.addAll(bird1.biasMap.get(aa1).keySet()); 
     unionCodons.addAll(bird2.biasMap.get(aa1).keySet()); 
     numPotCodons=unionCodons.size(); 
     for(String cod:unionCodons){ 
      //bird 2 doesn't have the codon 
      if(bird2.biasMap.get(aa1).containsKey(cod)==false){ 
       //that means bird one must! 
      
 protScore+=Math.abs(log2(bird1.biasMap.get(aa1).get(cod)/numPotCodons));} 
      //bird two does have the codon 
      else{ 
       //check if bird one does... 
       //no? 
      
 if(bird1.biasMap.get(aa1).containsKey(cod)==false){ 
       
 protScore+=Math.abs(log2(bird2.biasMap.get(aa1).get(cod)/numPotCodons));} 
       //yes, they both do 
       else{ 
       
 scoreLogCheck=Math.abs(bird1.biasMap.get(aa1).get(cod)-
bird2.biasMap.get(aa1).get(cod)/numPotCodons); 
        if(scoreLogCheck!=0){ 
        
 protScore+=Math.abs(log2(scoreLogCheck));} 
        else{ 
         //add zero 
        }}}} 
     totalScore+=protScore;}}} 
  totalScore=totalScore/20; 
  return totalScore;} 
 
 /** 
  * Calculates the score for a difference in codon transition probabilities between 
  * two taxa for a given gene. 
  * @param bird1 taxa 1 
  * @param bird2 taxa 2 
  * @return score, stored as a double 
  */ 
 public static double scoreBirdCodon(Bird bird1, Bird bird2){ 
  double bestDist=Double.MAX_VALUE; 
  for(int i: bird1.codonFrequencies.keySet()){ 
   double score1=0.0; 
   double score2=0.0; 
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   double distScore=0.0; 
   for(String c1:allCodons){ 
    for(String c2:allCodons){ 
     if(bird1.codonFrequencies.get(i).containsKey(c1)==false){ 
      score1=0.0;} 
     else{ 
     
 if(bird1.codonFrequencies.get(i).get(c1).containsKey(c2)==false){ 
       score1=0.0;} 
      else{ 
      
 score1=bird1.codonFrequencies.get(i).get(c1).get(c2);}} 
     if(bird2.codonFrequencies.get(i).containsKey(c1)==false){ 
      score2=0.0;} 
     else{ 
     
 if(bird2.codonFrequencies.get(i).get(c1).containsKey(c2)==false){ 
       score2=0.0;} 
      else{ 
      
 score2=bird2.codonFrequencies.get(i).get(c1).get(c2);}} 
     distScore+=Math.abs(score1-score2);}} 
   if(distScore<bestDist){ 
    bestDist=distScore;}} 
  return bestDist;} 
  
 /** 
  * Constructs and computes the scores for the QHMM for both Tri and Di nucleotides 
  * The results are not returned--rather, stored as a feature in the inputted birdMap. 
  * @param birdMap, the internal data structure used to calculate QHMM 
  */ 
 public static void QHMMALL(HashMap<String, Bird> birdMap){ 
  HashMap<String,HashMap<Integer,HashMap<String,Double>>> QHMMTri=new 
HashMap<String,HashMap<Integer,HashMap<String,Double>>>(); 
  HashMap<String,HashMap<Integer,HashMap<String,Double>>> QHMMDi=new 
HashMap<String,HashMap<Integer,HashMap<String,Double>>>(); 
  int[] iterlist=new int[3]; 
  iterlist[0]=1; 
  iterlist[1]=2; 
  iterlist[2]=3; 
  for(String name: birdMap.keySet()){ 
   HashMap<Integer,HashMap<String,Double>> tempu=new 
HashMap<Integer,HashMap<String,Double>>(); 
   for(int i: iterlist){  
    HashMap<String,Double>tempu2=new HashMap<String,Double>(); 
     for(String name2: birdMap.keySet()){ 
      if(name.equals(name2)==false){ 
       tempu2.put(name2, 0.0);} 
     tempu.put(i, tempu2);}} 
   QHMMTri.put(name, tempu);} 
  for(String name: QHMMTri.keySet()){ 
   Bird tempuBird=birdMap.get(name); 
   String tseq=tempuBird.sequence; 
   for(int i: iterlist){ 
    while(tseq.length()>5){ 
     String codon1=tseq.substring(0, 3); 
     String codon2=tseq.substring(3, 6); 
     for(String name2: birdMap.keySet()){ 
      if(!name2.equals(name)){ 
      
 if(birdMap.get(name2).codonFrequencies.get(i).containsKey(codon1)){ 
       
 if(birdMap.get(name2).codonFrequencies.get(i).get(codon1).containsKey(codon2)){ 
        
 QHMMTri.get(name).get(i).put(name2, 
(QHMMTri.get(name).get(i).get(name2))+(Math.abs(log2(birdMap.get(name2).codonFrequencies.get(i).get(codon1
).get(codon2)))));}}}} 
     tseq=tseq.substring(3);} 
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    tseq=tempuBird.sequence;} 
   for(String name2: QHMMTri.keySet()){ 
    if(name.equals(name2)==false){ 
     double score1=QHMMTri.get(name).get(1).get(name2); 
     double score2=QHMMTri.get(name).get(2).get(name2); 
     double score3=QHMMTri.get(name).get(3).get(name2); 
     double bestScore=Math.min(Math.min(score1, score2), score3); 
     if(QHMMTri_final.containsKey(name)==false){ 
      HashMap<String,Double> ntempu=new 
HashMap<String,Double>(); 
      ntempu.put(name2, bestScore); 
      QHMMTri_final.put(name, ntempu);} 
     else{ 
      QHMMTri_final.get(name).put(name2, bestScore);}}}} 
  int numDo=2; 
  if(k>1){ 
   numDo=k;} 
  iterlist=new int[numDo]; 
  for(int m=0;m<numDo;m++){ 
   iterlist[m]=m+1;} 
  for(String name: birdMap.keySet()){ 
   HashMap<Integer,HashMap<String,Double>> tempu=new 
HashMap<Integer,HashMap<String,Double>>(); 
   for(int i: iterlist){  
    HashMap<String,Double>tempu2=new HashMap<String,Double>(); 
     for(String name2: birdMap.keySet()){ 
      if(name.equals(name2)==false){ 
       tempu2.put(name2, 0.0);} 
     tempu.put(i, tempu2);}} 
   QHMMDi.put(name, tempu);} 
  for(String name: QHMMDi.keySet()){ 
   Bird tempuBird=birdMap.get(name); 
   String tseq=tempuBird.sequence; 
   int whileLen=(2*numDo)-1; 
   for(int i: iterlist){ 
    while(tseq.length()>whileLen){ 
     String codon1=tseq.substring(0, numDo); 
     String codon2=tseq.substring(numDo, numDo+numDo); 
     for(String name2: birdMap.keySet()){ 
      if(!name2.equals(name)){ 
      
 if(birdMap.get(name2).dinucFrequencies.get(i).containsKey(codon1)){ 
       
 if(birdMap.get(name2).dinucFrequencies.get(i).get(codon1).containsKey(codon2)){ 
        
 QHMMDi.get(name).get(i).put(name2, 
(QHMMDi.get(name).get(i).get(name2))+(Math.abs(log2(birdMap.get(name2).dinucFrequencies.get(i).get(codon1)
.get(codon2)))));}}}} 
     tseq=tseq.substring(3);} 
    tseq=tempuBird.sequence;} 
   for(String name2: QHMMDi.keySet()){ 
    if(name.equals(name2)==false){ 
     double score1=QHMMDi.get(name).get(1).get(name2); 
     double score2=QHMMDi.get(name).get(2).get(name2); 
     double bestScore=Math.min(score1, score2); 
     if(QHMMDi_final.containsKey(name)==false){ 
      HashMap<String,Double> ntempu=new 
HashMap<String,Double>(); 
      ntempu.put(name2, bestScore); 
      QHMMDi_final.put(name, ntempu);} 
     else{ 
      QHMMDi_final.get(name).put(name2, bestScore);}}}}} 
  
 /** 
  * Calculates the score for a difference in dinucleotide transition probabilities 
  * between two taxa for a given gene. 
  * @param bird1 taxa 1 
  * @param bird2 taxa 2 
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  * @return score, stored as a double 
  */ 
 public static double scoreBirdDinuc(Bird bird1, Bird bird2) { 
  double score1 = 0.0; 
  double score2 = 0.0; 
  double distScore = 0.0; 
  for (int i : bird1.dinucFrequencies.keySet()) { 
   for (String c1 : allDinucs) { 
    for (String c2 : allDinucs) { 
     if (bird1.dinucFrequencies.containsKey(c1) == false) { 
      score1 = 0.0; 
     } else { 
      if (bird1.dinucFrequencies.get(c1).containsKey(c2) == 
false) { 
       score1 = 0.0; 
      } else { 
       score1 = bird1.dinucFrequencies.get(i).get(c1) 
         .get(c2);}} 
     if (bird2.dinucFrequencies.containsKey(c1) == false) { 
      score2 = 0.0; 
     } else { 
      if (bird2.dinucFrequencies.get(i).get(c1) 
        .containsKey(c2) == false) { 
       score2 = 0.0; 
      } else { 
       score2 = bird2.dinucFrequencies.get(i).get(c1) 
         .get(c2);}} 
     distScore += Math.abs(score1 - score2);}}} 
  return distScore;} 
 /** 
  * A shortcut function that gets the log 
  * base two on the double passed in 
  * @param num number to get the log base 2 of 
  * @return the log base two of the number 
  */ 
  
 public static double log2(double num){ 
  return Math.log(num)/Math.log(2);} 
  
 /** 
  * Returns the difference in GC scores between two taxa 
  * @param bird1 taxa 1 
  * @param bird2 taxa 2 
  * @return score, stored as a double 
  */ 
 public static double scoreGC(Bird bird1, Bird bird2){ 
  return Math.abs(bird1.GC_score-bird2.GC_score);} 
  
 /** 
  * A shortcut function for System.out.println 
  * @param o, an object to print 
  */ 
 public static void print(Object o){ 
  System.out.println(o);} 
 /** 
  * Make a file 
  * @param filenameANDpath, the absolute path of the desired new file 
  */ 
 public static void mkFile(File filenameANDpath){ 
  File newfile=filenameANDpath; 
  try{ 
   newfile.createNewFile();} 
  catch(IOException ioe){ 
   System.err.println("Error in making files\n "+ioe);}} 
  
 /** 
  * Makes subsequence files for use in the bootstrapping method. 



 

 

135 

  * @param sameStart, a boolean indicating if all sequences should be sub-setted starting at the 
same location 
  * @param numBoots, the number of times to bootstrap 
  * @param propBases, the proportion of bases wanted in the bootstrap 
  * @param birdMap, the data structure containing all the sequences 
  * @throws FileNotFoundException 
  * @throws UnsupportedEncodingException 
  */ 
 public static void genBootstrapSeqs(boolean sameStart, int numBoots, double propBases, 
HashMap<String, Bird> birdMap) throws FileNotFoundException, UnsupportedEncodingException{ 
  new File("tmp").mkdir(); 
  new File("bootTrees").mkdir(); 
  int numBases=0; 
  int startIndex=0; 
  int sizeOfSeq=0; 
  for(int i=0; i<numBoots; i++){ 
   if(sameStart==false){ 
    try { 
     PrintWriter writer=new 
PrintWriter("tmp/bootstrapIter"+i+".fasta","UTF-8"); 
     for(String berd: birdMap.keySet()){ 
      String id=birdMap.get(berd).id; 
      String seq=birdMap.get(berd).sequence; 
      writer.println(id); 
      sizeOfSeq=seq.length(); 
      numBases=(int) Math.round(propBases*sizeOfSeq); 
      startIndex=genRandInt(0,(sizeOfSeq-numBases)-2); 
      writer.println(seq.substring(startIndex, 
startIndex+numBases-1)); 
      print(seq.substring(startIndex, startIndex+numBases-1));} 
     writer.close();} 
   catch (FileNotFoundException | UnsupportedEncodingException e) { 
    e.printStackTrace();}} 
   else{ 
    String brd=(String) birdMap.keySet().toArray()[0]; 
    String id=birdMap.get(brd).id; 
    String seq=birdMap.get(brd).sequence; 
    sizeOfSeq=seq.length(); 
    numBases=(int) Math.round(propBases*sizeOfSeq); 
    startIndex=genRandInt(0,(sizeOfSeq-numBases)-2); 
    PrintWriter writer=new PrintWriter("tmp/bootstrapIter"+i+".fasta","UTF-
8"); 
    for(String berd: birdMap.keySet()){ 
     id=birdMap.get(berd).id; 
     seq=birdMap.get(berd).sequence; 
     writer.println(id); 
     if(startIndex+numBases>seq.length()){ 
      writer.println(seq.substring(startIndex, seq.length()-
1));} 
     else{ 
      writer.println(seq.substring(startIndex, 
startIndex+numBases-1));}} 
    writer.close();}}} 
 /** 
  * Shortcut function for generating a random integer. 
  * @param Min the mimimum bound 
  * @param Max the maximum bound 
  * @return a randomly generated integer 
  */ 
 public static int genRandInt(int Min, int Max){ 
  return (Min + (int)(Math.random() * ((Max - Min) + 1)));} 
  
 /** 
  * Just see if a value is parse-able to a double 
  * Used in command line argument processing.  
  * @param value the string being checked 
  * @return a boolean representing saying if it is a double 
  */ 
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 public static boolean isDouble(String value) { 
     try { 
         Double.parseDouble(value); 
         return true; 
     } catch (NumberFormatException e) { 
         return false;}} 
  
 /** 
  * Internally used command that populates 
  * the codon to amino acid hashmap 
  */ 
 public static void popCodonMap(){ 
  codonAAMap.put("TTT","F"); 
  codonAAMap.put("TTC","F"); 
  codonAAMap.put("TTA","L"); 
  codonAAMap.put("TTG","L"); 
  codonAAMap.put("CTT","L"); 
  codonAAMap.put("CTC","L"); 
  codonAAMap.put("CTG","L"); 
  codonAAMap.put("CTA","L"); 
  codonAAMap.put("ATT","I"); 
  codonAAMap.put("ATC","I"); 
  codonAAMap.put("ATA","I"); 
  codonAAMap.put("ATG","M"); 
  codonAAMap.put("GTT","V"); 
  codonAAMap.put("GTC","V"); 
  codonAAMap.put("GTA","V"); 
  codonAAMap.put("GTG","V"); 
  codonAAMap.put("TCT","S"); 
  codonAAMap.put("TCC","S"); 
  codonAAMap.put("TCA","S"); 
  codonAAMap.put("TCG","S"); 
  codonAAMap.put("CCT","P"); 
  codonAAMap.put("CCC","P"); 
  codonAAMap.put("CCA","P"); 
  codonAAMap.put("CCG","P"); 
  codonAAMap.put("ACT","T"); 
  codonAAMap.put("ACC","T"); 
  codonAAMap.put("ACA","T"); 
  codonAAMap.put("ACG","T"); 
  codonAAMap.put("GCT","A"); 
  codonAAMap.put("GCC","A"); 
  codonAAMap.put("GCA","A"); 
  codonAAMap.put("GCG","A"); 
  codonAAMap.put("TAT","Y"); 
  codonAAMap.put("TAC","Y"); 
  codonAAMap.put("TAA","STOP"); 
  codonAAMap.put("TAG","STOP"); 
  codonAAMap.put("CAT","H"); 
  codonAAMap.put("CAC","H"); 
  codonAAMap.put("CAA","Q"); 
  codonAAMap.put("CAG","Q"); 
  codonAAMap.put("AAT","N"); 
  codonAAMap.put("AAC","N");  
  codonAAMap.put("AAA","K"); 
  codonAAMap.put("AAG","K"); 
  codonAAMap.put("GAT","D"); 
  codonAAMap.put("GAC","D");   
  codonAAMap.put("GAA","E"); 
  codonAAMap.put("GAG","E"); 
  codonAAMap.put("TGT","C"); 
  codonAAMap.put("TGC","C"); 
  codonAAMap.put("TGA","STOP"); 
  codonAAMap.put("TGG","W"); 
  codonAAMap.put("CGT","R"); 
  codonAAMap.put("CGC","R"); 
  codonAAMap.put("CGA","R"); 
  codonAAMap.put("CGG","R"); 
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  codonAAMap.put("AGT","S"); 
  codonAAMap.put("AGC","S"); 
  codonAAMap.put("AGA","R"); 
  codonAAMap.put("AGG","R"); 
  codonAAMap.put("GGT","G"); 
  codonAAMap.put("GGC","G"); 
  codonAAMap.put("GGA","G"); 
  codonAAMap.put("GGG","G");} 
 /** 
  * Internally used function that builds the Amino acid 
  * to Codon map used in algorithm. It relies on popCodonMap() 
  * to have been called prior to the calling of this method. 
  */ 
 public static void popAAtoCodonMap(){ 
  for(String i:codonAAMap.keySet()){ 
   String AA=codonAAMap.get(i); 
   if(AAcodonMap.containsKey(AA)==false){ 
    ArrayList<String>tempu=new ArrayList<String>(); 
    tempu.add(i); 
    AAcodonMap.put(AA,tempu);}}} 
 /** 
  * A shortcut method for getting translating codons into amino acids 
  * @param codon the codon to be translated 
  * @return the 1 letter amino acid code as String 
  */ 
 public static String translateCodon(String codon){ 
  return codonAAMap.get(codon);} 
 /** 
  * Internally used command that populates a list of 
  * every possible dinucleotide combination 
  */ 
 public static void popAllDinucs(){ 
  allDinucs.add("AA"); 
  allDinucs.add("AT"); 
  allDinucs.add("AG"); 
  allDinucs.add("AC"); 
  allDinucs.add("TT"); 
  allDinucs.add("TA"); 
  allDinucs.add("TC"); 
  allDinucs.add("TG"); 
  allDinucs.add("GG"); 
  allDinucs.add("GC"); 
  allDinucs.add("GA"); 
  allDinucs.add("GT"); 
  allDinucs.add("CC"); 
  allDinucs.add("CA"); 
  allDinucs.add("CT"); 
  allDinucs.add("CG");} 
 /** 
  * Internally used command that populates a list of every possible 
  * codon. 
  */ 
 public static void popAllCodons(){ 
  allCodons.add("TTT"); 
  allCodons.add("TTC"); 
  allCodons.add("TTG"); 
  allCodons.add("TTA"); 
  allCodons.add("TCT"); 
  allCodons.add("TCC"); 
  allCodons.add("TCA"); 
  allCodons.add("TCG"); 
  allCodons.add("TAT"); 
  allCodons.add("TAC"); 
  allCodons.add("TAA"); 
  allCodons.add("TAG"); 
  allCodons.add("TGT"); 
  allCodons.add("TGC"); 
  allCodons.add("TGA"); 
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  allCodons.add("TGG"); 
  allCodons.add("CTT"); 
  allCodons.add("CTC"); 
  allCodons.add("CTA"); 
  allCodons.add("CTG"); 
  allCodons.add("CCT"); 
  allCodons.add("CCC"); 
  allCodons.add("CCA"); 
  allCodons.add("CCG"); 
  allCodons.add("CAT"); 
  allCodons.add("CAC"); 
  allCodons.add("CAA"); 
  allCodons.add("CAG"); 
  allCodons.add("CGT"); 
  allCodons.add("CGC"); 
  allCodons.add("CGA"); 
  allCodons.add("CGG"); 
  allCodons.add("ATT"); 
  allCodons.add("ATC"); 
  allCodons.add("ATA"); 
  allCodons.add("ATG"); 
  allCodons.add("ACT"); 
  allCodons.add("ACC"); 
  allCodons.add("ACA"); 
  allCodons.add("ACG"); 
  allCodons.add("AAT"); 
  allCodons.add("AAC"); 
  allCodons.add("AAA"); 
  allCodons.add("AAG"); 
  allCodons.add("AGT"); 
  allCodons.add("AGC"); 
  allCodons.add("AGA"); 
  allCodons.add("AGG"); 
  allCodons.add("GTT"); 
  allCodons.add("GTC"); 
  allCodons.add("GTA"); 
  allCodons.add("GTG"); 
  allCodons.add("GCT"); 
  allCodons.add("GCC"); 
  allCodons.add("GCA"); 
  allCodons.add("GCG"); 
  allCodons.add("GAT"); 
  allCodons.add("GAC"); 
  allCodons.add("GAA"); 
  allCodons.add("GAG"); 
  allCodons.add("GGT"); 
  allCodons.add("GGC"); 
  allCodons.add("GGA"); 
  allCodons.add("GGG");} 
 /** 
  * prints the help statement seen with --help or -h 
  */ 
 public static void printHelp(){ 
  print("---ScrawkovPHY.java---"); 
  print(usage); 
  print("Example: java ScrawkovPHY gene exampleFasta.fasta --normalize T"); 
  print("Example: java ScrawkovPHY species exampleFastaForGene1.fasta 
exampleFastaForGene2.fasta --maxByPair T"); 
  print(" "); 
  print("-------Flags available, with desciption of fucntion---------"); 
  print(" "); 
  print("--folder"); 
  print("Use a folder rather than a series of files in species tree contsruction"); 
  print(" "); 
  print("--doNJ"); 
  print("   Construct a neighbor joining tree in addition to the default UPGMA tree"); 
  print("   Default behaviour is true"); 
  print(" "); 
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  print("--njOut"); 
  print("   The file name for the NJ tree output. Only used if doNJ is true"); 
  print("   The default behaviour is to use the name njOut.nwk"); 
  print(" "); 
  print("--maxByPair:"); 
  print("   maxByPair takes either true or false as a value"); 
  print("   If true, the algorithm will find and use the optimal reading frame for each 
pairwise sequence"); 
  print("   The default behaviour is true "); 
  print(" "); 
  print("--normalize:"); 
  print("   normalize takes either true or false as a value"); 
  print("   This parameter only affects the construction of species trees"); 
  print("   If true, the results of each gene tree are scaled to the range of the most 
disparate"); 
  print("   gene tree. That is, the one with the biggest difference between highest and 
lowest score"); 
  print("   The default behaviour is true "); 
  print(" "); 
  print("--outputFile"); 
  print("   outputFile takes the name of the file you want the tree to be output in"); 
  print("   The default behaviour is to only print the output to the terminal, not to a 
file"); 
  print("   It has the shortcut -o"); 
  print(" "); 
  print("--kSize"); 
  print("   override the kmer size for dinucleotide aspect of QHMM."); 
  print("   default value is -1, which is ignored by program."); 
  print(" "); 
  print("--bootSeq"); 
  print("   Experimental: Should subsequences of DNA be obtained for bootstrapping? Must be 
run with gene"); 
  print("   Default behaviour is false"); 
  print(" "); 
  print("--diagMat"); 
  print("   Should the PHYLIP formatted distance matrix be written along the diagonal?"); 
  print("   If false, the full matrix will be written."); 
  print("   The default behaviour is true."); 
  print(" "); 
  print("--bootOut"); 
  print("   Experimental: Name of outPut bootstrapped tree folder. If a value is entered, 
will use the species tree infrastructure to make"); 
  print("   bootstrap trees from the output of bootSeq. Must be run with species"); 
  print("   The default behaviour is to not make these trees."); 
  print(" "); 
  print("--help"); 
  print("   Print this help statement"); 
  print(" "); 
  print("--weightGC, --weightBias, --weightTriFreq, --weightDiFreq, --weightTriQHMM, --
weightDiQHMM"); 
  print("   These flags accept numeric input (decimals are fine)"); 
  print("   These arguments are the weights applied to the 6 features used to create the 
MCCI, which is a surrogate distance."); 
  print("   They affect the GC content, codon bias, trinucleotide frequency, dinucleotide 
frequency,"); 
  print("    trinucleotide transistion QHMM, and dinucleotide transtition QHMM 
respectively."); 
  print("   The default values are 10,0.1,1,1,0.00005,and 0.00005 respectively.");}} 
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////Bird.java 
 
import java.util.HashMap; 
/** 
 * Bird is a generic representation of a taxon and its sequence. 
 * @author J. Nick Fisk 
 * 
 */ 
public class Bird { 
 public double GC_score; //GC content proportion 
 public double CodonFreqScore;  
 public String sequence; //store the sequence in RAM 
 public String id; //name of sequence 
 public HashMap<Integer,HashMap<String, HashMap<String, Double>>> codonFrequencies; //initMaps 
 public HashMap<Integer, HashMap<String, HashMap<String, Double>>> dinucFrequencies;  
 public HashMap<String,HashMap<String,Double>> biasMap; 
  
 /** 
  * An object representing the a taxon in the algorithm. 
  * It is names bird as it was developed on birds originally.  
  * @param id the id of the taxon from the fasta file 
  * @param sequence the nucleotide sequence 
  */ 
 public Bird(String id, String sequence){ 
  this.GC_score=0.0; 
  this.CodonFreqScore=0.0; 
  this.sequence=sequence; 
  this.id=id; 
  this.dinucFrequencies=new HashMap<Integer,HashMap<String,HashMap<String, Double>>> (); 
  this.codonFrequencies=new HashMap<Integer,HashMap<String,HashMap<String, Double>>> (); 
  this.codonFrequencies=newCalcCodonFreq(); 
  //check k from main to see if we are doing generic length kmer rather than a hard 2. 
  if(ScrawkovPHY.k<1){ 
   this.dinucFrequencies=newCalcDiFreq();} 
  else{ 
   this.dinucFrequencies=calcKFreq(ScrawkovPHY.k);} 
  this.GC_score=calcGC(); 
  this.biasMap=mkBiasMap();} 
 /** 
  * Measure the features ultimately used in the calculation of codon bias 
  * @return HashMap of measured features 
  */ 
 public HashMap<String, HashMap<String,Double>> mkBiasMap(){ 
  String inter=this.sequence; //shallow copy of the sequence 
  HashMap<String,HashMap<String,Double>> biasMap=new 
HashMap<String,HashMap<String,Double>>(); 
  String pIter=""; //holder variable 
  //go through and chop down the sequence, translating each codon at the end.  
  while(inter.length()>3){ 
    pIter=ScrawkovPHY.translateCodon(inter.substring(0,3)); 
    if(biasMap.containsKey(pIter)==false){ 
     HashMap<String,Double> bcodonMap=new HashMap<String,Double>(); 
     bcodonMap.put(inter.substring(0,3), (double) 1); 
     biasMap.put(pIter, bcodonMap);} 
    else{ 
     if(biasMap.get(pIter).containsKey(inter)==false){ 
      biasMap.get(pIter).put(inter.substring(0,3), 1.0);} 
     else{ 
     
 biasMap.get(pIter).put(inter.substring(0,3),biasMap.get(pIter).get(inter)+1);}} 
    inter=inter.substring(3);} 
  for(String aa: biasMap.keySet()){ 
   double count=0; 
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   for(String entry: biasMap.get(aa).keySet()){ 
    count+=biasMap.get(aa).get(entry);} 
   for(String entry:biasMap.get(aa).keySet()){ 
    biasMap.get(aa).put(entry,biasMap.get(aa).get(entry)/count);}} 
  return biasMap;} 
 /** 
  * Measures trinucleotide occurrence frequency, as well as the transition frequency  
  * in sequences. 
  * @param seq sequence being observed 
  * @return HashMap of measured features 
  */ 
 public HashMap<String, HashMap<String, Double>> calcCodonHelper(String seq){ 
  String tseq=seq; 
  HashMap<String, HashMap<String, Double>> tmap=new HashMap<String, HashMap<String, 
Double>>(); 
  int numCodons=0; 
  //crawl down and chop the sequence into smaller pieces of size 3. 
  while(tseq.length()>5){ 
   numCodons+=1; 
   String codon1=tseq.substring(0, 3); 
   String codon2=tseq.substring(3, 6); 
   if(!tmap.containsKey(codon1)){ 
    HashMap<String,Double>tempu=new HashMap<String, Double>(); 
    Double count=1.0; 
    tempu.put(codon2,  count); 
    tmap.put(codon1, tempu);} 
   else{ 
    if(!tmap.get(codon1).containsKey(codon2)){ 
     tmap.get(codon1).put(codon2, (double)1);} 
    else{ 
     tmap.get(codon1).put(codon2, tmap.get(codon1).get(codon2)+1);}} 
   tseq=tseq.substring(3);} 
  for(String map: tmap.keySet()){ 
   for(String entry: tmap.get(map).keySet()){ 
    tmap.get(map).put(entry, tmap.get(map).get(entry)/numCodons);}} 
  return tmap;} 
 /** 
  * Calls the helper function a differning number of times depending on the status  
  * of the maxByPair flag.  
  * @return HashMap of measured features 
  */ 
 public HashMap<Integer,HashMap<String, HashMap<String, Double>>> newCalcCodonFreq(){ 
  String tseq=this.sequence; 
  HashMap<Integer,HashMap<String, HashMap<String, Double>>> tmap=new 
HashMap<Integer,HashMap<String, HashMap<String, Double>>>(); 
  int numToDo; 
  //if maxByPair is true, each starting frame will be represented. 
  if(ScrawkovPHY.maxByPair==true){ 
   numToDo=3;} 
  else{ 
   numToDo=1;} 
  int count=0; 
  while(count<=numToDo){ 
   tmap.put(count, calcCodonHelper(tseq)); 
   tseq=tseq.substring(1,tseq.length()); 
   count+=1;} 
  return tmap;} 
 /** 
  * Measures dinucleotide frequencies and transition frequencies in a sequence 
  * @param seq the sequence being observed 
  * @return HashMap of measured features 
  */ 
 public HashMap<String, HashMap<String, Double>> calcDiHelper(String seq){ 
  String tseq=seq; 
  HashMap<String, HashMap<String, Double>> tmap=new HashMap<String, HashMap<String, 
Double>>(); 
  int numCodons=0; 
  while(tseq.length()>5){ 
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   numCodons+=1; 
   String codon1=tseq.substring(0, 2); 
   String codon2=tseq.substring(2, 4); 
   if(!tmap.containsKey(codon1)){ 
    HashMap<String,Double>tempu=new HashMap<String, Double>(); 
    Double count=1.0; 
    tempu.put(codon2,  count); 
    tmap.put(codon1, tempu);} 
   else{ 
    if(!tmap.get(codon1).containsKey(codon2)){ 
     tmap.get(codon1).put(codon2, (double)1);} 
    else{ 
     tmap.get(codon1).put(codon2, tmap.get(codon1).get(codon2)+1);}} 
   tseq=tseq.substring(2);} 
  for(String map: tmap.keySet()){ 
   for(String entry: tmap.get(map).keySet()){ 
    tmap.get(map).put(entry, tmap.get(map).get(entry)/numCodons);}} 
  return tmap;} 
 
 /** 
  * Depending on the value of maxByPair flag, calls the helper function a variable number of times. 
  * @return A HashMap of observed features 
  */ 
 public HashMap<Integer,HashMap<String, HashMap<String, Double>>> newCalcDiFreq(){ 
  String tseq=this.sequence; 
  HashMap<Integer,HashMap<String, HashMap<String, Double>>> tmap=new 
HashMap<Integer,HashMap<String, HashMap<String, Double>>>(); 
  int numToDo; 
  if(ScrawkovPHY.maxByPair==true){ 
   numToDo=2;} 
  else{ 
   numToDo=1;} 
  int count=0; 
  while(count<=numToDo){ 
   tmap.put(count, calcDiHelper(tseq)); 
   tseq=tseq.substring(1,tseq.length()); 
   count+=1;} 
  return tmap;} 
 /** 
  * Performs the same function as calcCodonHelper and calcDinucHelper, but with a generic sized 
kmer. 
  * @param seq The sequence 
  * @param k the size of the kmer to be used 
  * @return 
  */ 
 public HashMap<String, HashMap<String, Double>> calcKHelper(String seq, int k){ 
  String tseq=seq; 
  HashMap<String, HashMap<String, Double>> tmap=new HashMap<String, HashMap<String, 
Double>>(); 
  int numCodons=0; 
  int whileLen= (k*2)+1; 
  while(tseq.length()>whileLen){ 
   numCodons+=1; 
   String codon1=tseq.substring(0, k); 
   String codon2=tseq.substring(k, k+k); 
   if(!tmap.containsKey(codon1)){ 
    HashMap<String,Double>tempu=new HashMap<String, Double>(); 
    Double count=1.0; 
    tempu.put(codon2,  count); 
    tmap.put(codon1, tempu);} 
   else{ 
    if(!tmap.get(codon1).containsKey(codon2)){ 
     tmap.get(codon1).put(codon2, (double)1);} 
    else{ 
     tmap.get(codon1).put(codon2, tmap.get(codon1).get(codon2)+1);}} 
   tseq=tseq.substring(k);} 
  for(String map: tmap.keySet()){ 
   for(String entry: tmap.get(map).keySet()){ 
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    tmap.get(map).put(entry, tmap.get(map).get(entry)/numCodons);}} 
  return tmap;} 
 
 /** 
  * Depending on the value of maxByPair flag, calls the helper function a variable number of times. 
  * @return A HashMap of observed features 
  */ 
 public HashMap<Integer,HashMap<String, HashMap<String, Double>>> calcKFreq(int k){ 
  String tseq=this.sequence; 
  HashMap<Integer,HashMap<String, HashMap<String, Double>>> tmap=new 
HashMap<Integer,HashMap<String, HashMap<String, Double>>>(); 
  int numToDo; 
  if(ScrawkovPHY.maxByPair==true){ 
   numToDo=k;} 
  else{ 
   numToDo=1;} 
  int count=0; 
  while(count<=numToDo){ 
   tmap.put(count, calcKHelper(tseq,ScrawkovPHY.k)); 
   tseq=tseq.substring(1,tseq.length()); 
   count+=1;} 
  return tmap;} 
 /** 
  * Measures the GC content of a sequence.  
  * @return the difference in gc content as a double 
  */ 
 public double calcGC(){ 
  String tseq=this.sequence; 
  double count = tseq.length() - tseq.replace("G", "").length(); 
  count+=tseq.length()-tseq.replace("C", "").length(); 
  return count/tseq.length();}} 
 
 
 
 
 
 
 
 
 
 
 
 
 
//Node.java 
import java.util.ArrayList; 
 
/** 
 *  
 * @author Nick Fisk 
 * A node containing information about the  
 * organism used in searching a graph to recover a tree. 
 * currently used only for a UPGMA approach, but 
 * is extendible to other approaches.  
 */ 
public class Node { 
 String newick; 
 ArrayList<String> names=new ArrayList<String>();  
 public Node(String name){ 
  this.names.add(name); 
  name=name.replaceAll("[()]", ""); 
  name=name.replaceAll(">", ""); 
  //name=name.replaceAll("\\",""); 
  //name=name.replaceAll("/",""); 
  //if(name.length()>30){ 
   //name=name.substring(0, 29); 
  //} 
  name=name.replaceAll(" ", "_"); 
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  name=name.replaceAll("-", "_"); 
  name.replaceAll(",", "_"); 
  this.newick=name;} 
 /** 
  * Constructs a node from two other nodes and a distance 
  * @param node1, a node to be joined to node2 
  * @param node2, a node to be joined to node1 
  * @param dist the distance betwwen the two input nodes 
  *  
  */ 
 @SuppressWarnings("unchecked") 
 public Node(Node node1, Node node2, double dist){ 
  this.newick="("+node1.newick+":"+dist/2+","+node2.newick+":"+dist/2+")"; 
  this.names=new ArrayList<String>(node1.names); 
  this.names.addAll((ArrayList<String>)node2.names.clone());} 
 /** 
  * Find the distance between any two nodes. For nodes that  
  * consist of many nodes, the overall average of all the nodes is used, 
  * not just the average of the two nodes being compared 
  * @param n1, the first node or cluster of nodes 
  * @param n2, the second node or cluster of nodes 
  * @return the distance between the two nodes 
  */ 
 public static double calcDistance(Node n1, Node n2){ 
  ArrayList<String>names1=new ArrayList<String>(n1.names); 
  ArrayList<String>names2=new ArrayList<String>(n2.names); 
  double score=0.0; 
  int count=0; 
  for(String i: names1){ 
   for(String j: names2){ 
    score+=ScrawkovPHY.initScores.get(i).get(j); 
    count+=1;}} 
  return score/count;} 
 /* 
  * (non-Javadoc) 
  * @see java.lang.Object#toString() 
  */ 
 public String toString(){ 
  return(String.valueOf(this.names));} 
 @Override 
 public boolean equals(Object o){ 
  if(o==this){ 
   return true;} 
  if(!(o instanceof Node)){ 
   return false;} 
  Node o2=(Node)o; 
  for(String n: this.names){ 
   if(o2.names.contains(n)==false){ 
    return false;}} 
  for(String n: o2.names){ 
   if(this.names.contains(n)==false){ 
    return false;}} 
  return true;} 
 /** 
  * needed for the equals override 
  */ 
 public int hashCode(){ 
  return this.names.hashCode();}} 
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//NJNode.java 
import java.util.ArrayList; 
 
/** 
 * A Node class to represent the NJ graph search. 
 * A different node was needed than UPGMA as the  
 * boundary conditions and edge cases need be handled a little 
 * differently. 
 * @author J. Nick Fisk 
 * 
 */ 
public class NJNode { 
 ArrayList<String> names=new ArrayList<String>(); 
 double dist1=Double.MIN_VALUE; 
 double dist2=Double.MIN_VALUE; 
 ArrayList<NJNode> njnodes=new ArrayList<NJNode>(); 
 String newick=""; 
 /** 
  * Constructor for the first nodes 
  * @param name 
  */ 
 public NJNode (String name){ 
  this.names.add(name); 
  name=name.replaceAll("[()]", ""); 
  name=name.replaceAll(">", ""); 
  //name=name.replaceAll("\\",""); 
  //name=name.replaceAll("/",""); 
 // if(name.length()>30){ 
  // name=name.substring(0, 29); 
  //} 
  name=name.replaceAll(" ", "_"); 
  name=name.replaceAll("-", "_"); 
  name.replaceAll(",", "_"); 
  this.newick=name;} 
 /** 
  * Constructor for grouping together two nodes  
  * with two different lengths. 
  * @param n1 
  * @param n2 
  * @param dist1 
  * @param dist2 
  */ 
 public NJNode(NJNode n1, NJNode n2, double dist1, double dist2){ 
  this.njnodes.add(n1); 
  this.njnodes.add(n2); 
  this.names.addAll(n1.names); 
  this.names.addAll(n2.names); 
  this.newick="("+n1.newick+":"+dist1+","+n2.newick+":"+dist2+")";} 
 /** 
  * String representation of node 
  */ 
 public String toString(){ 
  return(String.valueOf(this.names));} 
 @Override 
 public boolean equals(Object o){ 
  if(o==this){ 
   return true;} 
  if(!(o instanceof Node)){ 
   return false;} 
  Node o2=(Node)o; 
  for(String n: this.names){ 
   if(o2.names.contains(n)==false){ 
    return false;}} 
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  for(String n: o2.names){ 
   if(this.names.contains(n)==false){ 
    return false;}} 
  return true;} 
 /** 
  * needed for the equals override 
  */ 
 public int hashCode(){ 
  return this.names.hashCode();}} 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Code used in EMU-Phy 

 
//ScrawQ.java 
import java.io.BufferedReader; 
import java.io.File; 
import java.io.FileNotFoundException; 
import java.io.FileReader; 
import java.io.FileWriter; 
import java.io.IOException; 
import java.io.Writer; 
import java.io.BufferedWriter; 
import java.util.ArrayList; 
import java.util.Scanner; 
 
/* 
 * ScrawQ, which is the working name of ScrawDB 
 * is under development. It is a phyloinformatics DB  
 * creation and management system. 
 *  
 */ 
public class ScrawQ { 
 public static ArrayList<Character> bases=new ArrayList<Character>(); 
 public static void main(String[] args) { 
  //a simple bool to decide whether to display the "ready for next command" prompt 
  populateBases(); 
  boolean amTesting=false; 
  if(amTesting){ 
   validateDB(); 
   return;} 
  boolean firstRun=true;  
  //print welcome message and user prompt 
  System.out.println("Welcome to EMU-Phy!"); 
  System.out.println("Please enter a command. Type 'help' for help and 'quit' to quit"); 
  //connect to standard in 
  Scanner scanIn=new Scanner(System.in); 
  //will continue to read in input until user quits  
  //or something terrible happens (execption thrown) 
  while(true){ 
   if(firstRun==true){ 
    firstRun=false;} 
   else{ 
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    System.out.println("Ready for next command      (enter 'quit' to 
exit)");} 
   //get the next input, save as string 
   String thisCommand=scanIn.next(); 
   //A very large switch command. More efficient and readable 
   //than if-else ifs-elses 
   switch(thisCommand){ 
    //if we are done and want to exit peacefully 
    case "quit": 
     System.out.println("Thank you for using ScrawQ!"); 
     System.exit(0); 
     break; 
    //help message to show all commands 
    case "help": 
     printHelp(); 
     break; 
    //installs the system 
    case "install": 
     installFileSys(); 
     break; 
    //To do: give functionality 
    //will update everything 
    case "update": 
     updateAll(); 
     break; 
    //forcibly redo all the analysis 
    case "redo": 
     redoAll(); 
     break; 
    case "validate": 
     validateDB(); 
     break; 
    //add subprompt 
    case "add": 
     boolean keepChecking=true; 
     while(keepChecking==true){ 
      String addCommand; 
      System.out.println("Add what?"); 
      System.out.println("Options are: group, taxa, gene, 
primer, taxonomy. Enter 'cancel' to cancel or 'done' to finish"); 
      addCommand=scanIn.next(); 
      switch(addCommand){ 
       case "group": 
        mkGroup(); 
        break; 
       case "taxa": 
        addNewTaxa(); 
        break; 
       case "gene": 
        //gene add 
        addGene(); 
        break; 
       case "primer": 
        //add primer 
        break; 
       case "taxonomy": 
        //add taxonomy 
        break; 
       case "cancel": 
        keepChecking=false; 
        break; 
       case "done": 
        keepChecking=false; 
        break; 
       default: 
        System.out.println("Invalid selection. 
Please try again..."); 
        break;}} 
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     break; 
    case "show": 
     keepChecking=true; 
     while(keepChecking==true){ 
      String showCommand; 
      System.out.println("Show what?"); 
      System.out.println("Options are: groups, taxa, genes, 
primers, taxonomy. Enter 'cancel' to cancel or 'done' to finish"); 
      showCommand=scanIn.next(); 
      switch(showCommand){ 
      case "groups": 
       try { 
        System.out.println("Groups are..."); 
        System.out.println(); 
    showFile("ScrawQ_Phyloinformatics/Groups/List_of_All_Groups.txt"); 
        System.out.println(); 
       } catch (IOException e) { 
        // TODO Auto-generated catch block 
        e.printStackTrace();} 
       break; 
      case "taxa": 
       try { 
        System.out.println("Taxon are..."); 
        System.out.println(); 
    showFile("ScrawQ_Phyloinformatics/All_Taxa/List_of_All_Taxa.txt"); 
        System.out.println(); 
       } catch (IOException e) { 
        // TODO Auto-generated catch block 
        e.printStackTrace();} 
       break; 
      case "genes": 
       keepChecking=true; 
       while(keepChecking==true){ 
        Scanner temp=new Scanner(System.in); 
        String taxa=new String(); 
        System.out.println("Name of taxa to 
display genes for? Type 'display' to show all available taxa (type 'cancel' to cancel"); 
        taxa=temp.next(); 
        if(taxa.equals("cancel")){ 
         keepChecking=false;} 
        else if(taxa.equals("display")){ 
         System.out.println("Displaying 
available taxa\n"); 
         try { 
         
 showFile("ScrawQ_Phyloinformatics/All_Taxa/List_of_All_Taxa.txt"); 
          System.out.println(); 
         } catch (IOException e) { 
          e.printStackTrace();}} 
        else{ 
         System.out.println("Displaying 
Genes for Taxa: "+taxa+"..."); 
         try { 
    showFile("ScrawQ_Phyloinformatics/All_Taxa/"+taxa+"/Genes/GeneList.txt"); 
         } catch (IOException e) { 
          // TODO Auto-generated 
catch block 
          System.out.println("That 
taxa does not exist. Try adding the taxa and trying again.");}}} 
       break; 
      case "primer": 
       break; 
      case "taxonomy": 
       break; 
      case "cancel": 
       keepChecking=false; 
       break; 
      case "done": 
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       keepChecking=false; 
       break; 
      default: 
       System.out.println("Invalid selection. Please try 
again..."); 

break;}} 
     break; 
    case "mkGroup": 
     mkGroup(); 
     break; 
    //help message for group only commands 
    case "groupHelp": 
     printGroupHelpMessage(); 
     break; 
    case "newTaxa": 
     addNewTaxa(); 
     break; 
    default:  
     System.out.println("Invalid command: help message will be 
displayed"); 
     printHelp(); 
     break;}}} 
 
 /* 
  * Initializes filesystem that will be used as DB 
  * uses user input to decide to install examples or not 
  */ 
 public static void installFileSys(){ 
  Scanner temp=new Scanner(System.in); 
  String examplesDesired=new String(); 
  System.out.println("Installing EMU-Phy in working directory...!"); 
  System.out.println(System.getProperty("user.dir")); 
  boolean keepchecking=true; 
  boolean doExamples=false; 
  while(keepchecking==true){ 
   System.out.println("Examples desired? (Will insert example data in datasytem)"); 
   System.out.println("Valid options are 'y' or 'n' or 'cancel')"); 
   examplesDesired=temp.next(); 
   switch(examplesDesired){ 
    case "y": 
     doExamples=true; 
     keepchecking=false; 
     print("Installing EMU-Phy with examples..."); 
     break; 
    case "n": 
     doExamples=false; 
     keepchecking=false; 
     break; 
    case "cancel": 
     System.out.println("Cancelling installation..."); 
     return;}} 
  //make all the dirs and files basally necessary for system. 
  new File("ScrawQ_Phyloinformatics").mkdir(); 
  new File("ScrawQ_Phyloinformatics/Groups").mkdir(); 
  new File("ScrawQ_Phyloinformatics/All_Taxa").mkdir(); 
  new File("ScrawQ_Phyloinformatics/ScrawkovPhy").mkdir(); 
  new File("ScrawQ_Phyloinformatics/pipelineModules").mkdir(); 
  File ListOfAllTaxa=new File("ScrawQ_Phyloinformatics/All_Taxa/List_of_All_Taxa.txt"); 
  File ListOfAllGroups=new File("ScrawQ_Phyloinformatics/Groups/List_of_All_Groups.txt"); 
  File ListOfAllModules=new 
File("ScrawQ_Phyloinformatics/pipelineModules/List_of_All_Modules.txt"); 
  mkFile(ListOfAllTaxa); 
  mkFile(ListOfAllGroups); 
  mkFile(ListOfAllModules); 
  //File dir=new File("."); 
  //File files[]=dir.listFiles(); 
  //for(File f: files){ 
   //System.out.println(f); 
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  //} 
  //System.out.println(System.getProperty("user.home"));} 
 /** 
  * addGene adds gene info to the database. Requires user to specify a taxa to add the gene for 
  */ 
 public static void addGene(){ 
  Scanner temp=new Scanner(System.in); 
  String thisTaxa=new String(); 
  System.out.println("Name of taxa to add gene for? Type 'display' to see available taxa 
(type 'cancel' to cancel"); 
  thisTaxa=temp.next(); 
  if(thisTaxa.equals("cancel")){ 
   return;} 
  else if(thisTaxa.equals("display")){ 
   System.out.println("Displaying available taxa\n"); 
   try { 
    showFile("ScrawQ_Phyloinformatics/All_Taxa/List_of_All_Taxa.txt"); 
    addGene(); 
   } catch (IOException e) { 
    // TODO Auto-generated catch block 
    e.printStackTrace();}} 
  else{ 
   File dir= new File("ScrawQ_Phyloinformatics/All_Taxa/"+thisTaxa); 
   if(!dir.exists()){ 
    System.out.println("That taxa does not exist. Try adding it and trying 
again"); 
    addGene();} 
   else{ 
    String geneName; 
    System.out.println("What is the gene name?"); 
    geneName=temp.next(); 
    geneName=sanitizeInput(geneName); 
    print("Using gene name: "+geneName); 
    String method; 
    System.out.println("DNA/RNA sequence required..."); 
    System.out.println("To supply a path to a file containing only this gene 
in FASTA format, enter 'path'..."); 
    System.out.println("To supply the sequence directly, enter 'direct'..."); 
    System.out.println("To cancel addition of gene, enter 'cancel'..."); 
    method=temp.next(); 
    String sequence=""; 
    if(method.equals("cancel")){ 
     print("Canceling addition of gene..."); 
     return;} 
    else if(method.equals("path")){ 
     class pathDoer{ 
      public String doPath(){ 
       String seq=""; 
       String pathToSeq; 
       System.out.println("What is the path to the 
sequence file (in FASTA Format)?"); 
       pathToSeq=temp.next(); 
       //DO NOT SANITIZE!!!!! Is supposed to have /s or 
\s 
       File seqFile=new File(pathToSeq); 
       if(!seqFile.exists()){ 
        System.out.println("Invalid path to 
file..."); 
        doPath();} 
       else{ 
        //read in seq function, but for now 
print something 
        System.out.println("Got to a valid 
file!"); 
        seq=readSeqFromFasta(seqFile); 
        seq=validateSeq(seq);} 
       return(seq);}} 
     sequence=new pathDoer().doPath();} 
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    else if(method.equals("direct")){ 
     class directDoer{ 
      public String doDirect(){ 
       System.out.println("What is the sequence?"); 
       String seq=temp.next(); 
       seq=validateSeq(seq); 
       if(seq.equals("")){ 
        print("Invalid sequence! Please use 
IUPAC compliant sequences only!"); 
        doDirect();} 
       return seq;}} 
     sequence=new directDoer().doDirect();} 
    else{ 
     System.out.println("Invalid method of supplying sequence. 
Addition of gene" + geneName +"aborting...\n"); 
     return;} 
    new 
File("ScrawQ_Phyloinformatics/All_Taxa/"+thisTaxa+"/Genes/"+geneName+"/").mkdir(); 
    BufferedWriter output; 
    try { 
     output= new BufferedWriter(new 
FileWriter("ScrawQ_Phyloinformatics/All_Taxa/"+thisTaxa+"/Genes/"+geneName+"/sequence.txt", true)); 
     output.append(sequence); 
     output.newLine(); 
     output.close(); 
    } catch (IOException e) { 
     e.printStackTrace();}}} 
  print("Gene addition sucessful!");} 
  
 /* 
  * makes a new group based on user input 
  * sanitizes the input, just in case 
  */ 
 public static void mkGroup(){ 
  //connect to standard in 
  Scanner temp=new Scanner(System.in); 
  String thisGroup=new String(); 
  //get input 
  System.out.println("Name of new group to add? (type 'cancel' to cancel"); 
  thisGroup=temp.next(); 
  System.out.println("adding group "+thisGroup+"..."); 
  //if this is not what they wanted to do, cancel 
  if(thisGroup.equals("cancel")){ 
   return;} 
  //sanitize the input, make a new dir for the group 
  //make a file to keep track of the members of the group.  
  else{ 
   thisGroup=sanitizeInput(thisGroup); 
   new File("ScrawQ_Phyloinformatics/Groups/"+thisGroup).mkdir(); 
   File groupFile=new 
File("ScrawQ_Phyloinformatics/Groups/"+thisGroup+"/members.txt"); 
   mkFile(groupFile); 
   BufferedWriter output; 
   try { 
    output= new BufferedWriter(new 
FileWriter("ScrawQ_Phyloinformatics/Groups/List_of_All_Groups.txt", true)); 
    output.append(thisGroup); 
    output.newLine(); 
    output.close(); 
   } catch (IOException e) { 
    e.printStackTrace();} 
   System.out.println(thisGroup+" was added sucessfully!");}} 
 /* 
  * Adds a new taxa via user input 
  * sanitizes the user input, just in case 
  */ 
 public static void addNewTaxa(){ 
  Scanner temp=new Scanner(System.in); 



 

 

152 

  String thisTaxa=new String(); 
  System.out.println("Name of new taxa to add? (type 'cancel' to cancel"); 
  thisTaxa=temp.next(); 
  if(thisTaxa.equals("cancel")){ 
   return;} 
  else{ 
   System.out.println("adding Taxa: "+thisTaxa+"..."); 
   thisTaxa=sanitizeInput(thisTaxa); 
   new File("ScrawQ_Phyloinformatics/All_Taxa/"+thisTaxa).mkdir(); 
   new File("ScrawQ_Phyloinformatics/All_Taxa/"+thisTaxa+"/Genes/").mkdir(); 
   File taxaFile=new 
File("ScrawQ_Phyloinformatics/All_Taxa/"+thisTaxa+"/Genes/GeneList.txt"); 
   mkFile(taxaFile); 
   File aliases=new 
File("ScrawQ_Phyloinformatics/All_Taxa/"+thisTaxa+"/nicknames.txt"); 
   mkFile(aliases); 
   BufferedWriter output; 
   try { 
    output= new BufferedWriter(new 
FileWriter("ScrawQ_Phyloinformatics/All_Taxa/List_of_All_Taxa.txt", true)); 
    output.append(thisTaxa); 
    output.newLine(); 
    output.close(); 
   } catch (IOException e) { 
    e.printStackTrace();} 
   System.out.println(thisTaxa+" was added sucessfully!");}}  
 /* 
  * Adds new taxa based on a string arg. Meant for internal use.  
  */ 
 public static void addNewTaxaInternal(String thisTaxa){ 
  thisTaxa=sanitizeInput(thisTaxa); 
  new File("ScrawQ_Phyloinformatics/All_Taxa/"+thisTaxa).mkdir(); 
  File taxaFile=new File("ScrawQ_Phyloinformatics/All_Taxa/"+thisTaxa+"/GeneList.txt"); 
  mkFile(taxaFile); 
  File aliases=new File("ScrawQ_Phyloinformatics/All_Taxa/"+thisTaxa+"/nicknames.txt"); 
  mkFile(aliases);} 
  
 /* 
  * Same as mkgroup, but meant for internal use based off a string arg 
  */ 
 public static void mkGroupInternal(String thisGroup){ 
  thisGroup=sanitizeInput(thisGroup); 
  new File("ScrawQ_Phyloinformatics/Groups/"+thisGroup).mkdir(); 
  File groupFile=new File("ScrawQ_Phyloinformatics/Groups/"+thisGroup+"/members.txt"); 
  mkFile(groupFile); 
  BufferedWriter output; 
  try { 
   output= new BufferedWriter(new 
FileWriter("ScrawQ_Phyloinformatics/Groups/List_of_All_Groups.txt", true)); 
   output.append(thisGroup); 
   output.newLine(); 
   output.close(); 
  } catch (IOException e) { 
   e.printStackTrace();} 
  System.out.println(thisGroup+" was added sucessfully!");} 
   
 public static void validateDB(){ 
  validateTaxa(); 
  validateGroups();} 
 public static void validateGroups(){  
 } 
 public static void validateTaxa(){ 
  ArrayList<String> recordedTaxa=getRecordedTaxa(); 
  print(recordedTaxa); 
  ArrayList<String> observedTaxa=getObservedTaxa(); 
  print(observedTaxa); 
  ArrayList<String> notInObs=new ArrayList<String>(recordedTaxa); 
  notInObs.removeAll(observedTaxa); 
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  if(notInObs.size()>0){ 
   print("There is a difference between master list and observed taxa entries"); 
   print("Resolving difference by updating master list"); 
   File temp=new File("ScrawQ_Phyloinformatics/All_Taxa/List_of_All_Taxa.txt"); 
   ///We are set to delete this without backing file up, since we have it in RAM 
already to correct if something bad happens. 
   boolean completed=temp.delete(); 
   ArrayList<String> forAllTaxa=new ArrayList<String>(observedTaxa); 
   if(completed==false){ 
    print("There was an error deleting abherent entries"); 
    print("Restoring master list to last working state...");} 
   else{ 
    File ListOfAllTaxa=new 
File("ScrawQ_Phyloinformatics/All_Taxa/List_of_All_Taxa.txt"); 
    mkFile(ListOfAllTaxa); 
    BufferedWriter output = null; 
    try { 
     output= new BufferedWriter(new 
FileWriter("ScrawQ_Phyloinformatics/All_Taxa/List_of_All_Taxa.txt", true)); 
    } catch (IOException e) { 
     e.printStackTrace();} 
    for(String i : forAllTaxa){ 
     try{ 
      output.append(i); 
      output.newLine();} 
     catch(IOException o){ 
      o.printStackTrace();}} 
    try { 
     output.close(); 
    } catch (IOException e) { 
     e.printStackTrace();}}} 
  ArrayList<String> notInRec=new ArrayList<String>(observedTaxa); 
  notInRec.removeAll(recordedTaxa); 
  if(notInRec.size()>0){ 
   File ListOfAllTaxa=new 
File("ScrawQ_Phyloinformatics/All_Taxa/List_of_All_Taxa.txt"); 
   BufferedWriter output = null; 
   try{ 
    output= new BufferedWriter(new 
FileWriter("ScrawQ_Phyloinformatics/All_Taxa/List_of_All_Taxa.txt", true)); 
    for(String i : notInRec){ 
     boolean havePrinted=false; 
     File temp=new 
File("ScrawQ_Phyloinformatics/All_Taxa/"+i+"/Genes"); 
     if(temp.exists()==false){ 
      print("Incomplete directory information found for taxa "+ 
i+"!"); 
      print("Updating directory to conform to minimal 
requirements."); 
      havePrinted=true; 
      temp.mkdir();} 
     temp=new 
File("ScrawQ_Phyloinformatics/All_Taxa/"+i+"/Genes/GeneList.txt"); 
     if(temp.exists()==false){ 
      if(havePrinted==false){ 
       print("Incomplete directory information found for 
taxa "+ i+"!"); 
       print("Updating directory to conform to minimal 
requirements.");} 
      mkFile(temp);} 
     output.append(i); 
     output.newLine();} 
    output.close();} 
   catch(IOException o){ 
    o.printStackTrace();}}} 
  
 public static ArrayList<String> getRecordedTaxa(){ 
  ArrayList<String> taxaList=new ArrayList<String>(); 
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  File temp=new File("ScrawQ_Phyloinformatics/All_Taxa/List_of_All_Taxa.txt"); 
  if(!temp.exists()){ 
   ///generate a blank one on the fly! 
   mkFile(temp);} 
  taxaList=returnFile("ScrawQ_Phyloinformatics/All_Taxa/List_of_All_Taxa.txt"); 
  return taxaList;} 
 public static ArrayList<String>getObservedTaxa(){ 
  ArrayList<String>obsTaxaList=new ArrayList<String>(); 
  File temp=new File("ScrawQ_Phyloinformatics/All_Taxa/"); 
  File[] tempList=temp.listFiles(); 
  for(File i: tempList){ 
   String tempName=i.getName(); 
   if(tempName.equals("List_of_All_Taxa.txt")==false){ 
    obsTaxaList.add(tempName);}} 
  return(obsTaxaList);} 
 public static void printGroupHelpMessage(){ 
  System.out.println("Here are the commands pertaining to working with groups"); 
  System.out.println("groupHelp: Displays this help message"); 
  System.out.println("mkGroup: Makes a new group");} 
 /* 
  * Prints the purpose of all commands 
  */ 
 public static void printHelp(){ 
  System.out.println("Below are commands and their function"); 
  System.out.println("help : Displays this help message"); 
  System.out.println("quit : Exits ScrawQ. There is no prompt for confirmation."); 
  System.out.println("install: Installs ScrawQ. Only Run this once unless you want a fresh 
install!"); 
  System.out.println("update: Updates the internal structures and trees if new data is 
present."); 
  System.out.println("redo: Performs all analyses regardless of if the data has been updated 
or not."); 
  System.out.println("mkGroup: Makes a new group");} 
  
 /* 
  * Replaces all '/','\',' ', and '.' characters with underscores 
  * and alerts the user to this change 
  */ 
 public static String sanitizeInput(String token){ 
  String newToken; 
  newToken=token.replace('\\', '_'); 
  newToken=newToken.replace('/', '_'); 
  newToken=newToken.replace(' ', '_'); 
  newToken=newToken.replace('.', '_'); 
  if(!token.equals(newToken)){ 
   System.out.println("Possible problem with user input..."); 
   System.out.println("User input "+ token+"  was changed to "+newToken);} 
  return newToken;} 
 
 public static void showFile(String fileWithPath) throws IOException{ 
   BufferedReader br = new BufferedReader(new FileReader(fileWithPath)); 
   String line = null; 
   while ((line = br.readLine()) != null) { 
     System.out.println(line);} 
   br.close();} 
 public static ArrayList<String> returnFile(String fileWithPath){ 
  ArrayList<String> contents=new ArrayList<String>(); 
  try { 
   BufferedReader br = new BufferedReader(new FileReader(fileWithPath)); 
   String line = null; 
   while ((line = br.readLine()) != null) { 
       contents.add(line);} 
   br.close(); 
  } catch (IOException e) { 
   e.printStackTrace();} 
  return(contents);} 
  
 /* 
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  * a method that just try-catches the creation of a file. 
  * Just in case. 
  */ 
 public static void mkFile(File filenameANDpath){ 
  File newfile=filenameANDpath; 
  try{ 
   newfile.createNewFile();} 
  catch(IOException ioe){ 
   System.err.println("Error in making files\n "+ioe);}} 
 public static void populateBases(){ 
  bases.add('A'); 
  bases.add('C'); 
  bases.add('G'); 
  bases.add('T'); 
  bases.add('a'); 
  bases.add('c'); 
  bases.add('g'); 
  bases.add('t'); 
  bases.add('U'); 
  bases.add('u'); 
  bases.add('R'); 
  bases.add('r'); 
  bases.add('Y'); 
  bases.add('y'); 
  bases.add('S'); 
  bases.add('s'); 
  bases.add('W'); 
  bases.add('w'); 
  bases.add('K'); 
  bases.add('k'); 
  bases.add('M'); 
  bases.add('m'); 
  bases.add('B'); 
  bases.add('b'); 
  bases.add('D'); 
  bases.add('d'); 
  bases.add('H'); 
  bases.add('h'); 
  bases.add('V'); 
  bases.add('v'); 
  bases.add('N'); 
  bases.add('n'); 
  bases.add('.'); 
  bases.add('-');} 
 public static String readSeqFromFasta(File fileWithPath){ 
  String finalSeq=""; 
  boolean hitCarrot=false; 
  try { 
   BufferedReader read=new BufferedReader( new FileReader(fileWithPath)); 
   String line = null; 
   while((line=read.readLine())!=null){ 
    if(line.charAt(0)=='>'){ 
     if(hitCarrot==false){ 
      hitCarrot=true; 
      continue;} 
     else{ 
      return(finalSeq);}} 
    else{ 
     String seq=read.readLine(); 
     finalSeq+=seq;}} 
  } catch (FileNotFoundException e) { 
   // TODO Auto-generated catch block 
   e.printStackTrace(); 
  } catch (IOException e) { 
   // TODO Auto-generated catch block 
   e.printStackTrace();} 
  return finalSeq;} 
 public static String validateSeq(String seq){ 
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  char[]seqChars=seq.toCharArray(); 
  for(char i:seqChars){ 
   if(!bases.contains(i)){ 
    return "";}} 
  return seq.toUpperCase();} 
 public static void print(Object o){ 
  System.out.println(o);}} 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
//geneTreeMethod.java 
import java.util.ArrayList; 
 
public interface geneTreeMethod { 
 //format seqs should put the seqs in the database into  
 // the format needed to run the genetree method and write  
 // them to some location tbd. It should return the full filenames 
 // of every entry. If a program requires an alignment, then 
 // an alignmentMethod interface should be instanciated locally 
 public ArrayList<String> formatSeqs(ArrayList<String> seqNames, ArrayList<String> seqs); 
 //should be last method called which will clear the  
 //files from memory 
 public void removeFormattedSeqs(); 
  
 //should get the command line parameters in a way that allows 
 //it to be tacked on to the end of the program call 
 public String getParams(ArrayList<String> params); 
  
 //should return the invokation of the program as a string 
 //to be called from the system. Will not be OS independent 
 //and will likely include calls to get params and format Seqs 
 public String invokation(); 
  
 //returns a string designating the path to write files out, if 
 //necessary. may be used in invokation. 
 public String outDir();} 
 
//alignmentMethod.java 
import java.util.ArrayList; 
 
public interface alignmentMethod { 
 //should return a list of any size of filenames to be used in the alignment 
 //if it only needs one big file, for instance, the length will be 
 //size 1. 
 public ArrayList<String> getFilesToAlign(); 
  
 //returns params as they would be tacked onto the invokation 
 // of the program as a single string 
 public String getAlignParams(ArrayList<String>params); 
  
 //invokes the alignment command and returns the location of 
 //the resulting aligned file.  
 public String align(ArrayList<String>info);} 
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