Rochester Institute of Technology

RIT Digital Institutional Repository

Theses

3-27-2016

Killing Two Birds with One Stone: The Concurrent Development of
the Novel Alignment Free Tree Building Method, Scrawkov-Phy,
and the Extensible Phyloinformatics Utility, EMU-Phy.

J. Nick Fisk
jnf3769@rit.edu

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation

Fisk, J. Nick, "Killing Two Birds with One Stone: The Concurrent Development of the Novel Alignment Free
Tree Building Method, Scrawkov-Phy, and the Extensible Phyloinformatics Utility, EMU-Phy." (2016).
Thesis. Rochester Institute of Technology. Accessed from

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact
repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F9000&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/9000?utm_source=repository.rit.edu%2Ftheses%2F9000&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

Killing Two Birds with One Stone: The Concurrent
Development of the Novel Alignment Free Tree Building
Method, Scrawkov-Phy, and the Extensible Phyloinformatics
Utility, EMU-Phy.

/7
0’0

J. Nick Fisk

Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of
Science in Bioinformatics

Thomas H. Gosnell School of Life Sciences
College of Science
Rochester Institute of Technology
Rochester, NY
3-27-2016

/7
0'0

Abstract:

Many components of phylogenetic inference belong to the most computationally
challenging and complex domain of problems. To further escalate the challenge, the
genomics revolution has exponentially increased the amount of data available for
analysis. This, combined with the foundational nature of phylogenetic analysis, has
prompted the development of novel methods for managing and analyzing phylogenomic
data, as well as improving or intelligently utilizing current ones. In this study, a novel
alignment tree building algorithm using Quasi-Hidden Markov Models (QHMMs),
Scrawkov-Phy, is introduced. Additionally, exploratory work in the design and
implementation of an extensible phyloinformatics tool, EMU-Phy, is described. Lastly,
features of the best-practice tools are inspected and provisionally incorporated into

Scrawkov-Phy to evaluate the algorithm’s suitability for said features.

This study shows that Scrawkov-Phy, as utilized through EMU-Phy, captures
phylogenetic signal and reconstructs reasonable phylogenies without the need for
multiple-sequence alignment or high-order statistical models. There are numerous
additions to both Scrawkov-Phy and EMU-Phy which would improve their efficacy and

the results of the provisional study shows that such additions are compatible.

Table of Contents

oo

B wnN e

Acknowledgements
Introduction

Aims

Chapter 1. Scrawkov-Phy
4.1. Background

4.2. Methods

4.3. Results

4.4, Discussion

. Chapter 2: EMU-Phy

5.1. Background

5.2. Methods
5.3. Results
5.4. Discussion

. Chapter 3: Continued Development

6.1. Background
6.2. Methods
6.3. Results

6.4. Discussion

. Closing Remarks
. References
. Supplemental Materials

Page Number

Rochester Institute of Technology
Thomas H. Gosnell School of Life Sciences
Bioinformatics Program

Iﬂl&lpformaUCS

RIT

To: Head, Thomas H. Gosnell School of Life Sciences

The undersigned state that Jeffrey Fisk, a candidate for the Master of Science degree in
Bioinformatics, has submitted his thesis and has satisfactorily defended it.

This completes the requirements for the Master of Science degree in Bioinformatics at
Rochester Institute of Technology.

Thesis committee members:

Name Date

Larry J. Buckley, Ph.D.
Thesis Advisor

Michael V. Osier, Ph.D.

Gregory A. Babbitt, Ph.D.

Michael V. Osier, Ph.D.

475-4392 (voice)
Director of Bioinformatics MS Program

mvoscl@rit.edu

v

Acknowledgements:

Firstly, I’d like to thank my father whose sacrifices for his family and his country have
enabled my aspirations. His encouragement means the world to me. I also wish to thank the rest
of my family for being there for me whenever | stuttered or faltered. | love you all dearly.

| also want to thank Dr. Larry Buckley, my advisor, for his continued support not just in
the research presented here, but in guiding my academic success since my arrival to RIT. He has
allowed and encouraged to operate with autonomy while always being excited to offer advice
whenever | sought it, be it on Pokémon or Phylogeny. I truly appreciate his taking me as a

research student despite his numerous other responsibilities.

| want to thank my other committee members, Dr. Michael Osier and Dr. Gregory
Babbitt, whose perspectives | have continually synthesized and from whom | have learned a

great deal. | respect them immensely and appreciate their continued support.

| wish to thank the GSOLS support staff whose tireless effort made my other
responsibilities all too easy, allowing for the swift completion of this project. Thank you Gabby,

Michelle, Jenny, and Allison for your hard work. Bioprep4L.ife!

| would also like to extend a thank you to Drs. Andre Hudson and Gary Skuse, who gave
me great advice concerning graduate school during the final stages of the present work. I hope

they continue to mentor and guide students for years to come.

| would like to thank my roommates and dear friends for your support throughout the
years. Alex, Mike, and Zach, | literally could not have gone to school without you. | know the
time for us to finally go our separate ways approaches, but I have faith that we will all find what

we want out of life. Buen viaje!

I would like to thank Coaches Scott Stever and Jason Bovenzi for their understanding as |
pursued my graduate degree alongside a demanding role on an athletics team. Your and the
team’s support and encouragement, both on and off the mat, inspired me to continue working to

my goals every day and granted me the confidence and ability to do so.

In addition, I’d like to thank my dear friends back in New Mexico. Chase, Sterling, Tyler,

Bruno, Elise, Natasha, and many others. Thanks for supporting me in my college career.

I’d also like to extend a special thanks to the Bioinformatics Journal Club at RIT. You all
are friends and colleagues who I will never forget. Thank you for your support during troubled
times, both personal and professional. And thank you for being a wall off which | bounced ideas
for the duration of this project. Especially to Amanda, Mike, Cam, Connor, Alex, and Sharig—

you have shown me immeasurable kindness that I will not soon forget.

Introduction:

It is generally agreed by biologists that phylogenetic relationships can be foundational in
the pursuit of many other fields of biology. Continued research and understanding of the
evolutionary relationships between organisms and genes contributes to advancements in a
plethora of biological fields. Drug design, proteomics, comparative genetics, epidemiology,
immunology, biogeography, developmental biology, and, naturally, evolutionary biology all
benefit from analysis of phylogenetic relationships. As a result of the foundational nature of

phylogenetic systematics, the field itself has evolved markedly since its conception.

In its early stages, phylogenetics started as a series of hypothesizes founded in thought
experiments and philosophy*~3, such as parsimony*®. Today, it revolves largely around the
application of mathematical models to molecular data, such as DNA sequence®. Indeed, the
advent and development of high throughput sequencing techniques, also known as next
generation sequencing (NGS) technologies, have completely revolutionized biology and its
subdisciplines.® While early methodologies relied heavily on morphological character traits??,
evolutionary biology and systematics have been adapted to include molecular data and the use of
molecular data is now standard in those fields when such data is available!!. Use of molecular
data, however, requires careful selection of segments of DNA to be considered for the estimation
of phylogenetic relationships. As data becomes increasingly abundant, more information is
capable of being incorporated into phylogenies. Due to the computational complexity of nearly
every process involved in tree-building, phylogenetic methods have had to continually upgrade
and change to account for the new sea of molecular data available. Some of the adaptations the
field has seen include: the optimization of current approaches, alignment-free algorithms*? that
promise whole genome phylogenies, improved supertree methods, etc. With ever expanding data
and workflows available to more diverse set of users, phyloinformtics has emerged as a way to
organize, incorporate, and synthesize the vast resources relevant to phylogenetic analysis. While
the term isn’t used consistently in its definition and scope, a theme consistent to so-called
phyloinformatic utilities is the organization of phylogenetically relevant data with emphasis on

end-user ease.

AIms:

This thesis project has three distinct aims. The first aim is the construction of an
extensible phyloinformatic utility focused on tree-building that contains a number of
features that accommodate users of varying computational literacy. These features will be
based on the critique of other phyloinformatic utilities, as well as a vignette based survey
of beta-testers of the utility itself. The second aim of this thesis project is the design and
characterization of a novel alignment-free tree-building algorithm, Scrawkov-Phy, that
serves as the default behavior of the phyloinformatic utility. The last aim of this project is
to further develop Scrawkov-Phy by working to incorporate features common among the

successful and modern phylogenetic analysis tools found in the literature.

Chapter 1

N/
0‘0

Scrawkov-Phy: A Multi-State Quasi-Hidden Markov
(QHMM) Approach for Constructing Alignment

Free Gene and Species Phylogenies

J. Nick Fisk

Background:

Necessity of Phylogenetic Methods

Many DNA sequence datasets are often invested in for reasons other than phylogeny.
Indeed, much whole genome scale data is collected with the expectation of application beyond
use in phylogenetic analysis. Largely, this is due to the complex and difficult problem with the
computational alignment of genomic sequences®®. Moreover, many methods developed to
present day perform phylogenetic reconstruction using only a minuscule fraction (namely the
homologous exons) of the genome. Due to these issues, as well as the relative cost, genome scale
phylogenies have been difficult to construct and characterize. However, with ever-prominent
advancements in high-throughput sequencing technologies, molecular sequence data will
undoubtedly become less scarce and projects featuring an ever-increasing number of organisms
will more feasibly be able to incorporate such data, further compounding this challenge.
Critically, a large number of other comparative biological studies require the construction of a
phylogeny as a foundational step. Indeed, phylogenetic relationships represent fundamental
hypotheses in many areas of the biological sciences including evolutionary biology. This
combination of phylogenetics as a keystone element in biological studies, rapidly expanding
sources of molecular data, and the limitations of both computing resources and of the algorithms
themselves ensures the continued need for the development and characterization of phylogenetic

methodologies.

Mo’ data, mo’ problems

Big data is a term generally applied across many disciplines. It generally refers to
extremely large datasets that, when analyzed carefully, can elucidate non-obvious trends or
associations**. Regardless of the context in which it is discussed, the analysis of big data
presents unique challenges in the sheer volume of often heterogeneous data used in studies
thereof®. Traditional techniques or classic software used in the field may no longer feasibly be
applied. Often, these reasons are computationally founded: There is simply not enough memory
or time available to complete the task. Other times, it is logistically difficult to ascertain the types

of analysis to perform to produce useful results®®. It may also be statistically difficult to

determine the significance of a result or how to use the result in a meaningful way (knowledge
discovery)’. As a result of these difficulties, novel methods are often needed to meet the
challenges presented by big data and obtain relevant and meaningful results. DNA sequence data
and the availability and analysis thereof undoubtedly falls under the larger umbrella of big data,
generally speaking.® The availability of data, both locally and through services like the National
Center for Biotechnology Information (NCBI) or the European Bioinformatics Institute (EBI),
allows even small labs to perform projects for which seminal approaches would be insufficient.
Indeed, as seen in Figures 1A, 1B, and 1C (below) the number of sequences in these databases
has increased exponentially and the doubling time of the EBI database is roughly linear.
Phylogenetics embodies many of these challenges as traditional approaches require algorithms

which fall in some of the most problematic classes of computational complexity.

160 3.5 Assembled/annotated sequence growth
g 5 - 25-Jan-2016
National Library of Medicine :
140 3.0 led
Twenty Four Years of Growth: lel2
120 2 @ le8 H
NCBI Data and User Services 25 & i lell
F100 s le7 v
S GenBank Base Pairs = lel0
8 Genome Referénce 20 B] / m
= am—sers (Average) Consortiuny 2 1 o
EBO) ‘ F 5 le6 1e9 0
L2 Genome-Wide E z 3
K Association Studies 15 @ Q le5
g 60 NIH Public Access ’”,"ui‘:f;"‘m 2 v le le8
© PubMed Central PUbCHeN o
Human Genome . 10 2 led | | | | i i le7?
40 Registry = i i i i | i
Clinvar | H H H H H
le6
le3 : : : : ; ;
20 L 1000 Genomes 0.5 /_ i i i i i i
BLAST l 1985 1990 1995 2000 2005 2010 2015
0 VR .. 0.0 Year
mmmmm e N 2283823885282 0080 — __
2338aaaareasessgss888ss¢e8¢se ‘—Sequences (712.1 millions) — Bases (1,582.5 bllllons)|

Assembled/annotated sequence doubling time
25-]an-2016

Months
w
w

1990 1885 2000 2005 2010 2015
Year

— Sequences (24.1 months) —Bases (22.1 months)|

Figure 1: The deposition of sequence data in Genbank over time with historical events as an
overlay is shown in Figure 1A (top left)!. The deposition of sequences in the EBI’s European
Nucleotide Archive (ENA) follows a similar pattern?, shown in a log scale graph in Figure 1B
(top right). The ENA doubling time, however, is only weakly increasing at a linear rate and
shows indications of being periodic as presented in Figure 1C (bottom). Biological data is
becoming exponentially more abundant.

There has been much discussion on how to most effectively use big data, both in science
on other disciplines. Generally, it is agreed that such data, especially in the sciences, should not
be used without careful consideration and scrubbing of the data?. The exploration of big data
and all it has to offer, however, is vital to determining its place in science.

Computational Complexity, Computational Size, and Phylogenetics

In computer science, problems and algorithms are often categorized by their complexity
by number of computations required to solve them?2. While there are any number of measures of
computational complexity, the discussion of which is beyond the scope of the present, they all
typically refer to the runtime of an algorithm as a function of inputs. Best-case, worst-case, and
average-performance metrics are often used and, depending on the limiting behavior of their
solutions, problems are categorized into different classes, either by time or space??. The
‘polynomial time’ or ‘P’ class of problems are the set of computational problems formally
considered easy as there exist at least one algorithm that completes the decision problem in
polynomial time. The ‘nondeterministic polynomial’ or ‘NP’ class of problems is a broader class
of decision problems that include the ‘P’ class of problems and allow that an algorithm derive a
solution in a non-deterministic manner but still be verified by a deterministic algorithm.?® The
NP-complete class of problems include problems for which there is no proof against a
polynomial time solution, but for which none are known. They are defined by their ability to
solve or ‘complete’ all other NP problems in polynomial time if a polynomial time solution
exists for it. To rephrase, if any NP-complete problem were to be solved, all NP problems could
then be considered P problems, since it would provide a means of achieving polynomial time for
every problem in NP. Although there are many types of problems, P, NP, and NP-complete refer
only to decision problems. Since this system of classification is semantically simple and widely
used, another class of problems was defined to make comparison to the aforementioned classes
more straightforward. This class, called NP-hard, are any problems, whether they are decision

problems or not, which are at least as hard as any problem in NP, including those that are NP-

complete. Simply put, problems that are categorized as NP-complete or NP-hard are so
computationally difficult that efficient and optimal algorithms for solving them are very unlikely
to exist. As a result, the size of inputs used in such algorithms is extremely limited, requiring
heuristic, or suboptimal, methods to complete in reasonable time or with reasonable
computational space.?® Critically, many algorithms used in phylogenetic analysis fall into the
classes of NP-complete or NP-hard.

There is no shortage of literature on the computational complexity of phylogenetic
methods?*2’. William H.E. Day, as well as many others, have shown the complexity of many
algorithms used in phylogenetic analysis. Foulds and Graham showed that the Steiner Problem in
Phylogeny (SPP) as it pertains to biology is an NP-complete problem?®. The Steiner tree problem
deals with minimizing the total length or weight of junctions between any set of objects. There
are specific instances of Steiner-tree problem that have polynomial time solutions due to
limitations in the domain in which the problem is being solved. Unfortunately, no such solution
is available for phylogenetics and, thus, the SPP is also NP-complete, requiring all but the
smallest phylogenies to be resolved using heuristic methods. The problem’s classification
persists whether parsimony, dissimilarity matrices, or many other methods are used. Thus,
suboptimal heuristics, often using dynamic programming, are typically used to combat the
extreme combinatorics of the problems.?® As a result, most phylogenetic tree searches are non-
exhaustive. Moreover, most phylogeny recovering algorithms require a multiple sequence
alignments to perform. These algorithms are affected both by the number of sequences, as well
as the length of those sequences. The precise and optimal way of computing an alignment
between sequences has a computational complexity of O(LN), where N is the number of
sequences being aligned and L is the length of the sequences.?® Naturally, this absurdly
exponential problem makes true alignment of sequences prohibitive for all but the smallest of
datasets. Progressive multiple sequence alignment, a dynamic heuristic to the problem, reduces
the complexity to a more reasonable figure. The development of more refined heuristics has
popularized a number of heuristic multiple sequence alignment algorithms as sequencing data
has become more abundant. Version 6 of MAFFT® has a O(NL?)+O(N?) time complexity.
MUSCLE?!, generally, has a time complexity of O(N?L+NL?), though some parameters will

cause it to run with an additional O(N3L). It is important to note that these are worst case

measures of run time and each program has cases in which they perform much better. For
instance, MAFFT complexity drops to O(NL2) when comparing similar sequences. Despite these
advancements in heuristic methods, many consider exponential run time to be insufficient.
Indeed, for large numbers of long sequences, such as those on the scale of whole genomes, these
methods still fall short of feasible. In addition, while not discussed at length here, memory space
utilization also becomes a factor making both RAM resources and runtime considerations as
investigators advance projects. While not the sole aim of improving phylogenetic analysis and
alignment methodologies, whole genome phylogenies have a number of additional challenges
that make traditional methods difficult to employ. For instance, when performing whole genome
phylogeny, the genomes must all first be assembled. Then, traditionally, all true orthologous
regions need to be identified and ordered before alignment and there are significant regions of
unalignable (non-homologous) DNA (i.e. indels). Alignment is then subject to the same
considerations previously mentioned, as is tree-building, along with additional considerations
about the substitution rate etc. Alternative methodologies, including those which do not require
multiple sequence alignment, have continuously been developed to address the challenges of the

emerging field of phylogenomics.*

Phylogenetics, Phylogenomics, and the Traditional Methods

The main distinction between phylogenetics and phylogenomics is scale. Phylogenomics
lays at the union between evolutionary biology and genomic studies. There have been numerous
methods developed for performing phylogenetic analysis and, as the field as called for more
ways to handle genome-scale data, these methods have improved and evolved themselves to
meet the challenge. To fully understand the limitations of the original implementation of these
methods, as well as to understand why improvements need be made for phylogenomics

applications, first briefly surveying the traditional methods is necessary.

Parsimony approaches are perhaps one of the oldest approaches. It follows the
philosophy of Occam’s razor in which we shear away all unnecessary steps or events. In the
specific instance of phylogeny, it implies that the tree that requires the fewest number of
evolutionary events to occur is the most likely to be correct. It is, algorithmically, easy to

determine the number of steps in a tree and evaluate a given tree on parsimony (that is, to score

10

it). However, there is no method for the generation of trees via this criteria, simply evaluation. A
tree search must be performed. Exhaustive tree searches are computationally infeasible, so
heuristics are often employed. Even when the most parsimonious tree is recovered, it is not
guaranteed to be the correct tree, however, and such an approach performs poorly in certain
conditions®. Typically, it will underestimate branch lengths. Naturally, a shortcoming invites
alternative methods, such as the use of distance.

Alternatives to parsimony are the methods which may use distance to algorithmically
construct a tree, instead of solely evaluating a tree for its goodness. Typically, distances are
obtained using aligned genetic information by measuring dissimilarities. From here, there are a
number of algorithms that can reconstruct a tree, such as UPGMA and Neighbor-Joining®*. Some
methods have optimality criteria, which means that they not only allow for the algorithmic
construction of trees, but also the evaluation of the goodness of those trees. There are
shortcomings in this method, however. As many methods rely on pairwise generation and
clustering, information about individual characters is lost during the reduction of character stats

to a distance®. Statistical methods may address some of these shortcomings.

Maximum likelihood trees are those produced under the statistical technique of the same
name. Generally, the algorithm looks at the statistical likelihood of a particular tree, evaluating
the probability of the data given the tree®. In this way, it is similar to maximum parsimony as it
evaluates many trees, choosing the one that is most likely given its substitution model, rather
than algorithmically constructing one. It also inherits same problem, where the number of
possible trees exponentially increase with increasing numbers of taxa. There are a number of
heuristics that are applied to mitigate this issue, a common one being splitting the tree into
subtrees and finding the probability in this manner®’. Bayesian approaches bear many similarities
to maximum likelihood, as they both operate on statistical principles. However, Bayesian
approaches assume a probability distribution and then use posterior probabilities to evaluate the
tree as its optimality criteria, usually via simulation®, Bayesian approaches tend to be robust
against simple stochastic variation, but, since they assume a model a priori, are a point of

contention in the field®.

11

Alignment Free Methods:

As the name suggests, alignment free methodologies in phylogeny are techniques that can
produce trees without the need to perform multiple sequence alignment. Such techniques are
based on any number of statistical, computational, and biological principles. K-mer frequencies
are often incorporated into profiles to measure informational entropy or feature frequency, which
allows for statistical inference. While exact implementation of k-mer methods are variable, many
of them incorporate Markov models to account for noise unrelated to the evolution of the region
of interest. Such models allow for a numeric probability of the result to be obtained which has
utility in evaluating the efficacy of the approach as well as individually generated trees*’. Other
general approaches correlate the information of regions of the sequence, measures string distance
(such as Levenstein or Lempel-Ziv compress distances), or weighed graph searches. Regardless
of the algorithm used, there are limitations to alignment free methods and critics of the approach
often cite a lack of obvious or direct biological meaning underlying the method, beyond the
nebulous claim of “information content”. Indeed, one of the strongest arguments for the
traditional methods that utilize multiple sequence alignment is that it allows for the sufficiently
reasonable conclusion that aligned sites (e.g. SNPs, loci, etc.) are orthologous in nature, meaning
that the sites have a shared evolutionary history. While convergent evolution and other common
plagues of phylogenetic analysis may obfuscate this evolutionary history, there are likelihood
and other statistical methods traditionally used that characterize this risk and the results of these
methods can be more straightforward in their interpretation (due in part to their seminal nature)
compared to newer, less robustly tested alignment free methods. As one might expect, the
traditional methods and alignment free methods each have their own respective strengths and
weaknesses. Chan and Ragan® performed an extensive comparative analysis of alignment based
and alignment free methods. They contrasted generalizations of the two approaches verbosely.
Alignment free methods do not and cannot assume any sort of contiguity of homologous regions,
whereas this is the basis of alignment based methods. Alignment based methods are presently
well characterized and their limitations fairly well described in the literature, whereas the limits
of alignment free methods are still being discovered and debated. The pairwise comparison of
whole sequences in the alignment based methods can increase runtime, whereas the alignment

free methods often use subsequences which improve runtime at the cost of memory. Generally,

12

alignment free methods are less dependent of evolutionary models and more robust to biological
stochastic effects. The huerisitc nature of MSA means that alignment scores alone are not
particularly telling of homology, whereas the exact and deterministic methods often applied in
alignment free methods are more directly comparable. In essence, alignment based methods are
well characterized and come with a guarantee of homologous site comparison at the cost of
efficiency. Alignment free methods are less described in biological context, but are resilient to
some pitfalls in alignment based methods, especially that of runtime. Neither outright guarantee

the correct tree, so the exploration of both methods is justified.

It is apparent that alignment free methods offer solutions to many qualms in
phylogenetics, both biologically and computationally. The runtimes for these methods are almost
universally better and often scale better than the traditional methods. The alignment free methods
offer solutions to heterogeneous data that emerges as sequences approach whole genome size
caused by chromosomal rearrangements and duplications®2. These methods are also more
resilient to randomness in the observed mutations (i.e. stochastic variations). Alignment is oft
inaccurate for distantly related sequences, which introduces error before the tree search or
construction even begins*#2, Moreover, the alignment-free methods tend to rely less on the
assumption and parameterization of a molecular clock, which is a subject of active debate in the
literature. Despite these strengths, the abstraction of the model from the biological system in
conjunction with the ill-explored limits of these methods make further research into alignment
free methods needed before widespread application is advisable. However the potential of
alignment-free methods to improve throughput, solve long standing biological questions, and
more fully utilize the big data emerging in biology make investigation into and development of
such methods of value, even inspiring ‘Alignathons’*%. Such was the motivation behind the

development of Scrawkov-Phy.

Gene Trees, Species Trees, and Incomplete Lineage Sorting:

Simply stated, gene trees are phylogenetic representations of how homologous (most
often orthologous) genes have evolved over time. Interestingly, it is not an uncommon fallacy for

gene trees to be misinterpreted as being entirely representative of the evolution of a species. In

13

reality, gene trees represent just that—the inferred evolutionary relationship among particular
genetic segments. In reality, the evolution of the species can be distinct from the evolution of any
one particular gene, though obviously related. This view of species evolution has the underlying
and widely accepted assumption that there are different evolutionary forces and, thus, history for
different genes shared among species. The rate of mutation has been shown to vary throughout
the genomes of taxa from all over the tree of life, likely due to the differing selective pressures
on these regions. Other events, such as population bottlenecks or gene duplication, can influence
the evolution of genes with a degree of independence from each other. Additionally, stochastic
effects, which are well described in populations and genomes, contribute to the differencing
evolutionary histories of genes within a clade. The construction of species trees, then, focuses on
intelligently utilizing constituent gene data to infer a phylogeny of the species of interest.
Naturally, there are cases where the true species tree is not represented in any or all of the

constituent gene trees. One reason for this situation is incomplete lineage sorting.

If one considers the tracing of the genealogy of multiple genes back to a common
ancestor, incomplete lineage sorting can be thought of as the failure of these genes to merge
within the species (before the speciation event during traceback, which is afterwards temporally).
This results in one or more discordant gene trees, which confounds phylogenetic inference.
While there are many other problems in phylogeny, such as homoplasy**, incomplete lineage
sorting is an excellent example of an issue that both plagues and drives the search for robust

methods for the construction of species trees.

One approach for the construction species trees from constituent gene trees commonly
used today is the use of the coalescent. The coalescent is a time reversible statistical theory used
to model stochastic processes. Historically, it has been used in population genetics to model the
stochastic processes involved in evolutionary drift*. However, it has also been applied to the
creation of species trees via the assumption of an underlying gene genealogy in molecular
data*®#”. This is the underlying philosophy in the BEAST*® suite of algorithms, which avoids
MSA by coalescing trees into a single topology. Alternatively, supertree*® and supermatrix>°
(superalignment), and simultaneous-analysis®! methods will also yield species trees by
combining data, whether it be at the tree or score level®?. For exceptionally large trees,

concatenating methods are considerably more feasible than the coalescent®®. Of course, while the

14

aforementioned are typical and well described methods, there exist a plethora of alternative
methods for constructing species trees from gene trees, including one implemented in Scrawkov-
Phy.

Principles behind Scrawkov-Phy:

Scrawkov-Phy, presented here, is a novel alignment free method of generating both gene
and species trees. The spiritual successor of the original Scrawkov, which attempts a Hidden
Markov Model approach to taxonomic identification of species from cytochrome b sequences
with principles similar to the popular program HMMER®*, Scrawkov-Phy is named because the
data used in early development was exclusively that of birds. The aim of Scrawkov-Phy is to
take many of the aforementioned advantages offered by alignment free algorithms while keeping
the reasoning more firmly rooted in tangible biological principles and phenomenon. The
principles of the components of the algorithm are described below, while a more specific

iteration through the algorithm can be found in the Methods section.

QHMMs, Earthquakes, and Phylogeny: Markov models are a class of timeless statistical
models that deal in stochastic processes>>®. There are different flavors of Markov models
depending on the observability of the state, as well as autonomy of the system being modelled®’.
Use of Markov models has become ubiquitous®®-%. Common applications of Markov models
scale all scientific disciplines and have great utility in modelling human decision making. In the
biological sciences, the range of utility of Markov models run the gambit from Markov Chain
Monte Carlo (MCMC) simulations in population genetics® to the seminal gene finding
algorithms®’. When a Markov model has states that are at least partially hidden (i.e. not directly
observable), it is classically designated as a special case of the Markov model called a Hidden
Markov Model (HMM). Application of Bayes’ rule to Markov models falling into this definition
allows for the determination of the probability of any sequence of hidden states given observable
states. Traditionally, HMMs require the determination of transition probabilities, both hidden and
observable, to be measured or calculated by empirical means. Except for a few experimental
conditions, phylogenetic inference is not directly observable due to evolution working over deep
time. While there are alignment free phylogenetic methods that utilize traditional HMMs,

15

Scrawkov-Phy, in the interest of more wholly adhering to the biology, does not use HMM in the
traditional definition®®, Instead, it draws inspiration from Wu’s work on the cluster analysis of
earthquake catalogs.®® In the aforementioned work, quasi-hidden Markov models (QHMMs) are
described and utilized to characterize, in terms of the mother-and-kids model and the domino
model, the propagation and clustering of aftershocks (children) as a function of the first shock
(mother). While the comparison of the problems of earthquake propagation and phylogenetic
inference may not immediately seem logical, the connection becomes clearer when the temporal
limitations, non-independence, and clustering aspects of each problem are considered. A
challenge in earthquake predictions is that the main shock is defined by its intensity, not by its
temporal occurrence (with foreshocks occurring before and aftershocks occurring after). That is,
the main shock is defined by the magnitude of other shocks, which are not wholly independent of
each other due to a common origin or neighborhood. As previously mentioned, construction of a
phylogeny is inference due to the general inability to observe evolution occur. The evolution of
each taxa is not wholly independent of each other and the branch lengths derived in a phylogeny
are dependent on the other taxa being considered. Lastly, as tree building is a specific case of
clustering, the two problems are somewhat semantically related. Minimally, the application of a
QHMM using an iteratively constructed training set in a way inspired by this work merits
exploration and may more closely represent the underlying biology than some other alignment

free methodologies.

GC Content: One of the measures that Scrawkov-Phy uses to construct phylogeny is GC
content. GC content is simply the measure of the amount of C or G base pairs in a given region
of DNA. It has been shown to differ significantly, even among closely related taxa.” The
creation or degradation of isochores have been shown to evolutionarily driven and have been
correlated with taxa life history and cytology. It has been suggested that GC content played a
role in the evolution of biota during large scale ecological changes.”? As GC content is a feature
of the genome, and all subsets thereof, different areas of the genome may have evolved different
GC contents at different points temporally. While the tendency of GC content to vary
significantly makes its use in capturing phylogenetic signal difficult, there is evidence to suggest
its utility in small genomes, especially that of bacteria’. Due to its ease of measurement and this

potential evolutionary significance, GC content was incorporated into Scrawkov-Phy. It is

16

important to note that for particular ranges of taxonomy (namely, higher level organisms) this
measure’s usefulness is limited. However, in these instances, the weight of GC-content will be

minimalized by application of a hill-climbing algorithm.

Di/Tri-nucleotide Frequency: The frequency profiles describing which di/tri-nucleotides
occur is a measure often used even in traditional alignment-based methods such as MEGA.
Indeed, there has been work on a broad number of orgasms using not only di- and tri-nucleotide
frequency, but also with oligomers of lengths upwards of 10 bases.’* Moreover, these k-mer
frequency methods, while limited in the amount of signal they provide, retain that signal in
differing statistical models. The resilience of information contained in di- and tri-nucleotide
frequencies to a range of statistical models, their ease of computation, and precedent in the
literature, as well as well-regarded programs, make this feature a prime candidate for inclusion in

Scrawkov-Phy.

Codon Bias: Codon usage bias refers to the preferential usage of a particular codon among
synonymous codons within coding DNA. Codon bias has been observed in taxa at all levels of
life. Additionally, codon bias profiles vary even among more closely related OTUs and have
been shown to be under, minimally, weak selective pressure. The third nucleotide position, or the
wobble position, is the source of much of the redundancy in the genetic code. The conservation
of the use of particular codons is explained by a number of biological systems. Synonymous
codons have been shown to affect both DNA and RNA polymer structure and flexibility.”® Thus,
maintenance of the macromolecular properties, rather than simply the protein coding
information’®, are supported by selection over deep evolutionary times’’. mMRNA secondary
structure is influenced by the composition of the codons and third position nucleotide
distribution largely impacts this even over shorter periods of evolutionary time, as evidenced in
the Drosophilids.”® These functional constraints are observed among many groups of organisms,
both prokaryotes and eukaryotes. Due to the prevalence of codon bias, its persistence even in
deep evolutionary time’, and its subjugation to evolutionary forces’®8, codon usage bias, as a
measure, has the biological context and ease of computation necessary for incorporation into an

alignment free phylogeny algorithm and was included in Scrawkov-Phy.

Trinucleotide Transition Probabilities: Historically, the probability of observing a codon

given a preceding codon is widely used in gene finding programs. Indeed, many courses that

17

teach bioinformatics algorithms or genomics tend to use this seminal approach as an exercise.
However, even modern gene finders incorporate codon transition probabilities in their algorithm.
For instance, GENSCAN?! utilizes a ‘three-periodic’ 5" order Markov model of coding regions
to build their model for predicting eukaryotic genes. For GENSCAN, the authors shied away
from the use of the term ‘codon’, and instead referred to them in term of their frame (i.e. three
periodic, as aforementioned). Likewise, the term trinucleotide will be used here to mean sets of
three nucleotides without the connotations associated with codons as Scrawkov-Phy does not
assume that all sequences used with it contain only exons. Triplets of nucleotides, the basis of
codons, are fundamental to information flow as per the Central Dogma. However, they may also
contain structural information in the form of DNA and RNA structure, stability, and flexibility
through a summation of local biophysical properties. As such, regardless of if the sequence is
purely exon in nature, the incorporation of trinucleotide transition information into the
algorithmic determination of phylogeny may be of merit and has basis in both the literature and
biology.

Dinucleotide Transition Probabilities: Much like the trinucleotide case described above,
dinucleotide transition probabilities likely guard structural information as the result of aggregate
local effects. Evidence of this is shown in work showing that structural RNAs have lower folding
energy than random RNAs, even if the dinucleotide composition is the same. The implications of
this finding are, minimally, two-fold. Firstly, in the context of information theory, entropy is
roughly related to the amount of information derivable from the probability distribution of a
series of events. The lower-folding energetics of the non-random RNAs is indicative that a
signal containing information may be present due to the non-random distribution of
dinucleotides. Secondly, due to the lower folding energy and biological essentialness of
structural RNAs, it is likely that the system is under selective pressure and that dinucleotide
frequencies may provide an evolutionary signal from which a phylogeny may be constructed.
Chaos game representations of DNA sequences often have patterns that are explainable in terms
of dinucleotides and trinucleotides®?, which may support the presence of a useable and
biologically relevant signal. While the exact nature of the biological significance is not fully
described in both DNA and RNA contexts, there are biophysical works that support the claim

that dinucleotide distribution is functionally conserved® and, thus, a measure of this was

18

incorporated into Scrawkov-Phy. Notably, single nucleotide transition probabilities and
distributions were excluded from the algorithmic construction of phylogeny as they are
historically noisier and contain less local information than either dinucleotide or trinucleotide

features.

Hill-climbing algorithms: Due to the need to have many genomic features incorporated into
Scrawkov-Phy, a way to weigh the different features in terms of importance was needed. A
rough hill climbing algorithm was employed on a well resolved tree to tune the parameters to
reconstruct said tree, acting much like a seed tree in other popular methods. As a beneficial side
effect, the non-QHMM features need not be converted to log space to match the QHMM
features. Hill climbing algorithms, fundamentally, score a population of solutions to a problem
and change the parameters of the solutions to maximize the output of the scoring function. As a
rudimentary form of machine learning, hill-climbing algorithms have a variety of strengths and
weaknesses. As heuristics, they are not guaranteed to find the best solution and may fall into
local maxima solutions to a problem. However, as heuristics, they are also more likely to finish
in reasonable computational time. Ultimately, a hill-climbing approach was chosen to weigh

parameters in Scrawkov-Phy.

A Greedy Approach to Species Trees: As previously discussed, the computational
construction of species trees from molecular data is a complex problem with no clear solution.
All methods currently have their merits and pitfalls. Perhaps somewhat oversimplified, the
coalescent can be difficult to compute, especially with limited statistical expertise, and supertrees
lack the mathematical rigor provided by the coalescent or similar methods®. Due to Scrawkov-
Phy’s aim as an alignment free method is to reduce runtime, the coalescent was not used in
interest of improving runtime. Likewise, a concatenating method was not used. Instead,
Scawkov-Phy favors an alternative heuristic that scales all the genes to the minimum and
maximum semi-log scores used as a surrogate distance and obtains the one with the maximum
probability by means of selecting locally minimum scores. The result is, in essence, a greedy

algorithm for constructing species trees from gene trees.

19

Methods:

Components of Scrawkov-Phy

Scrawkov-Phy was written entirely in the Java language and requires Java 7 or later to

run properly. Scrawkov-Phy is composed of three classes, described in Table 1, below. The

source code, as well as Javadoc, are available under a GNU GPL v.3 license at

https://github.com/nickjfisk/Scrawkov_PHY, by email at nick.j.fisk@gmail.com, or in the

supplemental figure section of the present.

Table 1: The Java classes of Scrawkov-Phy

Java Class

Description

Used in which process

Bird

Node

Scrawkov-Phy
(main)

The Bird class is the programmatic representation of a
single taxa to be included in the phylogenetic tree. The
class stores information about the DNA sequence and
taxa from which it was derived and defines methods that
act on the sequence in the algorithmic determination of
phylogeny.

Used in tree building after all scoring, normalizing, and
composition aspects completed

Contains the main functional elements of the program. It
creates the main data structures that keep all the
information about and contained in instances of the Bird
class organized. It calls on methods defined in both
Node and Bird to construct a Newick formatted
phylogenetic tree.

Scoring of parameters
used to create the
composite index from
which the tree is
constructed

Tree-building from
composite index
Integration, normalization,
and maximizing of the
scores.

Construction of main data
structures

General program flow

Fisk 2016

Algorithmic Composition of Scrawkov-Phy:

Algorithmically, Scrawkov-Phy is fairly simple and straightforward. The algorithm is

detailed in text in the subsequent text and visually in Figure 2. First, the base algorithm is

described, though it can be adjusted with command line parameters.

20

https://github.com/nickjfisk/Scrawkov_PHY
mailto:nick.j.fisk@gmail.com

Prepare internal data

pecie »| structures and flags
for species tree

inflluences

parse command
line arguements

species or

Scrawkov main —begins»
gene

influences

calls

gene if species

return result
and loop
h 4
influences
> Gene Tree Method pasS one

gene set Species Tree method
influences

A

Calculate pairwise normalze=true—— normalize = false
MCCI as surrogate
distance using 6

maxByPair=true A 4

Repeat calculations gehomicfeahiers normalize MCCI Greedily maximize
sliding bases into up by min and max | probability using
to 3 total frames value in any gene — lowest average -log2
set values

maxByPair=false

calis function to

Format for tree search
calk with gene tree
infrastructure

Node based UPGMA <

Using maximum probability ———»] Tree Search

results in

Desired Gene or
Species Tree

Figure 2: Schematic drawing of the programmatic flow of Scrawkov-Phy. Notably, aspects of

code are reused between species and gene trees, including the final generation of the Newick
formatted tree. Diamonds represent command line arguments that alter the flow of execution or
the calculation of particular elements. Rectangles represent methods called to perform particular

functions.

Calculation of GC Content: GC content of each sequence was scored by simply obtaining the

proportion of the bases that were either Guanine or Cytosine.

Calculation of Trinucleotide Transition Frequencies: Trinucleotide transition frequencies
were measured by crawling down the DNA sequence in three nucleotide partitions sliding three
positions, similar to how codons are interpreted by cellular machinery. At each partition, the
bases in the upcoming partition are observed and recorded relative to the times they were
preceded by the current partition. The partition then slides. At the end of the crawl, each count is

divided by the total number of partitions observed to obtain a frequency

21

Calculation of Dinucleotide Transition Frequencies: Calculation of the dinucleotide
transition probabilities were performed in the same manner as the trinucleotide frequencies, but

in partitions of two, rather than three.

Measurement of Codon Bias: Codon bias was measured by crawling down the DNA sequence in
partitions of three nucleotides and translating the trinucleotide sequence into the appropriate
amino acid representation. For each amino acid translated, a count of the codon of origin was
incremented. The frequency at which a particular codon was used for a particular amino acid was
obtained by dividing the count of the times that codon was used by the total number of times that

amino acid was encoded.

Pairwise Comparison of Taxa GC Content: The pairwise score for GC content is simply
the absolute value of the difference in proportion between a pair of sequences.

Pairwise Comparison of Taxa Trinucleotide Transition Probability : The observed
trinucleotide frequencies are incorporated into a second order QHMM with an iteratively
constructed training set, as described in the discussion of QHMMs above. The log-base-two
probabilities of the emission of a sequence given the assumption that the two sequences being

compared share the most common ancestor is determined and treated as the score for this feature.

Pairwise Comparison of Taxa Dinucleotide Transition Probability: The
comparison of dinucleotide transition probability is performed in the same manner as the

trinucleotide case described above. Notably, however, a separate QHMM is used for each.

Pairwise Comparison of Taxa Codon Bias: The comparison of Codon Bias is achieved
by the summation of the absolute value of the difference of proportions of codon usage

frequency across all possible amino acids.

Maximization of Scores from Initial Reading Frame: Notably, alignment free methods
suffer from not knowing whether two sequences begin in the reading frame or stay in the same
reading frame. For the present algorithm, this is a particularly detrimental limitation of the
approach. Thus, to account for this, the algorithm runs its feature search several times with the

sequences being assumed in different frames and the frame resulting best (here assumed to be

22

most parsimonious) is saved and used in the next steps of the algorithm. Under this assumption,
the result is the assurance of the maximum, if unknown, orthologous sites being comparted and
that two sequences falling out of the same reading frame still provides signal on which the

algorithm operates.

Obtaining the Markov Chain Composite Index: The surrogate distance metric used in
Scrawkov-Phy is a composite score in which all measures are weighted and then incorporated
into a single score, here called the Markov Chain Composite Index (MCCI). The calculation of

the score is simply the summation of all the feature scores after the application of the weight.

Obtaining the Parameter Weights: Weights for the parameters were obtained via a simple hil

climbing algorithm. Sequences of a simple and well-defined training were evaluated for their

MCCI. The parameters were then weighed with random numbers and a tree constructed. The tree

was checked for correct topology. If the topology of the tree was correct, then the weights were
kept. After ten correct tree topologies were obtained, the weights were averaged to obtain the
value in the current model. The tree used in the hill climbing algorithm is shown in Figure 3

below.

23

Camnaabdts_dogans

b _iguare

Dramais_navashallandiae

Par_roglodyes

Harma_sapiens

Figure 3: The tree whose topology was used to train the hill-climbing algorithm. The species
represented are fairly widely divergent and no microbial or viral taxa are represented.

Constructing the Gene Tree: Gene trees are constructed via a simple UPGMA approach where
MCCIl is used as a surrogate for distance. Ties, which are incredibly unlikely to occur in non-

contrived datasets, are broken arbitrarily.

Constructing a Species Tree from Gene Trees: If a species tree is desired, the MCCI scores
from which each gene tree is derived are held until all gene trees are computed. The default
behavior, which can be disabled via a command line parameter, is to then scale the all the scores
to the gene with the greatest mathematical range in the scores between any taxa. Ultimately, the
average score between each pair of taxa over all genes is obtained and used to build the species
tree. Notably, not all taxa need have data for each gene and the number of genes available is

factored into the determination of the average MCCI.

24

Results:

A variety of trees were produced using Scrawkov-Phy. Accompanying each tree is either

a tree constructed via accepted methods or a tree from a paper from which the data was
presented. Unless otherwise noted, the programs were run with default parameters. Trees were

visualized in FigTree®® unless otherwise noted.

Primate NADH Dehydrogenase Gene Trees

Hylobates

Gorilla

{ Homo_sapiens
Pan

M_mulatta

Macaca_fuscata

M_fascicularis

M_syvanus

Saimini_sciurus

{ -
Tarsius_syrichta

Pongo

Garilla

{ o
Pan

Hylobates

{ M._mulatta
Macaca fuscata

M._fascicularis

M _sylvanus

Saimiri_sciureus

{ -
Tarsius_syrichta

25

Gorilla

{Homoisamens
Pan

Paongo

Hylobates

M._fascicularis
4[': M._mulatta
Macaca_fuscata

M._sylvanus

Saimiri_sciureus

{ -
Tarsius_syrichta

{ Homa_sapiens
Pan

Garilla

Paongo

Hylobates

Macaca_fuscata
|:M _mulatta
M._fascicularis

M _sylvanus

Saimiri_sciureus

Lemur_catta

Tarsius_syrichta

Figure 4: The resultant gene tree from the NADH dehydrogenase mitochondrial gene from
selected primate taxa. From top to bottom, the trees were generated using the following methods
respectively: an outdated version of Scrawkov-Phy, the current version of Scrawkov-Phy through
the EMU-Phy interface, a tree generated from a T-coffee MSA fed to Clustal w2887 and a tree
generated from a ClustalOmega MSA fed to ClustalW2. All trees were generated using UPGMA
methods. Notably, while the current version of Scrawkov-Phy recovers the accepted gene tree
topology, the older version of Scrawkov-Phy implemented without the QHMM mistakenly
inverts the placement of Hylobates and Pongo.

26

e p—
T g

27

P J
S e oF

For ‘e"é“ &
é_\g L g }.*
"-\‘""e-‘f'r‘)g‘

iz coaven!

Cynaccphalus e,
Cleopnn

s

Siesopis_coman

LN E B TEN e

sfpTzy T

g SRR

opmd SR

S

B O v

Figure 5: Radial trees of a 181 taxa primate species tree constructed with Scrawkov-Phy by two
methods. The top tree is with the normalization parameter on and the bottom tree with it off.
Shrews were used to root the trees. The more traditional cladogram view of the trees can be
found in supplemental figure SF1.

28

Filovirus Tree

{ Marburg_virus_strain_M3SAfricalohannesburg19750zolin

Martburg_virus_Popp_NP_assort_genes

Ugal7__
1Bat2007
_05DRC2I__
_07DRCED

2

in_Ang0754.0
‘ictoria_marburgvirus___Angola2005_strain_Ang1386_
‘ictoria_marburgvirus___Angola2003_strain_Ang1378¢c
‘ictoria_marburgvirus___Angola2005_strain_Ang0298
“ictoria_marburgvirus___Angola2005_strain_Ang0126.0
wighfinus___Angola2005_strain_Ang0215
urgvirus___Angola2005_strain_fng0214.00

Cate_d'lvaire_ebolavirus

Restan_ehal ,___Reston_genomic_RNA

inga_

Mayinga__ Zaire_197_strain_Mayinga

irus_strain_Mavyinga_subtype_Zaire
Restan_ehal ,___Reston_strain_Reston08_A

Restan_ebolavilus___Reston_strain_Reston08_C

Reston_ebolavirus___Reston_strain_Reston08_E
ﬂ Reston_ebolavis_strain_P ¥l

Reston_ebolavius__tag_
4'7 Sudan_ebolavirus__taa

Sudan_ _strain_|

29

15

i': DQ447657 MARG Ang0214viruses
DQ447655 MARV Ang1386viruses

DQ447658 MARV Ang0215 1viruses
DQ447653 MARG 1379Cviruses

DQ447658 MARV Ang0215viruses

DQ447660 MARY Ang0998viruses

DQ447656 MARV Angl126viruses

DQ447659 MARV AngQ754 viruses
— DR217792 MARY Musokeviruses

100 229337 man poppviruses
AY358025 MARV Ozolinviruses

FJ750957 MARV 01UGADT humanviruses

100
—|: FJ750958 MARV 371Bat07viruses

DQ447650 MARY 07DRCY%viruses

{ DQ447651 MARV 05DRCI%viruses

FJ750953 RaV 02UGADT humanviruses

FJ750956 RAVY 982Bat08viruses

DQ447649 RAVVY 198Tviruses

—ml: 00447652 RAVV 09DRCY%viruses

FJ621585 RESTW Philippines swineviruses

56
—:ABUEUQBE RESTV Pennsylvaniaviruses

AYT69362 RESTV Pennsylaniaviruses

WI: NC 004161 RESTV Pennsylaniaviruses

FJ621563 RESTV Philippinesviruses

FJ621584 RESTV Philippinesviruses
(] — FJ968794 SUDV Bonifaceviruses

L NC 006432 SUDV Ugandaviruses
10— MNC014372 TAFVviruses

L NCO014373 BDBWviruses

25
86
I
93
100
36
100
100
100
100
i
33
73
100
100
93
100
100

EU224440 EBOV Mayingaviruses
AY142960 EBOV Mayingaviruses

a2

I—AF4991U1 EBOV Mayingaviruses
45— NC002549 EBOV Mayingaviruses

Figure 6: The phylogeny of the filoviruses was constructed by two methods using the whole
genome of 33 taxa. Scrawkov-Phy (top) was run with the default parameters and completed the
task in under a minute. A Maximum Likelihood consensus tree (bottom) was constructed in
MEGAZ®8, The consensus is the result of 100 bootstrapping iterations. Alignment was done using

30

the muscle algorithm in CodonCode Aligner. The genomic data was obtained from GenBank
using the compiled list presented in work by Barrette et al.® Highlighted regions in the tree
generated by Scrawkov-Phy represent groupings which were not in conflict with the tree
recovered by Barrette et al. The orange highlighted branches represent conflicts that had a
bootstrap value of below 80, but above 70. The red highlighted branches represent a conflict of
above 80 in the tree. Notably, only one pairing falls into this category and still falls well within
the larger Marburgvirus clade. It is essential to note that the trees are not comparable beyond a
surface level since the Scrawkov-Phy tree was generated using UPGMA, which will almost
assuredly yield an inferior tree. Incongruence observed may be an artifact of the use of UPGMA.

Passerine Cytochrome b Tree

kS
g %
b - E
a ?"':', 2 g E [=
2 B H
s 3 0% Ty % OE % E_ o f
oTa o W% B R OZOEE
A R TR
ar % E 1 o 1{‘ ;- E i k]
%, E 'T; %o Et TEog
g, two% m % B 3
E a.,’q*fm-;‘:aﬁ;‘; Bes
‘9':-% 5, g % h G TE G
" JL‘Q- _%‘ %, \'SE} - B
S, Ty
o e o Ho
ik iy %"%5 % %
"‘-'v,. f '._-,‘0 2 %
LD %H-’"“i Py, gy
o) 4
'b‘-'-.d_.k e, P ﬁx‘,
gy 1 e -
4.1_,_» ,{""5#.-, ’-’A;,}J x")-\
BT
s . T,
y"‘-':_*—m) ..:':"“l".\g-_-
TR el .
Sy S T e
TV
SR T, N
P oy e - a2 rt=
R e o e TN
L i
T o i BT
Fharra Unsht Cutlaice il
g flnked_hash b Tar Brrvan_ssrad_bulal_p Mo
Hahang M1 G (ks .meﬂnm et o o
g i
Juam H " R LT
e J-"““""'IMIMI;AW .
piosm B s
s Yo
- _“,c.'-!--"-';s'-
P
o FE s
o T A
.:B,_,_f_ff-‘:’ et " o
T et
'."-"-"":.r ﬂ::’. d.r\‘“ 5!."6 _'.I [+
AET A
PR -G "
A ¥ =% B "
A P E o
LS FIEEREYY
at ﬁ,n - -5';’-/*-{:" ;g;gf\i_ﬁ"{*
ST A A N - A
3 LR LA S - L I 3
‘f{f’fﬂ'_ﬁ,ﬁ'::-‘ia;%géi
L . A R S S S i E oL E ‘g
£ 4 FFF e lEEee
p FEE S E PR
2 g o og T £ R T
20 W g o4
oo nox
& “.-'.: I.E‘.'

31

ek e | ey o
T e

o]
rewpy) TR %
nrmAEL] PRl

PO Mot Moz ws

alkerm_fraatsed_fhyoatcher M Haruiirgn_ ez ke sy

A

e T s,
e o

A pEnE A et i

pnyd

L T T
syl IO pml AR

Figure 7: The radial tree of assorted passerine cytochrome b sequences. The top tree is the tree
resolved by Scrawkov-Phy while the bottom tree was constructed from a ClustalOmega MSA
fed to ClustalW2. The traditional cladogram view of the trees are available in Supplemental
Figures SF3 and SF4.

Bhue Tk FnEh o e]

—l—,—,—: w
m“ﬂ"'

Figure 8: The Scrawkov-Phy tree (top) placement of the narcissus flycatcher (red) replicates the
same paraphyly noted by Sangster et al,?® though its placement does not agree with the tree

32

generated by ClustalOmega and ClustalW2. Without a follow-up bootstrap analysis further

comparison is impossible, as the conflicting nodes cannot be verified as well-resolved in either

analysis.

Whole Genome E.coli Trees

Ecdi O157_H7_EDL33)

Eod CFTOR3

. —|: Eoai ATCC 873

Eoali SMS 3 5

Ecali O157_H7 st _Saks

Ecclil O55_HT ot CEOAIS

Ecoli ED_ta

el O127_HiE £2343 89

Ecali APEC_O1

20000

Ecli_59
Ecali 5E11
Ecali E2MI7TTA
Ecali L1
Ecdli HS
Bl BWV2352
_|: Bl K- 12 sty MG1855
Eraii K12 suby_W3110
L Ecoli K122t DH 108
ol LIMMN I
Bl UTIE3
Ecali 588
Sl 24 2857T
Slleorieni 24 53301
Schysanmarniae 34197
_|: Staydi CDC 3083_084
L Sherydii 527
Sheeri §_str_8401
L Ssonias 55046
Ecal L33

33

Benchmark

E.coli l1AI1
E.coli SE11
E.coli E24377A
S.sonnei D46

S.boydii 4227
S.boydii CDC3083-94
S flexneri 5b8401
S.flexneri 2a2457T
S.flexneri 2a301
E.coliATCC 8739

E.coliHS

E. co!l K12(4 genomes)

dysenteriae 1197
E. CDlI ‘0157H7 CB9615
E. Coir (5)15?H7 EDL933

E.coli UMNDZB
E.coli IAI39

E.coliSMS35
E.coli O127THBE234869
E.coli 536

E._coli CFTO73
E.coli S88
E.coli UTIB9
E.coli APECO1

a7

CO-phylog(Ce,901)

E colilAI1
Ecoli SE11
E colu E24377A

S Dosydn CDC3083-94
flexneri 5b8401
S flexneri 2a2457T
100 S flexneri 2a301
E coli ATCC 8739
E coliHS
100

E.coli K12{4 genomes)

100 S dysenteriae 1197
. 100 Ec0||01 TH7 CB9615
E coli O157H7 EDL933

E coli Sakai
E coli UMNO2&
E coli IAI38
EcoliSM8 35
%CDIIO12? HBE234869

91 E coli APEC 01

0.002

Figure 9: Scrawkov-Phy (top) was used to reconstruct the phylogeny of 29 whole E.coli and
Shigella genomes. This dataset was used to benchmark another alignment free method, Co-

Phylog (bottom right), comparing it to the assembled and aligned genome tree (bottom left).%

34

Discussion:

Primate Trees: The gene tree of the primate NADH dehydrogenase shown in
Figure 4 demonstrates the efficacy of Scrawkov-Phy at resolving a small-single gene dataset. It
also highlights that the algorithm was improved iteratively over time. The most current version
of the algorithm recovers the accepted topology for the gene, despite the early version of the
algorithm generating a tree the conflicts with the placement of Pongo and Hylobates. This initial
success was a key proof of concept in the development of the algorithm, inspiring the

construction of a primate species tree from the data provided by Perelman et al®2.

The species tree, shown in Figure 5, contains 181 taxa represented across 52 loci. The
topology recovered was not in complete agreement with the study from which the study came.
However, both the normalized and un-normalized runs of the algorithm resolved the core
families well. Many groups, such as the Eulemars and Callithrix clades, clustered perfectly.
Additionally, the shrew outgroup used to root the published tree was also naturally placed as an
outgroup in Scrawkov-Phy. However, there are a few cases of paraphyly observed. Cacajao
calvus, for instance, is not monophyletic in either the normalized or un-normalized attempts by
Scrawkov-Phy. The two taxa did not cluster with each other or with the Chiropotes as they do in
the published tree. Interestingly, the result for the un-normalized iteration of Scrawkov-Phy
seemingly conflicted less with the published tree than did the normalized iteration. This is likely
due to the large number of genes used in the study, with varying amounts of relevant
evolutionary signal. Indeed, the authors of the original paper state that these loci account for
nearly 90% of the diversity of the taxa used in the study, each with, presumably, differing
amounts of phylogenetic signal. Thus, since it is well-reasoned that the genes may contain vastly
different amount of signal, the normalization of scores was unnecessary. The runtime for the
gene tree in Figure 4 was essentially instant. The species tree had a run-time of roughly half an
hour. Example gene trees from which the species tree is derived can be seen in Supplemental
Figure 6. It is, again, important to note that since there is no bootstrapping analysis presented, the

conflicts and agreement cannot be confirmed.

Filovirus Whole Genome Gene Tree: The filovirus tree, shown in Figure 6, resolved
surprisingly well. It barely conflicts with the publication tree and all but one of the areas were in

35

areas with less than 90% bootstrapping confidence. This result is particularly surprising because
the hill-climbing algorithm was not tuned to viral or microbial sequences. Ultimately, the result
may be due to the level relatedness between the viral sequences used in the study. It has been
shown that phylogenetic signal is more difficult to resolve at the both extremes of dissimilarity.
The sweet spot is between highly conserved, highly similar sequences and the so-called twilight
zone of poorly conserved, highly dissimilar sequences. It is possible that, though the viruses used
in the study are closely related, the high viral mutation rate put the sequence in the sweet spot for
detection of phylogenetic signal. Of course, without a rigorous test for branch support, such as
bootstrapping or jackknifing, the confidence in the tree is speculative at best. Despite this, the
undeniable topology similarity lends, minimally, support in the potential of the algorithm.

Of the viral samples that were in at least partial conflict with the publication tree, two of
them belonged to outbreaks which were not widespread geographically. They belonged to
independent outbreaks, which may partially explain the difficulty in resolving them in the same
way as the publication tree. Additionally, while the topology doesn’t match, the 2 Marburg
sequences that are in conflict (greater that 90% bootstrap) with the publication tree are only one
“speciation event” or layer deep in the tree from being in concordance with the published tree.
The same holds with the singular Restonvirus that disagrees to some extent (greater than 70%
bootstrap). These are arguably near misses. Tuning the weights using a hill-climbing algorithm

with a viral tree may improve the ability of Scrawkov-Phy to even better reconstruct the accepted
phylogeny.

Bacterial Whole Genome Tree: Unlike the filoviruses, Scrawkov-Phy did not recover
something very close to the benchmarking tree. However, the Shigella strains all clustered
together (highlighted blue in Figure 9, above), which is a promising result. The Shigella
dysemteriae branch did not cluster with the other Shigella strains in the accepted tree nor in the
tree recovered by Co-Phylog, though it was in the case of Scrawkov-Phy. The literature supports
this placement of Shigella dysemteriae outside of the Shigella cluster®®, so the placement of the
taxon by Scrawkov-Phy is aberrant. Indeed, the dataset was originally selected in the Co-Phylog
to test the robustness of their method to this result. While the debate on the taxonomic status of
Shigella species is an interesting and impactful topic, further detail is beyond the scope of the

present. Essentially, Scrawkov-Phy is not as robust as Co-Phylog, but clusters many things well.

36

For instance, all 4 K12 E. coli strains used clustered together, which was a consistent with the
results of the original paper. There were a number of topological differences and the resultant
tree was not nearly as high quality as the one obtained by Co-Phylog. However, it is notable that
Scrawkov-Phy completed the analysis in just over a day of run time on a machine with 12GB of
RAM, despite 29 whole genomes being utilized in the study. Further work would be needed to
truly benchmark the memory usage of Scrawkov-Phy, but these initial results are promising. If
the tree used to weigh the feature weights were constructed using some or exclusively microbial
taxa, the tree might resolve better. As it stands now, however, the tree recovered by Scrawkov-
Phy should be scrutinized before any biological interpretation be made from it. Reconstructing
the tree using a more eloquent tree building method, such as neighbor joining, may result the

recovery of a better topology.

Paraphyly in the Passeriformes cytochrome b tree: The taxonomy of avian species,
especially the songbirds, is and has been historically, an area of focus for ornithologists. This
effort has been particularly difficult as there is notable incongruence between the seminal
character-based trees and those derived from molecular data. Furthermore, even within
molecular data, paraphyly and polytomy are common issues among many bird studies. For
instance, Sangster et al noted that there was paraphyly in their classification of Passeriformes
according to cytochrome b and nuclear gene evidence. While there are systemic reasons that
different genes may have different trees®, their work implied that the paraphyly was inherent to
the dataset rather than a limitation of the methods used. Thus, Scrawkov-Phy was run on the
dataset, with additional taxa taken from NCBI, to discover if the same paraphylies were

observed. Ultimately, many of the same limitations of the dataset were seen in Scrawkov-Phy.

In both Scrawkov-Phy and the alignment-based tree, there were cases of paraphyly. For
instance, the narcissus flycatcher did not cluster with the other flycatchers, as seen in Figure 8.
Interestingly, the traditional tree placed the hermit thrush very closely with other the thrushes,
whereas Scrawkov-Phy resulted in a paraphyly for this taxon. However, work that came after the
study from which the data was obtained has shown unusual paraphyly in the hermit thrush across
multiple loci. Ultimately, the placement of the hermit thrush must remain speculative as neither

Scrawkov-Phy nor the publication tree provided a bootstrapping confidence for the branches.

37

This is particularly problematic as there are a number of disparities between the trees, though
clustering at the family level is fairly similar.

Limitations and Future Work: Needless to say, the algorithm used in Scrawkov-Phy is
imperfect. While it aims to stay more firmly rooted in biology and less in statistics than its
predecessor alignment-free methods, many of the principles on which they are based are not
universally accepted. The algorithm itself is highly experimental and, despite the success of the
algorithm in reconstructing trees and known phenomenon in its namesake clade, there is still
much uncharacterized about Scrawkov-Phy. Indeed, there are a number of shortcomings in the

algorithm in its current form.

Currently, the weight parameters are only constructed based on tree topology; branch
length is not factored into the hill climbing algorithm. To improve Scrawkov-Phy’s performance,
the parameters should be weighed either in a similar manner as presented here incorporating such
an addition or a more verbose statistical method should be employed, such as maximum
likelihood. Since the weighted parameters are not determined at runtime (though they are
alterable as command line arguments), the additional runtime would be negligible as it would
only need to be computed once.

Another consideration concerning the efficacy and future development of Scrawkov-Phy
is that, in the form presented here, it does not take into account any features on the strand not
explicitly provided by the user. Similarly, codon bias is incorporated into the model despite
having no guarantee of being in a coding region or in frame. While there are optional subroutines
that alleviate the concern of frame, they remain heuristics that do not truly compare all
orthologous sites. Computationally, the algorithm could receive a marked speed-up and

reduction in memory usage if matrices were used for some of the underlying data structures.

UPGMA has been shown to be an inferior tree building method when comparted to
almost any other established method®®. The major flaw of UPGMA is that it assumes equal
branch length and distance, which is biologically unfounded. This can systemically result not
only in incorrect branch lengths, but incorrect placement and grouping of taxa. While the ease of
implementation made it ideal for developing Scrawkov-Phy, it severely limits the conclusions
that can be drawn from resultant trees, even though obtained MCCIs may work reasonably well

38

as distance measures. Use of an external tree building program or implementation of a better
method is necessary to improve the ability to characterize Scrawkov-Phy and derive biological

significance from its results.

Horizontal gene transfer is notably excluded a priori from the present algorithm. Indeed,
many general use algorithms do not factor horizontal gene transfer into their calculations, though
there are plenty of known algorithms that do. These algorithms, however, tend to be optimized
for bacterial sequences, rather than general use, as Scrawkov-Phy was intended. As previously
stated, this exclusion may be responsible for disagreement seen in the whole genome E.coli tree
presented in Figure 9.

Despite the status of the coalescent as the frontrunner for species tree construction,
Scrawkov-Phy does not attempt to use it, favoring, instead, a greedy algorithm that maximizes
probability stepwise. As such, the construction of species trees using the algorithm presented
here is likely not as rigorous as the presently accepted methods. However, it is important to note
that the construction of gene trees can be performed in Scrawkov-Phy and piped into a program
implementing a rigorous coalescent method, such as *BEAST. Ultimately, the feature was not
implemented here largely because the current implementations are of a quality far exceeding that

achievable in the scope of this project.

Polytomy, which may be a natural result of a dataset, is avoided in this algorithm and no
test for the significance of a branch (such as bootstrapping) currently exists within Scrawkov-
Phy. Scrawkov-Phy operates on the assumption of bifurcation, which there may not be statistical
evidence to show. Thus, branches with a particularly short length in Scrawkov-Phy should be
examined critically before conclusions are drawn. Such branches should be verified with a

method such as bootstrapping or collapsed into a polytomy.

The input which Scrawkov-Phy takes is relatively strict and it does not parse relevant
information from the meta-data provided in many FASTA headers. Thus, a limitation is
presented in that datasets must be manually proceeded by the user for readable output, especially
for species trees. This is due to Scrawkov-Phy requiring that all taxa be named identically within
each input gene file. Compared to other, comparable methods, this is a considerable shortcoming
of the program and future work should prioritize effective parsing of the input. Minimally, the

39

information presented within each FASTA header can be more neatly presented. One way to
accomplish this would to enable the output of nexus files, in addition to newick files.

GC content can be more effectively utilized in the algorithm than is currently
implemented. Scrawkov-Phy is limited in to the global use of GC content. However, CpG islands
themselves have been shown to be evolutionarily significant. In essence, only global measures of
GC usage by taxa are used, whereas it is likely that incorporating local measures of GC usage
could improve the efficacy of the algorithm’s ability to recover meaningful phylogenies,

especially in whole genome datasets or species tree construction.

Arguably, the use of both dinucleotide and trinucleotide frequencies in the algorithm
could be considered redundant®. While both of these parameters have previously been shown to
be significant biologically and are used extensively in well-known programs like those
incorporated in MEGA, the signal is undoubtedly mixed. This is problematic due to the hill-
climbing approach for weighing the features used in the determination of phylogeny. This
method does not separate the effects of mixed signals particularly well, as compared to other
machine learning methods. Thus, the evolutionary signal present in the dinucleotide and
trinucleotide methods may be overrepresented in the final calculation of the MCCI. A more
sophisticated genetic algorithm may alleviate this signal promiscuity®’, though there are a

number of machine learning methods more suited to handle mixed signals®®.

A glaring issue that has yet to be addressed is that of k-mer homoplasy. Homoplasy, in a
general sense, is similarity due to convergent evolution or reversion, rather than through
ancestry. On a nucleotide scale, homoplasy is described as the independent acquisition of the
same base at the same position over separate evolutionary lines. K-mer homoplasy refers to the
situation that arises when identical k-mers are not derived from regions of the genome that are
not homologous physically, evolutionarily, or functionally*?. Fan et al describe the honeypot that
Scrawkov-Phy falls into. Short k-mers are more likely to be resistant to multiple evolutionary
events, sensing them each individually. However, shorter sequences are also more likely to occur
due to chance and not be comparable as homologous in any sense. There exists, then, some
equilibrium or balance in k-mer length used in alignment free methods. As previously described,
Scrawkov-Phy essentially uses 2-mers and 3-mers to infer phylogeny (via the QHMM). In this
respect, Scrawkov-Phy is likely to fall victim to inaccuracies due to k-mer homoplasy.

40

Another shortcoming of the method as it exists here is that the branch lengths are not
directly comparable to trees constructed by traditional methodologies. The MCCI is presented as
a semi-log aggregate score, which results in non-linear scaling of the branches. Additionally,
since no formal substitution model is used, this method cannot be tuned to a molecular clock to
resolve the branch lengths temporally. Thus, only limited information about the timeline of the
evolution of the species can be recovered and the branch lengths are not well-suited for
comparison to traditional methods. A means of improving the comparability of the algorithm is

to obtain LOD scores for all of the parameters, not just those used in the QHMM.

Though not performed here, a standard in the field is to test tree building methods not
only on real biological data, but on simulated data for which the true phylogeny is known®°.
While the model used to simulate the data would be non-trivial in the accuracy of the results of a
method tuned to particular biological parameters, it is nonetheless a standard and future
characterization of Scrawkov-Phy should include exploratory work with simulated sequences.

While Scrawkov-Phy uses particular biophysical principles to justify particular genomic
features being used in the calculation of the MCCI, it does not use any proper biophysical
measure as a feature. For instance, Shannon’s entropy would be an easily computable measure
that could be incorporated in the determination of MCCI. Additionally, while the chaos
representation of RNAs was used to justify the use dinucleotide transition properties in the
QHMM, the calculation of chaos was not calculated. While this calculation may slow the
algorithm down, it would likely lead to cleaner signals than the surrogate presently used in the
QHMM.

Runtime of the algorithm, as presented here, is by no means slow compared to the
traditional methods. However, the algorithm essentially runs several times to determine the
starting frame that results in the maximum score. However, due to there being several factors
used in the computation of the MCCI, there could be checkpoints after the calculation of each of
the respective components. These checkpoints could compare the current MCCI score to the best
score. Since the algorithm aims to minimize MCCI, if the current frame’s partial MCCI is greater
than the current best MCCI, then computation can terminate for this frame, saving runtime and
memory. The result would be an effective pruning of the search space not unlike that of branch

and bound approaches. In this case, however, it is important to note that the order in which the

41

components are calculated is non-trivial. Optimally, the feature that is most heavily represented
in the final MCCI would be computed first, thus maximizing the chance that a disparity between
frames would become apparent in the fewest number of computational steps. The order of
calculation in Scrawkov-Phy in its current form, however, is trivial and there is no in-place
framework to change the order of calculations because the weights can be changed via the
command line arguments. As a result, the order for the algorithm’s calculations that are most
optimal for pruning is not known. In future releases of Scrawkov-Phy, if such pruning is
incorporated, it would be prudent to include a feature which allows the user to change the

ordering of the calculation via command line arguments.

While Scrawkov-Phy did not fail to run on any system it was run on due to memory
restraints, there are still a number of areas that could reduce the memory usage of the algorithm.
Specifically, the sequences should not be stored after the features therein have been measured.
For the generation of species trees, the algorithm holds onto more sequence information than is
necessary. Instead, the algorithm might be better off having a command line argument that lets
the user toggle the ability to read the sequences from ROM when they are needed, rather than

holding them in RAM. This would allow for use of larger still datasets.

An additional area for consideration in this algorithm is the normalization of gene
MCCT’s to maximum and minimum scores in the computation of species trees. On one hand, the
normalization of scores across differing genes seems intuitive. This allows for dissimilar data
(long versus short genes, closely related versus distantly related taxa, etc.) to be compared
without skewing the data towards outliers or oddities. On the other hand, however, this
normalization assumes that each component gene contributes equally to the phylogenetic signal.
This assumption is, of course, false as differing rates of mutations and selective pressures have
been described in different genes in a broad spectrum of organisms verbosely. Thus, the ability
to turn normalization, which is available as a command line parameter, is crucial. Unfortunately,
it is difficult to programmatically assay the heterogeneity of the input data, which results in the
end user needing to know their dataset and the role of the normalize argument well in order to
effectively utilize this tool. Notably, this is likely a strength that alignment-based methods have

over Scrawkov-Phy, due to the emphasis on the direct comparison on orthologous sites.

42

The parsing of standard FASTA formatted file headings would be essential in future
work concerning Scrawkov-Phy. The comparison of the results of trees is significantly more
difficult without conforming to the standard. However, due to NCBI announcing the retirement
of the “gi’ identification system, a conscious effort was made to wait until the phasing out was

completed.

Not all improvements to the algorithm need be borne of limitations presented here. For
instance, MEGA uses differences in the trinucleotide and dinucleotide compositions as part of its
algorithm, but does it in an apparently more sophisticated way using a matrix based approach.
Biophysical or epigenetic profiles could conceivably be incorporated in future iterations of the
algorithm. Regardless of the component or motivation for incorporation of addition features, it is
important to note that there may be redundancy in the signals caused by such incorporation. This
sort of redundancy in signals has been noted as a challenge in the feature selection subset
problem in machine learning since it has become feasible to employ such methods. While there
has been work describing automated selection of such features, the hill-climbing algorithm is an
acceptable compromise for direct biological context and feature optimality. Needless to say,
addition of additional features to the algorithmic determination of phylogeny should be
considered carefully as to not loose biological context, not over represent a signal through

redundancy, and to not fit the elephant with an overly parameter-rich model.

Despite its limitations, Scrawkov-Phy utilizes a promising algorithm that demonstrates
that there is strength in using simple models in alignment-free phylogeny. While the algorithm’s
limitations have not been rigorously studied, the initial findings presented here suggest that
alignment-free methods need not necessarily be based on high order statistical models from
which biological context may be lost. Ultimately, it is up to the end user to intelligently utilize
the tool and its options to maximize its efficacy.

43

Chapter 2

N/
0‘0

EMU-Phy: An Extensible Management Utility for
Phyloinformatics

J. Nick Fisk

44

Background:

Phyloinformatics:

Phylogenetic inference is playing an ever larger role in nearly all fields in biology.

Naturally, the extent of this role varies, from integration into a full systems biology analysis of a

phenomenon to the enrichment of a few taxa of interest. One thing is clear, however. There are

an increasing number of methods available for performing phylogenetic inference. This, coupled

with ever growing sources of molecular data, has facilitated sophisticated phylogenetic analysis.

However, new challenges in assembling, organizing, and connecting the various software and
datasets have arisen from this bounty of phylogenetic resources. Enter phyloinformatics.
Phlyoinformatics, a term which has some ambiguity in its meaning, generally is a field whose

goal is to streamline phylogenetic analysis computationally. Different phyloinformatics utilities

approach this goal differently. Some phyloinformatic applications focus on data mining common

biological databases for relevant information. Others aim to incorporate metadata in to enrich the

standard analyses. A modified diagram from Roderic D.M. Page'® details a potential

phyloinformatics database design, in Figure 1, below.

Databases

Groups
Biological Data

Literature

| Genomic/Genetic || Geographic info ‘

| Develepmental || Agricultural impact ‘

|Impact on human heaﬂh| | Transcriptional info ‘

Reference tag/i s

Efc.

| Ecological data || Proteomic info ‘

Data Mining

Groups

A

-

Hierarchical
Nodes

iy
=

B c

‘-._l_.-'

Figure 1: A schematic diagram depicting a hypothetical phyloinformatics database optimized for

data mining and learning.

45

Regardless of the approach, the theme remains the same: Phyloinformatics consists of
largely connecting or repurposing existing tools into pipelines to conduct meaningful analyses on
large and dynamic data. The Extensible Management Utility for Phyloinformatics (EMU-Phy)
presented here aims to provide a simple, but adaptable, phyloinformatics tool that focuses on
organization and maintenance of phylogenetic oriented data with appeal to those comfortable

with command line tools, as well as novices.

TreeBASE and Phyutility—Inspiration for EMU-Phy:

In the domain of phyloinformatics, TreeBASE! and Phyutility'%? are among the most
well-known applications. They both approach the ultimate goals of phyloinformatics quite
differently, placing different focus on different aspects of phyloinformatics. For instance,
TreeBASE, at its base, operates very much like a standard, centralized database. It allows users
to pull down data on phylogeny, character evolution, biogeography, and, of course, molecular
datasets. However, the project has, over time, added a series of applications that allow for
analysis of data in place. These applications facilitate or perform analyses such as method
comparisons, supertree construction, and co-evolution based on data contained in the database.
Thus, it can be argued that the functionality of TreeBASE was focused on application
extensibility and user ease while providing a central database. While this makes TreeBASE an
incredibly useful resource, it is not as straightforward when novel data is generated and a user

wishes to analyze it. In scenarios such as this, Phyutility may be a more promising candidate.

Phyutility is another application that can be categorized as phyloinformatic. It focuses on
providing a local, command line interface that connects a number of existing phylogenetic
software. Additionally, it prides itself on the ability to manipulate tree topology (re-rooting
multiple trees) and summarizing the variation of tree topology. Like many other programs, it has
the ability to fetch data from the NCBI and can handle a variety of phylogenetic file formats, like
the Nexus and newick formats. While its scope is limited, its limitations and purposes are well
defined, making the program well respected and containing great utility. Ultimately, EMU-Phy
draws philosophic inspiration from both Phyutility and TreeBASE.

46

EMU-Phy, like Phyutility and TreeBASE, has its own approach to phyloinformatics. It is
considerably more lightweight than either Phyutility or TreeBASE. Similar to Phyutility,
however, EMU-Phy is instantiated on individual machines, making it more of a tool for handling
data a lab has generated, rather than datamining as TreeBASE allows for. However, like
TreeBASE, EMU-Phy was designed for the addition of new modules. Thus, an interface
allowing extensibility of the program was created. Perhaps most importantly, EMU-Phy differs
from both Phyutility and TreeBASE in that the directory structure is purposefully simple. This
allows for advanced users (i.e., those with programming ability) to use their own skills to
customize their experience easily, while still facilitating ease of use for novice users (e.g. by
making the locations of images and trees intuitive).

Software Design Principles:

Java is an exceptionally popular object oriented programming language developed and
supported by Oracle. The Java language depends heavily on the Java Virtual Machine (JVM),
which is an abstract computing machine that facilitates the design goals laid out at its conception.
The famous five goals'® of the Java language are for the language to be: “Simple, Object
Oriented, and Familiar”, “Robust and Secure”, “Architecture Neutral and Portable”, “High
Performance”, and “Interpreted, Threaded, and Dynamic”. These design goals were achieved and
incorporated into the language as it is known today. Due to this, a number of properties are

inherent to Java and code written in it.

System Independence:

Java is considered a platform independent language. In layman’s terms, it means that
Java code written on a machine running a Windows OS will run on a machine running OSX
without any alterations. This is in stark contrast to languages such as C or FORTRAN, which are
platform dependent—code written and compiled on one machine is not guaranteed to run on
another, even if the operating system is the same. Java accomplishes this via the Java Virtual
Machine which acts as a pseudo-platform for which code to run on. It is a universal interface to

the machine on which code is being executed.

47

This property of platform independence makes it invaluable for developers of
applications which may be used by a wide variety of users running a wide variety of operating
systems on a wide variety of machine architectures. Scientists, including biologists, fit this
description well as science is carried out on the global scale. Indeed, the use of a programming
language which promises platform independence ensures consistency in the analysis of scientific
data—a tenant which is fundamental to the advancement of science. This makes Java a great
candidate for biologically oriented software, including those used in phyloinformatics. System
independence is not the only quality qualifying Java for the development of a phlyoinformatics

application.

Extensibility:

Extensibility, simply put, is the ability of a program, software, or system to be improved
upon via new function. A software system is extensible if significant extension of its scope or
capabilities can be incorporated with little to no alteration of the base code. Extensibility is a
software design principle. That is, for a system to be extensible, the code must be designed and
implemented with this intent. Java makes the design of extensible code approachable with Java
interfaces and abstract classes, which are made practical with the hierarchical class system in
place in the Java language.®

Extensibility is another property invaluable to programming for the sciences.
Fundamentally, scientific achievement is built upon previous findings, given those findings have
been robustly tested and reviewed. Good code for scientific application, then, should follow the
same principles. Extensible code would, ideally, be able to grow and adapt as relevant
knowledge becomes known, thus minimizing the overhead of creating new code from scratch.
This would aid the progression of research by allowing a community of developers to continue to
work on a single project without the need to restart as science advances. This paradigm is even
more important for databases and database management systems, as their entire purpose is the
archival and retrieval of data over time. Needless to say, this applies to data relevant to
phyloinformatics as well. This, combined with the other aforementioned properties, make Java
an excellent candidate language for the development of EMU-Phy.

48

Programs Integrated:

In the iteration of EMU-Phy described here, 4 software pertaining to the construction of
phylogenetic trees were considered for module/interface development. Scrawkov-Phy, which
was developed concurrently with EMU-Phy, is an alignment free phylogeny algorithm capable
of creating gene and species trees written in Java. While its efficacy is still being explored, the
familiarity and system independence of the software made it ideal for integration into EMU-Phy.
ClustalW, a well-regarded and simple alignment software, was also chosen to have a module
constructed. PHYLIP, which is a series of programs containing methods for phylogenetic
analysis, is also represented.'® Specifically, dnadist, a program for calculating DNA distances
using different substitution models, and neighbor, which creates a neighbor-joining tree given a
matrix of DNA distances, were chosen. Lastly, the coalescent species tree building program,
*BEAST, was also chosen to ensure that both gene and species trees could be constructed.
*BEAST is a module of BEAST, which deals with the construction of phylogenetic trees from

Bayesian models.

49

Methods:

Development: EMU-Phy was developed on a Windows 8 system using Java 7. The
manipulation of the flat-file database maintained by EMU-Phy is entirely system independent.
However, depending on the implementation of the interface, system independence cannot be
assured because the software which is being called may not be available for all operating
systems. The classes which comprise the base EMU-Phy package are shown in Table 1, below.
The source code and Javadoc are available under a GNU GPL v.3 license at
https://github.com/nickjfisk/EMU_PHY by email at nick.j.fisk@gmail.com, or in the

supplementary materials of the present. Notably, no protein methods were explored in the

present work.

Table 1: Java classes and interfaces of EMU-Phy

Java Class Description Used in which process
geneTreeMethod geneTreeMethod is a Java interface that, when Creation of gene trees
(interface) implemented, uses the operating system to call the | using the method of choice
speciesTreeMethod
(interface)
alignmentMethod Used in tree building after all scoring, Tree-building from
(interface) normalizing, and composition aspects completed | composite index
EMUPhy (main) Contains the main functional elements of the Integration, normalization,
program. It creates the main data structures that and maximizing of the
keep all the information about and contained in scores.
instances of the Bird class organized. It calls on Construction of main data
methods defined in both Node and Bird to structures
construct a Newick formatted phylogenetic tree. General program flow
Fisk 2016
Testing: The base EMU-Phy data management system was tested on machines running

Windows (7, 8, and 10), OSX (Mavericks), and Linux (Ubuntu and Fedora). Manipulation of the
data was robustly tested for a reasonable number of datasets of varying scope and size. A list of

commands available in the base EMU-Phy is shown below in Table 2.

50

https://github.com/nickjfisk/EMU_PHY
mailto:nick.j.fisk@gmail.com

Table 2: Selected commands available in the base EMU-Phy program.

Command

Help

Quit

Install

Update

Redo

Validate

Add

Show

Delete

<shortcuts>

Options

N/A

N/A

Examples

N/A

N/A

N/A

Gene, taxa, group, primer, taxonomy,
done, cancel

Gene, taxa, group, primer, taxonomy,
done, cancel
Gene, taxa, group, primer, taxonomy,
done, cancel

Many

Description

Displays the help message. Within some
interactive commands, help will also
provide the options specific to that
command.

Prompts the user to verify if they want to
exit the program and, if so, exits.

Initializes the filesystem for use. If
examples are desired, a limited primate
dataset is unpacked into the system.

If the file structure differs from the internal
record of the program, update will attempt
to change the contents of the database to
reflect the internal record.

Calls the analysis functions for a particular
experiment, erasing previous entries if they
exist.

If the file structure differs from the internal
record of the program, validate will change
the internal record to reflect the data that is
actually present. This command must be
run if outside scripting is used to place data.
Prompts the user to enter the appropriate
information to create the selected option.
Some options, such as genes, support being
added from another location on the
filesystem. The internal record will be
updated without calling ‘validate’

Displays a list of items in the database,
depending on the option selected.
Permanently removes the selected item,
given an option. The internal record will be
updated without calling ‘validate’.
Shortcut commands that allow the user to
add or remove items without layers of
interaction as required by the ‘add’ or
‘remove’ commands. See the
documentation for specific commands.

Fisk 2016

Testing of the modules still in development was performed on the systems for which the module

was developed and reasonably available. A summary the datasets used for testing is shown in

Table 3, below.

51

Table 3: Description of the datasets used in the testing of EMU-Phy

Dataset Description Used to Test Notes
Primates A 181 taxa dataset consisting | Scrawkov, ClustalW, Often, subsets of this
of 52 loci each. PHYLIP, * BEAST data were used,
including single genes
chosen arbitrarily.
Birds A 50+ taxa dataset of Scrawkov-Phy, ClustalW, | Relatively short
cytochrome b sequences PHYLIP sequences
Filovirus Whole viral genome of 33 taxa | Scrawkov-Phy Sequences likely too
long to be handled by
ClustalW easily
E.coli/Shigella | Whole genome of 29 taxa Scrawkov-Phy Sequences likely too
long to be handled by
standard programs
easily
Mammal A 12 taxa dataset of NADH Scrawkov-Phy, ClustalW, | Small dataset good for
dehydrogenase sequences. PHYLIP prototyping.
Fisk 2016

52

Results:

Base EMU-Phy: The results of testing the base program for EMU-Phy were as expected.
Due to careful software design and use of system independent methods, EMU-Phy encountered
no issues running internal commands as described. All internal commands were tested on
multiple phylogenetic datasets. Importantly, the database filesystem also remained functional
when acted upon by external scripts. Namely, the bash shell script to migrate the large primate
data from chapter one of the present document into the filesystem was integrated flawlessly upon
calling the ‘update’ command, as intended. A visual representation of the filesystem is presented
in Figure 2, below. It is important to note that the flow of the initial input is not depicted for the
sake of clarity and readability.

EMU-Phy Modules: The results of testing the modules on their intended systems were of mixed
quality. In cases which the call to the module resulted in error, the base EMU-Phy system would
often crash. A summary of the results of testing the modules is shown in Table 4.

Table 4: Summary of Module Testing

Method Operation 0S Result Notes

Scrawkov- | Gene Tree Windows (7,8,10) | Success Unconditional Success

Phy

Scrawkov- | Species Tree | Windows (7,8,10) | Success Unconditional Success

Phy

Scrawkov- | Gene Tree Linux Success Unconditional Success

Phy (Ubuntu/Fedora)

Scrawkov- | Species Tree | Linux Success Unconditional Success

Phy (Ubuntu/Fedora)

Scrawkov- | Gene Tree OSX (Mavericks) | Success Unconditional Success

Phy

Scrawkov- | Species Tree | OSX (Mavericks) | Success Unconditional Success

Phy

Clustalw Alignment Linux (Ubuntu, Success Unconditional Success
Fedora)

PHYLIP dnadist Linux (Ubuntu, Conditional | Success conditional upon Perl
Fedora) Success installation

PHYLIP neighbor Linux (Ubuntu, Conditional | Success conditional upon Perl
Fedora) Success installation

PHYLIP dnadist Windows Failure Failure, even with installation of

Strawberry Perl

53

PHYLIP neighbor Windows Failure Failure, even with installation of
Strawberry Perl

BEAST *BEAST OSX Failure Tutorials include BEAULi, limited
(Species Tree) tutorials on command line interface

Fisk 2016

Java Interfaces

Pipeline Modules

External

Scrawkov-Phy Program

Experimental Experimental
Grouping 1 Grouping 'n’

List of Taxa Aliases | | Taxonomy
Species Trees Gene Trees

Jar

(@ @ @ Output
' A List of Genes Forward || Reverse

Sequence
Graphical T%_:;teueal
Tree 'y
A

Primer Primer

List of
Genes Graphical Textual
Tree Tree
A T

Figure 2: Schematic Diagram of the filesystem used in EMU-Phy. Circles represent directories
and squares represent files. Arrows from circles all indicate subdirectories or links. Arrows from
squares represent transfer or copying of data. The sole diamond represents system level
interactions with external programs via Java system calls. For simplicity, the input connections
are not shown.

Below are selected screenshots of the program being executed and interacted with.
Associated above each screenshot are captions describing the process being depicted, as well as

comments if anything of particular note, is shown.

54

The welcome prompt upon instantiation of EMU-Phy:
Welcome to EMU-Phy!
Please enter a command. Type "help" for help and 'gquit' to quit

Installation of the internal file system used by EMU-Phy. The optional example data is installed
Please enter a command. Type "help' for help and 'quit' to quit

Installing EMU-Phy in working directory...!
C:h\Users\Nick\workspace\Scrawl
Examples desired? (Will insert example data in datasytem)

Valid options are 'y' or "'n' or 'cancel')

installing EMU-Phy with examples...
Ready for next command (enter 'quit' to exit)

The show command used in two different manners--First with the show and the option selected
separately and secondly with the command truncated into one line.

Ready for next command (enter 'gquit' to exit)
Show what?
Options are: groups, taxa, genes, primers, taxonomy. Enter 'cancel' to cancel or 'done' to finish

tawa

[raxon are.. .

charmander
pikachu
squirtle
bulbasuar

Ready for next command {enter "quit' to exit)
Ehow what?

Options are: groups, taxa, genes, primers, taxonomy. Enter 'cancel' to cancel or 'done' to finish
Taxon are...

charmander
pikachu
squirtle
bulbasuar

55

Addition of a new group to the database
Please enter a command. Type "help' for help and 'guit' to quit

Add what?

Options are: group, taxa, gene, primer, taxonomy. Enter 'cancel' to cancel or 'done' to finish
group

Name of new group to add? (type 'cancel' to cancel

Digimon

adding group Digimon...

Digimon was added sucessfully!

Add what?
Options are: group, taxa, gene, primer, taxonomy. Enter 'cancel' to cancel or 'done' to finish

Ready for next command (enter 'quit' to exit)

Displaying the groups in the database. Note the cancel command to terminate the addition of
multiple groups
Please enter a command. Type 'help' for help and 'quit' to quit

Show what?
Options are: groups, taxa, genes, primers, taxonomy. Enter 'cancel' to cancel or 'done' to finish
groups

Groups are...

Pokemon
Digimon

Show what?
Options are: groups, taxa, genes, primers, taxonomy. Enter 'cancel' to cancel or 'done' to finish

Ready for next command (enter 'quit' to exit)

Manual addition of a gene to a taxon via the direct method. Alternatively, a path to a FASTA
formatted file would be accepted.

Ready for next command (enter 'quit' to exit)

Add what?

Options are: group, taxa, gene, primer, taxonomy. Enter 'cancel' to cancel or 'done' to finish
gene

Mame of taxa to add gene for? Type 'display’ to see available taxa (type 'cancel' to cancel

What is the gene name?

Using gene name: Pikachurin

DNA/RNA sequence required...

To supply a path to a file containing only this gene in FASTA format, enter 'path’...
To supply the sequence directly, enter 'direct'...

To cancel addition of gene, enter 'cancel'...

Gene addition sucessfull

56

Display of the genes available for a particular taxon. Note that the available taxa can be listed
by the display command within the show command.

Please enter a command. Type "help' for help and 'quit' te quit

Show what?
Options are: groups, taxa, genes, primers, taxonomy. Enter 'cancel' to cancel or "done’ to finish

Name of taxa to display genes for? Type 'display’ to show all available taxa (type 'cancel’ to cancel

Displa?ing available taxa

charmander
pikachu
squirtle
bulbasuar

MName of taxa te display genes for? Type 'display' to show all available taxa (type 'cancel' to cancel
Displaying Genes for Taxa: charmander...

EMBER

SCRATCH

GROWL

LEER

Figure 3: A collection of sample internal commands available in EMU-Phy. For a full list of
commands available, see the documentation available at the aforementioned GitHub or use run
the program and enter ‘help’.

57

Discussion:

Ultimately, the base EMU-Phy program is complete and ready for release. It has
particularly useful in repeating analyses as new data trickles in. However, the module
components are lacking in both complete functionality and volume, severely limiting its utility.
Naturally, Scrawkov-Phy worked easily as it was developed concurrently with EMU-Phy.
Indeed, most of the tests performed in the development and characterization of Scrawkov-Phy
were performed using EMU-Phy. Additionally, the simplicity of the ClustalW command line
interface made the construction of a module for it relatively straightforward. Other modules,

however, did not achieve nearly the desired level of functionality due to various obstacles.

EMU-Phy operates on the assumption that a user attempting to use a module has the
underlying program installed on their machine. Thus, a logical approach that was utilized here
was to use system calls from Java to run the programs and then redirect the output into the
location it needed to be in the file system. However, PHYLIP, while command line based, still
requires user interaction for proper function, even if the input and output files are provided
explicitly. Thus, a simple operating system call from Java is insufficient for the module for
dnadist and neighbor. However, utilization of a Perl script which passes in input to the program
granted success in the Linux cases. However, Windows does not natively support Perl and, even
when the popular Strawberry Perl is present on the machine, the script will not function properly
and the call to PHYLIP fails. Thus, a Java based analog to this Perl script need be developed for
the module to be fully realized. *BEAST is a beast of a program which is part of a larger suite of
programs. While a large number of tutorials exist for the program, most of them are for tools as
used through their BEAUi®® GUI interface, which made the development of a module more

difficult than anticipated.

There are a number of features that, if implemented, would greatly improve the efficacy
and utility of EMU-Phy as a tool. Firstly, a vignette could be constructed that highlights the key
features of using, and potentially developing for, EMU-Phy. The infrastructure for such a
walkthrough was included, as the installation optionally includes example files on which such a
vignette could be based. This will allow users to more effectively and quickly learn the basics of
the tool, which is imperative if a widespread audience is to be reached. Furthermore, the program

58

could be given to testers with differing levels of command line experience. The program could
then be iteratively improved based on the feedback of the testers.

While Scrawkov-Phy has potential as a tool, it is by no means a well-fleshed or
universally accepted tool for phylogenetic analysis. An improvement upon EMU-Phy would be
the bundling of additional software for this analysis along Scrawkov-Phy. Preferably, such a
program would be relatively portable and generally well regarded. PHYLIP, in this case, fits the
bill, as all it requires is a C compiler to install. Additionally, the most recent release of the
PHYLIP source code was released under a license that would allow such a bundling to occur, in
contrast to previous releases. The coupling of a more mature program, such as PHYLIP, with

EMU-Phy would significantly enrich the tool.

A key functionality held by many phyloinformatic applications is the ability the interface
with NCBI to retrieve sequences. The ability of a user to add genes or taxonomy using NCBI’s
nucleotide and taxonomy databases respectively would make the tool more diverse and useful in
its input. Luckily, there is a Java ABI available for interfacing with Entrez that could likely be

implemented in EMU-Phy with relative ease in the future.

Critically, EMU-Phy does not have any modules developed for it that allow for the use of
protein sequences. Undoubtedly, if the tool is allowed to mature, implementations for protein
based phylogeny methods would need to be realized. There are several candidates that may allow
for protein trees in EMU-Phy, such as RAXML or PhyML.

Ultimately, though the base program is fully functional, the lack luster performance of
modules presented here prevents EMU-Phy from proceeding out of development. However, the
program itself reasonably achieves the scope and principles laid out in its software design goals.
The infrastructure was designed with extensibility in mind. Additionally, the filesystem is simple
enough for advanced users to script large datasets, such as the full primate dataset, without using
the tool to add data, while retaining a simple user interface for the uninitiated. Largely, projects
such as EMU-Phy are initiated as community projects, either with groups of like-minded
individuals or scientific collaborators. If EMU-Phy is ever to grow and be used, the interfaces
must be clearer, more robust, and follow an easily explainable API so that a community, rather

than a single developer, can construct usable modules for it.

59

All and all, EMU-Phy provides a solid data management system that falls flat on the
analytics aspect of phyloinformatics. It has potential for easing users into a command line
environment and provides a number of features that would be appreciated by advanced and
novice informaticians. EMU-Phy is an ambitious phyloinformatics project that will ultimately
require community support if it is ever realistically going to catch on. However, the small scale
implementation of such a tool is a useful exercise for those interested in phyloinformatics and,

thus, EMU-Phy has additional potential as an educational tool or exercise.

60

Chapter 3

N/
0‘0

Work Toward the Development of Scrawkov-Phy
Into a Competitive Method for Phylogenetic
Inference

J. Nick Fisk

61

Background:

Scrawkov-Phy: Scrawkov-Phy is an alignment free phylogeny tool that uses a second
order Quasi-Hidden Markov model (QHMM) and six genomic features in-lieu of traditional
comparison of orthologous sites. As discussed in the Chapter One of this document, Scrawkov-
Phy has a number of improvements that needed to be made in order for the algorithm to be fully
tested for robustness and potentially ascend to become a competitive or, minimally, useful tool.
The foremost of the improvements that merit priority are the parallelization of the algorithm and
the introduction of a non-parametric sampling methodology to allow for a metric of confidence

for particular nodes, as well as more meaningful comparisons to other trees.

Parallelism and Scrawkov-Phy: Parallel computing is the truly concurrent execution of
multiple commands on a computing system. With the exception of abstract cores like those used
in hyperthreading, in general, each core of a processor may execute a single command at a time.
These cores can be virtual, physical, or even part of a GPU. Parallel programming takes
advantage of the existence of several cores in a system to execute code more quickly. The design
of parallel programs requires careful consideration of the problem. The minimization of context
switches, effective implementation of instruction lookaheads, and efficient use of cores are just a
few examples of design aspects which merit attention in the creation of parallel programs.
However, not every problem lends itself to parallel approaches. There are a number of
characteristics a problem or algorithm should display if a parallel approach is to be considered. If
the problem requires largely serial code to be executed often, the overhead of threading the
operations or writing the code itself may not be worth the return. Parallel computing has become
a necessity for handling big data, like that caused by the genomic revolution in biology. Many
problems that are infeasible with serial computing suddenly become plausible or even easy with
well-designed parallel implementations. Luckily, Scrawkov-Phy and phylogeny reconstruction

itself lend themselves well to parallel solutions.

62

The idea of parallelizing code in phylogenetic reconstruction is far from novel. Any
number of methods use parallel computing in at least some aspect of their algorithm. Version 2
of BEAST, which infers phylogenies based on Bayesian statistics, has become increasingly
popular due to its highly parallelized approach resulting in phenomenal speedup in a robust
methodology that would otherwise take large sums of time. Notably, the Bayesian estimation of
trees is traditionally and almost exclusively carried out by Markov chain Monte Carlo (MCMC)
methods, such as the Metropolis coupled MCMC [(MC)®].2%” BEAST and MrBayes'%, then, take
advantage of properties of the problem and their mathematical approach to the solution to
implement impressive parallel solutions to phylogenetic inference. Many of these properties are
shared by Scrawkov-Phy, which uses a QHMM and shares the Markov namesake with MCMCs.

A model or system demonstrates the Markov property if the probability distribution of
future states are dependent only upon the state currently being observed. MCMCs, much like the
coalescent, are popular in population genetics and were highly adaptable for phylogenetic
analysis. Similarly, QHMMs display this Markov property of timelessness. This property is key
for the parallelization of Scrawkov-Phy. Since the transition probabilities used in the QHMM do
not rely on any previous information about prior states, the calculation of log probabilities can be
threaded and solved in subsets before ultimately being incorporated into the Markov Chain
Composite Index (MCCI) used in the phylogenetic reconstruction. Timelessness and
independence of common computing resources make this calculation a desirable target for
parallelization. There are other aspects of Scrawkov-Phy that lend themselves to parallelization

as well.

The construction of species trees in Scrawkov-Phy is dependent upon the calculation of
individual, constituent gene trees. However, the construction of these trees are independent of
each other. Thus, the calculations leading to the construction of each individual gene tree can
also be run in parallel. Though all trees would need to be calculated for the species tree to run,
the necessary sub-problems (e.g. the gene trees) could be run in parallel, rather than serially.
Moreover, 5 of the 6 features (the exception being GC content) lend themselves to being
parallelized as well. The DNA sequence can be fragmented into pieces and the measured
properties can be measured independently of other features. While breaking each of these 5

calculations into several sub-problems may cause unnecessary overhead in short sequences, it

63

may be invaluable in increasing the throughput of whole genome data. Furthermore, each of the
6 feature measurements are independent from each other in the current implementation. This
suggests that, minimally, each of the 6 features can be measured concurrently, even if the
measurements are not broken up for parallelization. The other improvement discussed in the
present, non-parametric resampling, would also be a great target for parallelization as each
subsample can be analyzed independently of each other.

Bootstrapping, Jackknifing, and Scrawkov-Phy: Non-parametric resampling methods are
cornerstone methods for constructing and evaluating phylogenetic trees. While parametric
methods exist, they have yet to have the support of the community and the comparative efficacy
of each of the methods is a topic of active debate. Of the non-parametric resampling methods,
bootstrapping and jackknifing are the well-established methods commonly employed for
consensus tree generation. Bootstrapping and jackknifing are extremely similar in design and
execution, though they vary in philosophical and statistical justifications. Simply put, the
difference between the two is simply that bootstrapping methods allow for replacement while
jackknifing methods do not. For the purpose of this paper, only bootstrapping will be considered,
as it is more popular among competitive phylogenetic inference programs, though many of the
same principle undoubtedly apply to both.

Bootstrapping, in the context of phylogenetic analysis, is used to test the reliability of a
phylogenetic tree. Originally described by Felenstein'®, this bootstrap test has become
widespread in its application and some software will even collapse groupings into polytomies if
the bootstrap value is unsatisfactory. Bootstrapping is performed by sampling some length of
nucleotides or amino acids from every sequence and performing the inference analysis with at
these samplings some number of times. While the implementation of the sampling is method
dependent (i.e. selection of values from a matrix, etc.), the result is typically the same: A large
quantity of trees are generated from the sampling sequences. The topology of each of these trees
is then compared to the topology of the original tree. A percent agreement of the topology of the
original tree to all the sampled trees is calculated for each interior branch and displayed. While
the exact percentage for significance is oft debated, the higher the percentage agreement, the
more confidence can be had in that interior branch. Due to this method being one of few extant

methods for tree comparison, having widespread implementation, and generally being positively

64

received, any method aiming to compete with the current methods must have nonparametric

sampling as a requisite.

Challenges in Bootstrapping and Parallelization: As has been verbosely established, if a
method is to become competitive or widely applied in the field of phylogenetics as it exists
today, the said method must be parallelizable and either contain a method or support a method
that allows for tree evaluation through non-parametric sampling. However, there are notable

challenges that come with incorporating these features into Scrawkov-Phy.

As previously stated, typically the most effective parallel programs are those who have
been implemented with parallel design principles ab initio. The adaptation of existing programs
to support parallelization often requires an entirely new development period as much of the code
or subroutines are not of a framework well suited for parallelization. One strategy for the
implementation of parallel code in an existing software is to implement parallel computation
where it is naturally facilitated already within the framework of the code. Then, when a new-full
blown release of the program is released, a proper parallel implementation can be included.
However, the speedup gained by such an approach is limited and does not scale as well. Instead,
it reduces the overhead of creating new code, creating a compromise between developing time
and run time. Scrawkov-Phy was not designed with a parallel implementation in mind. Thus, the
internal data structures may limit the parallel implementation, despite its mathematical model
being so highly conducive to it. The lack of a parallel framework is not the only challenge that
Scrawkov-Phy faces if it is to become more competitive.

Bootstrapping was implemented and described over 30 years ago and has held as a
method for traditional tree-building since!®. The approach is robust and has been shown to be
relevant to phylogenetic inference, despite critiques®*®. However, it is largely unexplored if this
approach would hold the same significance when applied to alignment free systems which do not
rely on the direct comparison of orthologous sites. The underlying biological principles are
different, though the true signal each method attempts to measure should be the same. The
discussion of the statistical relevance of parametric versus non-parametric methods and their
efficacy when used on alignment free approaches is beyond the scope of the present. However, it
is important to note that the branches with high support by bootstrapping Scrawkov-Phy do not

necessarily imply the correctness of the recovered tree, nor does low-branch support necessarily

65

disqualify the tree. Until the mathematical models are more fully explored and linked to the
biology, limited conclusions should be drawn. However, the need to evaluate the efficacy of
bootstrapping on alignment free models necessitates the implementation thereof—a method that

does not exist cannot be tested.

Other Improvements to Scrawkov-Phy In addition to paralleization and bootstrapping,
there are a number of other improvements to Scrawkov-Phy that would vastly improve its utility,
many of which are discussed in Chapter One of the present. The ability to write the MCClI as a
PHYLIP formatted distance matrix would allow for more sophisticated tree-building methods to
be used, subverting the issues caused by UPGMA. Likewise, incorporating the basic Neighor-
Joining® method in Scrawkov-Phy will allow for better characterization of the method and better
facilitate its comparison to other methods. Lastly, the option to alter the k-mer size used in the

QHMM to a larger length to better account for k-mer homoplasy is introduced.

66

Methods:

Due to the design aim of Scrawkov-Phy being system independent and completely self-
contained, development of the parallel version of Scrawkov-Phy was continued in Java. To
enhance the rate in which a parallel version could be developed, an external library is used. The

Parallel Java 2 library, written by Alan Kaminsky*!

, Is an entirely Java library that facilitates the
development of parallel code in Java and is available under a GNU GPL v.3 license. It is
middleware that significantly reduces the overhead involved in parallel programming as it is
available in Java. Likewise, the bootstrapping tree functionality is being designed as a method
within the main Scrawkov-Phy Java file, taking advantage of the in-place infrastructure to

generate the trees. Both functionalities are partially completed.

The neighbor-joining tree method implemented was tested with the small primate NADH
dataset and with the larger, whole genome filovirus dataset. The ability to use k-mers of any
length were tested using the whole genome filovirus dataset. K-mers used were of size 12 and
20. These trees were all constructed using the aforementioned neighbor-joining implementation.

67

Results:

Parallelization: The computation of the codon bias feature as determined by Scrawkov-
Phy was completed. The function was tested and the improved speedup of the function was
tested iteratively. The function was run with 4 cores on a single node on the RIT Research

Computing Cluster. The results are shown graphically in Figure 1, below.

Awerage_Speedup

20 10 40
Mumber_of Ta=a

Figure 1: The average speedup observed in the codon bias computation as a function of

increasing number of taxa. All computation was performed on the BRCA2 gene sequences from

the primate dataset. 30 iterations were performed.

In addition to the parallelization of the codon bias computation, the creation of species trees was

parallelized by running the constituent gene tree calls equally among available cores. The species

68

tree method was run with 4 cores on a single node on the RIT Research Computing Cluster. The

results are shown graphically in Figure 2, below.

Ayerage_Speedup

Number_of Taxa

Figure 2: The average speed-up of the construction of a species tree over an increasing number
of taxa. The same 4 genes from the aforementioned primate study were used in each iteration:
ABCA, BRCA2, CNRL1, and MBD?5. 30 iterations were performed.

Bootstrapping: Scrawkov-Phy now has the ability to create bootstrapping trees
from gene tree datasets. It uses the infrastructure in place, as well as some new command line
arguments to do so. The generation of the data subsets is performed as a call to the ‘gene’

functionality with an additional argument:

java ScrawkovPHY gene nameOfinput.fasta -0 treeOutputFilename.nwk --bootSeq true —numBoots 100

The above command will generate a gene tree with the data to the desired output filename.
Additionally, with the bootSeq argument, a bootstrapping dataset is created and saved to a

temporary directory. The numBoots argument allows control of the number of iterations for

69

bootstrapping. To complete the creation of the bootstrapping trees, a second command must be

executed, this time using the ‘species’ functionality:
java ScrawkovPHY species --folder tmp --outputAll true --bootSeq true

The above command will generate gene trees for each of the bootstrapping samples contained in
the tmp directory. The outputAll argument, which is also available in the regular function of the
species tree command, indicates to the program that all constituent gene trees of the species tree
should be saved to file. In the case of this species tree command, bootSeq instructs the program
to not construct a final species tree, as it would have little practical application here, though the
functionality is preserved. The result are a large number of bootstrapped trees ready for

comparison to the tree that was also generated in the first command.

The programmatic determination of the percent bootstrapping support is still in
development. Newick formatted files may contain information about bootstrapping confidence
and are also the proper format needed for such a comparison. However, the internal data
structure used in the construction of the constituent trees may provide a faster alternative than
reading the files in and parsing them back out. A sample set of 10 bootstrapping trees for the
NADH dehydrogenase gene in a subset of primates was constructed and manually examined for
efficacy. 9 of the 10 bootstrapped trees matched the topology of the gene tree precisely. The
other tree conflicted only in the resolution of humans, chimps, and gorillas. It inverted the

placement of gorillas and chimps.

Neighbor-Joining and Variable Length K-mer: The neighbor joining tree generated by

Scrawkov-Phy for the small primate NADH gene is shown below in Figure 3.

70

Macaca_fuscata

Homo_ s

Tarsius_syrichia

0z

Figure 3: The result of applying the in-place neighbor joining algorithm to a small NADH
dataset in select primates. Note that the tree topology is the same as that obtained in Chapter 1,

but the branches are now of a variable length.

Additionally, the program can now write out the distance to a PHYLIP formatted distance matrix

file, either mirrored or just the diagonal, as shown in Figure 4.

71

2
Homo_sapie 0.0 1.6849405934166175 1.864307223864817 24723424404648124 2.3605127507576167 0.9964433937840826 2.0374911069763033 1. 255661135134809 1.0025276551156402 1631486 7
M. mulatia 1.6840405034166175 0.0 1.2382343052404226 2.1407524286910648 1.9971703011816262 1.6030233611356032 1.701434633407106 1.6990388288730842 1.5866446718020841 0.9571780009 520759 0.5188222430046406 10465207
M._sylvann 1.864597223864817 1.2424280480: 0.0 1.0933441865628334 L.B18! 2 35841 16312 82630991954 7486170938088629 1.2363511417542 1.302224835265251 2.1005917
7519943805042323222 0.0 157805 :
! 15'1993L553N0L’}1113$539°1691634 Ly742; "6063:)45100 79397 7
099&143;93*840805161&;40"34190413 L78664050906713612.360821125022887 2.2055 .0 10279212 7 0625 ! T ; : 14957108216
2 521435028603
508 1.6807618463486238
4;,1 5611[4106"584690

74348 0.5200043000627 L293;,413084:144433"13223119605:)5&‘i ~05_468g4. : 31493883440008;:,61.839 7 35851.8;-35 L56(_)4.E4 :3.0614311.,5981&;:::330 9 U.S:)?B]l.u‘.].‘us;,‘ 01.94417 ;,.400,,3105
Pongo 15065523861515548 1.95082680533202 2.1011320920070804 2,471 150203 2.413032419888942 1.7262438425124187 2.3257019084070964 1.682171984369207 1.5610094029980925 1.972051038520805 1948843068060535 0.0

12

Homo_sapie

M. mulatta 1.6849405034166175

M._sylvanu 1.864507223864817 1.2424280480572703

Tarsius_sy 2.4723424404648124 2.1400493576285675 1.9943805042323222

Lemur_catt 2.3695127507576167 1.9984255394012311 1.8155393169168452 1.574232760635451

Pan 0.9964433937840826 1.6084407324100413 1.7866405090671361 2.360821125922887 2.295507961445088

Saimiri_sc2.0374911060763053 1.7048255054923746 1.6313210250678387 1.906582719750109 1.7796518188713757 19273341205771954

Hylobates 1.255661135134809 1.6066928816876117 1.8255602529316074 2.4220474388638607 2.35041310040585 14145220666644676 1.0747133326197959

Gorilla 1.0025276551156492 1.5865667054947004 1.7476352096203614 2.4246301749525467 2.2549504113430703 1.0581194966076315 1.9888401410058425 1.2767322189517085

M._fascien 1.6314865732177974 0.9623846176975365 1.2370813209285879 2.1861379321789802 2.080720250739722 1.553432113257124 1.8069287876265263 1.6503273173143005 1.6304899129089334

Macaca_fus 1.6331302377674548 0.5200043009627607 1.2085418084044433 2.182232196050288 2.062468947255493 1.493883440098736 1.8805763585128755 1.6694840732061431 1.5508167633087492 0.8078312644411857
Pongo 1.5065523861515548 1.95082680533202 2.1011320929979894 2.4712667236150203 2.413932419888942 1.7262438425124187 2.3257919084070964 1.682171984369207 1.5610994029980925 1.972051038529805 1.948843068069535

Figure 4: Scrawkov-Phy is capable of generating and writing PHYLIP style distance formatted
matrices, be it fully mirrored (top) or along the diagonal (bottom). The file was capable of being
read and used by PHYLIP’s neighbor program. The flag ‘—diagMat’ controls which is
outputted.

To test the k-mer method, which was implemented to address the possible issue of
homoplasy, a neighbor joining tree was produced for the original method, the method using a 12-
mer, and using a 20-mer. All three trees are visualized in Figure XX below.

72

Lame ictaria_marbungeinus__ Angala?005_stran_Angl215 2

Lawe Wictaria_Marburginus_ Angalad05_stran_Angi15

Lake Wictoria_marburgeinus_ Angaladl05_strain_ Ang 1379

Lame Victaria_marburgeines_ Angala@005_ stran_Angl214.00

Lawe Wictaria_marbungeinus__ Angalad005 stram_AngleEs

Lawe Victara_marburgeirues_ AngaladD05_stran_Aagl126.0

Lo ictaria marburgeinus Angala2005 st _Ang 1385

Resion_etalaeinus_ Reston_genamic_RHa

Bundibugya_sbalirans

Coter_of hwarer_ssholarvines

Fare_Ehala_winus_stran_Mayinga

Zamra_shaladime stran Maings

Endla_wirus___Mayinga Zare 1976 _svan_Mayinga

Zare Ebala wirus_stran Mayinga_subtypeZare

1

Sucan_shalaines_ o

Sudan_ebaliines_siran_Barface

Reston_ebalavinus_ Reston_stran_Restan08 A

Resion_ebalairus_ Reston_stran_ Reston0d_E

Reston_shalains_stran_Perrsyhvania

Reston_ehalaninus__iag_

Reston_ebalavinus_ Reston_stran_Restan0d C

Lo ictaria_marburgwines_stramn_Ugands SEARCO0R

Lo Victaria_marburgirues_stran_Uganda 05U gal7

Lo ictaria_marburgwinus_ RO 1999 stran (BDRCT

Lavon Victaria_marbungvinus___ [Ranm

Marturg erus_stran_MSMncalaharresbung 1975 0mmin

Marturg winus Pogn NP _assor_ganes

Lo Victaria_marbungirus_ DRG 1999 stram 050RCH

Lo ictaria_marburgeines_stran_Uganda 01Ugal7

Lakn Wictaria_marburgwinus_siran_uganda 57180007

Lo Victaria_marburgvirus_ DRC 1999 stram (FDRCS

Lo wictaria_marburgeires Musoke fram_Kerya

Lawe Victara_marburgeirus_ Angala®D05_stran_Angd754.0

ov

73

-l— Marturg_vinus_stran_M Sficaahanmestung 19750min

Marturg_wirus Popn NP aesort_ganes

Lake Wictoria_marburgeirus_stran_Ugands 38280008

Lan Victaria_marburgwinus_stran_Uganda (2Ugal7

Lawe Victaria_marburginus_DRC 1999 stram (90RCSS

Lawa Victara_marburgeires__ Ranm

Lake Victoria marburgeinus_ DRC1999 stran 05DRCSS_
Loy victaria_marburgeinus_stran_Uganda 01Ugad?
Lo Victana_marburgeirues_sian_ugands 571 BT
Lake Victaria_marbungeinus__ DRC1999_stran_07DRCSS
Lawer_Victaria_marbungeinus_ Musoke from_Kerya

Lo wictaria_marburgeines Sngalad005 stam_Ang0T54.0
Lo victaria_marburgeinus_Angala2d005 stram_Angl215 2
Lk Wichoria Marburginus Angalad005 stan_Angl21s

Lo wictaria_marburgeinus_ Angala005 stran_Ang 1379

Lawa victara_marburgeires Sagaladi05 st AngI214.00
Lawe victaria_marburgeinus_ Angalad005 sran Angress
Lo wicharia_marburgeinus_ Angalad005 stran_sngd 1260
Lo wictaria_marburgeinus_ Angalad005 stran Ang 1388

Reston_ehalaninus___Restan_genamic_RNA

Bunditrugya_ebalaines

Cote_of heaire_shalarines

Zare_Ehala_wirus_stran_Mayinga
—— Zare_sbalnirus_svan Mayings_

: Ebala wirus_ Mayinga_ Fare 1976_stran_Mayinga

Zara Fhala wirus_stran Mayinga_subtyps Zare

o B

Sudan_ehalains_stran_Sorfaoe
Remton_shalodrus Reston stran Restan08 A
Resion_ebalananus__ Reston_stran_Reston0d E
[Remstan_ebalznirus_stram_Penmsylhvana
[Rlemtan_sthalorarus_ g

Reston ebalavines_ Reston_stran Restond8 C

74

Lotk Victaria_marburgeinus_stran_ Ugands SE28008
Loy Wictoria_marturgwirus_stram_Ugands 00U gal7
Lotk Victaria marburgeirus DRC1999 strain (ADRCH

ek Victoria_marburgeinus__Ranm

Marturg_virus_strain_M Stficalahanmesturg 19750malin

M arturg_virus_Papn WIP_as=ort_ganes

Later_Wichwria_marburgeirus_ DRCA999_stram 05DRCH

Lt Vicharia_marburgvinus_stran_Uganda 01Ugal7__

Lt Wichoria_marburgeinus_stram_uganda_ 57 1802007

Lakea Wictoria_marburgwirus_ DRC1999_stran (7DRCHA

Lo Vichoria_marburgeinas__ Musake fraom_Ferya

Lot Victaria_marburgeinus__ Angala2D05_stran_Angl7540

Lotk Wictoria_marturgirus___Angala2D05 stran_Angl215 2

Lates Wictoria_marburgeirus_ Aagala2D]D stam_Ang 1379

Lotk Wictoria_marburgwirus___Angala2005 strain_Angl1214.00

Lo _Wiciora_Marburghinus___Angalal005_siran_angl215

Latker_Wictoria_marturgirus_ Angala2D)S stran_Ang0398

Lo Wiciora_marburgeirus__ Angala2005_siran_Angl126.0

Lae Wiciora_marburgeirus_ AngaladD05 sian Ang 1385

Resion_sbalavirus_ Resion_genamic_RNA

Bundibugyo_ebalains

Cote_d heare_sbalinins

Zare Ehala_ virus_shan_Mayinga

Zawrey_edclanarus_stram_Maginga_

]

Ehcla_wirus__ Maynga Zame 1976 _stan_Mainga

Zawes [Ebcla_virus_shran_Mayinga sutitypes Zare

Sudan_ebalawinus_ s

Sudan_sbolininus_siran_Bomifaos

Reston abalaarus_ Reston ston Reston(d A

Resion_ebolinirus_ Resion_sian_Reson(d E

T

Reston_ahalavinus_stran_Pemisyhana

Reession_ebalandrus__tag_

04

Rlesion_sbhalaares Rleston_stran_Restandd C

Figure 5: Three NJ trees reconstructed from whole Filovirus genomes. The original Scrawkov-

Phy (top) did not recover quite as nice as a topology as the 12-mer (middle) and 20-mer (bottom)

methods. As described by Fan et al'?, there appears to be a delicate balance in the selection of K-

mer size, as the 12mer seemingly recovers a better tree than the 20-mer method. Of course, this

conjecture needs validation by bootstrapping.

75

Discussion:

The continued development of Scrawkov-Phy is underway and tangible progress has
been made on both the evaluation of tree quality via non-parametric sampling and in the
parallelization of the code. There are still a number of principles that must be described in order
to consider the method robust, especially concerning the efficacy of using sampling to evaluate
tree quality. On one hand, the bootstrap is a standard used widely in phylogenetics. On the other
hand, QHMMs are a basic form of machine learning which construct better and better models the
more data is present. Individual genes can be short and the further generation of sequence subsets
may severely limit the algorithm’s ability to learn. Using bootstrapping may be more appropriate
with large, genome size data so that features may still be properly characterized. While principles
such as k-fold validation exist in machine learning, further research will be necessary to
determine if and when approaches should be used and if they would be comparable to the

bootstrap as it is used in other applications.

The result of the prototyped bootstrapping testing set was interesting. In this case, the
gene tree constructed with Scrawkov-Phy (which is also supported by other methods, as shown
in Chapter 1 of the present document) was in almost total agreement with its bootstrapping trees.
The placement of Pan versus Gorilla with humans is not uncommon among particular datasets,
which made the resolution of the primate tree difficult for some time. This near-miss is notable

because it has been previously described and has biological relevance.

The parallelization of the codon bias method resulted in a method that was softly parallel.
The return on cores was not one to one, even as the number of taxa increased. This is an
expected result, as the method was not written with parallel design principles in mind. Additional
cores may improve the return, but it is notable that the number of taxa steadily and significantly
improved the speedup, perhaps implying that parallelization may be best utilized for datasets
with large number of taxa. The species tree method, on the other hand, did not return on the
number of cores as well as was expected. Since each gene tree is constructed independently and
due to the relative simplicity of the method used to construct the final species tree from gene
trees, the speedup was expected to be closer to the number of cores used. This method had a
better speedup than the codon bias function, but it was still not nearly as scalable to cores as is

76

desirable. Interestingly, the same trend was observed in the species tree and codon bias methods,
where the number of taxa results in a better overall speedup, again implying that parallelization

may best suited to trees with large numbers of taxa.

In the continued development of the bootstrapping function, an opportunity to repurpose
old code has been identified. In essence, the hill-climbing algorithm (described in chapter one of
the present) compares the topology of generated trees to well resolved tree to generate parameter
weights for the algorithmic determination of phylogeny. This comparison of topology is crucial
for the next step in implementing a bootstrapping method and would require only minor
alterations to achieve the desired result. Likewise, jackknifing can be implemented simply by

changing the way the current method subsamples sequences.

All in all, the prototype methods for parallelism and bootstrapping were modestly
successful. This modest success is an indicator that development of the methods should continue.
If the example parallelization had been arduous to develop or had minimal return, that result
would have been an indicator to either abandon the prospect or rework the framework to enable
parallelization. Likewise, if there was not a way to easily utilize the existing functions available
in Scrawkov-Phy, the bootstrapping tree generation may have been better off as a separate
program. Similarly, if the programmatic evaluation of the bootstrapping trees does not fit within
the framework provided by Scrawkov-Phy, it may be more prudent to include the function as a
separate program to best conform to best practices in code design. It may also be wise to narrow
the taxonomic focus of the algorithm, perhaps focusing more on prokaryotes, as the demand and

approach may better apply.

Neighbor-joining was successfully implemented and incorporated into Scrawkov-Phy.
This incorporation was necessary as the UPGMA method is generally not accepted as being a
rigourous tree-building method by many due to its reliance on mid-point rooting. Such rooting
assumes ultrametric evolution, which is not a biologically rigourous assumption and yields sub-
par and inconsistent results''2. While neighbor-joining has its faults, it is a standard for distance
approaches to phylogenetic reconstruction. Though algorithm can recover the same topology, as
shown in the primate dataset. Notably, implementing the NJ also allows for the collapse of nodes
into a polytomy when distance is short and no bootstrapping test has been performed occurred.

It is interesting to note that, for the filovirus data set, the default Scrawkov-Phy did not produce a

77

high-quality NJ-tree. In that instance, the UPGMA tree displayed in Chapter 1 recovered a
topology more closely representing the natural history of the family. This is remedied, however,
by increasing the k-mer length. The 12-mer method recovered correct clustering for all the

families—a notable improvement from the UPGMA tree in Chapter 1.

There are still many things to improve upon if Scrawkov-Phy if it is ever to be a
competitive tool for phylogenetic analysis, but the modest successes presented here show that
such improvements are possible. Neighbor joining and the ability to use any length k-mer were
completed in their entirety and incorporated into the program. The provisional success of the
bootstrapping and parallel components suggest that further improvements of this nature will be

compatible with the algorithm and that there is merit in performing such improvements.

78

Closing Remarks

This work ties together, at some level, many facets of the field of phylogenetics as it
exists today. Within it are attempts at the creation of new methods and data management
techniques, but also exploration of the traditional methods and the biology on which they are
based. Many of the methods used in phylogenetic analysis today were described decades ago
and are still used today, with computational improvements. The introduction of big data has led
to paradigm shifts and novel methods for managing phylogenetic data and analyzing it when
traditional methods fail. In these ways, phylogenetics is both a very old field and a very new one.
There are and will continue to be disagreements in the field about proper methods, the limitations
of inference, and the interpretation of results. However, this is also a field that contains a set of
some of the most unique challenges in addressing some of the most interesting questions about
an unobservable past. While phylogenetic inference is just that—inference—the foundational
nature of the field, the questions it poses, and its application in such a wide range of disciplines

promise that the field will continue to mature, modernize, and motivate for generations.

79

References:

1.

10.

11.

12.

Shanahan, T. Phylogenetic inertia and Darwin’s higher law. Studies in History and Philosophy of
Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 42, 60—68
(2011).

Velasco, J. D. Philosophy and Phylogenetics. Philosophy Compass 8, 990-998 (2013).

Kluge, A. G. Explanation and Falsification in Phylogenetic Inference: Exercises in Popperian
Philosophy. Acta Biotheor 57, 171-186 (2009).

Gilmour, J. S. L. Review of Evolution: The Modern Synthesis. Philosophy 19, 166—170 (1944).
Platnick, N. I. Philosophy and the Transformation of Cladistics. Syst Biol 28, 537-546 (1979).
Emerson, B. C., Alvarado-Serrano, D. F. & Hickerson, M. J. Model misspecification confounds the
estimation of rates and exaggerates their time dependency. Mol Ecol 24, 6013-6020 (2015).
Sullivan, J. & Joyce, P. Model Selection in Phylogenetics. Annual Review of Ecology, Evolution, and

Systematics 36, 445-466 (2005).

Baele, G., Lemey, P. & Suchard, M. A. Genealogical working distributions for Bayesian model testing

with phylogenetic uncertainty. Syst Biol syv083 (2015). doi:10.1093/sysbio/syv083

Metzker, M. L. Sequencing technologies [mdash] the next generation. Nat Rev Genet 11, 31-46
(2010).

Stevens, P. F. Homology and Phylogeny: Morphology and Systematics. Systematic Botany 9, 395—
409 (1984).

Garland, T., Harvey, P. H. & Ives, A. R. Procedures for the Analysis of Comparative Data Using
Phylogenetically Independent Contrasts. Syst Biol 41, 18-32 (1992).

Fan, H., lves, A. R., Surget-Groba, Y. & Cannon, C. H. An assembly and alighment-free method of

phylogeny reconstruction from next-generation sequencing data. BMC Genomics 16, 522 (2015).

80

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Jantschi, L., Bolboaca, S. D. & Sestras, R. E. Hard Problems in Gene Sequence Analysis: Classical
Approaches and Suitability of Genetic Algorithms. Biotechnology & Biotechnological Equipment 23,
1275-1280 (2009).

Dabhade, K. R. Big Data An Overview. International Journal of Technology Enhancements and
Emerging Engineering Research 3, 255-257 (2014).

Wu, X., Zhu, X., Wu, G. Q. & Ding, W. Data mining with big data. IEEE Transactions on Knowledge
and Data Engineering 26, 97-107 (2014).

Labrinidis, A. & Jagadish, H. V. Challenges and Opportunities with Big Data. Proc. VLDB Endow. 5,
2032-2033 (2012).

Begoli, E. & Horey, J. Design Principles for Effective Knowledge Discovery from Big Data. in 2012
Joint Working IEEE/IFIP Conference on Software Architecture (WICSA) and European Conference on
Software Architecture (ECSA) 215-218 (2012). doi:10.1109/WICSA-ECSA.212.32

Marx, V. Biology: The big challenges of big data. Nature 498, 255-260 (2013).

Congressional Justification FY2015. Available at: https://www.nlm.nih.gov/about/2015CJ.html.
(Accessed: 29th March 2016)

Statistics < About the European Nucleotide Archive < European Nucleotide Archive < EMBL-EBI.
Available at: http://www.ebi.ac.uk/ena/about/statistics. (Accessed: 29th March 2016)

Big Data: Issues and Challenges Moving Forward. Available at:
http://www.academia.edu/10967116/Big_Data_Issues_and_Challenges_Moving_Forward.
(Accessed: 25th April 2016)

Cook, S. A. An Overview of Computational Complexity. Commun. ACM 26, 400-408 (1983).
Papadimitriou, C. H. in Encyclopedia of Computer Science 260-265 (John Wiley and Sons Ltd.).
Day, W. H. E. Computational complexity of inferring phylogenies from dissimilarity matrices. Bltn

Mathcal Biology 49, 461-467 (1987).

81

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Day, W. H. E. Computationally difficult parsimony problems in phylogenetic systematics. Journal of
Theoretical Biology 103, 429-438 (1983).

Day, W. H. E. & Sankoff, D. Computational Complexity of Inferring Phylogenies by Compatibility. Syst
Biol 35, 224-229 (1986).

Day, W. H. E., Johnson, D. S. & Sankoff, D. The computational complexity of inferring rooted
phylogenies by parsimony. Mathematical Biosciences 81, 33—42 (1986).

Foulds, L. R. & Graham, R. L. The steiner problem in phylogeny is NP-complete. Advances in Applied
Mathematics 3, 43—49 (1982).

Wang, L. & Jiang, T. On the Complexity of Multiple Sequence Alignment. Journal of Computational
Biology 1, 337-348 (1994).

Katoh, K. & Toh, H. Recent developments in the MAFFT multiple sequence alighment program. Brief
Bioinform 9, 286—298 (2008).

Edgar, R. C. MUSCLE: a multiple sequence alignment method with reduced time and space
complexity. BMC Bioinformatics 5, 113 (2004).

Chan, C. X. & Ragan, M. A. Next-generation phylogenomics. Biology Direct 8, 3 (2013).

Felsenstein, J. Cases in which Parsimony or Compatibility Methods will be Positively Misleading. Syst
Biol 27, 401-410 (1978).

Saitou, N. & Nei, M. The neighbor-joining method: a new method for reconstructing phylogenetic
trees. Mol Biol Evol 4, 406—425 (1987).

Bruno, W. J,, Socci, N. D. & Halpern, A. L. Weighted Neighbor Joining: A Likelihood-Based Approach
to Distance-Based Phylogeny Reconstruction. Mol Biol Evol 17, 189—197 (2000).

Yang, Z. Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over

sites: Approximate methods. J Mol Evol 39, 306314 (1994).

82

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

Guindon, S. & Gascuel, O. A Simple, Fast, and Accurate Algorithm to Estimate Large Phylogenies by
Maximum Likelihood. Syst Biol 52, 696—704 (2003).

Yang, Z. & Rannala, B. Bayesian phylogenetic inference using DNA sequences: a Markov Chain
Monte Carlo Method. Mol Biol Evol 14, 717724 (1997).

Huelsenbeck, J. P., Ronquist, F., Nielsen, R. & Bollback, J. P. Bayesian Inference of Phylogeny and Its
Impact on Evolutionary Biology. Science 294, 2310-2314 (2001).

Susana Vinga, J. A. Alignment-free sequence comparison - A review. Bioinformatics (Oxford,
England) 19, 513—-23 (2003).

Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive
multiple sequence alignment through sequence weighting, position-specific gap penalties and
weight matrix choice. Nucl. Acids Res. 22, 4673—4680 (1994).

Prli¢, A., Domingues, F. S. & Sippl, M. J. Structure-derived substitution matrices for alignment of
distantly related sequences. Protein Eng. 13, 545-550 (2000).

Earl, D. et al. Alignathon: A competitive assessment of whole genome alignment methods. Genome
Res. gr.174920.114 (2014). d0i:10.1101/gr.174920.114

B.A, E. R. L. Il.—On the use of the term homology in modern zoology, and the distinction between
homogenetic and homoplastic agreements. Annals and Magazine of Natural History 6, 34—43
(1870).

Drummond, A. J., Rambaut, A., Shapiro, B. & Pybus, O. G. Bayesian Coalescent Inference of Past
Population Dynamics from Molecular Sequences. Mol Biol Evol 22, 1185-1192 (2005).

Liu, L., Yu, L., Kubatko, L., Pearl, D. K. & Edwards, S. V. Coalescent methods for estimating
phylogenetic trees. Molecular Phylogenetics and Evolution 53, 320-328 (2009).

Crandall, K. A. & Templeton, A. R. Empirical tests of some predictions from coalescent theory with

applications to intraspecific phylogeny reconstruction. Genetics 134, 959-969 (1993).

83

48.

49.

50.

51.

52.

53.

54,

55.

56.

57.

58.

Drummond, A. J. & Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC
Evolutionary Biology 7, 214 (2007).

Bininda-Emonds, O. R. P. The evolution of supertrees. Trends in Ecology & Evolution 19, 315-322
(2004).

de Queiroz, A. & Gatesy, J. The supermatrix approach to systematics. Trends in Ecology & Evolution
22, 34-41 (2007).

Kluge, A. G. A Concern for Evidence and a Phylogenetic Hypothesis of Relationships among Epicrates
(Boidae, Serpentes). Syst Biol 38, 7-25 (1989).

Huelsenbeck, J. P., Bull, J. J. & Cunningham, C. W. Combining data in phylogenetic analysis. Trends in
Ecology & Evolution 11, 152—-158 (1996).

Gatesy, J. & Springer, M. S. Phylogenetic analysis at deep timescales: Unreliable gene trees,
bypassed hidden support, and the coalescence/concatalescence conundrum. Molecular
Phylogenetics and Evolution 80, 231-266 (2014).

Eddy, S. {HMMER: Profile hidden Markov models for biological sequence analysis}. (2001).
Blumenthal, R. M. An Extended Markov Property. Transactions of the American Mathematical
Society 85, 52—72 (1957).

Fine, S., Singer, Y. & Tishby, N. The Hierarchical Hidden Markov Model: Analysis and Applications.
Mach. Learn. 32, 41-62 (1998).

Kaelbling, L. P., Littman, M. L. & Cassandra, A. R. Planning and acting in partially observable
stochastic domains. Artificial Intelligence 101, 99—-134 (1998).

Collier, N., Nobata, C. & Tsuijii, J. Extracting the Names of Genes and Gene Products with a Hidden
Markov Model. in Proceedings of the 18th Conference on Computational Linguistics - Volume 1 201—

207 (Association for Computational Linguistics, 2000). doi:10.3115/990820.990850

84

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

Felsenstein, J. & Churchill, G. A. A Hidden Markov Model approach to variation among sites in rate
of evolution. Mol Biol Evol 13, 93-104 (1996).

Eddy, S. R. Profile hidden Markov models. Bioinformatics 14, 755-763 (1998).

Krogh, A., Brown, M., Mian, I. S., Sjolander, K. & Haussler, D. Hidden Markov Models in
Computational Biology. Journal of Molecular Biology 235, 1501-1531 (1994).

Eddy, S. R. Hidden Markov models. Current Opinion in Structural Biology 6, 361-365 (1996).
Krogh, A., Larsson, B., von Heijne, G. & Sonnhammer, E. L. L. Predicting transmembrane protein
topology with a hidden markov model: application to complete genomesl. Journal of Molecular
Biology 305, 567-580 (2001).

Lusseau, D. Effects of Tour Boats on the Behavior of Bottlenose Dolphins: Using Markov Chains to
Model Anthropogenic Impacts. Conservation Biology 17, 1785-1793 (2003).

Grundy, W. N, Bailey, T. L., Elkan, C. P. & Baker, M. E. meta-MEME: Motif-based hidden Markov
models of protein families. Comput Appl Biosci 13, 397-406 (1997).

Hey, J. & Nielsen, R. Integration within the Felsenstein equation for improved Markov chain Monte
Carlo methods in population genetics. PNAS 104, 2785-2790 (2007).

Salzberg, S. L., Pertea, M., Delcher, A. L., Gardner, M. J. & Tettelin, H. Interpolated Markov Models
for Eukaryotic Gene Finding. Genomics 59, 24-31 (1999).

Huang, Q., Ge, R., Kakade, S. & Dahleh, M. Minimal Realization Problems for Hidden Markov
Models. IEEE Transactions on Signal Processing 64, 1896—-1904 (2016).

Wu, Z. Quasi-hidden Markov model and its applications in cluster analysis of earthquake catalogs. J.
Geophys. Res. 116, B12316 (2011).

Smarda, P. et al. Ecological and evolutionary significance of genomic GC content diversity in

monocots. PNAS 111, E4096—E4102 (2014).

85

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

Costantini, M., Cammarano, R. & Bernardi, G. The evolution of isochore patterns in vertebrate
genomes. BMC Genomics 10, 146 (2009).

Romiguier, J., Ranwez, V., Douzery, E. J. P. & Galtier, N. Contrasting GC-content dynamics across 33
mammalian genomes: Relationship with life-history traits and chromosome sizes. Genome Res 20,
1001-1009 (2010).

Lassalle, F. et al. GC-Content Evolution in Bacterial Genomes: The Biased Gene Conversion
Hypothesis Expands. PLOS Genet 11, €1004941 (2015).

Takahashi, M., Kryukov, K. & Saitou, N. Estimation of bacterial species phylogeny through
oligonucleotide frequency distances. Genomics 93, 525-533 (2009).

Babbitt, G. A., Alawad, M. A., Schulze, K. V. & Hudson, A. O. Synonymous codon bias and functional
constraint on GC3-related DNA backbone dynamics in the prokaryotic nucleoid. Nucl. Acids Res. 42,
10915-10926 (2014).

Yang, Z., Nielsen, R., Goldman, N. & Pedersen, A.-M. K. Codon-Substitution Models for
Heterogeneous Selection Pressure at Amino Acid Sites. Genetics 155, 431-449 (2000).

Plotkin, J. B. & Kudla, G. Synonymous but not the same: the causes and consequences of codon bias.
Nat Rev Genet 12, 32—42 (2011).

Carlini, D. B., Chen, Y. & Stephan, W. The Relationship Between Third-Codon Position Nucleotide
Content, Codon Bias, mRNA Secondary Structure and Gene Expression in the Drosophilid Alcohol
Dehydrogenase Genes Adh and Adhr. Genetics 159, 623—633 (2001).

Hershberg, R. & Petrov, D. A. Selection on Codon Bias. Annual Review of Genetics 42, 287-299
(2008).

Sharp, P. M., Emery, L. R. & Zeng, K. Forces that influence the evolution of codon bias. Philosophical

Transactions of the Royal Society of London B: Biological Sciences 365, 1203-1212 (2010).

86

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

Burge, C. & Karlin, S. Prediction of complete gene structures in human genomic DNA. J. Mol. Biol.
268, 78-94 (1997).

Goldman, N. Nucleotide, dinucleotide and trinucleotide frequencies explain patterns observed in
chaos game representations of DNA sequences. Nucl. Acids Res. 21, 2487-2491 (1993).

Clote, P., Ferré, F., Kranakis, E. & Krizanc, D. Structural RNA has lower folding energy than random

RNA of the same dinucleotide frequency. RNA 11, 578-591 (2005).

Smith, S. A,, Beaulieu, J. M. & Donoghue, M. J. Mega-phylogeny approach for comparative biology:

an alternative to supertree and supermatrix approaches. BMC Evol Biol 9, 37 (2009).
Rambaut, A. FigTree, version 1.3. 1. Computer program distributed by the author, website:

http://treebioedacuk/software/figtree/[accessed January 4, 2011] (2009).

Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using

Clustal Omega. Molecular Systems Biology 7, 539-539 (2014).

Larkin, M. A. et al. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947-2948 (2007).
Kumar, S., Nei, M., Dudley, J. & Tamura, K. MEGA: A biologist-centric software for evolutionary
analysis of DNA and protein sequences. Brief Bioinform 9, 299-306 (2008).

Barrette, R. W., Xu, L., Rowland, J. M. & Mclntosh, M. T. Current perspectives on the phylogeny of
Filoviridae. Infect. Genet. Evol. 11, 1514-1519 (2011).

Sangster, G., Alstrom, P., Forsmark, E. & Olsson, U. Multi-locus phylogenetic analysis of Old World
chats and flycatchers reveals extensive paraphyly at family, subfamily and genus level (Aves:
Muscicapidae). Molecular Phylogenetics and Evolution 57, 380—392 (2010).

Yi, H. & Jin, L. Co-phylog: an assembly-free phylogenomic approach for closely related organisms.
Nucleic Acids Res. 41, €75 (2013).

Perelman, P. et al. A molecular phylogeny of living primates. PLoS Genet. 7, €1001342 (2011).

87

93. Sims, G. E. & Kim, S.-H. Whole-genome phylogeny of Escherichia coli/Shigella group by feature
frequency profiles (FFPs). PNAS 108, 8329-8334 (2011).

94. Maddison, W. P. Gene Trees in Species Trees. Syst Biol 46, 523-536 (1997).

95. Huelsenbeck, J. P. Performance of Phylogenetic Methods in Simulation. Syst Biol 44, 17-48 (1995).

96. Kohavi, R. & John, G. H. Wrappers for feature subset selection. Artificial Intelligence 97, 273—-324
(1997).

97. Mitchell, M. & Holland, J. When Will a Genetic Algorithm Outperform Hill-Climbing? Computer
Science Faculty Publications and Presentations (1993).

98. Iswandy, K. & Koenig, A. Towards Effective Unbiased Automated Feature Selection. in Proceedings
of the Sixth International Conference on Hybrid Intelligent Systems 29— (IEEE Computer Society,
2006). doi:10.1109/HI1S.2006.72

99. Kuhner, M. K. & Felsenstein, J. A simulation comparison of phylogeny algorithms under equal and
unequal evolutionary rates. Mol. Biol. Evol. 11, 459-468 (1994).

100. Page, R. D. M. Phyloinformatics: Toward a Phylogenetic Database. Data Mining in Bioinformatics
219-241 (2004). d0i:10.1007/1-84628-059-1_10

101. Piel, W. H., Sanderson, M. J. & Donoghue, M. J. The small-world dynamics of tree networks and
data mining in phyloinformatics. Bioinformatics 19, 1162—-1168 (2003).

102. Smith, S. A. & Dunn, C. W. Phyutility: a phyloinformatics tool for trees, alighments and molecular
data. Bioinformatics 24, 715-716 (2008).

103. The Java Language Environment. Available at: http://www.oracle.com/technetwork/java/intro-
141325.html. (Accessed: 30th March 2016)

104. Creating Extensible Applications (The Java™ Tutorials > The Extension Mechanism > Creating
and Using Extensions). Available at: https://docs.oracle.com/javase/tutorial/ext/basics/spi.html.

(Accessed: 30th March 2016)

88

105. Retief, J. in Bioinformatics Methods and Protocols (eds. Misener, S. & Krawetz, S.) 243-258
(Humana Press, 1999).

106. Drummond, A. J., Suchard, M. A,, Xie, D. & Rambaut, A. Bayesian Phylogenetics with BEAUti and
the BEAST 1.7. Mol Biol Evol 29, 1969-1973 (2012).

107. Geyer, C. J. & Thompson, E. A. Annealing Markov Chain Monte Carlo with Applications to
Ancestral Inference. Journal of the American Statistical Association 90, 909-920 (1995).

108. Huelsenbeck, J. P. & Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees.
Bioinformatics 17, 754—755 (2001).

109. Felsenstein, J. Confidence Limits on Phylogenies: An Approach Using the Bootstrap. Evolution 39,
783-791 (1985).

110. Felsenstein, J. & Kishino, H. Is There Something Wrong with the Bootstrap on Phylogenies? A
Reply to Hillis and Bull. Systematic Biology 42, 193—200 (1993).

111. Kaminsky, A. Parallel Java: A Unified API for Shared Memory and Cluster Parallel Programming in
100% Java. Proceedings - 21st International Parallel and Distributed Processing Symposium, IPDPS
2007; Abstracts and CD-ROM 1-8 (2007). doi:10.1109/IPDPS.2007.370421

112. Hillis, D. M., Huelsenbeck, J. P. & Cunningham, C. W. Application and Accuracy of Molecular

Phylogenies. Science 264, 671-677 (1994).

89

Supplemental Material

SF1: The species tree by Scrawkov-Phy of the 181 primate species over 52 loci in a traditional
cladogram view. A full size pdf or png file is available request. Each of the subsequent 4 pages

contains a piece of the figure, taken from top to bottom.

90

— _Cynocephalus volans

'— _Galeopterus variegatus
—— _Cercopithecus mona

{ _Trachypithecus delacouri

_Semnopithecus hector
_Macaca tonkeana
_Macaca fuscata
_Lophocebus aterrimus
_Chlorocebus aethiops
_Macaca fascicularis

~— _Papio anubis

_C_Maw mulatta
_Mandrillus leucophaeus

{ _Macaca ochreata
_Macaca nigra

{ _Macaca thibetana
_Macaca silenus
_Macaca siberu
_Macaca nemestrina
_Theropithecus gelada
_Macaca arctoides
_Cercocebus chrysogaster
_Chlorocebus sabaeus
_Erythrocebus patas
_Cercopithecus diana
_Cercopithecus neglectus
E _Piliocolobus badius

_Semnopithecus entellus

_Cercopithecus mitis
‘E_Colobus guereza

_Colobus polykomos
_Cercopithecus petaurista pet

_Cercopithecus hamlyni hamlyni

_Cercopithecus wolfi wolfi
_Cercopithecus ascanius schmi
_Cercopithecus cephus
_Macaca maura

_Miopithecus ogouensis

[: _Macaca sylvanus
_Macaca cyclopis
_Cercopithecus albogularis ko
_E _Allenopithecus nigroviridis
_Cercopithecus lhoesti
_Cercocebus torguatus

_Papio papio
‘[E _Papio hamadryas
_Mandrillus sphinx

91

_Presbytis comata
_Semnopithecus entellus entel

_Trachypithecus auratus
,E _Trachypithecus hatinhensis

_Trachypithecus phayrei
_Trachypithecus francoisi
_Trachypithecus obscurus
_Presbytis melalophos
_Pygathrix cinerea
_Rhinopithecus brelichi
_Pygathrix nemaeus
_Pyagathrix nigripes
_Trachypithecus vetulus vetul
_Nasalis larvatus

_Colobus angolensis palliatus
_Pongo pygmaeus
'_C _Nomascus siki
_Nomascus gabriellae
~—— _Nomascus concolor
_Hylobates muelleri
_[E _Hylobates agilis
_Nomascus leucogenys
_Hylobates lar
_Pan troglodytes

— _Gorilla gorilla
_E_Pan paniscus
_Homo sapiens

———— _Symphalangus syndactylus
— _Saimiri ustus

— Saguinus labiatus
_Leontopithecus chrysomelas
_Leontopithecus rosalia
_Callithrix jacchus
_Callithrix penicillata
_Callithrix argentata argenta
_Callimico goeldii
_Callithrix geoffroyi
——— _Pithecia pithecia
] _Saimiri oerstedii oerstedii

‘E_Salmlri sciureus

_Saimiri boliviensis bolivien

_Saguinus midas
_Saguinus bicolor
_Saguinus mystax
_Saguinus fuscicollis
_Saguinus oedipus
_Saguinus geoffroyi
_Saguinus midas midas

92

| _Cebus olivaceus
_Cebus xanthosternos
_[: _Cebus apella
_Cebus capucinus

—— Callicebus cupreus

_E _Callicebus caligatus
_Callicebus donacophilus

_Chiropotes chiropotes
_Aleles belzebuth
_Aleles paniscus
_Ateles fusciceps
_Aleles belzebuth hybridus
_Ateles belzebuth chamek
_Lagothrix cana
_Lagothrix lagotricha
_Ateles geoffroyi
_Alouatta sara
_Alouatta palliata
_Alouatta belzebul
h _Cacajao calvus
_Aotus trivirgatus
_Aolus azarai
_Aotus lemurinus griseimembra
_Aotus nancymaae
E _Aotus azarai infulatus
_Aolus azarai boliviensis
_Callicebus brunneus
_Cebus albifrons
_Callicebus personatus
_Cacajaoc melanocephalus
_Callicebus moloch
_Callicebus nigrifrons
_Callicebus coimbrai
[: _Pithecia irrorata
_Chiropotes israelita

_Alouatta caraya

[_E _Brachyteles hypoxanthus
_Brachyteles arachnoides

_Callithrix pygmaea
_Callithrix humeralifera
_Callithrix aurita
_Callithrix kuhli

_Cebus nigritus robustus
_Saguinus imperator
_Saguinus martinsi

93

.

a

oo

=

1M FQL

_Nycticebus pygmaeus
_Loris tardigradus
_Myclicebus coucang
_Nyclicebus bengalensis
_Perodicticus potto
_Arctocebus calabarensis
_Galago mohaoli

_Galago senegalensis
_Dtolemur garnetti|
_Otolemur crassicaudatus
_Galago thomasi

~————— Cheirogaleus medius

_Avahi laniger
_Propithecus edwards|
_Propithecus diadema
_Propithecus verreauxi
_Propithecus tattersalli
_Lepilemur dorsalis
_Lepilemur septentrionalis
_Lepilemur ankaranensis
_Lepilemur jamesi
_Lepilemur ruficaudatus
_Daubentonia madagascariensis
_Microcebus murinus
_Hapalemur griseus
_Lemur catta

_Hapalemur occidentalis
_Eulemur macaco
_Eulemur fulvus collaris
_Eulemur fulvus fulvus
_Eulemur fulvus sanfordi
_Eulemur fulvus albifrons
_Eulemur macaco flavifrons
_Eulemur coronatus
_Eulemur rubriventer
_Eulemur rufus

_Eulemur mongoz
_Propithecus coquereli
_Varecia variegata variegata
_Varecia rubra

_Mirza coquerell

_Tarsius syrichla
_Tarsius bancanus
_Tupaia glis

_Tupaia minor

94

SF2: Filovirus whole genome tree from original study

DQ447658 MARV Ang0215
DQ447655 MARV Ang1386
DQ447657 MARV Ang0214
100 | DQ447653 MARV Ang1379C
DQ447654 MARV Ang1381
DQ447656 MARV Ang0126
DQ447660 MARV Ang0998
DQ447659 MARV Ang0754
o7 E 229337 MARV Popp
DQ217792 MARV Musoke
AY 358025 MARV Ozolin
85| - DQ447651 MARV 05DRC99

100 % Il pQ447650 MARV 07DRCS9

99| FJ750058 MARV 371Bat07
99l FJ750957 MARV D1UGAO7 (human)
FJ750956 RAVV 982Bat08
FJ750953 RAVV 02UGAO7 (human)
DQ447652 RAVV 09DRCI9

63l DQ447649 RAVV 1987
100 [— NC 006432 SUDV Uganda

L— FJ968794 SUDV Boniface

a4 { NC 004181 RESTV Pennsylvania

75 | L AYT769362 RESTV Pennsyhania

98

0.05

31 FJ621585 RESTV Philippines (swine)
451 L AB050936 RESTV Pennsyhania
I:Fm1583 RESTV Philippines (swine)
FJ621584 RESTV Philippines (swine)

35 05 I NC 014373 BDBV

NC 014372 TAFV
% I EUZ224440 EBOV Mayinga
o8 AF499101 EBOV Mayinga
g2 | NC 002549 EBOV Mayinga
861 AY 142960 EBOV Mayinga

95

SF3: The cladogram view of the Passeriformes CYTB tree as constructed by Scrawkov-Phy. A
full size png/pdf file is available upon request. This and the subsequent 2 pages contain the tree,

top to bottom.

Brown eared bulbul p Micros
Japanese bush warbler p Cett
White cheeked starling p Stu
blue rock thrush p Monticola
Brownheadedthrush p Turdus
Evebrowed Trush Turdus obscur
Pale Thrush Turdus pallidus m
Japanese Grey Thrush p Turdu
narcissus flycatcher p Ficed
red billed Leiothrix p Leiot
grey bunting p Embeliza varia
rustic bunting p Embeliza ru
Japanese white eye p Zostero
Great tit Parus major mitocho
artic warbler p Phylloscopus
[_ELarge bill crow p Corvus mac
Himalayan cuckoo uculus satur
Blue whistling thrush Myophon
common kingfisher p Alcedo a
White Throated tinamou Tinamu
White crowned robin chat Coss
Karoo scrub robin Cercotricha
Miombo scrub robin Cercotrich
Bearded Scrub Robin Cercotric
pied bushchat Saxicola caprat
white tailed stonechat Saxico
r ‘ Grey bush chat Saxicola ferre

African Stonechat Saxicola to

Javan Whistling thrush Myoph
Fujian niltava Niltava davidi
Large niltava Niltava grandis
white starred robin Pogonocic
_wivid niltava Niltava vivid
White bellied redstart Hodgso
Olivaceous flycatcher Muscic
ashy alseonax Muscicapa caeru
_Fiscal Flycatcher Melaenomi
Morthern black flycatcher Mel
Grey chested jungle flycatche
Fulvous chested jungle flycat
White browed shama
Indian robin Saxicoloides ful
ferruginous flycatcher Muscic
dark sided flycatcher Muscica
E Blue and white flycatcher Cya
Streak breasted jungle flycat
EBmwn backed scrub robin Cerc
White throated robin Irania g
—— Mocking cliff chat Thamnolaea
{DFEIHQE flanked bush robin Tar
Rufous breasted bush robin Ta
~——Golden bush robin Tarsiger ch
_E Collared bush robin Tarsiger
White browed bush robin Tarsi
~—— RAYppell's black chat Myrmec
{Ar‘rteater chat Myrmecocichla a
mountain wheatear Oenanthe m
Red tailed wheatear Oenanthe
_White fronted black chat Myr

97

blue fronted redstart Phoenic
Moussier's redstart Phoenicur
Common redstart Phoenicurus p
Daurian redstart Phoanicurus
black redstart Phoenicurus oc
plumbeous water redstart Rhya
Brown breasted flycatcher Mus
Grey streaked flycatcher Musc
dusky alseonax Muscicapa adus
Gambaga flycatcher Muscicapa
Swamp flycatcher Muscicapa ag
spotted flycatcher

Cassin's flycatcher Muscicapa
Marigua flycatcher Bradomis
African Grey flycatcher Brado
sooty flycatcher Muscicapa in
_Rufous bellied niltava Nilta

buff streaked chat Campicoloi
White browed jungle flycatche

Ryukyu robin Erithacus komado
Japanese Robin Erthacus akah
_Small niltava Niltava macgri
Swynnerton's robin Swynnerton
white crowned shama Copsychus
Y ellow footed flycatcher Musc
Yellow legged thrush Platycic
Pale eyed thrush Platycichla

American Robin Turdus migrato
Veery Thrush Catharus fuscesc
Bicknells Thrush Catharus bic
GreyCheeked Thrush Catharus m
Swainsons Thrush Catharus ust

7l e [o

American Dipper Cinclus mexic
White throated dipper Cinclus
Brown DipperCinclus pallasii

Bohemian waxwing Bombycilla g
Japanese Waxwing Bombycilla |
Cedar Waxwing Bombycilla cedr

]

Hermit thrush Catharus guttat

98

SF4: The cladogram view of the Passeriformes CYTB tree as constructed by Clustal. A full size

png/pdf file is available upon request. This and the subsequent 2 pages contain the tree, top to

bottom.

| LT

L2

Himalayan cuckoo uculus satu
common kingfisher p Alcedo
White Throated tinamou Tinam
red billed Leiothrix p Leio
Brown eared bulbul p Micro
Great tit Parus major mitoch
artic warbler p Phylloscopu
Japanese bush warbler p Cet
Cedar Waxwing Bombycilla ced
Japanese Waxwing Bombycilla
Bohemian waxwing Bombycilla
Large bill crow p Corvus ma
grey bunting p Embeliza vari
rustic bunting p Embeliza r
Japanese white eye p Zoster
Swainsons Thrush Catharus us
GreyCheeked Thrush Catharus
Bicknells Thrush Catharus bi
Veery Thrush Catharus fusces
Hermnit thrush Catharus gutta
American Robin Turdus migrat
Pale eyed thrush Platycichla
Yellow legged thrush Platyei
Japanese Grey Thrush p Turd
Pale Thrush Turdus pallidus
Brownheadedthrush p Turdus
Eyebrowed Trush Turdus cbscu
White throated dipper Cinclu
Brown DipperCinclus pallasii
American Dipper Cinclus mexi
White cheeked starling p St

99

_L Blue and white flycatcher Cy
Streak breasted jungle flyca
—— vivid niltava Niltava vivi

—— _Rufous bellied niltava Nilt

_C Large niltava Niltava grandi
Fujian niltawa Niltava dawid

{White crowned robin chat Cos

_Small niltawva Niltava macgr

[1

white starred robin Pogonoci

_E Grey chested jungle flycatch

| Fulvaus chested jungle flyca
——— White browed jungle flycatch
sooty flycatcher Muscicapa |
ashy alseonax Muscicapa caer
Olivaceous flycatcher Musci
_Fiscal Flycatcher Melaenorn
Morthem black flycatcher Me

Yellow footed flycatcher Mus
dusky alseonax Muscicapa adu
Cassin's_flycatcher Muscicap

] Swamp flycatcher Muscicapa a
spotted flycatcher

dark sided flycatcher Muscic
ferruginous flycatcher Musci

Brown breasted flycatcher Mu
Grey streaked flycatcher Mus

E Mariqua flycatcher Bradarnis
African Grey flycatcher Brad
Javan Whistling thrush Myop
Blue whistling thrush Myopho
White throated robin Irania
White bellied redstart Hodgs

_E Swynnerton's_robin_Swynnerto

Gambaga flycatcher Muscicapa

100

narcissus flycatcherp Fice

African Stonechat Saxicola t
_Ewhite tailed stonechat Saxic
— pied bushchat Saxicola capra
Grey bush chat Saxicola ferr

blue fronted redstart Phoeni
— — plumbeous water redstart Rhy

- Moussiers_redstart_Phoenicu
Common redstart Phoenicurus
— black redstart Phoenicurus o

Daurian redstart Phoenicurus

buff streaked chat Campicolo
Red tailed wheatear Cenanthe
_White fronted black chat My
Mocking cliff chat Thamnolae

_RAYppell's _black chat Myme
mountain wheatear Cenanthe
Anteater chat Myrmecocichla
blue rock thrush p Monticol

EF{ufDus breasted bush robin T

orange flanked bush robin Ta
Collared bush robin Tarsiger
White browed bush robin Tars
Golden bush robin Tarsiger ¢
—Japanese Robin Erithacus aka
'— Ryukyu robin Erithacus komad
Karoo scrub robin Cercotrich
Bearded Scrub Robin Cercotri
Miombo scrub robin Cercotric
White browed shama
white crowned shama Copsychu
Indian robin Saxicoloides fu
Brown backed scrub robin Cer

e

SF5: Example gene trees created en route to the primate species tree by Scrawkov-Phy.

101

ABCA1

_Awvahi laniger
_Microcebus murinus
_Cheirogaleus medius
_Propithecus tattersalli
_Propithecus verreauxi
_Lepilemur jamesi
_Lepilemur ankaranensis
_Lepilemur dorsalis
_Lepilemur septentrionalis
_Lepilemur ruficaudatus
_Propithecus diadema
_Propithecus edwardsi
_Momascus siki
_MNomascus leucogenys
_Hylobates muelleri
_Hylobates agilis

_MNomascus gabriellae
_MNomascus concolor
_Hylobates lar
_Symphalangus syndactylus
_Pongo pygmaeus

_Lophocebus aterrimus
_Nycticebus pygmaeus
_Homo sapiens
_Gorilla gorilla

_Pan paniscus

_Pan troglodytes

NS

102

—L

—{
-
—{

ip
—

_Macaca sylvanus
_Presbytis comata
_Preshbytis melalophos
_Rhinopithecus brelichi
_Masalis larvatus

_Pygathrix nigripes
_Pygathrix nemaeus
_Pygathrix cinerea
_Trachypithecus auratus
_Trachypithecus phayrei
_Trachypithecus delacour
_Trachypithecus hatinhensis
_Trachypithecus obscurus
_Semnopithecus entellus entel
_Semnopithecus entellus
_Semnopithecus hector
_Trachypithecus wvetulus vetul
_Colobus guereza

_Colobus angolensis palliatus
_Colobus polykomos
_Miopithecus ogouensis

103

i

C

—

|

-

L

_Filiocolobus badius
_Macaca fascicularis
_Macaca ochreata

_Macaca nigra

_Macaca maura

_Macaca tonkeana

_Macaca silenus

_Macaca cyclopis

_Macaca nemestrina
_Macaca thibetana

_Macaca fuscata

_Macaca mulatta

_Macaca arctoides

_Macaca siberu

_Mandrillus leuco phaeus
_Mandrillus sphinx

_Papio anubis

_Papio papio

_Papio hamadryas
_Theropithecus gelada
_Cercocebus torquatus
_Cercocebus chrysogaster
_Chlorocebus sabaeus
_Chlorocebus aethiops
_Cercopithecus lhoesti
_Allenopithecus nigroviridis
_Cercopithecus mona
_Cercopithecus wolfi wolfi
_Cercopithecus hamlyni hamlyni
_Cercopithecus diana
_Cercopithecus ascanius schmi
_Cercopithecus petaurista pet
_Cercopithecus cephus
_Cercopithecus neglectus
_Cercopithecus albogularis ko

104

_Tarsius bancanus
_Tarsius syrichta
_Nycticebus bengalensis
_Nycticebus coucang
_Arctocebus calabarensis
_Otolemur crassicaudatus
_Galago thomasi
_Perodicticus potto
_Eulemur macaco
_Eulemur macaco flavifrons
_Eulemur coronatus
_EBulemur fulvus collaris
_Bulemur fulvus fulvus
_Eulemur fulvus sanfordi
_Eulemur rufus
_Eulemur rubriventer
_Eulemur fulvus albifrons
_Eulemur mongoz
_Lemur catta
_Hapalemur occidentalis
_Hapalemur griseus

— _Varecia variegata variegata

-

_Warecia rubra

_Mirza coquerel

105

ﬁ_ﬁntus nancymaae
_[:_Antus azarai infulatus
L _Aotus azarai boliviensis

—— Aotus azarai

_L_Alﬂuatta caraya
_Alouatta sara

—— Alouatta belzebul

L— _Pithecia irorata

{_Chirﬂpntes israelita
_Chiropotes chiropotes
_Saimid sciureus
_Callithrix kuhlii
_Gebus olivaceus
_Cebus apella
_Cebus xanthosternos
_Cebus nigritus robustus
_Saguinus geoffroyi

— _Leontopithecus rosalia

'— Leontopithecus chrysomelas

_Pithecia pithecia
_Lagothrix lagotricha
_Lagothrix cana
_Brachyteles arachnoides
_Brachyteles hypoxanthus
_Ateles belzebuth hybridus
_Ateles fusciceps

_Ateles belzebuth chamek
_Ateles belzebuth

_Ateles paniscus

106

BRCA2

L e L el L

_Cacajao melanocephalus
_Cacajao calvus
_Callicebus cupreus
_Callicebus caligatus
_Callicebus donacophilus
_Callicebus coimbrai
_Callicebus moloch
_Callimico goeldii
_Saguinus midas
_Saguinus fuscicollis
_Saguinus labiatus
_Saguinus mystax
_Saguinus imperator
_Saguinus bicolor
_Saguinus midas midas
_Saguinus ocedipus
_Cebus albifrons

_Cebus capucinus
_Callithrix geoffroyi
_Callithrix jacchus
_Callithrix penicillata
_Callithrix argentata argenta
_Callithrix humeralifera
_Callithix pygmaesa
_Alouatta palliata
_Callicebus personatus
_Saguinus martinsi
_Saimin oerstedii oerstedii

107

_Aotus trivirgatus

_Pan troglodytes
_Semnopithecus entellus
_Trachypithecus delacour
_Trachypithecus francoisi
_Trachypithecus obscurus
_Rhinopithecus brelichi
_Pygathnix nigripes

_Pygathrix nemaeus
_Pygathrix cinerea

_Colobus angolensis palliatus
_Colobus polykomos

_Erythrocebus patas
_Allenopithecus nigroviridis

M

_Miopithecus ogouensis
Chlorocebus sabaeus

M

_Chlorocebus aethiops

_Macaca fuscata
_Mandrillus sphinx

M

_Manrdrillus leucophaeus

_Papio anubis
"L_[: _Papio papio

_Papio hamadryas
I_E_Tha ropithecus gelada

_Lophocebus atemrimus
_Macaca tonkeana
_Macaca maura
_Macaca mulatta
_Macaca silenus
_Macaca siberu
_Macaca cyclopis
_Macaca fascicularis
_Macaca arctoides
_Macaca thibetana

_Macaca ochreata
E_Macaca nemestrina
_Macaca nigra

108

<
-

=

Cercocebus chrysogaster
Cercocebus torquatus
_Cercopithecus lhoesti
Cercopithecus ascanius schmi
Cercopithecus petaurista pet
Cercopithecus wolfi wolfi
Cercopithecus cephus
Cercopithecus mitis
_Cercopithecus albogularis ko
_Cercopithecus diana

_Cercopithecus hamlyni hamlyni

_Trachypithecus phayrei
_Saimiri sciureus

_Saimiri oerstedii cerstedii
Salr'mn boliviensis bolivien
Callithrix penicillata
Callithrix pygmaea
Callithrix kuhli

Callithrix aurita

Callithrix argentata argenta
_Leontopithecus rosalia
Leontopithecus chrysomelas
Saguinus geoffroyi
Saguinus midas midas
Saguinus bicolor

Saguinus mystax
_Saguinus labiatus

_Saguinus fuscicollis

_Aleles fusciceps

Ateles belzebuth chamek
_Ateles geoffroyi

_Ateles belzebuth hybridus
_Lagothrix cana
_Lagothrix lagotricha
_Brachyteles hypoxanthus
_Brachyteles arachnoides

109

[~—— _Alouatta palliata

_[: _Alouatta belzebul
_Alouatta sara

_[:_Chir-::-p:::tas chiropotas
_Cacajao calvus

—— _Callicebus donacophilus

_Pithecia pithecia

_Aotus azarai boliviensis

_Semnopithecus hector

_Colobus guereza

_Callimico goeldii

_Saguinus imperator
_Aotus azarai
— _Aotus lemurinus griseimambra
_Aolus nancymaae
_Ateles belzebuth
_Alouatta caraya
_Aotus azarai infulatus
_Semnopithecus entellus ental
_Symphalangus syndactylus
_Homo sapiens
_Gaorilla gorilla
_Pan paniscus
— _Eulemur mongoz
'~ Propithecus diadema
_[: _Otolemur crassicaudatus
_Galago senegalensis
_Nycticebus coucang

_Nycticebus bengalensis

—— Mirza coquereli

_C _Cheirogaleus medius
_Propithecus vereauxi

_Piliocolobus badius

_Presbytis comata

_MNasalis larvatus

_Trachypithecus vetulus vetul

110

e

~—~—yq

e

_Pongo pygmaeus
~—— _Nomascus leucogenys
_Nomascus gabriellae
_Nomascus siki
_Hylobates muelleri
_Hylobates agilis
—— Hylobates lar

— _Cacajao melanocephalus

~— _Callicebus personatus

{_Calllcebus nigrifrons
_Callicebus coimbrai
_Callithrix jacchus
_Callithrix humeralifera

— _Cebus apella

Cebus xanthosternos

_Cebus nigritus robustus
_Cebus olivaceus

111

RAG2

—C
-C
-

- L

. —

_Daubentonia madagascariensis
~ Microcebus murinus
_Propithecus coquereli
_Eulemur fulvus fulvus
_Eulemur fulvus albifrons
_Eulemur coronatus
_Galago moholi
_Chiropotes israelita
_Brachyteles hypoxanthus
_Aptus nancymaae
_Otolemur gamettii
_Mycticebus pygmaeus
_Loris tardigradus
_Piliocolobus badius
_Cercopithecus petaurista pet
_Pan troglodytes
_Momascus concolor
_Semnopithecus entellus
_Macaca silenus
_Macaca tonkeana
_Propithecus diadema
_Awvahi laniger

_Lemur catta

_Hapalemur griseus
_Eulemur mongoz

_Mirza coguereli

_Tupaia minor

_Tarsius syrichta
_Perodicticus potto
_Varecia variegata variegata
_Cebus albifrons

_MAotus azarai infulatus
_Callicebus nigrifrons
_Aotus azarai boliviensis
_Callithrix humeralifera

_ Callithrix kuhlii
_Callicebus brunneus

112

_Tupaia glis
— _Cynocephalus volans

'— Galeopterus variegatus

_Lophocebus aternmus
_Presbytis comata
E_Carm pithacus hamlyni hamlyni
_Allenopithecus nigroviridis
_Cercopithecus ascanius schmi

_Cercopithecus wolfi wolfi
_Cercopithecus albogulans ko

~ _Pygathrix nigripes
_{ '_E _Trachypithecus vetulus vetul
_Trachypithecus auratus

—— Trachypithecus francoisi
__E _Trachypithecus obscurus
S _Trachypithecus hatinhensis
— —— Trachypithecus phayrei
_Papio papio
— _Papio hamadryas
_E _Cercocebus torquatus
_Macaca cyclopis
_Mandrillus sphinx
_Cercopithecus lhoesti
_Colobus angolensis palliatus
{ _Masalis larvatus
_Cercopithecus cephus
—— _Macaca sylvanus
_Chlorocebus sabaeus
_Chlorocebus aethiops

~—— Erythrocebus patas
_Presbytis melalophos

_Macaca mulatta
_Macaca nigra

_Papio anubis
_Theropithecus gelada

113

ra | Il

_Macaca nemestrina
_Macaca maura

_Macaca arctoides
_Macaca thibetana
_Mandrillus leucophaeus
_Macaca fuscata
_Macaca fascicularis
_Macaca siberu

_Macaca ochreata
_Cercocebus chrysogaster
_Miopithecus ogouensis
_Trachypithecus delacouri
_Semnopithecus entellus ental
_Pygathrix nemaeus
_Pygathrix cinerea
_Semnopithecus hector
_Rhinopithecus brelichi

~ Cercopithecus diana
_Cercopithecus mona
_Colobus polykomos
_Colobus guereza
_Hylobates agilis
_Hylobates muelleri
_Momascus gabriellag
_Nomascus leucogenys
_Momascus siki
_Symphalangus syndactylus
_Hylobates lar

_Gorilla gorilla

_Pan paniscus

_Homo sapiens

114

_Callicebus cupreus

_Saimin sciuraus
_Saimif boliviensis bolivien

_Leontopithecus chrysomelas

_Saguinus midas

_Saguinus geoffroy

_Saguinus oedipus

_Saguinus mystax

————— Saguinus bicolor

_Aolus azarai

_Saguinus fuscicollis

_Cebus xanthostemos

_Cebus capucinus

_Cebus apella

_Cebus olivaceus

_Callithrix pygmaea

_Ateles geoffroyi

_Ateles fusciceps

_Ateles belzebuth hybridus
Ateles belzebuth chamek

; :L&gntl'rix cana

_Cacajao calvus
_Otolemur crassicaudatus
_Arctocebus calabarensis
_Nycticebus coucang
_Nycticebus bengalensis
_Propithecus tattersalli
_Propithecus verreauxi
_Hapalemur occidentalis
_Propithecus edwardsi
_Eulemur macaco
_Eulemur rufus
_Lepilemur septentrionalis
_Lepilemur dorsalis
_Lepilemur ankaranensis
_Lepilemur jamesi
_Cheirogaleus medius

115

_Tarsius bancanus
_Callicebus moloch
_Callicebus personatus
_Cacajao melanocephalus
_Brachyteles arachnoides
_Cebus nigritus robustus
_Saguinus imperator
_Callithrix aurita

_Alpualta caraya

_Galago senegalensis

_Pongo pygmaeus
——— _Saimin oerstedii oerstedii
{ _Lagothrix lagotricha

- _Aleles paniscus

~— Ateles belzebuth

__[: _Callithrix jacchus

— _Callithrix geoffroyi

_[:_Cal lithrix argentata argenta

_Callithrix penicillata
_Callimico goeldii
_Saguinus midas midas

— _Aotus lemurninus griseimembra

_Aotus trivirgatus

_Chiropotes chiropotes

- _Callicebus caligatus

_Callicebus donacophilus

_Pithecia pithecia

_Leontopithecus rosalia

_Alouatta sara
—E_Nnuatta palliata
_Alouatta belzebul

_Saguinus labiatus

116

Code used in Scrawkov-Phy
(all code is stylistically minimal to decrease print-size. Properly stylized code can be found at the github under the
user nickjfisk)

///ScrawkovPHY. java
java.io.BufferedReader;

import
import
import
import
import
import
import
import
import
import
import
import
import
/**
*

* @author J. Nick Fisk

java.io.File;

java.io.FileNotFoundException;
java.io.FileReader;
java.io.FileWriter;
java.io.IOException;
java.io.PrintWriter;
java.io.UnsupportedEncodingException;
java.util.Arraylist;
java.util.Collections;
java.util.HashMap;

java.util.HashSet;

java.util.Set;

* Main class for the alignment free phylogeny algorithm, Scrawkov-Phy.

*/

public class ScrawkovPHY{

//all the data

from one file (as separated by newlines)

public static ArraylList<String> allData=new ArrayList<String>();
//the names of the taxa in order of appearance (to conserve sequence, name order)
public static ArrayList<String> finchInOrder=new ArrayList<String>();

//sequences in

name-sequencce order in the desired format

public static ArraylList<String> formatedSeqList=new ArrayList<String>();
//ID to bird object pairings. Basically ID sequence pairs.
public static HashMap<String, Bird> birdMap=new HashMap<String, Bird>();

//contains all

of the standard codons.

public static ArraylList<String> allCodons=new ArrayList<String>();

//contains all

of the standard dinucs

public static ArraylList<String> allDinucs=new ArraylList<String>();

//key for going from codons to AA

public static HashMap<String,String> codonAAMap=new HashMap<String,String>();
//goes from AA to a list of possible codons

public static HashMap<String,ArraylList<String>> AAcodonMap=new HashMap<String,
ArrayList<String>>();
//has the scores for one gene tree.

public static HashMap<String,HashMap<String,Double>>initScores=new
HashMap<String,HashMap<String,Double>>();

//public static HashMap<String,HashMap<Integer,HashMap<String,Double>>> QHMMTri=new
HashMap<String,HashMap<Integer,HashMap<String,Double>>>();

//public static HashMap<String,HashMap<Integer,HashMap<String,Double>>> QHMMDi=new
HashMap<String,HashMap<Integer,HashMap<String,Double>>>();

public static HashMap<String,HashMap<String, Double>> QHMMTri_final=new
HashMap<String,HashMap<String, Double>>();

public static HashMap<String,HashMap<String, Double>> QHMMDi_final=new
HashMap<String,HashMap<String, Double>>();

public static HashMap<String,HashMap<String,HashMap<String,Double>>> allScoresByGene= new
HashMap<String,HashMap<String,HashMap<String,Double>>>();

public static int k=-1; //kmer size. If negative (default), two will be used.

private static
private static

boolean doNJ=true; //NJ tree desired
String njout=""; //name of njout file

public static boolean maxByPair=true; //default behaviour should be true

private static
private static
private static

for species trees

private static
private static
private static

boolean normalize=true; //default should be true
String geneOrSpecies="gene"; //default to gene

ArraylList<String> fastaFiles=new ArraylList<String>(); //keep track of all the files

String outputFile=null; //UPGMA output
String usage="Usage: java ScrawkovPHY <treetype> <inputFasta> <optionalParams>";
double weightGC=10;

117

private
private
private
private
private
private
private
private
private

static
static
static
static
static
static
static
static
static

double
double
double
double
double

weightBias=.01;
weightTriFreq=1;
weightDiFreq=1;
weightTriQHMM=.00005;
weightDiQHMM=.00005;

boolean outputAll=false;
boolean bootSeq=false;

String

outBoot=null;

boolean diag=false;

//Globally available parameters

/**

* Parses the command line arguments and sets globals accordingly
* @param params are the command line arguments in a arraylist

*/

private static void parseParams(ArrayList<String> params){
//ask the magic counch

//"Nothing."
//THE COUNCH HAS SPOKEN!
if(params.get(0).equals("gene")||params.get(0).equals("Gene")){
geneOrSpecies="gene";

params.remove(9);

fastaFiles.add(params.get(@)); //only one fasta file
params.remove(9);

File f = new File(fastaFiles.get(9));

if(!f.exists()){

System.err.println("File does not exist");
System.err.println(usage);
System.exit(1);}

if(f.isDirectory()){

System.err.println("Input file is actually directory");
System.err.println(usage);
System.exit(1);}}

else if(params.get(@).equals("species”)||params.get(@).equals("Species")){
geneOrSpecies="species";

params.remove(0);

if(params.isEmpty()){

System.err.println("No input files provided");
System.err.println("Exiting...");
System.err.println(usage);

System.exit(1);}

if(params.get(0).equals("--folder")){

File folder=new File(params.get(1));
File[] listOfFiles=folder.listFiles();
for(int i=0; i<listOfFiles.length;i++){
if(listOfFiles[i].isFile()){
fastaFiles.add(listOfFiles[i].getAbsolutePath());}}
params.remove(9);
params.remove(0);}

String curFile=params.get(90);
while((curFile.charAt(0)=="-")==false){

fastaFiles.add(curFile);
params.remove(9);
curFile=params.get(0);}

for(String i:fastaFiles){

File ¥ = new File(i);

if(!f.exists()){
System.err.println("File does not exist");
System.err.println(usage);
System.exit(1);}

if(f.isDirectory()){
System.err.println("Input file is actually directory");
System.err.println(usage);
System.exit(1);}}}

else if(params.get(0).equals("--help")||params.get(0).equals("-h")){
printHelp();
System.exit(0);}

118

maxByPair");

else{
System.err.println("Invalid tree type. Valid values are 'gene' and
System.err.println(usage);
System.exit(1);}
while(!params.isEmpty()){
String curFlag=params.get(90);
params.remove(0);
if(params.isEmpty()){
System.err.println("Unpaired flag "+ curfFlag);
System.err.println("Exiting...");
System.err.println(usage);
System.exit(1);}
String curValue=params.get(0);
params.remove(0);

'species'");

switch(curFlag){
case "--maxByPair":
switch(curvalue){
case "T":
maxByPair=true;
break;
case "t":
maxByPair=true;
break;
case "true":
maxByPair=true;
break;
case "True":
maxByPair=true;
break;
case "TRUE":
maxByPair=true;
break;
case "F":
maxByPair=false;
break;
case "f":
maxByPair=false;
break;
case "false":
maxByPair=false;
break;
case "False":
maxByPair=false;
break;
case "FALSE":
maxByPair=false;
break;
default:
System.err.println("Invalid value for
System.err.println("Exiting...");
System.err.println(usage);
System.exit(1);
break;
}
break;
case "--outputFile":
outputFile=curValue;
break;
case "-o0":
print(curValue);
outputFile=curValue;
break;
case "--kSize":
k=Integer.parseInt(curValue);
break;
case "--doNJ":
switch(curvalue){

119

case

case

case

case

case

case

case

case

case

case

case

T
doNJ=true;
break;

"t
doNJ=true;
break;

"true":
doNJ=true;
break;

"True":
doNJ=true;
break;

"TRUE":
doNJ=true;
break;

"F"
doNJ=false;
break;

B S

doNJ=false;

break;

"false":
doNJ=false;
break;

"False":
doNJ=false;
break;

"FALSE":
doNJ=false;
break;

default:

System.err.println("Invalid value for doNJ");
System.err.println("Exiting...");
System.err.println(usage);

System.exit(1);

break;}

break;

--diagMat":

switch(curvalue){

case

case

case

case

case

case

case

case

case

case

"T":
diag=true;
break;

B
diag=true;
break;

"true":
diag=true;
break;

"True":
diag=true;
break;

"TRUE":
diag=true;
break;

"F":
diag=false;
break;

B
diag=false;
break;

"false":
diag=false;
break;

"False":
diag=false;
break;

"FALSE":
diag=false;

120

break;

default:
System.err.println("Invalid value for diagMat");
System.err.println("Exiting...");
System.err.println(usage);
System.exit(1);
break;}
break;
case "--njout":
njoOut=curValue;
break;
case "--bootSeq":
switch(curvalue){
case "T":
bootSeqg=true;
break;
case "t":
bootSeq=true;
break;
case "true":
bootSeq=true;
break;
case "True":
bootSeq=true;
break;
case "TRUE":
bootSeq=true;
break;
case "F":
bootSeq=false;
break;
case "f":
bootSeq=false;
break;

case "false":
bootSeq=false;
break;
case "False":
bootSeq=false;
break;
case "FALSE":
bootSeq=false;
break;
default:
System.err.println("Invalid value for bootSeq");
System.err.println("Exiting...");
System.err.println(usage);
System.exit(1);

break;}

break;

case "--outputAll”:
switch(curvalue){

case "T":
outputAll=true;
break;

case "t":
outputAll=true;
break;

case "true":
outputAll=true;
break;

case "True":
outputAll=true;
break;

case "TRUE":
outputAll=true;
break;

121

outputAll™);

normalize");

case

case

case

case

case

"F"
outputAll=false;
break;

B
outputAll=false;
break;

"false":
outputAll=false;
break;

"False":
outputAll=false;
break;

"FALSE":
outputAll=false;
break;

default:

System.err.println("Invalid value for

System.err.println("Exiting...");
System.err.println(usage);

System.exit(1);
break;}

break;

case "--normalize":

switch(curvValue){

case

case

case

case

case

case

case

case

case

case

"T":
normalize=true;
break;

"t
normalize=true;
break;

"true":
normalize=true;
break;

"True":
normalize=true;
break;

"TRUE":
normalize=true;
break;

"F"
normalize=false;
break;

B
normalize=false;
break;

"false":
normalize=false;
break;

"False":
normalize=false;
break;

"FALSE":
normalize=false;
break;

default:

break;

//--weightGC --weightCodon --weightTri --weightDi

case "--weightGC":

System.err.println("Invalid value

System.err.println("Exiting...");
System.err.println(usage);

System.exit(1);
break;}

if(isDouble(curvalue)){

weightGC=Double.parseDouble(curvalue);}

else{

for

122

System.err.println("Invalid value for weightGC");
System.err.println("Exiting...");
System.err.println(usage);
System.exit(1);}

break;

case "--weightBias":

if(isDouble(curvalue)){

weightBias=Double.parseDouble(curValue);}

else{
System.err.println("Invalid value for weightBias");
System.err.println("Exiting...");
System.err.println(usage);
System.exit(1);}

break;

case "--weightTriQHMM":
if(isDouble(curvalue)){
weightTriQHMM=Double.parseDouble(curvValue);}

else{
System.err.println("Invalid value for weightTriQHMM");
System.err.println("Exiting...");
System.err.println(usage);
System.exit(1);}

break;

case "--weightDiQHMM":
if(isDouble(curValue)){
weightDiQHMM=Double.parseDouble(curValue);}

else{
System.err.println("Invalid value for weightDiQHMM");
System.err.println("Exiting...");
System.err.println(usage);
System.exit(1);}
break;
case "--weightTriFreq":
if(isDouble(curvalue)){
weightTriFreq=Double.parseDouble(curvalue);}
else{
System.err.println("Invalid value for weightTriFreq");
System.err.println("Exiting...");
System.err.println(usage);
System.exit(1);}
break;
case "--weightDiFreq":
if(isDouble(curvalue)){
weightDiFreq=Double.parseDouble(curValue);}
else{
System.err.println("Invalid value for weightDiFreq");
System.err.println("Exiting...");
System.err.println(usage);
System.exit(1);}
break;
case "--help":
printHelp();
System.exit(0);
break;
default:

System.err.println("Invalid flag");
System.err.println("Exiting...");
System.err.println(usage);
System.exit(1);

break;}}}

/**
* The main function of the program, calling gene or species tree methods.
* It also instantiates all of the reference data structures.
* @param args command line arguments
* @throws IOException
*/
public static void main(String[] args) throws IOException {

123

//populate some internal data structures
popAllCodons();
popAllDinucs();
popCodonMap();
popAAtoCodonMap();
//get the parameters into an arraylList
ArrayList<String> params=new ArraylList<String>();
int parCount=0;
while(parCount<args.length){
params.add(args[parCount]);
parCount+=1;}
//parse the params
parseParams(params);
if(geneOrSpecies.equals("gene")||geneOrSpecies.equals("Gene")){
doGeneTree(params,fastaFiles.get(0));//get fasta for now
System.exit(0);}
else if(geneOrSpecies.equals("species”)||geneOrSpecies.equals("Species")){
doSpeciesTree(params);
ArrayList<String> allGeneTrees=new ArrayList<String>(allScoresByGene.keySet());
ArrayList<String> allOrgs=new ArraylList<String>();
for(String i: allGeneTrees){
allorgs.addAll(allScoresByGene.get(i).keySet());}
Set<String> allOrgsSet=new HashSet<String>(allOrgs);
allorgs=new ArrayList<String>(allOrgsSet);
HashMap<String,HashMap<String,Double>>finScores=new
HashMap<String,HashMap<String,Double>>();
HashMap<String,HashMap<String,Integer>> countMap=new
HashMap<String,HashMap<String,Integer>>();
for(String i: allOrgs){
HashMap<String,Double>tempu=new HashMap<String,Double>();
HashMap<String,Integer>tempu2=new HashMap<String,Integer>();
for(String j: allOrgs){
if(i.equals(j)==Ffalse){
tempu.put(j, 0.0);
tempu2.put(3,0);}}
finScores.put(i, tempu);
countMap.put(i,tempu2);}
//only valid for species tree construction
if(normalize==true){
double max=getMaxScore();
double miniMax=Double.MIN_VALUE;
for(String i: allScoresByGene.keySet()){
for(String j: allScoresByGene.get(i).keySet()){
for(String k: allScoresByGene.get(i).get(j).keySet()){
if(miniMax<allScoresByGene.get(i).get(j).get(k)){
//find the largest element in the map

miniMax=allScoresByGene.get(i).get(j).get(k);}}}
//normalize everything to be proportional
for(String j: allScoresByGene.get(i).keySet()){
for(String k: allScoresByGene.get(i).get(j).keySet()){
allScoresByGene.get(i).get(3j).put(k,
(allScoresByGene.get(i).get(j).get(k)*(max/miniMax)));}}}}
//sum all the scores
for(String j: allScoresByGene.keySet()){
for(String q: allScoresByGene.get(j).keySet()){
for(String h: allScoresByGene.get(j).get(q).keySet()){
finScores.get(q).put(h,
finScores.get(q).get(h)+allScoresByGene.get(j).get(q).get(h));
countMap.get(q).put(h, countMap.get(q).get(h)+1);}}}
//normalize by number of times a species appears.
ArrayList<String>allSpeciesOccurances=new ArraylList<String>();
for(String i: allScoresByGene.keySet()){
allSpeciesOccurances.addAll(allScoresByGene.get(i).keySet());}
for(String i: countMap.keySet()){
for(String j: countMap.get(i).keySet()){
if(countMap.get(i).get(j)!=0){

124

finScores.get(i).put(j,
(finScores.get(i).get(j)/countMap.get(i).get(j)));}}}
initScores=finScores;
//build the UPGMA Tree
HashMap<String,HashMap<String,Double>> wkMap=new
HashMap<String,HashMap<String,Double>>(initScores);
HashMap<Node,HashMap<Node,Double>>nodeDist=new
HashMap<Node,HashMap<Node,Double>>();
for(String s: initScores.keySet()){
Node sn=new Node(s);
nodeDist.put(sn, new HashMap<Node,Double>());
for(String r: initScores.keySet()){
if(s.equals(r)==false){
Node rn=new Node(r);
nodeDist.get(sn).put(rn, initScores.get(s).get(r));}}}
ArraylList<String> allNames=new ArrayList<String>(wkMap.keySet());
Node curMinNodel=null;
Node curMinNode2=null;
double curMinScore=Double.MAX_VALUE;
HashMap<String,Boolean>inNode=new HashMap<String,Boolean>();
for(String i: initScores.keySet()){
inNode.put(i, false);}
ArrayList<Node>nodeList=new ArrayList<Node>();
while(nodeDist.keySet().size()>1){
curMinScore=Double.MAX_VALUE;
for(Node i: nodeDist.keySet()){
for(Node ent:nodeDist.get(i).keySet()){
if(nodeDist.get(i).get(ent)<curMinScore){
curMinNodel=i;
curMinNode2=ent;
curMinScore=nodeDist.get(i).get(ent);}}}
Node nw2=new Node((Node)curMinNodel, (Node)curMinNode2, curMinScore);
nodeDist.remove(curMinNodel);
nodeDist.remove(curMinNode2);
for(Node n: nodeDist.keySet()){
if(nodeDist.get(n).containsKey(curMinNodel)){
nodeDist.get(n).remove(curMinNodel);}
if(nodeDist.get(n).containsKey(curMinNode2)){
nodeDist.get(n).remove(curMinNode2);}}
nodeDist.put(nw2, new HashMap<Node,Double>());
for(Node n: nodeDist.keySet()){
if(n.equals(nw2)==Ffalse){
//calc dist and put
double calcDist=Node.calcDistance(nw2, n);
nodeDist.get(nw2).put(n, calcDist);
nodeDist.get(n).put(nw2, calcDist);}}}
for(Node fin: nodeDist.keySet()){
print("Printing UPGMA Tree");
print(fin.newick+";");
if(outputFile!=null){
PrintWriter out = new PrintWriter(outputFile+".newick");
out.print(fin.newick+";");
out.close();}}}}

/**
* Constructs a single gene tree from a single fasta file
* @param params, the command line arguments as an arraylist
* @param file, the fasta file
* @throws IOException
*/
public static void doGeneTree(ArrayList<String> params, String file) throws IOException{
//initialize data structures
ArrayList<String> allData=new ArraylList<String>();
formatedSeqlList=new ArraylList<String>();
HashMap<String, Bird> birdMap=new HashMap<String, Bird>();
initScores=new HashMap<String,HashMap<String,Double>>();
FileReader fr = new FileReader(new File(file));
BufferedReader br = new BufferedReader(fr);

125

String line;
//read in sequence
while((line = br.readLine()) != null){
line = line.trim(); // remove leading and trailing whitespace
allData.add(line);}
String holdMe = "";
for (String element : allData) {
if (element.charAt(0) == '>') {
if (holdMe != "") {
formatedSeqlList.add(holdMe);
holdMe = "";}
formatedSeqlList.add(element);}
else {
holdMe += element;}}
formatedSeqList.add(holdMe);
fr.close();
//make Bird Objects
for(int i=0; i<formatedSeqList.size(); i++){
String id=formatedSeqList.get(i);
String seq=formatedSeqList.get(i+1);
Bird newbie=new Bird(id,seq);
birdMap.put(id, newbie);
i+=1;}
if(bootSeq==true){
genBootstrapSeqs(true, 3, .85, birdMap);}
//populate hidden markov model measures
QHMMALL (birdMap);
HashMap<String,ArrayList<String>>keepTrack=new HashMap<String,ArraylList<String>>();
//score all
for(String id: birdMap.keySet()){
for(String id2:birdMap.keySet()){
if(id.equals(id2)==false){
if(keepTrack.containsKey(id)){
if(keepTrack.get(id).contains(id2)==false){
Double
d=computeANDcombine(birdMap.get(id),birdMap.get(id2));
if(initScores.containsKey(id)==false){
initScores.put(id, new
HashMap<String,Double>());}
initScores.get(id).put(id2, d);}}
else{
keepTrack.put(id, new ArrayList<String>());
keepTrack.get(id).add(id2);
initScores.put(id, new HashMap<String, Double>());
if(keepTrack.containsKey(id2)==false){
keepTrack.put(id2, new ArraylList<String>());
keepTrack.get(id2).add(id);
Double d=
computeANDcombine(birdMap.get(id),birdMap.get(id2));
initScores.get(id).put(id2, d);}}}}}
for(String i: initScores.keySet()){
for(String j: initScores.keySet()){
if(i.equals(j)==Ffalse){
if(initScores.get(i).get(j)==null){
initScores.get(i).put(j, initScores.get(j).get(i));}}}}
/////CLUSTERING AND TREE BUILDING NEXT!/////
HashMap<String,HashMap<String,Double>> wkMap=new
HashMap<String,HashMap<String,Double>>(initScores);
HashMap<Node,HashMap<Node,Double>>nodeDist=new HashMap<Node,HashMap<Node,Double>>();
for(String s: initScores.keySet()){
Node sn=new Node(s);
nodeDist.put(sn, new HashMap<Node,Double>());
for(String r: initScores.keySet()){
if(s.equals(r)==false){
Node rn=new Node(r);
nodeDist.get(sn).put(rn, initScores.get(s).get(r));}}}
toMatrix(nodeDist);
Node curMinNodel=null;

126

Node curMinNode2=null;
double curMinScore=Double.MAX_VALUE;
while(nodeDist.keySet().size()>1){
curMinScore=Double.MAX_VALUE;
for(Node i: nodeDist.keySet()){
for(Node ent:nodeDist.get(i).keySet()){
if(nodeDist.get(i).get(ent)<curMinScore){
curMinNodel=i;
curMinNode2=ent;
curMinScore=nodeDist.get(i).get(ent);}}}
Node nw2=new Node((Node)curMinNodel, (Node)curMinNode2, curMinScore);
nodeDist.remove(curMinNodel);
nodeDist.remove(curMinNode2);
for(Node n: nodeDist.keySet()){
if(nodeDist.get(n).containsKey(curMinNodel)){
nodeDist.get(n).remove(curMinNodel);}
if(nodeDist.get(n).containsKey(curMinNode2)){
nodeDist.get(n).remove(curMinNode2);}}
nodeDist.put(nw2, new HashMap<Node,Double>());
for(Node n: nodeDist.keySet()){
if(n.equals(nw2)==false){
//calc dist and put
double calcDist=Node.calcDistance(nw2, n);
nodeDist.get(nw2).put(n, calcDist);
nodeDist.get(n).put(nw2, calcDist);}}}
for(Node fin: nodeDist.keySet()){
print("Printing UPGMA Tree");
print(fin.newick+";");
if(outputFile!=null){
if(geneOrSpecies.equals("gene")){
PrintWriter out = new PrintWriter(outputFile);
out.print(fin.newick+";");
out.close();}}
if(outputAll==true){
if(geneOrSpecies.equals("species")){
File f = new File("geneTreesForSpeciesTree");
if (f.exists() && f.isDirectory()) {
PrintWriter out=new PrintWriter(file+"gene_tree.newick");
out.print(fin.newick);
out.close();}
else{
f.mkdir();
PrintWriter out=new
PrintWriter(f+file+"_gene_tree.newick");
out.print(fin.newick);
out.close();}}}}}
/**
* Formats a HashMap of Distances to a PHYLIP formatted distance matrix
* @param nodeDist
*/
private static void toMatrix(HashMap<Node, HashMap<Node, Double>> nodeDist) {
ArrayList<Node> nodes=new ArraylList<Node>(nodeDist.keySet());
int matSize=nodes.size();
double [][] scoreMatrix=new double[matSize][matSize];
ArrayList<String> stringsToWrite=new ArraylList<String>();
ArrayList<String> namesList=new ArrayList<String>();
for(Node n : nodes){
String temp=n.names.get(0@).substring(1, n.names.get(0).length());
namesList.add(temp);
temp=temp+" ";
if(temp.length()>10){
temp=temp.substring(0,10);}
stringsToWrite.add(temp+" ");}
try {
PrintWriter write=new PrintWriter("distanceMatrix.txt","UTF-8");
write.println(" "+matSize);
//1i is row and j is col
for(int i=0; i< nodes.size();i++){

127

Node n=nodes.get(i);
for(int j=0; j<nodes.size();j++){
if(i==3){
scoreMatrix[i][j]=0.0;}
else{
Node n2=nodes.get(j);
scoreMatrix[i][j]=Node.calcDistance(n, n2);}}}
//diagonal formmat of phylip distance matrix
if(diag){
int count=matSize;
for(int i=0; i<matSize;i++){
String tmpStr=stringsToWrite.get(i);
for(int j=0+count;j<matSize;j++){
if(j!=matSize-1){
tmpStr=tmpStr+scoreMatrix[i][j-count]+" ";}
else{
tmpStr=tmpStr+scoreMatrix[i][j-count];}}
count=count-1;
write.println(tmpStr);}}
else{
for(int i=0;i<matSize;i++){
String tempStr=stringsToWrite.get(i);
for(int j=0;j<matSize;j++){
if(j!=matSize-1){
tempStr=tempStr+scoreMatrix[i][j]+" ";}
else{
write.println(tempStr+scoreMatrix[i][j]);}}}}
write.close();
} catch (FileNotFoundException | UnsupportedEncodingException e) {
// TODO Auto-generated catch block
e.printStackTrace();}
if(doNJ==true){
doNJTree(scoreMatrix,nodeDist,matSize,namesList);}}
/**
Constructs a neighbor joining tree in newick format
@param scoreMatrix
@param nodeDist
@param matSize
@param nameslList

* ¥ ¥ ¥ ¥

*/
public static void doNJTree(double[][] scoreMatrix, HashMap<Node, HashMap<Node, Double>>
nodeDist,int matSize,ArrayList<String> namesList){
//1i is row, j is column
HashMap<NJNode,HashMap<NJNode,Double>> NINodeMap=new
HashMap<NJINode,HashMap<NJINode,Double>>();
ArrayList<NINode> NJList=new ArrayList<NINode>();
ArrayList<ArrayList<Double>> M=new ArrayList<ArraylList<Double>>();
ArrayList<ArrayList<Double>> Mp=new ArraylList<ArrayList<Double>>();
for(int i=0; i<namesList.size(); i++){
NINode tmp=new NJINode(namesList.get(i));
NJList.add(i,tmp);}
for(int i=0; i<NJIList.size();i++){
for(int j=0;j<NJIList.size();j++){
if(ir=3){
if(NINodeMap.containsKey(NJList.get(i))==false){
NINodeMap.put(NJList.get(i), new
HashMap<NJNode,Double>());}

if(NINodeMap.get(NJList.get(i)).containsKey(NJList.get(j))==false){
NINodeMap.get(NJList.get(i)).put(NIList.get(j),
scoreMatrix[i][j1);}}}}
while(NJINodeMap.keySet().size()>2){

HashMap<NJINode,HashMap<NJNode,Double>> Q=new
HashMap<NJINode,HashMap<NJINode,Double>>();

HashMap<NJNode,Double> T=new HashMap<NJINode,Double>();

//compute T, the sum total of rows

double totalRow=0;

for(NINode i: NJINodeMap.keySet()){

128

for(NINode j: NJINodeMap.keySet()){
if(!i.equals(3j)){
totalRow+=NINodeMap.get(i).get(j);}}
T.put(i, totalRow);
totalRow=0;}
NJINode curMinNodel=null;
NJINode curMinNode2=null;
double curMinScore=Double.POSITIVE_INFINITY;
//compute Q, the transformed matrix for neighbor joining minimal selection
for(NINode i: NJINodeMap.keySet()){
Q.put(i, new HashMap<NJINode,Double>());
for(NJNode j:NJINodeMap.keySet()){
if(!i.equals(j)){
if(Q.containsKey(j)==Ffalse){
Q.put(j, new HashMap<NINode, Double>());}
double tmp=(((NINodeMap.keySet().size()-
2)*NJINodeMap.get(i).get(j))-T.get(i)-T.get(j));
Q.get(i).put(j,tmp);
Q.get(j).put(i, tmp);
if(tmp<curMinScore){
if(li.equals(3j)){
curMinNodel=i;
curMinNode2=j;
curMinScore=tmp;}}}3}}
Q.clear();
//Find branch lengths
double deltaIld=((T.get(curMinNodel)-T.get(curMinNode2))/(NINodeMap.size()-2));
double LLi=@.5*(NJINodeMap.get(curMinNodel).get(curMinNode2)+deltaIl);
double LLj=0.5*(NINodeMap.get(curMinNodel).get(curMinNode2)-deltall);
//make new node
NINode tempuNode=new NJINode(curMinNodel,curMinNode2,LLi,LLj);
//compute new distances to other nodes and add to map.
double joinDist=0;
HashMap<NJNode, Double> joinMap=new HashMap<NJNode,Double>();
for(NJNode n: NJINodeMap.keySet()){
if(!n.equals(curMinNodel)){
if(!n.equals(curMinNode2)){

joinDist=(NJINodeMap.get(n).get(curMinNodel)+NINodeMap.get(n).get(curMinNode2) -
NINodeMap.get(curMinNodel).get(curMinNode2))/2;
joinMap.put(n, joinDist);}}}
//remove the two old nodes...
NJINodeMap.remove(curMinNodel);
NJINodeMap.remove(curMinNode2);
for(NINode n: NJINodeMap.keySet()){
if(NINodeMap.get(n).containsKey(curMinNodel)){
NINodeMap.get(n).remove(curMinNodel);}
if(NINodeMap.get(n).containsKey(curMinNode2)){
NINodeMap.get(n).remove(curMinNode2);}}
//add new nodes
for(NINode n: NJINodeMap.keySet()){
NINodeMap.get(n).put(tempuNode, joinMap.get(n));}
NINodeMap.put(tempuNode, joinMap);}
ArrayList<NINode>tmp2=new ArrayList<NINode>(NINodeMap.keySet());
NINode fin=tmp2.get(9);
NINode fin2=tmp2.get(1);
print("Printing NJ Tree");
String newickNJTree="("+fin2.newick+":"+NJNodeMap.get(fin).get(fin2)+", "+fin.newick+");";
print(newickNJTree);
if(njout.equals("")==false){
PrintWriter write;
try {
write = new PrintWriter(njoOut,"UTF-8");
write.write(newickNJTree);
write.close();
} catch (FileNotFoundException | UnsupportedEncodingException e) {
e.printStackTrace();}}
else{

129

PrintWriter write;

try {
write = new PrintWriter("NJ_Tree.nwk","UTF-8");
write.write(newickNJTree);
write.close();

} catch (FileNotFoundException | UnsupportedEncodingException e) {
e.printStackTrace();}}}

//START SPECIES TREE CONSTRUCTION (resumed in main for adaptive scope reasons)////
/**
* Scores every gene tree needed for the construction of a species tree
* by calling the doGeneTree method and storing the result in a global hashmap
* @param params parameters in ArraylList that will affect the settings of the tree building
algorithm
* @throws IOException
*/
public static void doSpeciesTree(ArrayList<String>params) throws IOException{
for(String name : fastaFiles){
doGeneTree(params,name);
allScoresByGene.put(name, initScores);}
for(String o : allScoresByGene.keySet()){
HashMap<String, HashMap<String,Double>>temp=allScoresByGene.get(0);
print(temp.keySet());
print("");}}
/**
* Finds the largest score of any tree for any gene
* Used only in species tree method with scaling enabled
* @return a double of the highest score observed
*/
public static double getMaxScore(){
double curMax=Double.MIN_VALUE;
for(String i: allScoresByGene.keySet()){
for(String j: allScoresByGene.get(i).keySet()){
for(String k: allScoresByGene.get(i).get(j).keySet()){
if(allScoresByGene.get(i).get(j).get(k)>curMax){
curMax=allScoresByGene.get(i).get(j).get(k);}}}}
return curMax;}

/**
* Calculates the scores for each of the components of
* the algorithm and combines them to get a composite score
* @param birdl taxa 1 to get the score between
* @param bird2 taxa 2 to get the score between
* @return the composite score
*/
public static double computeANDcombine(Bird birdl, Bird bird2){
return
((scoreBirdCodon(birdl,bird2)*weightTriFreq)+(scoreBirdDinuc(birdl,bird2)*weightDiFreq)+
+(scoreGC(birdl,bird2)*weightGC)+(scoreCodonBias(birdl,bird2)*weightBias)+

(QHMMTri_final.get(birdl.id).get(bird2.id)*weightTriQHMM)+(QHMMDi_final.get(birdl.id).get(bird2.id
)*weightDiQHMM));
}

/**
* Computes the score for the difference in codon usage (codon bias)
* between two taxa.
* @param birdl taxa 1
* @param bird2 taxa 2
* @return the score, stored as a double
*/
public static double scoreCodonBias(Bird birdl, Bird bird2){
double totalScore=0.9;
double protScore=0.09;
int numPotCodons=0;
double scorelLogCheck=0.0;
for(String aal:AAcodonMap.keySet()){
protScore=0;

130

if(birdl.biasMap.containsKey(aal)==false){
//bird one doesnt, but bird 2 does
if(bird2.biasMap.containsKey(aal)==true){
numPotCodons=bird2.biasMap.get(aal).keySet().size();
for(String cod:bird2.biasMap.get(aal).keySet()){

protScore+=Math.abs(log2(bird2.biasMap.get(aal).get(cod)/numPotCodons));?}
totalScore+=protScore;}
//neither do

else{
//pass, rather, add © to total.
13
//birdl has the aal

else{
//bird 2 doesn't
if(bird2.biasMap.containsKey(aal)==false){
numPotCodons=birdl.biasMap.get(aal).keySet().size();
for(String cod:birdl.biasMap.get(aal).keySet()){

protScore+=Math.abs(log2(birdl.biasMap.get(aal).get(cod)/numPotCodons));}
totalScore+=protScore;}
//they both have aa of interest
else{
Set<String> unionCodons=new HashSet<String>();
unionCodons.addAll(birdl.biasMap.get(aal).keySet());
unionCodons.addAll(bird2.biasMap.get(aal).keySet());
numPotCodons=unionCodons.size();
for(String cod:unionCodons){
//bird 2 doesn't have the codon
if(bird2.biasMap.get(aal).containsKey(cod)==false){
//that means bird one must!

protScore+=Math.abs(log2(birdl.biasMap.get(aal).get(cod)/numPotCodons));}
//bird two does have the codon
else{
//check if bird one does...
//no?

if(birdl.biasMap.get(aal).containsKey(cod)==false){

protScore+=Math.abs(log2(bird2.biasMap.get(aal).get(cod)/numPotCodons));}
//yes, they both do
else{

scoreLogCheck=Math.abs(birdl.biasMap.get(aal).get(cod)-
bird2.biasMap.get(aal).get(cod)/numPotCodons);
if(scoreLogCheck!=0){

protScore+=Math.abs(log2(scoreLogCheck));}
else{

311}
totalScore+=protScore;}}}

totalScore=totalScore/20;
return totalScore;}

//add zero

/**
* Calculates the score for a difference in codon transition probabilities between
* two taxa for a given gene.
* @param birdl taxa 1
* @param bird2 taxa 2
* @return score, stored as a double
*/
public static double scoreBirdCodon(Bird birdl, Bird bird2){
double bestDist=Double.MAX_VALUE;
for(int i: birdl.codonFrequencies.keySet()){
double scorel=0.0;
double score2=0.0;

131

double distScore=0.0;
for(String cl:allCodons){
for(String c2:allCodons){
if(birdl.codonFrequencies.get(i).containsKey(cl)==false){
scorel=0.0;}
else{

if(birdl.codonFrequencies.get(i).get(cl).containsKey(c2)==false){
scorel=0.0;}
else{

scorel=birdl.codonFrequencies.get(i).get(cl).get(c2);}}
if(bird2.codonFrequencies.get(i).containsKey(cl)==Ffalse){
score2=0.0;}
else{

if(bird2.codonFrequencies.get(i).get(cl).containsKey(c2)==Ffalse){
score2=0.0;}

else{

score2=bird2.codonFrequencies.get(i).get(cl).get(c2);}}
distScore+=Math.abs(scorel-score2);}}
if(distScore<bestDist){
bestDist=distScore;}}
return bestDist;}

/**
* Constructs and computes the scores for the QHMM for both Tri and Di nucleotides
* The results are not returned--rather, stored as a feature in the inputted birdMap.
* @param birdMap, the internal data structure used to calculate QHMM
*/
public static void QHMMALL(HashMap<String, Bird> birdMap){
HashMap<String,HashMap<Integer,HashMap<String,Double>>> QHMMTri=new
HashMap<String,HashMap<Integer,HashMap<String,Double>>>();
HashMap<String,HashMap<Integer,HashMap<String,Double>>> QHMMDi=new
HashMap<String,HashMap<Integer,HashMap<String,Double>>>();
int[] iterlist=new int[3];
iterlist[0]=1;
iterlist[1]=2;
iterlist[2]=3;
for(String name: birdMap.keySet()){
HashMap<Integer,HashMap<String,Double>> tempu=new
HashMap<Integer,HashMap<String,Double>>();
for(int i: iterlist){
HashMap<String,Double>tempu2=new HashMap<String,Double>();
for(String name2: birdMap.keySet()){
if(name.equals(name2)==false){
tempu2.put(name2, 0.0);}
tempu.put(i, tempu2);}}
QHMMTri.put(name, tempu);}
for(String name: QHMMTri.keySet()){
Bird tempuBird=birdMap.get(name);
String tseq=tempuBird.sequence;
for(int i: iterlist){
while(tseq.length()>5){
String codonl=tseq.substring(e, 3);
String codon2=tseq.substring(3, 6);
for(String name2: birdMap.keySet()){
if(!name2.equals(name)){

if(birdMap.get(name2).codonFrequencies.get(i).containsKey(codonl)){
if(birdMap.get(name2).codonFrequencies.get(i).get(codonl).containsKey(codon2)){
QHMMTri.get(name).get(i).put(name2,

(QHMMTri.get(name).get(i).get(name2))+(Math.abs(log2(birdMap.get(name2).codonFrequencies.get(i).get(codonl

).get(codon2))))); 1311}
tseq=tseq.substring(3);}

132

tseq=tempuBird.sequence;}
for(String name2: QHMMTri.keySet()){

if(name.equals(name2)==false){
double scorel=QHMMTri.get(name).get(1).get(name2);
double score2=QHMMTri.get(name).get(2).get(name2);
double score3=QHMMTri.get(name).get(3).get(name2);
double bestScore=Math.min(Math.min(scorel, score2), score3);
if(QHMMTri_final.containsKey(name)==false){

HashMap<String,Double> ntempu=new

HashMap<String,Double>();

ntempu.put(name2, bestScore);
QHMMTri_final.put(name, ntempu);}
else{
QHMMTri_final.get(name).put(name2, bestScore);}}}}
int numDo=2;
if(k>1){
numDo=k; }
iterlist=new int[numDo];
for(int m=0;m<numDo;m++){
iterlist[m]=m+1;}
for(String name: birdMap.keySet()){
HashMap<Integer,HashMap<String,Double>> tempu=new

HashMap<Integer,HashMap<String,Double>>();

for(int i: iterlist){
HashMap<String,Double>tempu2=new HashMap<String,Double>();
for(String name2: birdMap.keySet()){
if(name.equals(name2)==false){
tempu2.put(name2, 0.0);}
tempu.put(i, tempu2);}}
QHMMDi.put(name, tempu);}
for(String name: QHMMDi.keySet()){
Bird tempuBird=birdMap.get(name);
String tseq=tempuBird.sequence;
int whileLen=(2*numDo)-1;
for(int i: iterlist){
while(tseq.length()>whileLen){
String codonl=tseq.substring(@, numDo);
String codon2=tseq.substring(numbDo, numDo+numDo);
for(String name2: birdMap.keySet()){
if(!name2.equals(name)){

if(birdMap.get(name2).dinucFrequencies.get(i).containsKey(codonl)){

if(birdMap.get(name2).dinucFrequencies.get(i).get(codonl).containsKey(codon2)){

QHMMDi.get(name).get(i).put(name2,
(QHMMDi.get(name).get(i).get(name2))+(Math.abs(log2(birdMap.get(name2).dinucFrequencies.get(i).get(codonl)
.get(codon2)))));}} 1}

tseq=tseq.substring(3);}
tseq=tempuBird.sequence;}
for(String name2: QHMMDi.keySet()){
if(name.equals(name2)==false){
double scorel=QHMMDi.get(name).get(1).get(name2);
double score2=QHMMDi.get(name).get(2).get(name2);
double bestScore=Math.min(scorel, score2);
if(QHMMDi_final.containsKey(name)==false){
HashMap<String,Double> ntempu=new

HashMap<String,Double>();

/**

ntempu.put(name2, bestScore);
QHMMDi_final.put(name, ntempu);}

else{
QHMMDi_final.get(name).put(name2, bestScore);}}}}}

Calculates the score for a difference in dinucleotide transition probabilities
between two taxa for a given gene.

@param birdl taxa 1

@param bird2 taxa 2

* ¥ ¥ X

133

* @return score, stored as a double
*/
public static double scoreBirdDinuc(Bird birdl, Bird bird2) {
double scorel = 0.9;
double score2 = 0.0;
double distScore = 0.9;
for (int i : birdl.dinucFrequencies.keySet()) {
for (String cl : allDinucs) {
for (String c2 : allDinucs) {
if (birdl.dinucFrequencies.containsKey(cl) == false) {
scorel = 0.0;

} else {
if (birdl.dinucFrequencies.get(cl).containsKey(c2) ==
false) {
scorel = 0.0;
} else {
scorel = birdl.dinucFrequencies.get(i).get(cl)
-get(c2);}}
if (bird2.dinucFrequencies.containsKey(cl) == false) {
score2 = 0.0;
} else {
if (bird2.dinucFrequencies.get(i).get(cl)
.containsKey(c2) == false) {
score2 = 0.0;
} else {
score2 = bird2.dinucFrequencies.get(i).get(cl)
-get(c2);}}
distScore += Math.abs(scorel - score2);}}}
return distScore;}
/**

* A shortcut function that gets the log

* base two on the double passed in

* @param num number to get the log base 2 of
* @return the log base two of the number

*/

public static double log2(double num){
return Math.log(num)/Math.log(2);}

/**
* Returns the difference in GC scores between two taxa
* @param birdl taxa 1
* @param bird2 taxa 2
* @return score, stored as a double
*/
public static double scoreGC(Bird birdl, Bird bird2){
return Math.abs(birdl.GC_score-bird2.GC_score);}

/**
* A shortcut function for System.out.println
* @param o, an object to print
*/
public static void print(Object o){
System.out.println(o);}
/**
* Make a file
* @param filenameANDpath, the absolute path of the desired new file
*/
public static void mkFile(File filenameANDpath){
File newfile=filenameANDpath;
try{
newfile.createNewFile();}
catch(IOException ioe){
System.err.println("Error in making files\n "+ioe);}}

/**
* Makes subsequence files for use in the bootstrapping method.

134

* @param sameStart, a boolean indicating if all sequences should be sub-setted starting at the
same location
* @param numBoots, the number of times to bootstrap
* @param propBases, the proportion of bases wanted in the bootstrap
* @param birdMap, the data structure containing all the sequences
* @throws FileNotFoundException
* @throws UnsupportedEncodingException
*/
public static void genBootstrapSeqs(boolean sameStart, int numBoots, double propBases,
HashMap<String, Bird> birdMap) throws FileNotFoundException, UnsupportedEncodingException{
new File("tmp").mkdir();
new File("bootTrees").mkdir();
int numBases=0;
int startIndex=0;
int sizeOfSeq=9;
for(int i=0; i<numBoots; i++){
if(sameStart==false){
try {
PrintWriter writer=new
PrintWriter("tmp/bootstrapIter"+i+".fasta","UTF-8");
for(String berd: birdMap.keySet()){
String id=birdMap.get(berd).id;
String seg=birdMap.get(berd).sequence;
writer.println(id);
sizeOfSeq=seq.length();
numBases=(int) Math.round(propBases*sizeOfSeq);
startIndex=genRandInt (0, (sizeOfSeq-numBases)-2);
writer.println(seq.substring(startIndex,
startIndex+numBases-1));
print(seq.substring(startIndex, startIndex+numBases-1));}
writer.close();}
catch (FileNotFoundException | UnsupportedEncodingException e) {
e.printStackTrace();}}
else{
String brd=(String) birdMap.keySet().toArray()[0];
String id=birdMap.get(brd).id;
String seqg=birdMap.get(brd).sequence;
sizeOfSeq=seq.length();
numBases=(int) Math.round(propBases*sizeOfSeq);
startIndex=genRandInt (0, (sizeOfSeq-numBases)-2);
PrintWriter writer=new PrintWriter("tmp/bootstrapIter"+i+".fasta","UTF-
8");
for(String berd: birdMap.keySet()){
id=birdMap.get(berd).id;
seq=birdMap.get(berd).sequence;
writer.println(id);
if(startIndex+numBases>seq.length()){
writer.println(seq.substring(startIndex, seq.length()-
1));}
else{
writer.println(seq.substring(startIndex,
startIndex+numBases-1));}}
writer.close();}}}
/**
* Shortcut function for generating a random integer.
* @param Min the mimimum bound
* @param Max the maximum bound
* @return a randomly generated integer
*/
public static int genRandInt(int Min, int Max){
return (Min + (int)(Math.random() * ((Max - Min) + 1)));}

/**

* Just see if a value is parse-able to a double

* Used in command line argument processing.

* @param value the string being checked

* @return a boolean representing saying if it is a double
*/

135

public static boolean isDouble(String value) {

try {

Double.parseDouble(value);
return true;

} catch (NumberFormatException e) {

return false;}}

/**

* Internally used command that populates

* the codon to amino acid hashmap

*/
public static void

codonAAMap.
codonAAMap.
codonAAMap.
codonAAMap.
codonAAMap.
codonAAMap.
codonAAMap.
codonAAMap.
codonAAMap.
codonAAMap.
codonAAMap.
codonAAMap.
codonAAMap.
codonAAMap.
codonAAMap.
codonAAMap.
codonAAMap.
codonAAMap.
codonAAMap.
codonAAMap.
codonAAMap.
codonAAMap.
codonAAMap.
codonAAMap.
codonAAMap.
codonAAMap.
codonAAMap.
codonAAMap.
codonAAMap.
codonAAMap.
.put("Gca","
codonAAMap.
codonAAMap.
codonAAMap.
codonAAMap.

codonAAMap

codonAAMap

codonAAMap.
codonAAMap.
codonAAMap.
codonAAMap.
codonAAMap.
codonAAMap.
codonAAMap.
codonAAMap.
codonAAMap.
codonAAMap.
codonAAMap.
codonAAMap.
codonAAMap.
codonAAMap.
codonAAMap.
codonAAMap.
codonAAMap.
codonAAMap.
codonAAMap.
codonAAMap.

popCodonMap () {
put("TTT","F");
put("TTC","F");
put("TTA","L");
put("TTG","L");
put("CTT","L");
put("CTC","L");
put("CTG","L");
put("CTA","L");
put ("ATT","I");
put("ATC","I");
put ("ATA","I");
put ("ATG","M");
put("GTT","V");
put("GTC","V");
put ("GTA","V");
put("GTG","V");
put("TCT","S");
put("TCC","S");
put("TCA","S");
put("TCG","S");
put("CcCcT","P");
put("ccc","P");
put("CCA","P"
put("cce","P
put("ACT","T
put("ACC","T
put("ACA","T
put("ACG","T
A
A
A
A
Y

)5
)5
)5
)5
)5
")s
)5
)5
)5
)5
)5

put ("GCT", "
put ("Gcc", "

put("GCG","
put("TAT","
put("TAC","Y");

put("TAA","STOP");
.put("TAG","STOP");

put("CAT","H");
put("CAC","H");
put("CAA","Q");
put("CAG","Q");
put("AAT","N");
put("AAC","N");
put("ARA", "K") ;
put("AAG","K");
put("GAT","D");
put("GAC","D");
put("GAA", "E")
put("GAG","E");
put("TGT","C");
put("TGC","C");

put("TGA","STOP");

put("TGG","W");
put("CGT","R");
put("CGC","R");
put("CGA","R");
put("CGG","R");

136

codonAAMap.put("AGT","S");
codonAAMap.put("AGC","S");
codonAAMap.put("AGA","R");
codonAAMap.put("AGG","R");
codonAAMap.put("GGT","G");
codonAAMap.put("GGC","G");
codonAAMap.put("GGA","G");
codonAAMap.put ("GGG","G"); }
/**
* Internally used function that builds the Amino acid
* to Codon map used in algorithm. It relies on popCodonMap()
* to have been called prior to the calling of this method.
*/
public static void popAAtoCodonMap(){
for(String i:codonAAMap.keySet()){
String AA=codonAAMap.get(i);
if(AAcodonMap.containsKey(AA)==false){
ArraylList<String>tempu=new ArrayList<String>();
tempu.add(i);
AAcodonMap.put (AA,tempu);}}}
/**
* A shortcut method for getting translating codons into amino acids
* @param codon the codon to be translated
* @return the 1 letter amino acid code as String
*/
public static String translateCodon(String codon){
return codonAAMap.get(codon);}
/**
* Internally used command that populates a list of
* every possible dinucleotide combination
*/
public static void popAllDinucs(){
allDinucs.add("AA");
allDinucs.add("AT");
allDinucs.add("AG");
allDinucs.add("AC");
allDinucs.add("TT");
allDinucs.add("TA");
allDinucs.add("TC");
allDinucs.add("TG");
allDinucs.add("GG");
allDinucs.add("GC");
allDinucs.add("GA");
allDinucs.add("GT");
allDinucs.add("cC");
allDinucs.add("CA");
allDinucs.add("CT");
allDinucs.add("CG");}
/**
* Internally used command that populates a list of every possible
* codon.
*/
public static void popAllCodons(){
allCodons.add("TTT");
allCodons.add("TTC");
allCodons.add("TTG");
allCodons.add("TTA");
allCodons.add("TCT");
allCodons.add("TCC");
allCodons.add("TCA");
allCodons.add("TCG");
allCodons.add("TAT");
allCodons.add("TAC");
allCodons.add("TAA");
allCodons.add("TAG");
allCodons.add("TGT");
allCodons.add("TGC");
allCodons.add("TGA");

137

allCodons.add("TGG");
allCodons.add("CTT");
allCodons.add("CTC");
allCodons.add("CTA");
allCodons.add("CTG");
allCodons.add("CCT");
allCodons.add("CCC");
allCodons.add("CCA");
allCodons.add("CCG");
allCodons.add("CAT");
allCodons.add("CAC");
allCodons.add("CAA");
allCodons.add("CAG");
allCodons.add("CGT");
allCodons.add("CGC");
allCodons.add("CGA");
allCodons.add("CGG");
allCodons.add("ATT");
allCodons.add("ATC");
allCodons.add("ATA");
allCodons.add("ATG");
allCodons.add("ACT");
allCodons.add("ACC");
allCodons.add("ACA");
allCodons.add("ACG");
allCodons.add("AAT");
allCodons.add("AAC");
allCodons.add("AAA");
allCodons.add("AAG");
allCodons.add("AGT");
allCodons.add("AGC");
allCodons.add("AGA");
allCodons.add("AGG");
allCodons.add("GTT");
allCodons.add("GTC");
allCodons.add("GTA");
allCodons.add("GTG");
allCodons.add("GCT");
allCodons.add("GCC");
allCodons.add("GCA");
allCodons.add("GCG");
allCodons.add("GAT");
allCodons.add("GAC");
allCodons.add("GAA");
allCodons.add("GAG");
allCodons.add("GGT");
allCodons.add("GGC");
allCodons.add("GGA");
allCodons.add("GGG");}
/**
* prints the help statement seen with --help or -h
*/
public static void printHelp(){
print("---ScrawkovPHY.java---");
print(usage);
print("Example: java ScrawkovPHY gene exampleFasta.fasta --normalize T");
print("Example: java ScrawkovPHY species exampleFastaForGenel.fasta
exampleFastaForGene2.fasta --maxByPair T");

print(" ");
print("------- Flags available, with desciption of fucntion--------- ")
print(" ");

print("--folder");

print("Use a folder rather than a series of files in species tree contsruction");
print(" ");

print("--doNJ");

print(" Construct a neighbor joining tree in addition to the default UPGMA tree");
print(" Default behaviour is true");

print(" ");

138

print("--njout");
print(" The file name for the NJ tree output. Only used if doNJ is true");

print(" The default behaviour is to use the name njOut.nwk");

print(" ");

print("--maxByPair:");

print(" maxByPair takes either true or false as a value");

print(" If true, the algorithm will find and use the optimal reading frame for each
pairwise sequence");

print(" The default behaviour is true ");

print(" ");

print("--normalize:");

print(" normalize takes either true or false as a value");

print(" This parameter only affects the construction of species trees");

print(" If true, the results of each gene tree are scaled to the range of the most

disparate");

print(" gene tree. That is, the one with the biggest difference between highest and
lowest score");

print(" The default behaviour is true ");

print(" ");

print("--outputFile");

print(" outputFile takes the name of the file you want the tree to be output in");

print(" The default behaviour is to only print the output to the terminal, not to a
file");

print(" It has the shortcut -o");

print(" ");

print("--kSize");

print(" override the kmer size for dinucleotide aspect of QHMM.");

print(" default value is -1, which is ignored by program.");

print(" ");

print("--bootSeq");

print(" Experimental: Should subsequences of DNA be obtained for bootstrapping? Must be
run with gene");

print(" Default behaviour is false");

print(" ");

print("--diagMat");

print(" Should the PHYLIP formatted distance matrix be written along the diagonal?");

print(" If false, the full matrix will be written.");

print(" The default behaviour is true.");

print(" ");

print("--bootOut");

print(" Experimental: Name of outPut bootstrapped tree folder. If a value is entered,
will use the species tree infrastructure to make");

print(" bootstrap trees from the output of bootSeq. Must be run with species");

print(" The default behaviour is to not make these trees.");

print(" ");

print("--help");

print(" Print this help statement");

print(" ");

print("--weightGC, --weightBias, --weightTriFreq, --weightDiFreq, --weightTriQHMM, --
weightDiQHMM");

print(" These flags accept numeric input (decimals are fine)");

print(" These arguments are the weights applied to the 6 features used to create the
MCCI, which is a surrogate distance.");

print(" They affect the GC content, codon bias, trinucleotide frequency, dinucleotide
frequency,");

print(" trinucleotide transistion QHMM, and dinucleotide transtition QHMM

respectively.");
print(" The default values are 10,0.1,1,1,0.00005,and 0.00005 respectively.");}}

139

////Bird.java

import java.util.HashMap;

/**

* Bird is a generic representation of a taxon and its sequence.
* @author J. Nick Fisk

*

*/

public class Bird {

public
public
public
public
public
public
public

/**

double GC_score; //GC content proportion

double CodonFreqScore;

String sequence; //store the sequence in RAM

String id; //name of sequence

HashMap<Integer,HashMap<String, HashMap<String, Double>>> codonFrequencies; //initMaps
HashMap<Integer, HashMap<String, HashMap<String, Double>>> dinucFrequencies;
HashMap<String,HashMap<String,Double>> biasMap;

* An object representing the a taxon in the algorithm.

* It is names bird as it was developed on birds originally.
* @param id the id of the taxon from the fasta file

* @param sequence the nucleotide sequence

*/
public

/**

Bird(String id, String sequence){
this.GC_score=0.0;
this.CodonFreqScore=0.0;
this.sequence=sequence;
this.id=id;
this.dinucFrequencies=new HashMap<Integer,HashMap<String,HashMap<String, Double>>> ();
this.codonFrequencies=new HashMap<Integer,HashMap<String,HashMap<String, Double>>> ();
this.codonFrequencies=newCalcCodonFreq();
//check k from main to see if we are doing generic length kmer rather than a hard 2.
if(ScrawkovPHY.k<1){
this.dinucFrequencies=newCalcDiFreq();}
else{
this.dinucFrequencies=calcKFreq(ScrawkovPHY.k);}
this.GC_score=calcGC();
this.biasMap=mkBiasMap();}

* Measure the features ultimately used in the calculation of codon bias
* @return HashMap of measured features

*/
public

HashMap<String, HashMap<String,Double>> mkBiasMap(){
String inter=this.sequence; //shallow copy of the sequence
HashMap<String,HashMap<String,Double>> biasMap=new

HashMap<String,HashMap<String,Double>>();

String pIter=""; //holder variable
//go through and chop down the sequence, translating each codon at the end.
while(inter.length()>3){
pIter=ScrawkovPHY.translateCodon(inter.substring(o,3));
if(biasMap.containsKey(pIter)==false){
HashMap<String,Double> bcodonMap=new HashMap<String,Double>();
bcodonMap.put(inter.substring(0,3), (double) 1);
biasMap.put(pIter, bcodonMap);}
else{
if(biasMap.get(pIter).containsKey(inter)==false){
biasMap.get(pIter).put(inter.substring(0,3), 1.0);}
else{

biasMap.get(pIter).put(inter.substring(@,3),biasMap.get(pIter).get(inter)+1);}}

inter=inter.substring(3);}
for(String aa: biasMap.keySet()){
double count=0;

140

for(String entry: biasMap.get(aa).keySet()){
count+=biasMap.get(aa).get(entry);}
for(String entry:biasMap.get(aa).keySet()){
biasMap.get(aa).put(entry,biasMap.get(aa).get(entry)/count);}}
return biasMap;}
/**
* Measures trinucleotide occurrence frequency, as well as the transition frequency
* in sequences.
* @param seq sequence being observed
* @return HashMap of measured features
*/
public HashMap<String, HashMap<String, Double>> calcCodonHelper(String seq){
String tseq=seq;
HashMap<String, HashMap<String, Double>> tmap=new HashMap<String, HashMap<String,
Double>>();
int numCodons=0;
//crawl down and chop the sequence into smaller pieces of size 3.
while(tseq.length()>5){
numCodons+=1;
String codonl=tseq.substring(e, 3);
String codon2=tseq.substring(3, 6);
if(!tmap.containsKey(codonl)){
HashMap<String,Double>tempu=new HashMap<String, Double>();
Double count=1.0;
tempu.put(codon2, count);
tmap.put(codonl, tempu);}
else{
if(!tmap.get(codonl).containsKey(codon2)){
tmap.get(codonl).put(codon2, (double)l);}
else{
tmap.get(codonl).put(codon2, tmap.get(codonl).get(codon2)+1);}}
tseq=tseq.substring(3);}
for(String map: tmap.keySet()){
for(String entry: tmap.get(map).keySet()){
tmap.get(map).put(entry, tmap.get(map).get(entry)/numCodons);}}
return tmap;}
/**
* Calls the helper function a differning number of times depending on the status
* of the maxByPair flag.
* @return HashMap of measured features
*/
public HashMap<Integer,HashMap<String, HashMap<String, Double>>> newCalcCodonFreq(){
String tseq=this.sequence;
HashMap<Integer,HashMap<String, HashMap<String, Double>>> tmap=new
HashMap<Integer,HashMap<String, HashMap<String, Double>>>();
int numToDo;
//if maxByPair is true, each starting frame will be represented.
if(ScrawkovPHY.maxByPair==true){
numToDo=3; }
else{
numToDo=1;}
int count=0;
while(count<=numToDo){
tmap.put(count, calcCodonHelper(tseq));
tseq=tseq.substring(1,tseq.length());
count+=1;}
return tmap;}
/**
* Measures dinucleotide frequencies and transition frequencies in a sequence
* @param seq the sequence being observed
* @return HashMap of measured features
*/
public HashMap<String, HashMap<String, Double>> calcDiHelper(String seq){
String tseq=seq;
HashMap<String, HashMap<String, Double>> tmap=new HashMap<String, HashMap<String,
Double>>();
int numCodons=0;
while(tseq.length()>5){

141

numCodons+=1;
String codonl=tseq.substring(e, 2);
String codon2=tseq.substring(2, 4);
if(!tmap.containsKey(codonl)){
HashMap<String,Double>tempu=new HashMap<String, Double>();
Double count=1.0;
tempu.put(codon2, count);
tmap.put(codonl, tempu);}
else{
if(!tmap.get(codonl).containsKey(codon2)){
tmap.get(codonl).put(codon2, (double)l);}
else{
tmap.get(codonl).put(codon2, tmap.get(codonl).get(codon2)+1);}}
tseq=tseq.substring(2);}
for(String map: tmap.keySet()){
for(String entry: tmap.get(map).keySet()){
tmap.get(map).put(entry, tmap.get(map).get(entry)/numCodons);}}
return tmap;}

/**
* Depending on the value of maxByPair flag, calls the helper function a variable number of times.
* @return A HashMap of observed features
*/
public HashMap<Integer,HashMap<String, HashMap<String, Double>>> newCalcDiFreq(){
String tseq=this.sequence;
HashMap<Integer,HashMap<String, HashMap<String, Double>>> tmap=new
HashMap<Integer,HashMap<String, HashMap<String, Double>>>();
int numToDo;
if(ScrawkovPHY.maxByPair==true){
numToDo=2;}
else{
numToDo=1;}
int count=0;
while(count<=numToDo){
tmap.put(count, calcDiHelper(tseq));
tseq=tseq.substring(1,tseq.length());
count+=1;}
return tmap;}

/**
* Performs the same function as calcCodonHelper and calcDinucHelper, but with a generic sized
kmer.
* @param seq The sequence
* @param k the size of the kmer to be used
* @return
*/
public HashMap<String, HashMap<String, Double>> calcKHelper(String seq, int k){
String tseqg=seq;
HashMap<String, HashMap<String, Double>> tmap=new HashMap<String, HashMap<String,
Double>>();

int numCodons=0;
int whileLen= (k*2)+1;
while(tseq.length()>whileLen){
numCodons+=1;
String codonl=tseq.substring(o, k);
String codon2=tseq.substring(k, k+k);
if(!tmap.containsKey(codonl)){
HashMap<String,Double>tempu=new HashMap<String, Double>();
Double count=1.0;
tempu.put(codon2, count);
tmap.put(codonl, tempu);}
else{
if(!tmap.get(codonl).containsKey(codon2)){
tmap.get(codonl).put(codon2, (double)l);}
else{
tmap.get(codonl).put(codon2, tmap.get(codonl).get(codon2)+1);}}
tseq=tseq.substring(k);}
for(String map: tmap.keySet()){
for(String entry: tmap.get(map).keySet()){

142

tmap.get(map).put(entry, tmap.get(map).get(entry)/numCodons);}}
return tmap;}

/**
* Depending on the value of maxByPair flag, calls the helper function a variable number of times.
* @return A HashMap of observed features
*/
public HashMap<Integer,HashMap<String, HashMap<String, Double>>> calcKFreq(int k){
String tseq=this.sequence;
HashMap<Integer,HashMap<String, HashMap<String, Double>>> tmap=new
HashMap<Integer,HashMap<String, HashMap<String, Double>>>();
int numToDo;
if(ScrawkovPHY.maxByPair==true){
numToDo=k; }
else{
numToDo=1;}
int count=0;
while(count<=numToDo){
tmap.put(count, calcKHelper(tseq,ScrawkovPHY.k));
tseq=tseq.substring(1,tseq.length());
count+=1;}
return tmap;}
/**
* Measures the GC content of a sequence.
* @return the difference in gc content as a double
*/
public double calcGC(){
String tseq=this.sequence;
double count = tseq.length() - tseq.replace("G", "").length();
count+=tseq.length()-tseq.replace("C", "").length();
return count/tseq.length();}}

//Node.java
import java.util.Arraylist;

/**

@author Nick Fisk

A node containing information about the

organism used in searching a graph to recover a tree.
currently used only for a UPGMA approach, but

is extendible to other approaches.

* X X ¥ ¥ *

*/
public class Node {
String newick;
ArrayList<String> names=new ArrayList<String>();
public Node(String name){
this.names.add(name);
name=name.replaceAll("[()]1", "");
name=name.replaceAll(">", "");
//name=name.replaceAll("\\","");
//name=name.replaceAll("/","");
//if(name.length()>30){
//name=name.substring(0, 29);
/1}

name=name.replaceAll(" ", "_");

143

name=name.replaceAll("-", "_");
name.replaceAll(",", "_");
this.newick=name;}
/**
Constructs a node from two other nodes and a distance
@param nodel, a node to be joined to node2
@param node2, a node to be joined to nodel
@param dist the distance betwwen the two input nodes

* ¥ X ¥ ¥

*/

@SuppressWarnings("unchecked")

public Node(Node nodel, Node node2, double dist){
this.newick="("+nodel.newick+":"+dist/2+","+node2.newick+":"+dist/2+")";
this.names=new ArrayList<String>(nodel.names);
this.names.addAll((ArrayList<String>)node2.names.clone());}

/**

Find the distance between any two nodes. For nodes that

consist of many nodes, the overall average of all the nodes is used,

not just the average of the two nodes being compared

@param nl, the first node or cluster of nodes

@param n2, the second node or cluster of nodes

@return the distance between the two nodes

* X X X ¥ X

*/
public static double calcDistance(Node nl, Node n2){
ArrayList<String>namesl=new ArraylList<String>(nl.names);
ArrayList<String>names2=new ArraylList<String>(n2.names);
double score=0.9;
int count=0;
for(String i: names1){
for(String j: names2){
score+=ScrawkovPHY.initScores.get(i).get(3);
count+=1;}}
return score/count;}
/*
* (non-Javadoc)
* @see java.lang.Object#toString()
*/
public String toString(){
return(String.valueOf(this.names));}
@Override
public boolean equals(Object o){
if(o==this){
return true;}
if(!(o instanceof Node)){
return false;}
Node 02=(Node)o;
for(String n: this.names){
if(o2.names.contains(n)==false){
return false;}}
for(String n: o2.names){
if(this.names.contains(n)==false){
return false;}}
return true;}
/**
* needed for the equals override
*/
public int hashCode(){
return this.names.hashCode();}}

144

//NJINode. ja
import java

/**

A Node c
A differ
boundary
differen
@author

* X ¥ X ¥ *

*/
public clas

va
.util.ArraylList;

lass to represent the NJ graph search.
ent node was needed than UPGMA as the
conditions and edge cases need be handled a little
tly.
J. Nick Fisk

s NJINode {

ArrayList<String> names=new ArraylList<String>();
double distl=Double.MIN_VALUE;

double dist2=Double.MIN_VALUE;

ArrayList<NINode> njnodes=new ArrayList<NINode>();

String newick="";
/**

*
*

*/

Constructor for the first nodes
@param name

public NJNode (String name){

//

/**
*
*
*
*
*
*

*/
pub

/**

*
*/
pub

@ov
pub

this.names.add(name);
name=name.replaceAll("[()1", "");
name=name.replaceAll(">", "");
//name=name.replaceAll("\\","");
//name=name.replaceAll("/","");
if(name.length()>30){

// name=name.substring(e, 29);
//}

name=name.replaceAll(" ", "_");
name=name.replaceAll("-", "_");
name.replaceAll(",", "_");

this.newick=name;}

Constructor for grouping together two nodes
with two different lengths.

@param nl

@param n2

@param distl

@param dist2

lic NINode(NINode nl, NINode n2, double distl, double dist2){
this.njnodes.add(nl);
this.njnodes.add(n2);
this.names.addAll(nl.names);
this.names.addAll(n2.names);
this.newick="("+nl.newick+":"+dist1+","+n2.newick+":"+dist2+")";}

String representation of node

lic String toString(){
return(String.valueOf(this.names));?}
erride
lic boolean equals(Object o){
if(o==this){
return true;}
if(!(o instanceof Node)){
return false;}
Node 02=(Node)o;
for(String n: this.names){
if(02.names.contains(n)==false){
return false;}}

145

/**

for(String n: o2.names){
if(this.names.contains(n)==false){
return false;}}
return true;}

* needed for the equals override

*/

public int hashCode(){

return this.names.hashCode();}}

Code used in EMU-Phy

//ScrawQ.java

import
import
import
import
import
import
import
import
import
import

/*

java.
java.
java.
java.
java.
java.
java.
java.
java.
java.

io.
io.
io.
io.
io.
io.
io.
io.

BufferedReader;

File;
FileNotFoundException;
FileReader;
FileWriter;
IOException;

Writer;
BufferedWriter;

util.ArraylList;
util.Scanner;

* ScrawQ, which is the working name of ScrawDB
* is under development. It is a phyloinformatics DB
* creation and management system.

*

*/

public class ScrawQ {
public static ArrayList<Character> bases=new ArraylList<Character>();
public static void main(String[] args) {

//a simple bool to decide whether to display the "ready for next command" prompt
populateBases();
boolean amTesting=false;
if(amTesting){

validateDB();

return;}
boolean firstRun=true;
//print welcome message and user prompt
System.out.println("Welcome to EMU-Phy!");
System.out.println("Please enter a command. Type 'help' for help and 'quit' to quit");
//connect to standard in
Scanner scanIn=new Scanner(System.in);
//will continue to read in input until user quits
//or something terrible happens (execption thrown)
while(true){

if(firstRun==true){

firstRun=false;}
else{

146

exit)");}

System.out.println("Ready for next command (enter 'quit' to

//get the next input, save as string
String thisCommand=scanIn.next();
//A very large switch command. More efficient and readable
//than if-else ifs-elses
switch(thisCommand){
//if we are done and want to exit peacefully
case "quit":
System.out.println("Thank you for using ScrawQ!");
System.exit(0);

break;
//help message to show all commands
case "help":

printHelp();

break;

//installs the system
case "install":
installFileSys();
break;
//To do: give functionality
//will update everything
case "update":
updateAll();
break;
//forcibly redo all the analysis
case "redo":
redoAll();
break;
case "validate":
validateDB();
break;
//add subprompt
case "add":
boolean keepChecking=true;
while(keepChecking==true){
String addCommand;
System.out.println("Add what?");
System.out.println("Options are: group, taxa, gene,

primer, taxonomy. Enter 'cancel' to cancel or ‘'done' to finish");

Please try again...");

addCommand=scanIn.next();
switch(addCommand){

case "group":
mkGroup();
break;

case "taxa":
addNewTaxa();
break;

case "gene":
//gene add
addGene();
break;

case "primer":
//add primer
break;

case "taxonomy":
//add taxonomy
break;

case "cancel":
keepChecking=false;

break;

case "done":
keepChecking=false;
break;

default:

System.out.println("Invalid selection.

break;}}

147

break;
case "show":

keepChecking=true;

while(keepChecking==true){
String showCommand;
System.out.println("Show what?");
System.out.println("Options are: groups, taxa, genes,

primers, taxonomy. Enter 'cancel' to cancel or 'done' to finish");

showCommand=scanIn.next();

switch(showCommand){
case "groups":
try {

System.out.println("Groups are...");
System.out.println();
showFile("ScrawQ_Phyloinformatics/Groups/List_of_All_Groups.txt");
System.out.println();
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();}
break;
case "taxa":
try {
System.out.println("Taxon are...");
System.out.println();
showFile("ScrawQ_Phyloinformatics/All_Taxa/List_of_All_Taxa.txt");
System.out.println();
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();}
break;
case "genes":
keepChecking=true;
while(keepChecking==true){
Scanner temp=new Scanner(System.in);
String taxa=new String();
System.out.println("Name of taxa to
display genes for? Type 'display' to show all available taxa (type 'cancel' to cancel");
taxa=temp.next();
if(taxa.equals("cancel™)){
keepChecking=false;}
else if(taxa.equals("display")){
System.out.println("Displaying
available taxa\n");
try {

showFile("ScrawQ_Phyloinformatics/All_Taxa/List_of_All_Taxa.txt");
System.out.println();
} catch (IOException e) {
e.printStackTrace();}}
else{
System.out.println("Displaying
Genes for Taxa: "+taxa+"...");
try {
showFile("ScrawQ_Phyloinformatics/All_Taxa/"+taxa+"/Genes/GeneList.txt");
} catch (IOException e) {
// TODO Auto-generated
catch block
System.out.println("That
taxa does not exist. Try adding the taxa and trying again.");}}}

break;
case "primer":

break;
case "taxonomy":

break;

case "cancel":
keepChecking=false;
break;

case "done":

148

keepChecking=false;

break;
default:
System.out.println("Invalid selection. Please try
again...");
break;}}
break;
case "mkGroup":
mkGroup();
break;

//help message for group only commands
case "groupHelp":
printGroupHelpMessage();
break;
case "newTaxa":
addNewTaxa();
break;
default:
System.out.println("Invalid command: help message will be
displayed");
printHelp();
break;}}}

/*
* Initializes filesystem that will be used as DB
* uses user input to decide to install examples or not
*/
public static void installFileSys(){
Scanner temp=new Scanner(System.in);
String examplesDesired=new String();
System.out.println("Installing EMU-Phy in working directory...!");
System.out.println(System.getProperty("user.dir"));
boolean keepchecking=true;
boolean doExamples=false;
while(keepchecking==true){
System.out.println("Examples desired? (Will insert example data in datasytem)");
System.out.println("Valid options are 'y' or 'n' or 'cancel')");
examplesDesired=temp.next();
switch(examplesDesired){
case "y":
doExamples=true;
keepchecking=false;
print("Installing EMU-Phy with examples...");
break;
case "n":
doExamples=false;
keepchecking=false;
break;
case "cancel":
System.out.println("Cancelling installation...");
return;}}
//make all the dirs and files basally necessary for system.
new File("ScrawQ_Phyloinformatics").mkdir();
new File("ScrawQ_Phyloinformatics/Groups").mkdir();
new File("ScrawQ_Phyloinformatics/All_Taxa").mkdir();
new File("ScrawQ_Phyloinformatics/ScrawkovPhy").mkdir();
new File("ScrawQ_Phyloinformatics/pipelineModules").mkdir();
File ListOfAllTaxa=new File("ScrawQ_Phyloinformatics/All_Taxa/List_of_All_Taxa.txt");
File ListOfAllGroups=new File("ScrawQ_Phyloinformatics/Groups/List_of_All_Groups.txt");
File ListOfAllModules=new
File("ScrawQ_Phyloinformatics/pipelineModules/List_of_All_Modules.txt");
mkFile(ListOfAllTaxa);
mkFile(ListOfAllGroups);
mkFile(ListOfAllModules);
//File dir=new File(".");
//File files[]=dir.listFiles();
//for(File f: files){
//System.out.println(f);

149

/7%
//System.out.println(System.getProperty("user.home"));}
/**
* addGene adds gene info to the database. Requires user to specify a taxa to add the gene for
*/
public static void addGene(){
Scanner temp=new Scanner(System.in);
String thisTaxa=new String();
System.out.println("Name of taxa to add gene for? Type 'display' to see available taxa
(type 'cancel' to cancel");
thisTaxa=temp.next();
if(thisTaxa.equals("cancel")){
return;}
else if(thisTaxa.equals("display")){
System.out.println("Displaying available taxa\n");
try {
showFile("ScrawQ_Phyloinformatics/All_Taxa/List_of_All Taxa.txt");
addGene();
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();}}
else{
File dir= new File("ScrawQ_Phyloinformatics/All_Taxa/"+thisTaxa);
if(!dir.exists()){
System.out.println("That taxa does not exist. Try adding it and trying
again");
addGene();}
else{
String geneName;
System.out.println("What is the gene name?");
geneName=temp.next();
geneName=sanitizeInput(geneName);
print("Using gene name: "+geneName);
String method;
System.out.println("DNA/RNA sequence required...");
System.out.println("To supply a path to a file containing only this ge
in FASTA format, enter ‘'path'...");
System.out.println("To supply the sequence directly, enter ‘'direct’...
System.out.println("To cancel addition of gene, enter 'cancel'...");
method=temp.next();
String sequence="";
if(method.equals("cancel)){
print("Canceling addition of gene...");
return;}
else if(method.equals("path")){
class pathDoer{
public String doPath(){
String seq="";
String pathToSeq;
System.out.println("What is the path to the
sequence file (in FASTA Format)?");
pathToSeq=temp.next();

//DO NOT SANITIZE!!!!! Is supposed to have /s
\s
File seqFile=new File(pathToSeq);
if(!seqFile.exists()){
System.out.println("Invalid path to
file...");

doPath();}
else{
//read in seq function, but for now
print something
System.out.println("Got to a valid
filel");
seq=readSegFromFasta(seqFile);
seq=validateSeq(seq);}
return(seq);}}
sequence=new pathDoer().doPath();}

ne

")

150

else if(method.equals("direct")){
class directDoer{
public String doDirect(){
System.out.println("What is the sequence?");
String seq=temp.next();
seq=validateSeq(seq);
if(seq.equals("")){
print("Invalid sequence! Please use
IUPAC compliant sequences only!");
doDirect();}
return seq;}}
sequence=new directDoer().doDirect();}
else{
System.out.println("Invalid method of supplying sequence.
Addition of gene" + geneName +"aborting...\n");
return;}
new
File("ScrawQ_Phyloinformatics/All_Taxa/"+thisTaxa+"/Genes/"+geneName+"/").mkdir();
BufferedWriter output;
try {
output= new BufferedWriter(new
FileWriter("ScrawQ_Phyloinformatics/All_Taxa/"+thisTaxa+"/Genes/"+geneName+"/sequence.txt", true));
output.append(sequence);
output.newLine();
output.close();
} catch (IOException e) {
e.printStackTrace();}}}
print("Gene addition sucessful!");}

/*
* makes a new group based on user input
* sanitizes the input, just in case
*/
public static void mkGroup(){
//connect to standard in
Scanner temp=new Scanner(System.in);
String thisGroup=new String();
//get input
System.out.println("Name of new group to add? (type 'cancel' to cancel");
thisGroup=temp.next();
System.out.println("adding group "+thisGroup+"...");
//if this is not what they wanted to do, cancel
if(thisGroup.equals(“"cancel"”)){
return;}
//sanitize the input, make a new dir for the group
//make a file to keep track of the members of the group.
else{
thisGroup=sanitizeInput(thisGroup);
new File("ScrawQ_Phyloinformatics/Groups/"+thisGroup).mkdir();
File groupFile=new
File("ScrawQ_Phyloinformatics/Groups/"+thisGroup+"/members.txt");
mkFile(groupFile);
BufferedWriter output;
try {
output= new BufferedWriter(new
FileWriter("ScrawQ_Phyloinformatics/Groups/List_of_All_Groups.txt", true));
output.append(thisGroup);
output.newLine();
output.close();
} catch (IOException e) {
e.printStackTrace();}
System.out.println(thisGroup+" was added sucessfully!");}}
/*
* Adds a new taxa via user input
* sanitizes the user input, just in case
*/
public static void addNewTaxa(){
Scanner temp=new Scanner(System.in);

151

String thisTaxa=new String();
System.out.println("Name of new taxa to add? (type 'cancel' to cancel");
thisTaxa=temp.next();
if(thisTaxa.equals("cancel")){
return;}
else{
System.out.println("adding Taxa: "+thisTaxa+"...");
thisTaxa=sanitizeInput(thisTaxa);
new File("ScrawQ_Phyloinformatics/All_Taxa/"+thisTaxa).mkdir();
new File("ScrawQ_Phyloinformatics/All_Taxa/"+thisTaxa+"/Genes/").mkdir();
File taxaFile=new
File("ScrawQ_Phyloinformatics/All_Taxa/"+thisTaxa+"/Genes/GenelList.txt");
mkFile(taxaFile);
File aliases=new
File("ScrawQ_Phyloinformatics/All_Taxa/"+thisTaxa+"/nicknames.txt");
mkFile(aliases);
BufferedWriter output;
try {
output= new BufferedWriter(new
FileWriter("ScrawQ_Phyloinformatics/All_Taxa/List_of_All_Taxa.txt", true));
output.append(thisTaxa);
output.newLine();
output.close();
} catch (IOException e) {
e.printStackTrace();}
System.out.println(thisTaxa+" was added sucessfully!");}}
/*
* Adds new taxa based on a string arg. Meant for internal use.
*/
public static void addNewTaxaInternal(String thisTaxa){
thisTaxa=sanitizeInput(thisTaxa);
new File("ScrawQ_Phyloinformatics/All_Taxa/"+thisTaxa).mkdir();
File taxaFile=new File("ScrawQ_Phyloinformatics/All_Taxa/"+thisTaxa+"/GenelList.txt");
mkFile(taxaFile);
File aliases=new File("ScrawQ_Phyloinformatics/All_Taxa/"+thisTaxa+"/nicknames.txt");
mkFile(aliases);}

/*
* Same as mkgroup, but meant for internal use based off a string arg
*/
public static void mkGroupInternal(String thisGroup){
thisGroup=sanitizeInput(thisGroup);
new File("ScrawQ_Phyloinformatics/Groups/"+thisGroup).mkdir();
File groupFile=new File("ScrawQ_Phyloinformatics/Groups/"+thisGroup+"/members.txt");
mkFile(groupFile);
BufferedWriter output;
try {
output= new BufferedWriter(new
FileWriter("ScrawQ_Phyloinformatics/Groups/List_of_All_Groups.txt", true));
output.append(thisGroup);
output.newLine();
output.close();
} catch (IOException e) {
e.printStackTrace();}
System.out.println(thisGroup+" was added sucessfully!");}

public static void validateDB(){
validateTaxa();
validateGroups();}

public static void validateGroups(){

}

public static void validateTaxa(){
ArraylList<String> recordedTaxa=getRecordedTaxa();
print(recordedTaxa);
ArraylList<String> observedTaxa=getObservedTaxa();
print(observedTaxa);
ArrayList<String> notInObs=new ArraylList<String>(recordedTaxa);
notInObs.removeAll(observedTaxa);

152

if(notInObs.size()>0){
print("There is a difference between master list and observed taxa entries");
print("Resolving difference by updating master list");
File temp=new File("ScrawQ_Phyloinformatics/All_Taxa/List_of_All_ Taxa.txt");
///We are set to delete this without backing file up, since we have it in RAM
already to correct if something bad happens.
boolean completed=temp.delete();
ArrayList<String> forAllTaxa=new ArraylList<String>(observedTaxa);
if(completed==false){
print("There was an error deleting abherent entries");
print("Restoring master list to last working state...");}
else{
File ListOfAllTaxa=new
File("ScrawQ_Phyloinformatics/All_Taxa/List_of_All Taxa.txt");
mkFile(ListOfAllTaxa);
BufferedWriter output = null;
try {
output= new BufferedWriter(new
FileWriter("ScrawQ_Phyloinformatics/All_Taxa/List_of_All_Taxa.txt", true));
} catch (IOException e) {
e.printStackTrace();}
for(String i : forAllTaxa){
try{
output.append(i);
output.newLine();}
catch(IOException 0){
o.printStackTrace();}}
try {
output.close();
} catch (IOException e) {
e.printStackTrace();}}}
ArrayList<String> notInRec=new ArraylList<String>(observedTaxa);
notInRec.removeAll(recordedTaxa);
if(notInRec.size()>0){
File ListOfAllTaxa=new
File("ScrawQ_Phyloinformatics/All_Taxa/List_of_ All Taxa.txt");
BufferedWriter output = null;
try{
output= new BufferedWriter(new
FileWriter("ScrawQ_Phyloinformatics/All_Taxa/List_of_All Taxa.txt", true));
for(String i : notInRec){
boolean havePrinted=false;
File temp=new
File("ScrawQ_Phyloinformatics/All_Taxa/"+i+"/Genes");
if(temp.exists()==Ffalse){
print("Incomplete directory information found for taxa "+
i+"1");
print("Updating directory to conform to minimal
requirements.");
havePrinted=true;
temp.mkdir();}
temp=new
File("ScrawQ_Phyloinformatics/All_Taxa/"+i+"/Genes/GenelList.txt");
if(temp.exists()==false){
if(havePrinted==false){
print("Incomplete directory information found for
taxa "+ i+"!");
print("Updating directory to conform to minimal
requirements.");}
mkFile(temp);}
output.append(i);
output.newLine();}
output.close();}
catch(IOException 0){
o.printStackTrace();}}}

public static ArraylList<String> getRecordedTaxa(){
ArrayList<String> taxalist=new ArraylList<String>();

153

File temp=new File("ScrawQ_Phyloinformatics/All_Taxa/List_of_All_Taxa.txt");
if(!temp.exists()){
///generate a blank one on the fly!
mkFile(temp);}
taxalList=returnFile("ScrawQ_Phyloinformatics/All_Taxa/List_of_All_Taxa.txt");
return taxalList;}
public static ArraylList<String>getObservedTaxa(){
ArrayList<String>obsTaxaList=new ArrayList<String>();
File temp=new File("ScrawQ_Phyloinformatics/All_Taxa/");
File[] tempList=temp.listFiles();
for(File i: tempList){
String tempName=i.getName();
if(tempName.equals("List_of All Taxa.txt")==false){
obsTaxalList.add(tempName);}}
return(obsTaxalList);}
public static void printGroupHelpMessage(){
System.out.println("Here are the commands pertaining to working with groups");
System.out.println("groupHelp: Displays this help message");
System.out.println("mkGroup: Makes a new group");}
/*
* Prints the purpose of all commands
*/
public static void printHelp(){
System.out.println("Below are commands and their function");
System.out.println("help : Displays this help message");
System.out.println("quit : Exits ScrawQ. There is no prompt for confirmation.");
System.out.println("install: Installs ScrawQ. Only Run this once unless you want a fresh
installl!l");
System.out.println("update: Updates the internal structures and trees if new data is
present.");
System.out.println("redo: Performs all analyses regardless of if the data has been updated

or not.");
System.out.println("mkGroup: Makes a new group");}
/*
* Replaces all '/',"\'," ', and '.' characters with underscores
* and alerts the user to this change
*/

public static String sanitizeInput(String token){
String newToken;

newToken=token.replace('\\', '_');
newToken=newToken.replace('/"', '_');
newToken=newToken.replace(' ', '_');
newToken=newToken.replace('."', '_');
if(!token.equals(newToken)){
System.out.println("Possible problem with user input...");

System.out.println("User input "+ token+" was changed to "+newToken);}
return newToken;}

public static void showFile(String fileWithPath) throws IOException{
BufferedReader br = new BufferedReader(new FileReader(fileWithPath));
String line = null;
while ((line = br.readlLine()) != null) {
System.out.println(line);}
br.close();}
public static ArraylList<String> returnFile(String fileWithPath){
ArrayList<String> contents=new ArraylList<String>();
try {
BufferedReader br = new BufferedReader(new FileReader(fileWithPath));
String line = null;
while ((line = br.readLine()) != null) {
contents.add(line);}
br.close();
} catch (IOException e) {
e.printStackTrace();}
return(contents);}

/*

154

* a method that just try-catches the creation of a file.
* Just in case.

*/
public static

void mkFile(File filenameANDpath){

File newfile=filenameANDpath;

try{

newfile.createNewFile();}

catch(IOException ioe){

public static

bases.
.add('C");
.add('G");
.add('T");
.add('a");
.add('c");
.add('g");
.add('t');
.add('U");
.add('u');
.add('R");
.add('r');
.add('Y'");
.add('y');
.add('S");
.add('s");
.add('W');
.add('w');
bases.
bases.
bases.
bases.
bases.
bases.
bases.
bases.
bases.
bases.
bases.
bases.
bases.
bases.
bases.
bases.

bases
bases
bases
bases
bases
bases
bases
bases
bases
bases
bases
bases
bases
bases
bases
bases
bases

public static

System.err.println("Error in making files\n "+ioe);}}
void populateBases(){
add('A'");

add('K");
add('k");
add('M");
add('m'");
add('B');
add('b');
add('D");
add('d");
add('H");
add('h');
add('v');
add('v');
add('N");
add('n');
add('.");
add('-");}
String readSegFromFasta(File fileWithPath){

String finalSeq="";
boolean hitCarrot=false;

try {

BufferedReader read=new BufferedReader(new FileReader(fileWithPath));
String line = null;
while((line=read.readLine())!=null){
if(line.charAt(0)==">"){
if(hitCarrot==false){
hitCarrot=true;
continue;}
else{
return(finalSeq);}}
else{
String seq=read.readlLine();
finalSeqg+=seq;}}

} catch (FileNotFoundException e) {

// TODO Auto-generated catch block
e.printStackTrace();

} catch (IOException e) {

// TODO Auto-generated catch block
e.printStackTrace();}

return finalSeq;}

public static

String validateSeq(String seq){

155

char[]seqChars=seq.toCharArray();
for(char i:seqChars){
if(!bases.contains(i)){
return "";}}
return seq.toUpperCase();}
public static void print(Object o){
System.out.println(o);}}

//geneTreeMethod. java
import java.util.Arraylist;

public interface geneTreeMethod {
//format seqs should put the seqs in the database into
// the format needed to run the genetree method and write
// them to some location tbd. It should return the full filenames
// of every entry. If a program requires an alignment, then
// an alignmentMethod interface should be instanciated locally
public ArraylList<String> formatSeqs(ArrayList<String> seqNames, ArraylList<String> seqs);
//should be last method called which will clear the
//files from memory
public void removeFormattedSeqs();

//should get the command line parameters in a way that allows
//it to be tacked on to the end of the program call
public String getParams(ArrayList<String> params);

//should return the invokation of the program as a string
//to be called from the system. Will not be OS independent
//and will likely include calls to get params and format Seqs
public String invokation();

//returns a string designating the path to write files out, if
//necessary. may be used in invokation.
public String outDir();}

//alignmentMethod. java
import java.util.Arraylist;

public interface alignmentMethod {
//should return a list of any size of filenames to be used in the alignment
//if it only needs one big file, for instance, the length will be
//size 1.
public ArraylList<String> getFilesToAlign();

//returns params as they would be tacked onto the invokation
// of the program as a single string
public String getAlignParams(ArraylList<String>params);

//invokes the alignment command and returns the location of

//the resulting aligned file.
public String align(ArrayList<String>info);}

156

	Killing Two Birds with One Stone: The Concurrent Development of the Novel Alignment Free Tree Building Method, Scrawkov-Phy, and the Extensible Phyloinformatics Utility, EMU-Phy.
	Recommended Citation

	tmp.1464112642.pdf.ytr0B

