
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Theses

5-2016

Toward Establishing a Catalog of Security Architecture Toward Establishing a Catalog of Security Architecture

Weaknesses Weaknesses

Joanna Cecilia da Silva Santos
jds5109@rit.edu

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation Recommended Citation
da Silva Santos, Joanna Cecilia, "Toward Establishing a Catalog of Security Architecture Weaknesses"
(2016). Thesis. Rochester Institute of Technology. Accessed from

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact
repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F9004&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/9004?utm_source=repository.rit.edu%2Ftheses%2F9004&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

Toward Establishing a Catalog of
Security Architecture Weaknesses

by

Joanna Cecilia da Silva Santos

A Thesis Submitted
in

Partial Fulfillment of the
Requirements for the Degree of

Master of Science
in

Software Engineering

Supervised by

Dr. Mehdi Mirakhorli

Department of Software Engineering

B. Thomas Golisano College of Computing and Information Sciences
Rochester Institute of Technology

Rochester, New York

May 2016

ii

The thesis “Toward Establishing a Catalog of Security Architecture Weaknesses” by

Joanna Cecilia da Silva Santos has been examined and approved by the following Exami-

nation Committee:

Dr. Mehdi Mirakhorli
Assistant Professor
Thesis Committee Chair

Dr. J. Scott Hawker
Associate Professor

Dr. Stephanie Ludi
Professor

iii

Dedication

To Clarice (mother), Messias (father) and Lucas (brother) for their love and assistance.

To my friends, who make my days happier and more enjoyable.

To professor Anselmo, whose classes triggered my passion for STEM fields.

To professor Admilson, whose lessons and advice positively contributed in my academic

life and encouraged me to pursue an academic career.

iv

Acknowledgments

I am extremely thankful to Dr. Mehdi Mirakhorli for the opportunity, guidance, patience

and support while pursuing my Master’s degree. I am also thankful to Dr. Hawker for his

valuable comments on my thesis work. I also would like to thank Jairo Vidal for his review

over the CAWE catalog. I am grateful to Waleed Zogaan, Raghuram Gopalakrishnan,

Nuthan Munaiah and Harold Valdivia-Garcia for their relevant feedback over my thesis

presentation. I am also grateful to CAPES-Brazil for sponsoring my graduate studies.

v

Abstract

Toward Establishing a Catalog of Security Architecture Weaknesses

Joanna Cecilia da Silva Santos

Supervising Professor: Dr. Mehdi Mirakhorli

The architecture design of a software system plays a crucial role in addressing security re-

quirements early in the development lifecycle through forming design solutions that prevent

or mitigate attacks in a system. Consequently, flaws in the software architecture can impact

various security concerns in the system, thereby introducing severe breaches that could be

exploited by attackers. In this context, this thesis presents the new concept of Common

Architectural Weakness Enumeration (CAWE), a catalog that identifies and categorizes

common types of vulnerabilities rooted in the software architecture design and provides

mitigation techniques to address each of them. Through this catalog, we aim to promote

the awareness of architectural flaws and stimulate security design thinking to developers,

architects and software engineers. This work also investigates the reported vulnerabilities

from four real and complex software systems to verify the existence and implications of

architecture weaknesses. From this investigation, we noted that a variety of breaches are

indeed rooted in the software design (at least 35% in the investigated systems), providing

evidence that architectural weaknesses frequently occurs in complex systems, resulting in

medium to high severe vulnerabilities. Therefore, a catalog of such type of weaknesses can

be useful for adopting proactive approaches to avoid design vulnerabilities.

vi

Contents

Dedication . iii

Acknowledgments . iv

Abstract . v

1 Introduction . 1
1.1 Objectives . 3
1.2 Research Questions . 3
1.3 Thesis Organization . 4

2 Designing for Security . 5
2.1 Security Patterns . 5
2.2 Flaws in a Security Architecture . 6

3 Catalog of Architectural Weaknesses . 8
3.1 Creating the Catalog . 8
3.2 Catalog Structure . 10
3.3 Catalog Overview . 11

4 Results and Discussion . 13
4.1 RQ1: Architectural Weaknesses . 13
4.2 RQ2: Most Impacted Security Patterns . 13
4.3 RQ3: The Most Common Design Issues 14

4.3.1 Vulnerabilities Dataset . 14
4.3.2 Results . 15

4.4 Examples of Architectural Weaknesses . 17

5 Application of the CAWE Catalog . 24
5.1 Integration Into MITRE/DHS Collection of CWEs 25

vii

6 Related Work . 27

7 Threats to Validity . 29

8 Conclusion and Future Work . 31
8.1 Future Work . 31

Bibliography . 32

viii

List of Tables

3.1 An Example of an Architectural Weakness from the Catalog 12

4.1 Total Number of Identified Design Flaws for Each Security Pattern. 14
4.2 Overview of the Vulnerability Dataset . 15
4.3 The Most Common Architectural Weaknesses in the Case Studies. 17

ix

List of Figures

3.1 Partial Structure of MITRE‘s CWE Collection with its Upper Elements. . . 9
3.2 Structure of the CAWE catalog . 10

4.1 Session Hijacking in PHP. 19
4.2 Session Fixation Exploitation in PHP. 21

5.1 Taxonomy Mapping to Help Identify Design Flaws Associated with Secu-
rity Patterns . 26

1

Chapter 1

Introduction

Software security, which is concerned about engineering a software that remains work-

ing under malicious attacks, is a relatively new field [27] and has been pointed as an af-

terthought: firstly, the software is released, then the security problems that are found during

its usage are fixed. This fact can be observed when reading the release notes of a software

product, which usually indicate some patches to fix vulnerabilities. The problem with this

reactive approach is that there could be potential consequences with the exploitation of the

discovered breaches (such as brand reputation damage and money losses [36]).

The architecture of a software exhibits the set of design decisions made by the archi-

tect to satisfy quality requirements, such as availability, performance, security and so forth.

Thus, software architecture design is the first and the fundamental step to address secu-

rity concerns early in the software development lifecycle. To satisfy a security concern,

an architect must consider alternate design solutions, evaluate their trade-offs, identify the

risks and select the best option [4]. These design decisions are often based on well-known

security patterns [3, 4, 20, 21], which provide reusable solutions for enforcing the required

authentication, authorization, confidentiality, data integrity, privacy, accountability, avail-

ability, safety and non-repudiation requirements, even when the system is under attack.

Previous estimations [27] indicate that roughly 50% of security problems are the result

of software design flaws, such as miss-understanding architecturally significant require-

ments, poor architectural implementation, violation of design principles in the source code

and degradation of the security architecture. Since the software security architecture is one

of the main factors to achieve security goals within a software, flaws in the architecture

2

can have a greater impact on the security aspect of a software than purely coding bugs [1].

Design flaws in the architecture of a software system mean that successful attacks could

lead to enormous consequences.

Design flaws (or only “flaws”) are different from Bugs, as the latter are more code-level

(such as buffer overflows caused by miscalculations) while the former are at a higher-level

of abstraction, require a deeper analysis on the software’s design and are much more subtle

than bugs [1]. Although a software system will always have bugs, recent studies show

that the security of many software applications is breached due to flaws in the architecture

[1, 32].

Architectural flaws are results of inappropriate design choices in early stages of soft-

ware development, incorrect implementation of security patterns, or degradation of security

architecture over time [29, 40]. An example of an architectural flaw is the “Use of Client-

Side Authentication” [10], in which a client/server product performs authentication within

the client code, but not in the server code. This design decision allows the authentication

feature to be bypassed via a modified client that omits the authentication check. It cre-

ates a flaw in the security architecture that can be successfully exploited by an intruder

with reverse-engineering skills. Another instance of an architectural flaw is the “Cleartext

Transmission of Sensitive Information”, in which a sensitive information (e.g.credit card

number) is exchanged without encryption [15]. In this flaw, an attacker could steal this

information by capturing the messages being transmitted in the network.

Even though there are many techniques and practices that help to develop a secure

software system (such as threat modeling [39], penetration testing [2], static and dynamic

code analysis [6, 35], etc.), there have not been many previous works in the literature that

approach security from an architectural perspective. A recent effort is the IEEE Center for

Secure Design launched by the IEEE Computer Society. However, as of today, there are

not many examples of design flaws obtained or published yet that can help architects and

developers to learn and avoid such flaws.

3

1.1 Objectives

As discussed in the introduction, there is still a need for tackling this problem in terms of

design flaws [32]. Hence, the primary goal of this work is to approach security according to

an architectural point of view through the new concept of Common Architectural Weakness

Enumeration (CAWE): a catalog of architectural weaknesses (i.e. security issues rooted

in the software security architecture). The overall idea is to provide an artifact to help

developers and architects in understanding the consequences of having such breaches in

their software and identify possible ways to avoid them to occur. This catalog was built on

top of a previous library of Common Software Weaknesses Enumeration (CWE) 1, which

is a community-developed enumeration of common types of vulnerabilities (weaknesses)

maintained by the MITRE Corporation. This library, however, does not categorize weak-

nesses based on their architectural impacts and does not clearly distinguish architecture-

related issues from purely programming issues.

The second objective is to report the results of an analysis of the vulnerabilities from

four large complex systems (namely Linux Kernel, Chrome, Thunderbird, and PHP) and

to demonstrate instances of architectural weaknesses within these systems. Besides that,

this work discusses the practical aspects of CAWE catalog, indicating how it can be used

in activities within the software development lifecycle and how it can be integrated into the

existing MITRE’s library.

1.2 Research Questions

This work addresses the following research questions:

• RQ1: What security weaknesses are rooted in the software architecture?

The answer to this question proposes to identify, among the documented types of

security weaknesses from the MITRE’s library, which ones can happen due to a

1http://cwe.mitre.org/

http://cwe.mitre.org/

4

design flaw or an architectural drift.

• RQ2: What security patterns are more likely to have associated vulnerabilities?

By knowing the answer of R1, we aim to classify each security weakness per security

pattern. This way, we can spot the security patterns that are more likely to introduce

vulnerabilities when improperly applied and in which ways these vulnerabilities may

occur.

• RQ3: What are the most common design issues in real software systems?

In this research question, we aim to verify the proportion of vulnerabilities in exist-

ing systems are rooted in their architecture, identifying what are the most common

architectural flaws in software systems.

1.3 Thesis Organization

This work is organized as follows: Chapter 2 explores the concepts of security patterns

and architectural flaws. Chapter 3 presents the CAWE catalog, its structure, and creation

process. Chapter 4 presents the answers to all the three research questions and provides

some real examples of architectural weaknesses. Chapter 5 discusses ways to use the cat-

alog within an IT organization and to integrate the CAWE catalog to the MITRE’s library.

Chapter 6 presents the related works. Chapter 7 explains the threats to the validity of this

work. The conclusion and future work are presented in the last Chapter.

5

Chapter 2

Designing for Security

Security principles need to be implemented from the ground up to ensure an application

is secure. During requirements analysis, malicious practices are taken for granted, and

requirements engineers identify all the use cases which are interests of an attacker. During

architecture design, architects carefully analyze these requirements and adopts appropriate

security patterns to resist, detect and/or recover from attacks [34].

2.1 Security Patterns

Security patterns are the building blocks of a security architecture. A combination of pat-

terns are required to be implemented to deliver a secure system in which the legitimate users

are properly authenticated; access controls are applied to enforce that only authorized users

can access their designated functionality; user activities are audited, so recovering from a

malicious activity is feasible; information integrity is preserved and similar security char-

acteristics are addressed.

Several researchers and practitioners have worked on collecting and organizing security

patterns [34]. For instance, Hafiz et al.. [20] discussed an organization of a subset of pat-

terns according to different classification schemes (e.g. based on the application context and

the STRIDE [22] models) and later showed a pattern language to indicate the relationship

among those patterns [21]. Likewise, Kienzle et al. [25] presented a repository of security

patterns. Besides research papers, many textbooks described in details security patterns

either specific to a software technology (e.g. J2EE) [38] or to general use, regardless of

6

software domain and underlying technical choices [34].

While these security patterns provide a well-formed solution to address various security

concerns, if these patterns are not adopted and implemented carefully, they can result in

severe breaches in a security architecture. In the subsequent section, we discuss several

ways that a security architecture can be flawed or degraded.

2.2 Flaws in a Security Architecture

The IEEE Center for Secure Design has been focusing on identifying the most relevant

design flaws based on experiences in the industry, academia, and government. Currently, it

identified top ten design flaws that are caused either by a weak design (i.e. an incomplete

architecture whose security mechanisms can be bypassed by attackers) or due to lack of

design decisions (e.g. not having an authorization enforcement in the system) [1]. Even if

the architecture fulfills all security requirements appropriately, previous studies have shown

that the architecture can erode as the software evolves or may be wrongly implemented in

the code [24, 29, 40]. Consequently, based on these observations, we can classify architec-

tural flaws to Omission, Commission and Realization Flaws:

• Omission Flaws are caused by decisions that were never made (e.g. ignoring a

security requirement or potential threats). A common omission design flaw is to store

a password in a file without encryption [8]. In this flaw, the architect overlooks the

need of protecting sensitive data from unauthorized users and assumes that attackers

would never have access to the file, thereby considering that the password stored in

plaintext would not correspond to a compromise of the system. However, this lack

of encryption can open the system to attacks, because anyone, who has granted read

access to the file, will be able to read all the stored passwords. Similarly, the flaw of

having cleartext transmission of sensitive information [15] also can result in a steal

of sensitive information by attackers that can capture the data being exchanged in the

communication channel.

7

• Commission Flaws refer to the design decisions which were made and could lead to

undesirable consequences. An example of such type of flaw is “Client side authen-

tication” [10], mentioned earlier in the introduction. While architects have made a

design decision, the flaw in this design will enable attackers to bypass the authenti-

cation through implementing a modified client that does not have the authentication

check. Another example of such flaw is “Using a Weak Cryptography for Passwords”

to achieve better performance while maintaining data confidentiality. In this flaw, the

passwords are stored with an obfuscation mechanism that is computationally less

complex but easier for attackers to guess [13]. Consequently, such improper design

choice makes it possible that attackers to recover the passwords via an exhaustive

search.

• Realization Flaws are the design decisions that are correct (i.e. satisfies the soft-

ware’s security requirements), but its implementation suffers from a coding mistake.

For example, a developer fails to perform authenticity check in the critical parts of

the system [14]. In another instance, the developers incorrectly sanitize special ele-

ments in user-provided inputs, which can lead to many consequences, such as crashes

(denial of service) or bypass of protection mechanisms [12].

In the Chapter that follows, we present the CAWE catalog which documents such types

of flaws in a systematic way.

8

Chapter 3

Catalog of Architectural Weaknesses

The MITRE Corporation, with the support of the National Cyber Security Division at US

Department of Homeland Security (DHS), maintains a collection of common software

weaknesses (http://cwe.mitre.org/). This collection contains over 1,000 software weak-

nesses, but these vulnerabilities are not categorized based on their architectural impacts

and implications. Thus, we classified those weaknesses architecture-related vulnerabili-

ties. As a result, we have developed the Common Architectural Weakness Enumeration

(CAWE), a catalog that enumerates common architectural flaws in a software system that

can lead to a security vulnerability.

The next sections of this Chapter detail the systematic process followed to create the

catalog and how the data within is structured.

3.1 Creating the Catalog

As briefly mentioned before, the CAWE catalog was built on top of the MITRE’s compila-

tion of software weaknesses (CWE collection). Figure 3.1 shows a structural overview of

the CWE collection, in which we only showed some of the elements for the sake simplic-

ity 1. As noted in this figure, each entry in the CWE collection can be of four types: View

(for grouping weaknesses in a given perspective), Category (used to categorize weaknesses

based on a common attribute), Weakness (an actual security issue) and Compound Element

1The complete structure of the CWE collection can be found at MITRE’s Website:
https://cwe.mitre.org/data/xsd/cwe schema v5.4.2.xsd

9

(a security issue due to the occurrence of other weaknesses in a time sequence). For each

Weakness and Compound Elements types, the collection provides information about the

issue, such as its description, mitigation techniques, code examples, and so forth.

Figure 3.1: Partial Structure of MITRE‘s CWE Collection with its Upper Elements.

Since the CWE collection is available as an XML (eXtensible Markup Language) doc-

ument in the MITRE’s Web site 2, we retrieved a list of all entries that are of type Weakness

or Compound Elements. The other element types (Categories and Views) were not included

as they serve more as a grouping of weaknesses rather than providing details about a spe-

cific type of vulnerability. Then, we analyzed each collected entry to classify whether it is

rooted in the security architecture. Once we considered that an entry has an architectural

implication, we further investigated it to verify (i) which security pattern(s) can be related

to the weakness and (ii) and how the related pattern(s) may be impacted.

To increase the accuracy of this mapping, a second graduate student in Software En-

gineering, who was familiar with security patterns and software architecture design, peer

reviewed the catalog. Thus, this individual inspected the entries from the MITRE’s col-

lection and performed the same steps described before (classification of the entries into

architectural/non-architectural and identification of the related security patterns), sharing

the rationale behind each mapping. After this peer review process, we established the

CAWE catalog, which provides a collection of architectural weaknesses.

2http://cwe.mitre.org/

10

3.2 Catalog Structure

To accommodate all the gathered information and to provide a rich knowledge base about

architectural weaknesses, we structured the CAWE catalog as shown in Figure 3.2. In this

figure, we note that the catalog organizes the design flaws based on the security patterns

that are impacted by them. This way, the CAWE catalog encompasses a list of Impacted

Pattern elements, which are used to provide the details about each security pattern (its

context, problem, solution, and so forth) and the relationships between the pattern and one

or more design flaws.

Figure 3.2: Structure of the CAWE catalog .

As discussed in Chapter 2,a missing design choice, an incorrect implementation of an

architectural choice or an improper design decision can cause flaws in the software. There-

fore, each Design Flaw element contains an impact type attribute, which indicates

whether the flaw is an omission, commission or a realization flaw, and an explanation

attribute, that describes how the associated security pattern is impacted. Every Design

Flaw element also points to one entry from the CWE collection. Such link is used to

provide detailed information about the architectural weakness.

11

3.3 Catalog Overview

The CAWE catalog is publicly available online at http://design.se.rit.edu/

cawe. It currently contains 384 flaws that were categorized based on their impacts over

39 security patterns. Table 3.1 shows an entry from the CAWE catalog, which presents

a weakness due to an incorrect implementation (Realization Flaw) of the Secure Session

Management pattern [34] (some text in this Table was hidden for the sake of clarity). From

this table, we observe that each CAWE instance refers to an entry from the MITRE’s li-

brary of software weaknesses. This reference contains the detailed information about the

design flaw, such as a textual description, source code examples, mitigation techniques and

detection methods of the weakness. Moreover, a CWE entry can indicate how this flaw

can be exploited by an intruder through pointing to external entries from the Common At-

tack Pattern Enumeration and Classification (CAPEC) [11], which is a dictionary of known

attack patterns.

Through this catalog architects and developers can learn to avoid common architectural

issues in the software. Since the catalog is organized around security patterns, architects

and developers can easily identify potential flaws related to a particular security pattern.

For instance, a common design decision is to use encryption algorithms from libraries to

store/exchange data [32]. However, developers and architects may overlook the properties

of these encryption algorithms, making incorrect assumptions about their usage. Since

understanding the algorithm is crucial to properly secure data, our catalog enumerates a set

weaknesses that can guide them to obtain such knowledge. Examples of such weaknesses

are: “CAWE-328 Reversible One-Way Hash“ and “CAWE-780 Use of RSA Algorithm

without Optimal Asymmetric Encryption Padding”.

http://design.se.rit.edu/cawe
http://design.se.rit.edu/cawe

12

Table 3.1: An Example of an Architectural Weakness from the Catalog

Im
pa

ct
ed

Pa
tt

er
n

Name Secure Session Management

Context (...)

Problem (...)

Solution (...)

Related
Patterns

(...)

D
es

ig
n

Fl
aw

Impact
Type

Realization Flaw

Explanation This incorrect implementation of the session management can lead to information disclosure. (...)

CWE
Entry

Title: Exposure of Data Element to Wrong Session
Description: The product does not sufficiently enforce boundaries between the states of different
sessions, causing data to be provided to, or used by, the wrong session. (...)
Demonstrative Example: The following Servlet stores the value of a request parameter in a member
field and then later echoes the parameter value to the response output stream. While this code will
work perfectly in a single-user environment, if two users access the Servlet at approximately the
same time, it is possible for the two request handler threads to interleave in the following way:
Thread 1: assign “Dick” to name Thread 2: assign “Jane” to name Thread 1: print “Jane, thanks
for visiting!” Thread 2: print “Jane, thanks for visiting!”. Thereby, showing the first user the
second user’s name.

public class GuestBook extends HttpServlet {
String name;
protected void doPost(HttpServletRequest req,

HttpServletResponse res) {
name = req.getParameter("name");
...
out.println(name + ", thanks for visiting!");

}
}

Potential Mitigations:
• Architecture and Design Phase: Protect the application’s sessions from information leakage.
Make sure that a session’s data is not used or visible by other sessions.
• Testing Phase: Use a static analysis tool to scan the code for information leakage vulnerabilities
(e.g. Singleton Member Field).
Attack Patterns:
• CAPEC-59 Session Credential Falsification through Prediction
• CAPEC-60 Reusing Session IDs (aka Session Replay)
(...)

13

Chapter 4

Results and Discussion

4.1 RQ1: Architectural Weaknesses

RQ1: What security weaknesses are rooted in the software architecture?

Once we consolidated the CAWE catalog, we observed that, among the 727 entries of type

Weaknesses or Compound Elements from the CWE library, there were 384 of them with

architectural implications. A full list of these security architectural weaknesses is provided

in our Web site (http://design.se.rit.edu/cawe).

4.2 RQ2: Most Impacted Security Patterns

RQ2: What security patterns are more likely to have associated vulnerabilities?

Table 4.1 reports the total number of design weaknesses identified for each security pattern,

based on the CAWE catalog. In this table, we observe that, in the case of “Chroot Jail”

pattern, we found 70 common flaws that can impact the robustness of this security pattern.

For most patterns, this number is smaller, except for “Intercepting Validator” which has 166

flaws related to its implementation. The reason for such a large number is that there are a

large number of known security weaknesses which can result in breaches in the system due

to issues in the input data [32].

http://design.se.rit.edu/cawe

14

Table 4.1: Total Number of Identified Design Flaws for Each Security Pattern.
Pattern Name # Pattern Name # Pattern Name #

Administrator Objects 25 Exception Shielding 31 Policy Delegate 7

Assertion Builder 6 Firewall 1 Policy Enforcement Point 34

Audit Trails 8 Hidden Metadata 3 Protected System 16

Authenticator 41 HMAC 12 Protection Reverse Proxy 2

Authorization 54 Information Obscurity 5 Role based access control 18

Batched Routing 3 Intercepting Web Agent 39 Secure Base Action 3

Brokered Authentication 29 Intercepting Validator 166 Secure Communication 15

Chroot Jail 70 Message Inspector 13 Secure Message Router 5

Control Process Creator 12 Message Interceptor Gateway 16 Security Provider 36

Credential 17 Minefield 2 Security Proxy 3

Demilitarized Zone 1 Morphed Representation 7 Session Management 8

Encrypted Storage 33 Obfuscated Transfer Object 19 Single Sign On 5

Error Detection and Correction 6 Password Synchronizer 20 Subject Descriptor 7

4.3 RQ3: The Most Common Design Issues

RQ3: What are the most common design issues in real software systems?

To respond to this third research question, we investigated the reported vulnerabilities from

four real and complex systems. The software systems chosen as case studies were: the

Linux Kernel (contains the core functions of the Linux Operating System), the Google

Chrome (a Web browser), the Mozilla Thunderbird (an application for managing email

and news feeds) and PHP (the interpreter of the PHP language). These four systems were

selected because they are among the open source projects with a higher number of known

vulnerabilities and from distinct domains, which can enrich this discussion of architectural

flaws.

4.3.1 Vulnerabilities Dataset

To conduct such analysis, two types of information are required: the security breaches

in each case study and their respective root causes. To do so, we queried the National

15

Vulnerability Database (NVD) 1 to obtain all the reported vulnerabilities for each case

study. As a response, the NVD provides the vulnerabilities of a project as a list of CVE

(Common Vulnerabilities and Exposures) instances [7]. In short, these CVE instances

identify the severity of the vulnerability, the date it was reported, a description and links to

external resources with more details about the breach (such as URLs to threads discussion

about the issue, bug tracking systems, etc.). Each CVE instance sometimes also indicate

its root cause through a tag that points to a documented software weakness from MITRE’s

collection (CWE entry). Thus, in the presence of this link, we verify whether the problem is

an architectural flaw or a purely coding bug through comparing the referred CWE instance

against our CAWE catalog. For the CVEs without any further information about its causes

(i.e. without a tag), we manually inspected them to obtain such information.

4.3.2 Results

Table 4.2 shows the size of these projects (in terms of the number of files in the latest ver-

sion) and the amount of vulnerabilities collected for each project. This table also presents

the total number of CVEs that have an explicit CWE tag and the amount of CVEs that

we manually tagged. It is important to highlight that there were vulnerabilities that were

deprecated (i.e. invalid) or external to the architecture of the case studies (such as vulner-

abilities in applications that execute in a Linux environment but not in the Linux Kernel

itself). Therefore, we discarded these vulnerabilities from our dataset, so Table 4.2 reports

only the instances that are under the scope of our analysis.

Table 4.2: Overview of the Vulnerability Dataset
Project # Files #CVEs #With Tags #No Tags #Arch. CVEs #Non-arch. CVEs

Chrome 46,544 1251 1067 184 441 810

Thunderbird 19617 704 517 187 310 394

PHP 2028 425 267 158 214 211

Linux Kernel 39787 1342 918 424 540 802

1https://cve.mitre.org

16

In this table, we observe that approximately 50% of the reported vulnerabilities for PHP

had an impact on its security architecture, being the project with the highest percentage of

architectural issues. In the other systems, this percentage of architectural vulnerabilities

was 35% for Chrome, 44% for Thunderbird and 40% for Linux Kernel.

Table 4.3 shows the most common security issues in those cases studies as well as

the severity level of these problems (Low, Medium, High or Critical), as provided by the

NVD based on the Common Vulnerability Scoring System (CVSS) version 2 [28]. From

this table, we note that most of the architectural issues in those case studies is a problem

in failing to implement the Intercepting Validator pattern properly (CAWE-20, CAWE-79,

CAWE-94, CAWE-134, CAWE-138 and CAWE-158). Failing to validate consistently the

user-provided data can lead to a variety of consequences, such as crashes (denial of service)

and leakage of sensitive information. We also observe that issues related to enforcing

access control (CAWE-200, CAWE-274, CAWE-280, CAWE-284, and CAWE-782) are

also common among those systems. These weaknesses are mostly caused by an incorrect

implementation of patterns related to permission management such as “Authorization”,

“Role-based access control” and “Policy Enforcement Point”. Lastly, we observe that the

architectural flaws expose these systems to consequences that are at least at a “Medium”

severity level.

One of the reasons that resulted in such high number of input validation issues is due to

the fact that some architectural flaws can only occur in certain contexts. For example, the

Client Side Authentication Flaw only occurs in software with the client-server architecture.

However, regardless of the software domain, a software will be provided which may be

valid or malformed (intentionally by attackers or unconsciously by misuses from legitimate

users) thereby, input validation issues can happen in any software system.

The next section discusses examples from these case studies of architectural weak-

nesses.

17

Table 4.3: The Most Common Architectural Weaknesses in the Case Studies.
Top 5 Architectural Weaknesses #CVEs Severity

C
hr

om
e

CAWE-20 Improper Input Validation 170 High

CAWE-284 Improper Access Control 51 Medium

CAWE-200 Information Exposure 36 Medium

CAWE-274 Improper Handling of Insufficient Privileges 34 Medium

CAWE-79 Improper Neutralization of Input During Web Page Generation 26 Medium

PH
P

CAWE-20 Improper Input Validation 79 Medium

CAWE-280 Improper Handling of Insufficient Permissions or Privileges 36 Medium

CAWE-158 Improper Neutralization of Null Byte or NUL Character 13 Medium

CAWE-134 Use of Externally-Controlled Format String 10 High

CAWE-138 Improper Neutralization of Special Elements 7 High

T
hu

nd
er

bi
rd

CAWE-20 Improper Input Validation 71 Medium

CAWE-284 Improper Access Control 54 Medium

CAWE-94 Improper Control of Generation of Code (’Code Injection’) 34 High

CAWE-79 Improper Neutralization of Input During Web Page Generation 34 Medium

CAWE-200 Information Exposure 25 Medium

L
in

ux

CAWE-20 Improper Input Validation 230 Medium

CAWE-274 Improper Handling of Insufficient Privileges 40 Medium

CAWE-284 Improper Access Control 38 Medium

CAWE-391 Unchecked Error Condition 9 Medium

CAWE-782 Exposed IOCTL with Insufficient Access Control 6 Medium

4.4 Examples of Architectural Weaknesses

The Secure Session Management pattern is concerned about managing sessions, which are

a set of activities performed over a limited period by a specified user. The primary goal of

this pattern is to keep track of who is using the system at a given time through managing a

session object that contains all relevant data associated with the user and the session [34]. In

this pattern, every user is assigned an exclusive identifier (Session ID), which is utilized for

both identifying users and retrieving the user-related data. Since session IDs are a sensitive

information, this pattern may be affected by two main types of attacks: session hijacking

(an attacker impersonate a legitimate user through stealing or predicting a valid session ID)

and session fixation (an attacker has a valid session ID and forces the victim to use this ID).

The session hijacking can be facilitated by the architectural flaw of not securing the

storage of session identifiers. Such flaw can be observed in the “session” module of the

PHP language:

18

CVE ID: CVE-2002-0121
Description: PHP 4.0 through 4.1.1 stores session IDs in temporary files whose name contains the session ID, which allows local
users to hijack web connections.

Main Impacted File: ext/session/mod file.cc

46. #define FILE_PREFIX "sess_"
(...)
108. strcat(buf, FILE_PREFIX);
109. strcat(buf, key);

Related CAWEs:

CAWE-311: Missing Encryption of Sensitive Data

CAWE-538: File and Directory Information Exposure

Per this description we note that PHP was designed to store each session data in files

in a temporary directory without using a security mechanism for storing these session files

(such as encryption). When closely inspecting the source code of PHP in version 4.0, we

observe that the mod file.cc names every session file as “sess xyz” (where “xyz” is the

session ID), as shown in the code snippet presented above (where buf is a variable later

used when creating the session files).

Figure 4.1 shows a scenario in which the flaw could be exploited. First, a legitimate user

successfully identifies him/herself to the application. This causes the Web application, writ-

ten in PHP, to start a session for the user through invoking the session start() from

the PHP’s session module. Then, the session module in the PHP assigns a session ID

for the user, and it creates a new file named as “sess qEr1bqv1q4V2FGX9C7mvb0” to store

the data about the user’s session. At this point, the security of the application is compro-

mised when an attacker observes the session file name and realizes that the user’s session ID

is equals to “qEr1bqv1q4V2FGX9C7mvb0”. Subsequently, the attacker can impersonate

the user through sending a cookie (PHPSESSIONID) in a HTTP request with this stolen

Session ID. The Web application, after calling functions from the PHP’s session, veri-

fies that the session ID provided matches with the user’s data so, the application considers

that a legitimate user is making the request.

19

Figure 4.1: Session Hijacking in PHP.

From this scenario, we note that such architectural weakness can lead to many conse-

quences. First, if the user has an administrative role in the application, the attacker will be

able to perform all the administrative tasks. Second, the attacker may be able to read the

contents of the session file, thereby accessing the data about the user, which may be sen-

sitive. It is important to highlight that such flaw affects not only the Secure Session Man-

agement but also other security patterns (e.g. Authentication and Authorization) which use

the Secure Session Management for performing authentication and access control of users.

The excerpt below shows an example from PHP of an architectural weakness that facil-

itates the session fixation:

CVE ID: CVE-2011-4718
Description: Session fixation vulnerability in the Sessions subsystem in PHP before 5.5.2 allows remote attackers to hijack web
sessions by specifying a session ID.

Main Impacted File: ext/session/mod files.c

69. static int ps_files_valid_key(const char *key)
70. {
(...)
76. for (p = key; (c = *p); p++) {
77. /* valid characters are a..z,A..Z,0..9 */

20

78. if (!((c >= ’a’ && c <= ’z’)
79. || (c >= ’A’ && c <= ’Z’)
80. || (c >= ’0’ && c <= ’9’)
81. || c == ’,’
82. || c == ’-’)) {
83. ret = 0;
84. break;
85. }
86. }
87.
88. len = p - key;
89.
90. /* Somewhat arbitrary length limit here, but should be way more than
91. anyone needs and avoids file-level warnings later on if we exceed MAX_PATH */
92. if (len == 0 || len > 128) {
93. ret = 0;
94. }
95.
96. return ret;
97. }
(...)
146. static void ps_files_open(ps_files *data, const char *key TSRMLS_DC)
147. {
(...)
158. if (!ps_files_valid_key(key)) {
159. php_error_docref(NULL TSRMLS_CC, E_WARNING, "The session id is too long or
contains illegal characters, valid characters are a-z, A-Z, 0-9 and ’-,’");
160. PS(invalid_session_id) = 1;
161. return;
162. }
(...)
201 }

Related CAWEs:

CAWE-384 Session Fixation

When verifying the session implementation in the source code of PHP version 5, we

note that there is an incorrect implementation (i.e. a realization flaw) in the PHP’s session

module that accepts uninitialized session IDs before using it for authentication/authorization

purposes. In fact, in the line 158 shown above, the function ps files valid key()

does not correctly validate the session ID. This function only checks whether it contains a

valid charset and has a correct length but does not verify whether the ID exists associated

to the client performing the HTTP request.

Figure 4.2 shows how this architectural vulnerability is exploited. The attack starts with

the attacker establishing a valid session ID (steps 1 to 4). Next, the attacker induces the

21

user to authenticate him/herself in the system using the attacker’s session ID (steps 5 and

6).

Figure 4.2: Session Fixation Exploitation in PHP.

A common architectural flaw across all case studies is an improper implementation of

the validation mechanism for data before its usage in the software. A real example of this

design flaw can be observed in Thunderbird:

CVE ID: CVE-2009-2408
Description: Mozilla Network Security Services (NSS) before 3.12.3, Firefox before 3.0.13, Thunderbird before 2.0.0.23, and
SeaMonkey before 1.1.18 do not properly handle a ’
0’ character in a domain name in the subject’s Common Name (CN) field of an X.509 certificate, which allows man-in-the-middle
attackers to spoof arbitrary SSL servers via a crafted certificate issued by a legitimate Certification Authority. NOTE: this was
originally reported for Firefox before 3.5.

Main Impacted File: mozilla/security/nss/lib/certdb/certdb.c

1390. cert_VerifySubjectAltName(const CERTCertificate *cert, const char *hn)
1391. {
(...)
1446. int cnLen = current->name.other.len;
1447. if (cnLen + 1 > cnBufLen) {
1448. cnBufLen = cnLen + 1;
1449. cn = (char *)PORT_ArenaAlloc(arena, cnBufLen);
(...)
1518. }

Related CAWEs:

CAWE-20: Improper Input Validation

22

In this flaw, the validation mechanism fails to validate a field of an X.509 certificate that

contains the NULL terminator (’\0’ character). As shown in the code snippet, at line 1446

the length of the CN field is calculated without a proper escaping the string variable. Given

that the ’\0’ is used to indicate the end of a string, the cnLen variable will have a smaller

value than the actual length of the CN field. This improper validation may allow attackers to

get a malicious certificate signed through placing the NULL terminator in the certificate’s

CN field. This way, users would be tricked to consider that the forged certificate is valid

then accepting it as trusted when it is not.

One example of a commission flaw was also observed in the PHP project. Initially, the

PHP was designed to have a configuration parameter (safe mode) for enforcing access

control of files and directories on the Web server. The security requirement behind this

parameter was to ensure that applications written in PHP and running on the same Web

server would not be able to access files from each other inadvertently [19]. Thus, once the

safe mode was enabled, whenever a PHP script tried to access (read/write) a file in the

server, the PHP would: (i) check whether the owner of the script’s source code file is the

same of the file being requested; (ii) then, grant access to those scripts that satisfies this

condition. However, such design is inappropriate to the context of PHP [19]. In this case

a better design would be that the enforcement was done in the executing environment (i.e.

the Operating System).

Moreover, such enforcement mechanism needed to be implemented throughout the

modules of PHP that performed any file-related operations. However, in some cases the

developers did not implement the check whether the safe modewas enabled and, then in-

voking the function that does the access control verification, thereby bypassing the designed

access control mechanism. Hence, applications that were relying on this safe mode

mechanism would have a breach. Therefore, PHP was later redesigned (version 5.4.0+) to

remove this safe mode configuration, outsourcing this access control at the Web server

and Operating System level.

Lastly, Chrome and Thunderbird had some vulnerabilities that were not only related to

23

the security architecture but also touched upon usability concerns. These types of vulner-

abilities were caused by an incorrect implementation/design of a security concern which

introduced a breach that intruders can exploit through “user-assisted” attacks 2. For ex-

ample, the CVE-2005-2602 reports a problem in the input validation of a long URI in

Thunderbird resulting in a blank address bar, which facilitates phishing attacks.

2“User-assisted” attacks refer to exploitations that only succeed when the user perform an unusual specific
interaction.

24

Chapter 5

Application of the CAWE Catalog

Since the CAWE catalog provides detailed information about architectural weaknesses, it

can be used to guide architects and developers make appropriate design and implementation

decisions to preserve security concerns throughout the software development lifecycle. For

example, code reviews, which is a common practice applied in many IT organizations

[18], are usually performed through a meeting focused on finding bugs through technical

discussions and analysis of the source code and other related artifacts (such as a portion

of the requirements document, the architecture, etc). Therefore, the reviewers, who are

responsible for inspecting the code, could use the CAWE catalog to check common security

issues that happen in the software domain under their review.

Past experiences in industry lead to the creation of security-driven software develop-

ment processes, which emphasizes security concerns early in the software development

lifecycle, such as CLASP (Comprehensive, Lightweight Application Security Process) [30]

and Microsoft’s SDL (Security Development Lifecycle) [23]. A common aspect of these

processes is the recommendation of providing proper training of the employees to develop

a common background in software security [41]. With this respect, our catalog could be

used to aid such training and promote the awareness of the potential architectural issues

that their systems may be exposed.

Moreover, those security-driven processes include two activities for modeling potential

threats in the software: threat modeling [39] and design of misuse cases [26]. Since these

two activities are usually done through brainstorming sessions, the CAWE could be used in

those sessions for obtaining insights. In fact, existing in experiences in the industry report

25

the usage of threat libraries, built from a small subset of weaknesses from the MITRE’s

catalog, for aiding this threat modeling process [16].

In addition, architectural risk analysis, which is a systematic approach for evaluating

design decisions against quality requirements, could also benefit from our catalog. For ar-

chitectural risk analysis to be effective, the evaluators need to have a previous knowledge

of architectural flaws based on the software context (such as its requirements, architectural

patterns applied, etc.). Consequently, the CAWE catalog could be used as guidance when

performing such assessment. This guidance is twofold: on one hand, the enumerated flaws

of omission could be used as a roadmap for evaluators to identify missing relevant archi-

tectural decisions; on the other hand, the categorized flaws of commission and realization

allows to spot issues in the current architecture of the system, being the first step to assess

its impacts and risks.

5.1 Integration Into MITRE/DHS Collection of CWEs

To support the reuse of our findings and release the list of Common Architecture Weak-

nesses, we can integrate the CAWE catalog to the existing collection of software weak-

nesses (CWE) collected by the US Department of Homeland Security along with The

MITRE Corporation. This integration will be available online in MITRE’s collection.

The CWE library supports introducing new concepts without changes in its structure.

This is done through the Taxonomy Mapping element (presented in Figure 3.1), which

allows that every Weaknesses or Compound Elements to reference nodes in an external

taxonomy that have any sort of conceptual relation. Thus, we can use the Taxonomy

Mapping element to establish a connection between security patterns and software design

flaws, thereby augmenting the CWE collection with software architecture concepts.

For example, the CWE entry “Improper Validation of Integrity Check Value” [9] is re-

lated to the “Error Detection and Correction” pattern in the CAWE catalog. Hence, we can

connect this CWE entry to this pattern by using a new Taxonomy Mapping node with the

values presented in Figure 5.1. From this example we observe that the Mapped Node Name

26

attribute is used to indicate the impacted pattern, the Mapped Node ID refers to the iden-

tifier of a CAWE entry in the catalog and the Mapping Fit (which is hidden to simplify

the image) summarizes the impact of the weakness over the pattern. In this example, the

value of Mapping Fit explains that not applying the “Error Detection and Correction” when

transmitting data over an unreliable communication channel allows the software to use cor-

rupted data inadvertently.

Figure 5.1: Taxonomy Mapping to Help Identify Design Flaws Associated with Security
Patterns

27

Chapter 6

Related Work

Despite the research community efforts to create techniques and tools for developing more

secure software, there is a gap for procedures that address the security problem using an

architectural point of view [32]. Currently, there are many research and books focused on

the identification, categorization, and detailing of security patterns [20, 21, 25, 34, 38]. In

this work, however, we take one step further towards observing how these patterns could

be compromised when incorrectly implemented or inappropriately designed, thereby filling

the existing gap of overcoming security challenges from avoiding architectural flaws.

The usage of security knowledge bases to help developers and engineers in their daily

activities have been discussed in the research community. In this matter, security ontolo-

gies, which represents knowledge within the security domain, have been created to support

some activities (e.g. requirements engineering [37] and quantitative risk analysis [17]).

These ontologies, however, does not introduce architectural concepts on it [5].

In this context, similarly to a security ontology, Wu et al. [42] proposed the use of se-

mantic templates to keep track of the key details related to vulnerabilities. These templates

are a structured description of generic patterns of relationship between software compo-

nents, faults and security consequences built on top of the CWE collection and the CVE

dictionary. However, that work does not have a full complete list of templates for all the

CWE entries.

In addition to knowledge bases, some works are focused on methodological architecture-

related activities for engineering secure software. For example, Pedraza-Garcia et al. [31]

described activities, tools and notations to specify the security requirements of a software

28

and guide the architect to select the architectural tactics that would better address the re-

quirements. The primary goal of that work was to minimize the impacts of design decisions

being informally done and dependent on the architect’s experience to select architectural

choices. Another example is described by Ryoo et al. [33], which proposes a vulnerability-

oriented architectural analysis approach that reuses the knowledge from known vulnerabil-

ities as a checklist when evaluating and designing an architecture. Unlike our work, these

efforts are focused on helping to engineer a secure software specifically in architectural

analysis activities, whereas the scope of our catalog is broader to other software develop-

ment activities.

In spite of these efforts of creating and sharing security-related knowledge and system-

atic approaches, to the best of our knowledge, there is no previous work that provided a

catalog of architectural weaknesses.

29

Chapter 7

Threats to Validity

The threats to validity can be classified as construct, internal and external validity. Below

we explain the threats that may have impacted this work and the ways these threats were

mitigated.

External validity evaluates the generalizability of the approach and the extent to which

the results of a study can be generalized to other systems. A potential threat in this cat-

egory is that we analyzed our catalog against historical vulnerability reports from Linux

Kernel, PHP, Chrome and Thunderbird. However, we carefully selected these case studies

from different software domains. Therefore, we expect it to be representative of a typical

software engineering environment, which suggests that it could generalize to a broader set

of systems. Another threat to the external validity is that we focused our discussion on 39

security patterns. We tried to mitigate this threat through selecting security patterns that

satisfy different security concerns (such as privacy, authentication, non-repudiation, and so

on). Consequently, we believe that the results would not be overly different from other

security patterns.

Construct validity evaluates the degree to which the claims were correctly measured. With

this respect, one threat was the manual analysis of CVE instances in order to observe how

often and the nature of security design issues in real software systems. To mitigate this

threat we selected case studies with a higher number of reported vulnerabilities in order to

minimize the potential impacts of an incorrect analysis in our datasets. Furthermore, only a

small portion of the reported vulnerabilities does not have a CWE tag, so we only a smaller

subset of vulnerabilities needed to be manually inspected to define a CWE tag.

30

Internal validity reflects the extent to which a study minimizes systematic error or bias

so that a causal conclusion can be drawn. The primary threat is related to the manual con-

struction of the CAWE catalog. To mitigate potential biases and incorrect classification of

weaknesses, a peer review process was conducted when establishing the CAWE collection.

In this review, a second graduate student also analyzed the entries from the MITRE’s col-

lection, mapped the appropriate ones to security patterns and shared the rationale of such

mapping, as previously explained in Chapter 3. Hence, we consider that such peer evalu-

ation minimized the impacts of biases and mistakes by the manual creation of the CAWE

catalog.

31

Chapter 8

Conclusion and Future Work

This thesis presented the new concept of CAWE (Common Architectural Weakness Enu-

meration), to stimulate security design thinking into developers daily coding activities

through a catalog that documents potential weaknesses related to security patterns. This

work aimed to fill in the gap of architectural knowledge of architecture-related security

issues.

In addition to creating the CAWE collection, this work reported the analysis of four

large case studies and observed that at least 35% of the investigated vulnerabilities are

rooted in the architecture of those case studies. Besides that, improper validation of inputs

and access control were the two most design flaws observed in real systems.

8.1 Future Work

The current state of the art of vulnerability detection tools is still focused on finding low-

level issues (bugs). This way, this catalog could be used as a knowledge base for automated

techniques to detect architectural-level vulnerabilities from source code. One potential way

to do this is through, firstly, detecting security patterns, then using the CAWE catalog to

reason about potential associated weaknesses. This is one research direction of this work.

Moreover, in the future, we could evaluate our catalog with security experts, looking

forward to expand the catalog. Also, we can conduct experiments to verify how effective

is the catalog in aiding developers/designers to perform the activities explained in Chapter

5 (e.g.code inspections).

32

Bibliography

[1] Ivan Arce, Kathleen Clark-Fisher, Neil Daswani, Jim DelGrosso, Danny Dhillon,
Christoph Kern, Tadayoshi Kohno, Carl Landwehr, Gary McGraw, Brook Schoen-
field, Margo Seltzer, Diomidis Spinellis, Izar Tarandach, and Jacob West. Avoiding
the top 10 software security design flaws. https://www.computer.org/cms/
CYBSI/docs/Top-10-Flaws.pdf, 2014. (Accessed on 05/08/2016).

[2] Brad Arkin, Scott Stender, and Gary McGraw. Software penetration testing. IEEE
Security & Privacy, (1):84–87, 2005.

[3] Felix Bachmann, Len Bass, and Mark Klein. Deriving Architectural Tactics: A Step
Toward Methodical Architectural Design. Technical Report, Software Engineering
Institute, 2003.

[4] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice (3rd
Edition). Addison-Wesley Professional, 3 edition, October 2012.

[5] Carlos Blanco, Joaquin Lasheras, Rafael Valencia-Garcı́a, Eduardo Fernández-
Medina, Ambrosio Toval, and Mario Piattini. A systematic review and comparison
of security ontologies. In Availability, Reliability and Security, 2008. ARES 08. Third
International Conference on, pages 813–820. Ieee, 2008.

[6] Brian Chess and Gary McGraw. Static analysis for security. IEEE Security & Privacy,
(6):76–79, 2004.

[7] The MITRE Corporation. Cve - common vulnerabilities and exposures (cve). http:
//cve.mitre.org/. (Accessed on 04/29/2016).

[8] The MITRE Corporation. Cwe-256: Plaintext storage of a password. http://cwe.
mitre.org/data/definitions/256.html. (Accessed on 04/29/2016).

[9] The MITRE Corporation. Cwe-354: Improper validation of integrity check value
(2.9). https://cwe.mitre.org/data/definitions/354.html. (Ac-
cessed on 05/09/2016).

https://www.computer.org/cms/CYBSI/docs/Top-10-Flaws.pdf
https://www.computer.org/cms/CYBSI/docs/Top-10-Flaws.pdf
http://cve.mitre.org/
http://cve.mitre.org/
http://cwe.mitre.org/data/definitions/256.html
http://cwe.mitre.org/data/definitions/256.html
https://cwe.mitre.org/data/definitions/354.html

33

[10] The MITRE Corporation. Cwe-603: Use of client-side authentication (2.9).
https://cwe.mitre.org/data/definitions/603.html. (Accessed on
05/09/2016).

[11] The MITRE Corporation. Capec - common attack pattern enumeration and classifi-
cation. http://capec.mitre.org/, 2015. (Accessed on 05/09/2016).

[12] The MITRE Corporation. Cwe-159: Failure to sanitize special element, 2015. (Ac-
cessed on 04/29/2016).

[13] The MITRE Corporation. Cwe-261: Weak cryptography for passwords. http:

//cwe.mitre.org/data/definitions/261.html, 2015. (Accessed on
04/29/2016).

[14] The MITRE Corporation. Cwe-306: Missing authentication for critical function.
http://cwe.mitre.org/data/definitions/306.html, 2015. (Ac-
cessed on 04/29/2016).

[15] The MITRE Corporation. Cwe-319: Cleartext transmission of sensitive information.
https://cwe.mitre.org/data/definitions/319.html, 2015. (Ac-
cessed on 05/09/2016).

[16] Danny Dhillon. Developer-driven threat modeling: Lessons learned in the trenches.
IEEE Security & Privacy, (4):41–47, 2011.

[17] Andreas Ekelhart, Stefan Fenz, Markus Klemen, and Edgar Weippl. Security ontolo-
gies: Improving quantitative risk analysis. In System Sciences, 2007. HICSS 2007.
40th Annual Hawaii International Conference on, pages 156a–156a. IEEE, 2007.

[18] Michael E. Fagan. Pioneers and Their Contributions to Software Engineering: sd&m
Conference on Software Pioneers, Bonn, June 28/29, 2001, Original Historic Contri-
butions, chapter Design and Code Inspections to Reduce Errors in Program Develop-
ment, pages 301–334. Springer Berlin Heidelberg, Berlin, Heidelberg, 2001.

[19] The PHP Group. Php: Safe mode - manual. http://php.net/manual/en/

features.safe-mode.php. (Accessed on 04/27/2016).

[20] Munawar Hafiz, Paul Adamczyk, and Ralph E. Johnson. Organizing security patterns.
IEEE Software, 24(4):52–60, 2007.

https://cwe.mitre.org/data/definitions/603.html
http://capec.mitre.org/
http://cwe.mitre.org/data/definitions/261.html
http://cwe.mitre.org/data/definitions/261.html
http://cwe.mitre.org/data/definitions/306.html
https://cwe.mitre.org/data/definitions/319.html
http://php.net/manual/en/features.safe-mode.php
http://php.net/manual/en/features.safe-mode.php

34

[21] Munawar Hafiz, Paul Adamczyk, and Ralph E. Johnson. Growing a pattern language
(for security). In Proceedings of the ACM International Symposium on New Ideas,
New Paradigms, and Reflections on Programming and Software, Onward! 2012,
pages 139–158, New York, NY, USA, 2012. ACM.

[22] Shawn Hernan, Scott Lambert, Tomasz Ostwald, and Adam Shostack. Threat
modeling-uncover security design flaws using the stride approach. MSDN Magazine-
Louisville, pages 68–75, 2006.

[23] Michael Howard and Steve Lipner. The security development lifecycle. O’Reilly
Media, Incorporated, 2009.

[24] Clemente Izurieta and James M. Bieman. How software designs decay: A pilot study
of pattern evolution. In ESEM, pages 449–451, 2007.

[25] Darrell M. Kienzle, Matthew C. Elder, David Tyree, and James Edwards-hewitt. Se-
curity patterns repository, version 1.0, 2006.

[26] John McDermott and Chris Fox. Using abuse case models for security requirements
analysis. In Computer Security Applications Conference, 1999.(ACSAC’99) Proceed-
ings. 15th Annual, pages 55–64. IEEE, 1999.

[27] Gary McGraw. Software security: building security in, volume 1. Addison-Wesley
Professional, 2006.

[28] P. Mell, K. Scarfone, and S. Romanosky. Common vulnerability scoring system.
IEEE Security Privacy, 4(6):85–89, Nov 2006.

[29] Mehdi Mirakhorli, Yonghee Shin, Jane Cleland-Huang, and Murat Cinar. A tactic
centric approach for automating traceability of quality concerns. In International
Conference on Software Engineering, ICSE (1), 2012.

[30] OWASP. Owasp clasp project. https://www.owasp.org/index.php/

Category:OWASP_CLASP_Project, 2016. (Accessed on 05/08/2016).

[31] Gilberto Pedraza-Garcia, Hernan Astudillo, and Dario Correal. A methodological
approach to apply security tactics in software architecture design. In Communications
and Computing (COLCOM), 2014 IEEE Colombian Conference on, pages 1–8. IEEE,
2014.

https://www.owasp.org/index.php/Category:OWASP_CLASP_Project
https://www.owasp.org/index.php/Category:OWASP_CLASP_Project

35

[32] S. Rehman and K. Mustafa. Research on software design level security vulnerabilities.
SIGSOFT Softw. Eng. Notes, 34(6):1–5, December 2009.

[33] Jungwoo Ryoo, Rick Kazman, and Priya Anand. Architectural analysis for security.
IEEE Security & Privacy, (6):52–59, 2015.

[34] Markus Schumacher, Eduardo Fernandez-Buglioni, Duane Hybertson, Frank
Buschmann, and Peter Sommerlad. Security Patterns: Integrating security and sys-
tems engineering. John Wiley & Sons, 2013.

[35] Edward J Schwartz, Thanassis Avgerinos, and David Brumley. All you ever wanted to
know about dynamic taint analysis and forward symbolic execution (but might have
been afraid to ask). In Security and privacy (SP), 2010 IEEE symposium on, pages
317–331. IEEE, 2010.

[36] IBM Security. Ibm statistics on data breach epidemic. http://www-935.ibm.
com/services/us/en/it-services/security-services/data-

breach, 2014. (Accessed on 05/06/2015).

[37] Amina Souag, Camille Salinesi, Isabelle Wattiau, and Haris Mouratidis. Using secu-
rity and domain ontologies for security requirements analysis. In Computer Software
and Applications Conference Workshops (COMPSACW), 2013 IEEE 37th Annual,
pages 101–107. IEEE, 2013.

[38] Chritopher Steel and Ramesh Nagappan. Core Security Patterns: Best Practices and
Strategies for J2EE”, Web Services, and Identity Management. Pearson Education
India, 2006.

[39] Frank Swiderski and Window Snyder. Threat modeling. Microsoft Press, 2004.

[40] Jilles van Gurp, Sjaak Brinkkemper, and Jan Bosch. Design preservation over subse-
quent releases of a software product: a case study of baan erp: Practice articles. J.
Softw. Maint. Evol., 17:277–306, July 2005.

[41] Bart De Win, Riccardo Scandariato, Koen Buyens, Johan Grgoire, and Wouter Joosen.
On the secure software development process: Clasp, sdl and touchpoints compared.
Information and Software Technology, 51(7):1152 – 1171, 2009. Special Section:
Software Engineering for Secure Systems.

http://www-935.ibm.com/services/us/en/it-services/security-services/data-breach
http://www-935.ibm.com/services/us/en/it-services/security-services/data-breach
http://www-935.ibm.com/services/us/en/it-services/security-services/data-breach

36

[42] Yan Wu, Robin A Gandhi, and Harvey Siy. Using semantic templates to study vul-
nerabilities recorded in large software repositories. In Proceedings of the 2010 ICSE
Workshop on Software Engineering for Secure Systems, pages 22–28. ACM, 2010.

	Toward Establishing a Catalog of Security Architecture Weaknesses
	Recommended Citation

	Dedication
	Acknowledgments
	Abstract
	Introduction
	Objectives
	Research Questions
	Thesis Organization

	Designing for Security
	Security Patterns
	Flaws in a Security Architecture

	Catalog of Architectural Weaknesses
	Creating the Catalog
	Catalog Structure
	Catalog Overview

	Results and Discussion
	RQ1: Architectural Weaknesses
	RQ2: Most Impacted Security Patterns
	RQ3: The Most Common Design Issues
	Vulnerabilities Dataset
	Results

	Examples of Architectural Weaknesses

	Application of the CAWE Catalog
	Integration Into MITRE/DHS Collection of CWEs

	Related Work
	Threats to Validity
	Conclusion and Future Work
	Future Work

	Bibliography

