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ABSTRACT 
 

Kate Gleason College of Engineering 

Rochester institute of Technology 

 

Degree Doctor of Philosophy                                     Program Microsystems Engineering 

 

Name of Candidate Ali Wanis Elshaari 

 

Title Photon Manipulation in Silicon Nanophotonic Circuits 

 
Quantum-based communication systems can potentially achieve the ultimate security 

from eavesdropping and greatly reduce the operating powers on chip.  Light-speed 

transmission, noise immunity, and low noise properties make photons indispensable for 

quantum communication to transfer a quantum state through a transmission line. 

Furthermore, the field of silicon nanophotonics is fast growing field which is driven by 

the attractive and promising improvements it has to offer in high speed communication 

systems and on chip optical interconnects. Consequently, there is a high demand to 

develop the building blocks for photon manipulation in silicon nanophotonic circuits.  

The goal of the work is to enable high performance optoelectronic computing and 

communication systems that overcome the barriers of electronics and dramatically 

enhance the performance of circuits and systems. We will focus our attention on solving 

some of the issues with the current systems regarding photon storage, routing, isolation, 

switching, and energy conversion.  We realize a continuously tunable optical memory 

which breaks the time-bandwidth limit by more than thirty times. This enabled the 

storage of ultra-short pulses of light for hundreds of picoseconds. Also, we investigate 

on-chip photon scattering when transmitted through micro-scale optical cavities. In 

addition, we develop novel dynamic quantum mechanical models that predict quantum-

like behavior of single and multi-photon wavepackets.  

Furthermore, we report for the first time that efficient red shifts in silicon are achievable 

with free carrier injection which generally produces blue wavelength shifts. We realize 

adiabatic wavelength conversion and discrete photonic transitions of single photons in 

silicon cavities. Moreover, we demonstrate a basic quantum network on chip with an on-

chip photon source. We present a novel design for CMOS compatible optical isolator on 

silicon chip using a system of active cavities. And finally, we analyze a novel ultra-fast 

broadband modulator in silicon based on free-carrier absorption effect in SOI waveguides 

integrated with Schottky diodes. 
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     CHAPTER ONE 

             INTRODUCTION 

1.1 Silicon Photonics Overview 

Quantum-based Silicon photonic communication systems can potentially achieve the 

ultimate security from eavesdropping and greatly reduce the operating powers.  Light 

speed transmission, noise immunity, and low noise properties make photons 

indispensable for quantum communication to transfer a quantum state through a 

transmission line.  As a result, more work needs to done to develop the building blocks 

for photon manipulation in silicon nanophotonic circuits. This is also driven by the 

attractive and promising improvements this field has to offer in high speed 

communication systems and on chip optical interconnects. Silicon has been the main 

platform for electronic integrated circuits due to its desirable electronic properties, high 

isolation of its native oxide, low cost, and well developed processing schemes. It also has 

desirable optical properties to work as a platform for integrated optical systems at the 

telecommunication wavelength of 1550nm. Some of these properties are the low optical 

loss and the high index contrast with its native oxide. This provides high mode 

confinement for optical waveguides, which enables the integration of high density 

systems relying on the already developed technologies in the CMOS processes. Fig.1.1 

shows a Scanning Electron Microscope (SEM) image of silicon on insulator (SOI) 

waveguide and its mode profile. Furthermore, silicon wires can serve as a photon source.  

As shown in Fig.1.1 there is a strong light confinement due to the high refractive-index 

contrast.  
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Fig. 1.1 SEM image of SOI waveguide with the mode profile adapted from [1] 

Research has been conducted extensively in this area demonstrating many passive 

devices such as splitters [2], ring resonator based filter [3,4], disk resonator based filters 

[5], and slow light photonic band-gap waveguides [6,7], to name few. But in order to 

broaden the functionalities of these devices, active control of the optical properties of 

silicon is needed. Fig.1.2 shows some examples of SOI based passive devices. 

     

     

Fig. 1.2 SEM images of some passive SOI device (i.e. ring resonators, disk resonators, photonics crystal 

waveguides, and splitters). 
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1.1.1 Tuning the optical properties of silicon 

In order to add dynamic control of the passive devices, we need to tune the optical 

properties of silicon. There are three main effects to manipulate the refractive index of 

silicon: 

 Thermo-optic effect 

 Third order non-linearity ( χ3) 

 Free carrier dispersion effect. 

The first effect results in a desirable high refractive index change per degree which 

enables broadband tuning of the optical system [8,9]. But the drawback is the slow 

switching time thermo-optic effect based devices suffer from. This is due to the 

limitations of how fast heat can be transferred in and out from the active region. Typical 

switching times are in the order of microseconds [10]. Equation (1.1) relates the change 

in the refractive index to the change in temperature. 

                                  ⁄                              1.1  

The third order nonlinearity χ3 on the other has an ultra-fast response of less than 10fs 

[11,12]. The Centro-symmetric structure of silicon gives rise to two types of them 

namely: Franz-Keldysh and Kerr effects. The first manifests itself as an electro-optic 

absorption effect where the band gap of the silicon (Eg=1.12 e.V.) shifts with an applied 

electric field. The wavelengths affected by this phenomena lie near the absorption 

wavelength of ~1.1µm with no pronounced changes at the desirable telecom wavelength 

of 1.3 µm or 1.55µm.  
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On the other hand, Kerr effect enables different exciting phenomena such as self-phase 

modulation, cross-phase modulation, continuum generation [13,14], and ultrafast all-

optical switching [14,15]. The refractive index change of silicon can be converted to a 

change of the optical transmission using an interferometer or a resonator structure [16] to 

build switches. The change in the refractive index is related directly to the intensity of the 

propagating wave in the system. It is worth mentioning here that ultra-fast second order 

nonlinearities such as Pockels effect can be introduced in silicon by breaking the 

symmetry of the crystal [17]. This is done by introducing strain to the active part of the 

silicon device. Such devices are currently far from practical due to the small nonlinear 

coefficients observed in addition to the complexity of fabrication. The followings are 

typical values of the third order nonlinearity parameters: n2 the intensity dependant 

refractive index and β the two photon absorption coefficient. 

                                     1.2 

                                1.3 

The last effect is the free carrier dispersion effect where the refractive index of silicon 

and its absorption coefficient change with the free-carriers density [18] . Many active 

devices have been demonstrated and proposed based on this effect such as electro-optic 

modulators [19-27], storage units [28,29], wavelength converters [30-33], and optical 

isolators [34]. The main advantage of this effect is providing a direct link between the 

electronics and optics using simple structures to inject carriers such as pin diodes 

[21,24,27], Schottky diodes [23], and MOS Capacitors [35] . The following equations 

describe the change in the refractive index of silicon and the absorption coefficient as a 

function of the carrier density. 
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]105.8108.8[ 8.01822 PNn fc  

 

            1.4 

  
]106105.8[ 1818 PNfc  
 

                              1.5 

These carriers can also be generated through absorption of high energy photons (i.e 

420nm light) with life times on the order of ~500ps depending on the dimension of the 

waveguide [36]. The life times can be further reduced for ultra-fast all-optical switching 

by integrating reverse biased pin diodes. This generates high E field in the active region 

which sweeps the carriers away from the active region extremely fast with times less than 

50ps [37,38]. 

1.2 Resonant photonic structures 

The effects presented above usually result in a small change in refractive index of silicon 

on the order of ~5E-04. This requires very long waveguides to accumulate a π phase shift 

for full intensity modulation in interference based systems such as Maxh-Zhender (MZ) 

interferometer. On the other hand the foot-print of the devices can be reduced using 

compact resonators or cavities that circulate light for long effective lengths in a small 

area on the expense of the bandwidth the cavities can accept. On chip optical resonators 

(or filters) can be divided into two main categories: (1) traveling wave resonators such as 

ring and disk resonators, (2) standing wave resonators such as photonic crystal cavities 

and Fabry-Perot (FP) cavities. We will focus in this work on traveling wave ring 

resonators due to their attractive properties as explained below [16]. 

1.2.1  Traveling-Wave Ring Resonators 

Traveling wave ring resonators consist of a waveguide looped to form a closed path that 

usually supports a single transverse optical mode for a given polarization. They are 
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desirable in optical systems to eliminate coupling between different modes. Ring 

resonators are completely configurable in terms of the wavelength selectivity and the 

number of channels they accept in a given bandwidth range. This can be done through 

changing the size of the rings and the coupling coefficients to/from the bus waveguide. 

Another advantage is eliminating back reflections in the optical link because of the 

traveling wave design when coupling to a resonant mode. This is in contrast to Fabry-

Perot (FP) and photonic crystal cavities which support standing wave modes. Lastly, the 

resonator itself consists from a looped single mode waveguide (with same effective index 

as the bus waveguide) which simplifies the coupling to resonant modes over short 

coupling lengths (less than 700nm in 5µm radius ring).  Fig.1.3 shows an SEM of a ring 

resonator with input/output fields. 

 

Fig. 1.3 SEM image of a ring resonator with different fields coupling to/from the system 

At the resonance condition the circumference of the ring corresponds to integer multiples 

of the input signal effective wavelength as indicated below. 

effnmR /2 0 
 

     
1.6 
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It’s important to note here that the effective index of the mode is a function of the input 

wavelength due to the change in confinement as the wavelength changes. Another 

important parameter that needs to be presented in dealing with optical time delays and 

light-matter interaction is the group index. It is related to the speed of the propagating 

wave inside the waveguide 
gg nvV /
 

where Vg is the group velocity of the guided 

wave and ng is the mode’s group index. The proportionality constant ng can be related to 

the mode’s effective index for different wavelengths as shown in the following equation. 

    /)()( 0 effeffg nnn
 

    1.7 

A typical transmission spectrum (from input port to through port in Fig.1.3) for a ring 

resonator is shown in Fig.1.4 

 

Fig. 1.4 Transmission spectrum of a ring resonator. 

We define two quantities to characterize the performance of a ring resonator cavity: the 

free spectral range (FSR) and the quality factor (Q). The first describes spacing between 
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the modes and it is inversely proportional to the length of the ring resonator. The smaller 

the ring the further apart the modes are spaced as shown by the equation below. 

)2/(2 RnFSR g 
 

                     1.8 

The second quantity is the quality factor of the resonator which related to the photon life 

time of the cavity. The smaller the loss in the system, the higher the quality factor. The 

loss includes waveguide scattering loss, bending radiation loss, and coupling (or leaking) 

loss to the input/output waveguides from the cavity. The following equations relate the 

quality factor to the Full Width Half Max (FHWM) of the spectrum and the photon life 

time τp. 

     /0Q
 
       1.9 

                                              )2/(0 cQp  
 

       1.10 

Next we will present two methods that are used throughout this work to simulate complex 

dynamic systems with ring resonators. 

1.3 Simulation methods 

1.3.1  Time-domain coupled mode equations 

Following a similar approach to [16,39] we can describe the coupling between different 

fields in and out from the resonator of Fig.1.3 at any instant of time tm through a set of 

coupling coefficient as shown below.  

        [
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]                          1.11 
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t and are the transmission and cross-coupling coefficients of the waveguide-ring 

coupler. We also set a rule for the field time evolution inside the resonator by defining a 

prober time step            .  
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       and   are the accumulated  phase and the power loss coefficient per round trip of 

the resonator. By knowing the effective refractive index of the mode we can easily 

calculate the round trip phase as shown below. 

                            
  

 
                     1.15 

                     
  

 
           1.16 

Using the set of equations presented above we can perform active time domain numerical 

simulations of arbitrary pulse shapes and time dependant ring-effective index. This will 

become of great importance when dealing with photon storage and photon isolation when 

such systems are dynamically tuned from one state to another in time through refractive 

index tuning. 

Lastly the transmission of the ring resonator has a Lorentzian shape [40] as shown in 

Fig.1.5. The response can be found by solving for the static ratio of the incident electric 

field EA and the transmitted electric field EC.  
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Fig. 1.5 Injected carriers effect on ring resonator transmission. 

After injecting carriers in the ring during the switching process (as will be seen in the 

following sections) we observe a blue shift in the resonance due to the reduction in the 

effective index of the mode. In addition, the resonance widens due to the increase in the 

resonator loss from free carriers-light interaction. This is accompanied with a reduction in 

the extinction ratio and the photon life time of the cavity (shown in Fig.1.5).  

    |
  

  
|
 
   

              

                            
      1.17 

Critical coupling occurs when the round trip loss equals the power coupling to the cavity 

t=e
-


1.3.2 Fine Difference time domain equations 

Finite-Difference-Time-Domain (FDTD) is a powerful technique for simulating 

electromagnetic problems using numerical approximations to Maxwell’s equations. 

Applications include nonlinear photonic nano-materials, periodic Bloch problems, 

scattering, and near-field imaging. The method describes the microscopic spatiotemporal 
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dynamics of waves inside different media. Unlike the coupled mode equations presented 

earlier this method is computationally intensive but provides realistic results of the actual 

behavior of waves in complex photonic structure. Given below is a brief in review of the 

Yee algorithm used in FDTD simulations. 

One dimensional Yee’s Algorithm 

The algorithm provides the basis of FDTD technique. It relies on the point form of 

Maxwell’s equations to calculate different fields from the derivatives numerically. To 

demonstrate this we assume for simplicity a one dimensional TEM wave propagating 

along the x axis. We can write the point form of Maxwell’s equations as follows. 

        
   

  
  

   

  
                            1.18 

  

               
   

  
  

   

  
               1.19 

We first create nodes in time and space, then using numerical derivatives we can 

calculate the field evolution at a point m in future time (n+1) from the spatial information 

of the surrounding fields (k+1/2),(k-1/2) at known times n,(n+1/2). By repeatedly using 

the same algorithm for different nodes in the problem we can update fields both in time 

and space. Fig.1.6 shows the order for calculating different fields in one dimensional 

problem. 
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Fig. 1.6. Field evolution order in 1D-FDTD problem, adapted from [41]. 

The technique can be generalized to 2D and 3D problems by considering their respective 

derivatives in space. In addition, active control of the system can be introduced by using 

a time dependent      and      which will be of great importance in considering photon 

energy lifting structures and photon trapping. Fig.1.7 shows a 2D FDTD simulation of a 

CW light coupled to SOI ring resonator at resonance. 

 

Fig 1.7 2D FDTD simulation of SOI ring resonator on resonance. 
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CHAPTER TWO 

SINGLE PHOTON-CAVITY QUANTUM ELECTRODYNAMICS (QED) 

2.1 Introduction 

Photons are the main information carriers in quantum based communication systems. In 

free space optics, a quantum bit (or qubit) of information can be manipulated and 

encoded in any of several degrees of freedom, notably polarization, in which case this 

process is usually straightforward using birefringent waveplates [42].  In order to have 

more functionality in future quantum computing systems, devices need to be scaled down 

to the micro- and nano- integration level. One potential platform is Silicon, which has 

desirable optical properties for integrated optical systems at the telecommunication 

wavelength of 1550 nm. In addition, it is considered as a candidate for generating single 

photon sources relying on the high third order nonlinearity χ(3) [43]. Using such sub-

Poissonian sources enables revolutionary new technologies [44]- individual photons have 

been used to dramatically enhance communication security [45], have increased 

measurement precision beyond the standard quantum limit [46,47], have been used to 

beat the diffraction limit[48,49], and they hold great promise for quantum computation 

[50,51]. Surprisingly a quantum mechanical theory describing photon/resonator 

interactions solved under the steady-state harmonic excitation condition has only recently 

been formulated [52,53].  Further, the full dynamical behavior of the system needs to be 

considered in order to describe more complex single photon manipulation processes. In 

this work we develop a dynamical model for single photon interactions with cavities. As 

a first application to this approach, we describe the process of single photon energy 
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lifting in optical cavities, the semi-classical analogue of which has already demonstrated 

[32,33,54]. We further show that fully quantized model of the process follows the 

adiabatic condition for dynamical systems and that the process has 100% wavelength 

conversion efficiency for states trapped in the cavity during the tuning process. As a 

second application for our solutions we present and analyze single photon trapping 

analogue to coherent population trapping (CPT) using tunable micro-cavities which 

presents the building blocks of optical memories on chip [28,55-57]. The adopted design 

employs a lossless storage unit approach with a tuning mechanism compatible with 

common silicon photonic circuits. 

2.2 Single photon-cavity interaction 

2.2.1  Steady state theoretical model 

Consider a one-dimensional, single mode waveguide coupled to cavity via an evanescent 

coupling, as shown in Fig. 2.1. In what follows, we assume that the single photon state is 

injected into the waveguide from the left and propagates through the waveguide (cavity) 

in the positive x (counter-clockwise) direction. Specifically, we assume that there is no 

impurity interaction within the system and therefore no contribution due to reflection, as 

easily verified by “turning off” the impurities in Ref. [53] by setting 0 hgg ba  in 

the results presented in that paper.  Setting 1 , as we will do throughout unless 

otherwise stated, the effective Hamiltonian for the system we study takes the form [53] 

  
 























 )(ˆˆ)(ˆˆ

1
)()(ˆ *

c

c0eff xcaVaxVcxdxaaixc
x

ivxdxcH g 


       2.1 
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where     xcxc ˆ,ˆ  are the position dependent inverse Fourier representations of the usual 

Boson ladder operators describing the rightward traveling waveguide mode, and  aa ˆ,ˆ  

are the Boson ladder operators describing the counter-clockwise cavity  mode. The 

canonical commutation relations for the system are   1ˆ,ˆ aa ,       xxxcxc  ˆ,ˆ ; 

  xca ˆˆ,   and all other combinations vanish. In using this form of the effective 

Hamiltonian we are assuming that the waveguide is driven at a frequency within a narrow 

range far from the cutoff frequency of its dispersion relation, and that gv is the group 

velocity for the traveling waveguide mode [52]. The evanescent coupling is represented 

by the local interaction term having coupling strength V where the coupler is situated at 

x = 0. The cavity lifetime of the ring-resonator is c where cavity losses have been 

included using the simple model of a complex frequency (energy) shift from the 

resonance frequency, c , of the ring resonator [58]. This simple model for dissipation 

results in the explicitly non-Hermitian form of the effective Hamiltonian. 

 

Fig.2.1 Schematic of waveguide-cavity coupled system. 

A general one photon state of the system can be written in the form 
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         0,0ˆ~ˆ,
~

cav1

   atexctxdxt      2.2  

where  tx,
~
  and  tecav

~  are the time dependent excitation amplitudes for field in the 

waveguide and the cavity, respectively, and where
cavw.g.

000,0   represents the 

vacuum state of the field. 

The quantum dynamics of the system is described by the Schrödinger Equation  

   tHt
t

i 1eff1
ˆ 




      2.3 

Substitution of the second quantized forms in Eqns. (2.1) and (2.2) into Eqn. (2.3) and 

then projecting alternatively on to the one photon waveguide (“w.g.”) and cavity (“cav”) 

subspaces using the single photon basis states   0,0ˆ0,1 xc  and 0,0ˆ1,0  a , 

respectively, yields the coupled set of time evolution equations for the first quantized 

excitation amplitudes, 

      0~,
~

0 












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 teVxtx

t
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x
ivg      2.4 

    0,0
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c 
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











 tVte

t
ii 


      2.5 

These are precisely the dynamical equations derived by Shen and Fan in Ref. [53]  

suitably modified for the system we study here, and, in fact, our choice of notation is 

intentionally similar to that adopted by Shen and Fan so that the reader can more easily 

translate between our results and the existing literature in this area.  

Stationary state solutions 

For ease of reference we now include a brief review of the stationary state analysis of the 

system we consider. One seeks stationary states of a quantum dynamical system by 
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seeking solutions to Eqn. (3) having the form   tiet  1 where   is the 

eigenfrequency for the system, related the energy eigenvalue, , in the usual way, 

  . Doing this results in the coupled set of equations  

    0cav0 












 Vexx

x
ivg       2.6 

  00
1 *

cav

c

c 









 


 Vei       2.7 

where the time independent amplitudes are defined via     tiextx  ,
~

and 

  tieete  cavcav
~ . Typically, the stationary state solution for the waveguide excitation 

amplitude is written in the form       xtxex iQx θθ  , where Q is the wave vector for 

the traveling mode, t is the transmission coefficient for the traveling mode after 

interacting with the ring-resonator, and θ(x) is the Heaviside step function. This form 

follows from the single particle Bethe Ansatz for the interacting eigenstate once the 

Lipmann-Schwinger formalism is used to identify the input and output amplitudes for the 

waveguide state vector [59]. In this case the Bethe Ansatz is especially simple as the 

waveguide state is taken to be a momentum eigenstate  Qp  , an approximation 

imposed in order to restrict the waveguide to a single, dominant mode. In the Appendix 

we present the details of an alternate and, we believe, equally direct and slightly more 

general method for finding the stationary state solutions for the system and the associated 

momentum eigenvalue (scaled by ) and transmission amplitude. We quote the results 

here for use in selecting operating parameters for our dynamical simulations below: 

gv
Q 0 
                   2.8 
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



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c
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


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       2.9 

where 
gv

V

2

2

 .  

 

Fig. 2.2  Transmission with different coupling conditions. The transmission at resonance is 0%, 35% and 

55% for critically-coupled, under-coupled, and over-coupled system respectively. 

We now choose model parameters that expose the salient features of the time evolution of 

the single photon state. The transmission of the waveguide cavity systems depends on the 

coupling condition with respect to the internal cavity loss. Fig.2.2 shows the single 

photon state transmission for critically-coupled (
c

1
  0% transmission at resonance), 

under-coupled (
c

1
 35% transmission at resonance) and over-coupled (

c

1
  55% 

transmission at resonance) cavity waveguide system. For demonstration purposes the 
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cavity is operated slightly in the under-coupled regime to provide high enough photon 

life times for different dynamic processes. In practical devices, complete capture of the 

wave packets can be achieved [60]. 

Calculus of residues  

Here we solve for the stationary states of the system without reference to any particular 

ansatz for the form of the result. We show that the well established results for the 

stationary states of the system emerge naturally from the mathematical structure of the 

approach. We anticipate that this method, properly extended, might simplify the 

significantly more complicated mathematical development of multi-photon transport 

processes involving quantum electrodynamic couplings between systems having 

continuous spectra and those having discrete spectra. 

 The general solution to the differential equation for  x  can be written as 

     xxx ph    where     iQxex 0hh   is the homogeneous (viz. V = 0) solution with 

gv
Q 0
 .  We now obtain the particular solution,  xp . 

 Introducing the Fourier Transform,     xiexdxF  




 , and its inverse, 

    xieFdx 


 






2
1 , we transform Eqn. (2.6) into Fourier (α) space to obtain 

    0cav0  VeFvg   

where, owing to the trivial nature of the Fourier Transform of Eqn. (2.7), we obtain 

 

c

1
c

*

cav

0





i

V
e


 . Combining these results we obtain for the Fourier Transform of the 
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waveguide amplitude function,  
 
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  . Inverting the 

Fourier Transform yields a particular solution,  
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


 , 

which we evaluate using the calculus of residues after analytically extending  F  into 

the a complex z-plane, defined by  iz   where α and β are each real numbers. Let 

us work out the details by considering for a moment only the integral and defining, 

suggestively,  
gv

Q 0
 . That is, we must ascertain the value of the improper integral,








Q

ed xi



 

, where q is a real number. Clearly the integrand has a simple pole at Q .  

 In order to apply the residue theorem from complex analysis, we define the contour 

integral around a closed contour in the z-plane, 

 















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Csc
0

lim
Qz

dze

Qz

dze

Q

ed
P

Qz

dze izxizxxiizx








 , where P indicates the Cauchy Principal 

Value of the improper integral and C is an infinite semicircle chosen to ensure 

convergence and therefore vanishing of this contribution to the contour integral. The 

remaining term represents an infinitesimal semicircular deformation in the contour 

needed to accommodate a pole such as this one that lies along the path of the integration 

[61]. The various pieces of the contours for the cases x > 0 and  x < 0 are displayed in 

Figure (10). Referring to Fig 2.3 and using the result that the residue theorem as applied 
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here gives iQx
izx

ie
Qz

dze
2




provided that the pole at α = -Q is encircled by the contour 

of integration and where the + (-) sign corresponds to a counterclockwise (clockwise) 

sense of integration. Applying the mean value theorem to the infinitesimal semicircular 

deformation yields 
iQx

izx

ie
Qz

dze









sc

0
lim where the + (-) sign corresponds to a 

counterclockwise (clockwise) sense of integration around the infinitesimal deformation in 

the contour.  

 

Fig. 2.3 Contours in the complex z plane used for inversion of the Fourier transform of the waveguide 

amplitude for the cases (a) x > 0 and (b) x < 0. 

We now handle the integration in two regions. For x > 0, we choose the clockwise path 

having the infinite semicircular branch in the β < 0 half plane (see Fig. (10a)). Deforming 

the contour in a counterclockwise sense relative to the pole at α = -Q excludes the pole 

from the region encircled by the contour. So, for x > 0, we obtain 
iQx

xi

ei
Q

ed
P 



 










(note that including the pole with a clockwise deformation yields the same result). For x 
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< 0, we choose the counterclockwise path having the infinite semicircular branch in the β 

> 0 half plane (see Fig. (10b)). Deforming the contour in a clockwise sense relative to the 

pole at α = -Q excludes the pole from the region encircled by the contour. So, for x < 0, 

we obtain 
iQx

xi

ei
Q

ed
P 



 










(again independent of the choice for the deformation).  

 Collecting the results from the calculus of residues and combining them in the 

inverse Fourier form for the particular solution gives
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 . Notice that the residue theorem immediately 

enforces the appropriate dispersion relation for our rightward traveling wave. Now, it is 

clear from the forms of  xh and  xp  that   00p  and    00h   . Defining 

  00   , 
gv

V

2

2

 , and 
c

1
c 

 iD  to simplify the notation, we can now write the 

general solution for the stationary state as 

                xxexxex
D
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D
iiQx

D
iiQx θ1θ1θθ1 00

   . This state has the 

form  
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xBxAex

iQx

iQx

iQx , exactly the form of a one dimensional 

scattering problem in which (i) the target is localized at x = 0, (ii) there is no reflection (r 

= 0), and (iii) the target has internal structure from which irreversible losses to the 

environment can occur. In one dimensional scattering theory the transmission coefficient 

is defined as 
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which, upon substitution for D and Γ, is exactly the result given in Eqn. (9) in Section II.  

 We emphasize that the method we have presented relies on no additional 

assumption beyond the existence of the Fourier transform pairs we have used. Rather, the 

form of the interacting eigenstate emerges naturally as the solution to the system of 

equations determining the stationary states. In fact, the state that we derive as the general 

solution turns out to be exactly the single particle Bethe ansatz state that one would 

expect in this simple case. In a future work we will extend this method to cases involving 

more than one photon, and in so doing provide another mathematical mechanism for 

backing out the S-matrix for the interaction. In the single photon case and; therefore, for 

our purposes here, this further sophistication is not necessary. 

2.2.2  Experimental results 

To verify this result we tested microring resonators with single photons. A scanning 

electron microscope image of the cavity system we used is shown in Fig. 2.4. It consists 

of two ring resonators integrated into a Mach-Zehnder interferometer configuration.  This 

configuration was selected as it allows us to observe more complex single photon 

interference than with just a single cavity.  The single photon enters the system from the 

input port to a 50/50 Y-splitter, which puts the photon into a superposition of being in 

either the left or right path. In both paths there are ring resonators which will transfer 

photons across to the output-port side when the photons are in resonance with the cavity. 

Once across, the paths are recombined where the photon can either constructively or 

destructively interfere with itself based on the relative phase difference between the left 

and right paths. We should note that if the photon is not in resonance with one or both of 

the resonators then system interference would collapse because the path the photon takes 
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could be determined by its wavelength.  In addition, if the duration of the photon is 

shorter than the photon lifetime of the cavity, then photon interference will not be 

observed. 

 

Fig. 2.4 SEM image of a compact MZ interferometer with integrated ring resonators. This system was used 

to verify single photon interactions with resonant cavities. 

The experimental setup used to demonstrate single photon interference is shown in Fig 

2.5.  It consists of a mode-locked Ti:Sapphire laser which is used to pump an Optical 

Parametric Oscillator in order to produce ~200femtosecond pulses at a wavelength of 

~1550nm. These pulses are then filtered to a 0.25nm bandwidth, which effectively 

produces a pulse with a ~5picosecond duration. This pulse duration is comparable to the 

photon lifetime of the ring resonators, therefore the amount of coupling to the cavity is 

maximized. This pulse is then attenuated to a single photon level as verified by 

measuring the average power and repetition rate of the pulses. These single photon pulses 
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are then sent through a variable optical delay line which allows us to synchronize the 

photons with the detection circuitry. Then the photons are sent into the chip where they 

interact with the device shown in Fig 2.4.  After leaving the chip the photons are detected 

by a single photon detector.   

 

Fig. 2.5  Experimental setup used to measure single photon interference. 

We see in Fig.2.6 that when the photons wavelength is around 1527.9nm there is a 

dramatic change in the transmission. In Fig. 2.6 (first) the transmission of one of the ring 

resonators (i.e. the left or right branch) exhibits a significant dip due to the coupling of 

the photon into the ring resonator (and then to the output port). In addition, we can see 

coupling to the output port and constructive interference in Fig 2.6 (second).  We also 

tested the system with much shorter (larger bandwidth) single photon pulse. In this case 

the photons duration is too short to exhibit interference with itself in the ring resonator; in 

essence it behaves as a particle.   
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Fig. 2.6   Measured transmission of a long (small bandwidth) photon and a short (large bandwidth) photon 

through the ring resonator (left) and through the output port of the device (right). 

This is seen in Fig 2.6 where the curves for the large bandwidth photon (22.5nm) do not 

exhibit wavelength dependence and simply transmits unaltered by the ring resonator. 
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Therefore, as expected, in order for single photons to exhibit interference the bandwidth 

of the photon and the resonator must be comparable to each other. The ability to filter and 

rout photons enables robust control of the flow of photons a chip.  This will also enable 

the realization of complex quantum information circuits on chip.  As will be discussed in 

the next chapter, we have demonstrated initial control of the cavities using carrier 

injection. New exciting phenomena are expected to immerge when launching photons 

into an active medium. 

2.2.3  Dynamic theoretical model 

In order to examine the transient dynamic response of the system to an arbitrary single 

photon input, we solve the equations of motion (Eqn. (2.4 and 2.5)) numerically. To do so 

we use a finite difference method, it is commonly used to analyze electromagnetic 

scattering and propagation [62]. We begin by specifying an initial input single-photon 

state. The time evolution of the state is described by using the knowledge of the 

amplitude functions at each grid point in space at the previous time step and propagating 

forward to the next time step using the finite difference approximation shown in Eqns. 

(2.10 and 2.11). 
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Where N is the spatial grid point representing the cavity/waveguide coupling region; the 

interaction is clearly a local one.  

To demonstrate this process and to elucidate the quantum mechanical features of the 
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system we consider a single photon state with a Gaussian amplitude (hereafter referred to 

as the “Gaussian wave packet”) incident on the cavity waveguide system. The 

propagation of the single photon wave packet through the system is typified by the 

profiles plotted in Fig.2.7.  

 

Fig.2.7 Transmission of a Gaussian packet through the cavity waveguide system.  

In Figure 2.7a we display the absolute magnitude of the probability amplitude for the 

wave packet as a function of position along the waveguide for a fixed time. We have 

chosen that time to be long after the photon could have (i) first interacted with the 

microcavity resonator at the coupling region and/or (ii) could have completed a round trip 

in the resonator if it were injected upon interaction at the coupler.  Several general 

features of the solution are apparent. First, there are clearly general positions within the 

waveguide at this time at which the photon is likely to be detected. Unlike the case 

involving classical fields, this is a signature of quantum interference between the branch 
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of the photon state vector representing direct transmission of the photon at the coupler 

and the branch representing a single round trip in the cavity before transmission. Put 

another way, if we were to place perfectly efficient single photon detectors at the 

locations of the two peaks in the figure, then (at most, see below) only one of them would 

fire in any individual run of the experiment. By operating in the under-coupled regime, 

we can neglect the contributions of higher order terms arising form more than one round 

trip through the microcavity prior to transmission through the waveguide. Second, it is 

the larger peak in Figure 2.7a that corresponds to direct transmission. This peak is 

centered at xd = vgt  where t is the time at which the “snapshot” in Figure 2.8a is taken 

and we are taking t = 0 to be the moment at which the photon is incident upon the 

coupling region. The round trip peak is smaller, broader and lags the direct peak by a 

distance of Δx = vg(2πnR/c) where R is the radius of the microcavity and n is the effective 

intra-cavity index of refraction. Third, the round trip peak is attenuated relative to the 

direct peak; this is a result of (i) our choice of coupling strength (which is unitary and 

therefore probability conservative) and (ii) cavity losses (which is irreversible and 

therefore not probability conservative). The unitary source of the difference in peak 

height is a simple consequence of our choice to operate in the under-coupled regime. The 

irreversible part is due to cavity losses. This means that in any individual realization of 

the experiment there is a finite probability for the photon to be “lost” to the environment. 

Because we are considering only single roundtrip events in our model with relatively 

weak losses, we expect that the resultant lack of normalization in the output will be small. 

Because it does not impact the major results presented here, we make no effort to deal 

with this loss quantitatively here, but it is readily apparent by inspection of Figure 2.7a  
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that it is a small effect in the regime we are considering. To examine a fourth feature of 

the solution, consider Figure 2.7b, which shows the time evolution of the modulus of the 

amplitude function at a fixed position in the waveguide beyond the coupling region. 

Clearly, the direct peak arrives at an earlier time that the roundtrip peak, as discussed 

above. One can think of this curve in terms of a photon counting Gedankenexperiment. 

Suppose we measure the probability of detecting m photons at a time delay Td after the 

interaction, P(m,Td) for an ensemble of similarly prepared runs of the single photon 

transport experiment. Figure 2.7b suggests we should see non-zero results only around 

P(1,Td ≈ x/vg) and c
nR

v
x

d g
TP 2

~
),1(  . Again, these results are ultimately traceable to 

quantum interference between the branches of the single photon state vector. Further, the 

decay tail of the second peak depends on the cavity decay rate and the coupling factors 

between the cavity and the waveguide. 

We envision that through careful quantitative study of the features described in this 

section, we can, with the advent of efficient, single photon detectors, develop an 

experimental protocol for characterizing the optical properties of the photonic structures 

we are considering here. This is an exciting possibility that we will explore elsewhere.  

2.3 Photon-pair generation in silicon wire 

2.3.1 Theoretical model 

An essential part in these systems is the single photon source. A common off-chip 

method to generate quantum pairs of photons is Spontaneous Parametric Down 

Conversion (SPDC) in a nonlinear crystal [63]. In order to make these systems more 

useful in the future optical communication systems we need to move to on-chip 
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generation, detection, and processing of qubits. Single photon sources has been 

demonstrated using quantum-dot photonic wires [64] and χ3 based nonlinear processes in 

silicon [43]. 

A Si wire WG can achieve strong light confinement due to its high refractive-index 

contrast. The core size of a Si wire WGs for single mode propagation is less than a 

micrometer. Because of such a small core, the power density of a Si wire is higher by a 

factor of about 1000 than that of conventional single-mode fiber. Consequently, it is 

expected that nonlinear optical effects will occur when using a low input power 

equivalent to that in optical communications. Light propagation with such a high power 

density can produce a wide variety of nonlinear phenomena, including stimulated Raman 

scattering (SRS), stimulated Brillouin scattering (SBS), self-phase modulation (SPM), 

crossphase modulation (XPM), two-photon absorption (TPA), and four-wave mixing 

(FWM) [65]. In FWM there has been a focus on the traditional regime in which a high-

power pump is used to amplify a signal and simultaneously generate an idler beam. Such 

a process is usually done in the anomalous dispersion regime to compensate the phase 

shift generated by the pump for phase matching. Given below are the general equations 

governing a degenerate FWM in silicon-waveguide.  

idlersignalpump  2      2.12 

Lpump kPk  2       2.13 

idlersignalpumpL kkkk  2      2.14 

Where  
effxA

n2
   
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Fig.2.8 FWM process in silicon waveguides. 

 However, as FWM is a four-photon elastic scattering process, it conserves physical 

quantities such as energy and momentum among the four interacting photons. As a result, 

if no signal is initially present so that FWM is initiated from vacuum noise and the pump 

power is relatively low so that stimulated FWM does not occur, it is possible to create 

only one pair of signal and idler photons at a time (within the coherence time of the 

pump) that are correlated quantum mechanically in multiple dimensions. Such correlated 

photon pairs are useful for applications in quantum information processing [11] [66]. The 

same process can be accomplished with the aid of optical cavities to increase the creation 

efficiency at resonance [67] [68]. By improving the quality of the resonator the 

conversion efficiency increase due to the high field enhancement (FE) factor at resonance 

[68] signalclassicalidler PP  . 

pump

signal

idler
classical PFEL

P

P 282
)(       2.15 

To describe this process for generating single photon  pairs, Consider a one-dimensional, 

single mode waveguide coupled to cavity via an evanescent coupling, as shown in 

Fig.2.9. In what follows, we assume that the pump photon state is injected into the 

waveguide from the left and propagates through the waveguide (cavity) in the positive x 

(counter-clockwise) direction. Specifically, we assume that the FWM is described by the 
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nonlinear third order Hamiltonian.  Setting 1 , as we will do throughout unless 

otherwise stated, the effective Hamiltonian for the system we study takes the form [69] 

nonlinear ringlinear-ringcouplerchanneleff
ˆˆˆˆˆ HHHHH      2.16 

The sum above is performed for different modes propagating in the waveguide and the 

channel. Considering all the different interactions and energy transfers in the system we 

can easily write down expressions for the different Hamolitnians based of the creation 

and annihilation operators for different modes. 
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where     xcxc ˆ,ˆ  are the position dependent inverse Fourier representations of the usual 

Boson ladder operators describing the rightward traveling waveguide mode, and  aa ˆ,ˆ  

are the Boson ladder operators describing the counter-clockwise cavity  mode. The 

canonical commutation relations for the system are   1ˆ,ˆ aa ,       xxxcxc  ˆ,ˆ ; 

  xca ˆˆ,   and all other combinations vanish. In using this form of the effective 

Hamiltonian we are assuming that the waveguide is driven at a frequency within a narrow 

range far from the cutoff frequency of its dispersion relation, S is the coefficient 

describing the nonlinear frequency conversion process, and that gv is the group velocity 

for the traveling waveguide mode [52]. The evanescent coupling is represented by the 
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local interaction term having coupling strength V where the coupler is situated at x = 0. 

The different modes represent the four photons interacting during the process (pump-1, 

pump-2, signal, and an idler). 

 

Fig.2.9. Schematic of waveguide-cavity coupled system. 

Considering the case where the pump photons have the same energy, we can express its 

distribution as a coherent state at the coupler where all the interactions happen. 

vacOinIn        2.21 

The operator Oin  creates the input state from vacuum. For example the input pump can 

be considered to have a Gaussian-like distribution 
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state is a 2-D distribution depending on the parameters of the generated photons. 

vacOgengen       2.22 

The operator  Oout  takes into count all the energy transfers in the system and generates 

the output state. The wave vectors can be also related to the distribution of the wave 

function in k-space [69]. Finally by solving the problem at the coupler through relating 

the number of photons generated in each mode we find a similar expression for the 
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photon generation efficiency similar to the classical case signalSPFWMidler PP  and 

classicalSPFWM   . The main difference is that the signal power for the conversion is 

initially provided by vacuum fluctuations instead of a defined input power as the classical 

case [69]. 
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A schematic of the process is shown in Fig.2.10 

 

Fig.2.10 Schematic of photon pair generation in SOI ring resonator. 

2.3.1 Theoretical model 

Following the theoretical we  used the setup shown in Fig.2.11 to generate correlated 

photons in a ring resonator with small free spectral range.  
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Fig.2.11 Experimental setup for generating correlated photons in silicon chip. 

 

 

Fig.2.12 Correlated photons generation in silicon micro-ring resonator. 

The filtered signal from the OPO is amplified before being coupled to a specific 
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resonance in the ring. The ring has a FSR of 0.85 nm, which will result in a separation 

between the idler and signal photons of ~1.6nm. At the output, we initially used 1X5 

MUX to eliminate the pump with 70dB extinction ration. Then fine scanning of the 

wavelength was done using a voltage controlled FP filter with bandwidth of 0.1nm. The 

results from the single photon counter are shown in Fig.2.12. 

There are two main challenges with SPDC sources in general. The first problem is the 

random nature of the generation of single photon pairs in time. This can solved by using a 

pulsed pump operation as shown above which will result in a narrower probability 

distribution of the photon pair generation. This is limited by the duration of the input 

pump.  The second problem is the rate of generating single photon pairs versus higher 

order conversion specially while operating with high gain. This is closely related to 

Poisson’s statistics of the pump. The probability of multiple pairs scales with the square 

of the probability of producing a single pair. 
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Simply by taking 1N we can find a probability of having a single photon per pump to 

be P1=0.37.  For this reason, pulsed SPDC is normally operated at low power, and obeys 

a trade-off between the count rate and quality of the heralded single photon pairs. This 

limitation can be overcome by using spatial or temporal multiplexing of several sources 

[70].  

With the single photon source in hand different exciting quantum phenomena can be 

explored ranging from time bin entanglement [71], polarization entanglement [72], N00N 

reduced de-Broglie wavelength [73].They essentially depend on creating a number state 
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that is in general represented by 

nn        2.25 

Using simple linear optical elements these states can be manipulated. Taking for example 

a single photon state input to a MZ interferometer, by efficiently changing the phase of 

the state and combining the two paths, interference patterns are observed. 

 

Fig.2.13 Single photon interference in MZI. 

The probability of either detector 1 or 2 fires depends sinusoidally on the phase between 

the two arms 

1001 1)cos1(
2

1
PP         2.26 

Another exciting class of quantum circuits to explore are the photon number dependent 

switches. Relying on the fact that the effective wavelength of light changes as the number 

of photons involved in the state is changed. This phenomenon is apparent in N00N states 

inference patterns which scales in a MZ interferometer configuration with the number of 

photons [74]. 

)cos(~ NDetection        2.27 
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The general form of this state at the output of a MZ interferometer with a phase shifter is 

00 NN 
       2.28 

 

Fig.2.14 Interference pattern dependence on the number of photons. 

2.4 Summary 

In this chapter we have developed a static and dynamic model describing the interaction 

between single photon wavepackets and micro-optical cavities. We presented FDTD 

simulation method of the system that is general and can be used for any arbitrary 

wavepacket and system condition. In addition, the theoretical results were demonstrated 

experimentally by showing interference in a system of two micro-ring resonators. We 

also reviewed the theoretical model for generating photon pairs from vacuum fluctuations 

in a silicon micro-ring resonator. Following the theoretical model, we have 

experimentally generated photon pairs in silicon through 4-photon scattering. 

In the following chapter, we will focus more on the changes the wavepacket exhibits in 

the presence of active tuning in the system. 
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CHAPTER THREE 

PHOTON EIGEN ENERGY MANIPULATION 

3.1 Introduction 

We examine the possibility of dynamically tuning the wavelength of a single photon via 

adiabatic following. The model that we are considering here is similar to the one in 

Chapter 2 except that we now allow for the dynamic tuning of the resonance frequency of 

the ring resonator, mathematically by allowing ωc in the effective Hamiltonian (equation 

2.1) to become a parametric function of time, ωc(t). The system is shown schematically in 

Fig.3.1where the change in the color of the cavity from its color at t0 depicts the change 

of the cavity resonance frequency. Clearly, the parametric change in the system affects 

only the harmonic oscillator (free ring resonator) term of the effective Hamiltonian. We 

expect, then, that for a sufficiently slowly varying function ωc(t), the wavelength of the 

cavity will adiabatically follow the parametric shift in the resonance frequency. This has 

been demonstrated theoretically and experimentally, by, among others, one of the present 

authors (SP), in the case of classical electromagnetic waves [32,33,54]. The effect is a 

clear manifestation of the well-known adiabatic theorem [58], and our mission here is to 

show, via direct computation, that the phenomenon carries over directly to the fully 

quantum mechanical case of single-photon transport.  

It is interesting to note that for the harmonic oscillator, the fully quantum mechanical 

import of the adiabatic theorem is fully accessible from semi-classical analysis. 

Ultimately this is related to the fact that the harmonic oscillator is one of the systems that 

has perfectly closed orbits in phase space, the trajectory being the energy ellipse, and the 
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classical adiabatic invariant being the action integral,   
Updq , where U  represents the 

total mechanical energy of an oscillator having natural angular frequency, ω, and the 

action integral is geometrically equivalent to the area of phase space bounded by the 

energy ellipse. Semi-classically, the action is related to this adiabatic invariant via the 

Bohr-Sommerfeld quantization condition from the “old quantum theory,”   Npdq . 

Combining the two expressions for the action integral clearly results in the simple energy 

quantization condition for the quantized oscillator. It is especially important realize in 

interpreting our single photon results that, although such simple analysis cannot tell us 

about the actual quantum state of the photon field, in the case of the harmonic oscillator 

(a realization of which formally represents the single-mode photon field) it does produce 

exactly the energy eigenvalues. It is for this reason that the adiabatic invariant for the 

fully quantum mechanical Hamiltonian is exactly the same as for the case involving 

classical fields; this is in fact the underlying reason why the authors of Ref. [30] were 

able to explain exactly the adiabatic energy shift of a photon using only semi-classical 

analysis. Using simple Δ-calculus, it is clear that for any simple harmonic oscillator 

 
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

 
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U

0 , where the second equality results from our assumption that 

the oscillator represents a cavity photon, 
 c2 . Clearly we must have, semi-classically 

and quantum mechanically, U
U 

 . This relationship describes a detailed balance 

between the energy of the cavity photon and the work done on the system by the external 

agent that performs the tuning of the cavity resonance; quite aptly, there is a 

thermodynamically adiabatic transfer of energy from the environment to the cavity. 



42 

 

 

Fig.3.1  Schematic of photon energy lifter. The cavity is adiabatically tuned at time t0 from one stationary 

state to another. 

3.2 Full Quantum mechanical analysis  

We now directly demonstrate the single photon adiabatic wavelength shift and examine 

its dynamical behavior. To begin, we repeat Eqns. (4) and (5) with the modification to the 

cavity resonance frequency ωc,  
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In solving these equations using the numerical algorithm outlined above we will assume a 

simple linear shift to the resonance frequency, ωc(t) ~ t. The physical result is insensitive 

to the exact parameterization, as long as the change is “slow” in comparison with the 

intrinsic time scale of the system, which in this case set by the inverse of the mode 

frequency spacing of the ring resonator. Further, it should be experimentally 

straightforward to dynamically tune a ring resonator resonance at a constant rate over the 

interesting region of parameter space. 
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The time evolution equations are solved using the numerical technique described earlier. 

We first consider wavelength shifts that occur over a time scale smaller than the cavity 

photon lifetime. In Fig. 3.2 we show our solutions for the cavity photon amplitude 

function,  tecav
~ , for several different values of the adiabatic shift starting from negative 

tuning (left) to positive tuning (right). The evidence of quantum control of the cavity 

photon wavelength is clear even at the single photon level. We stress that this mechanism 

for wavelength conversion of a single photon involves only linear optical processes and 

therefore obviates the need for large nonlinear susceptibilities that is a technological 

barriers to the development of quantum circuit elements. 

 

Fig.3.2 Single photon energy state changes adiabatically as a function of the cavity tuning frequency (the 

tuning changes from negative to positive going from left to right). 
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Next we study the conversion efficiency as a function of the switching time. The results 

are shown in Fig.3.3 The switching function is varied linearly with time from the initial 

state to the final state (the switching time changes from zero to one photon life time going 

from back to front). We clearly see that as the switching time approaches the time the 

photon spends inside the cavity there is a lower probability to detect the photon at the 

new eigenstate. This probability has an upper limit of 1 when the conversion is done in a 

time T << τc. We can understand the degradation in amplitude as the result of a 

competition between the adiabatic tuning process and the non-adiabatic effect of the 

finite cavity decay rate we are considering in our model. If the switching time is short, the 

adiabatic effect dominates (which may seem counterintuitive, but one must recall that 

adiabatic does not mean “slow” it means without irreversible energy exchange – it just 

happens that many text book examples of the adiabatic theorem involve slow processes, 

[75]). On the other hand, if the switching time is comparable to the cavity lifetime, T ~ τc, 

the effects of cavity decay become apparent. Clearly, if T << τc, we face the trivial 

situation of having a very low probability of there being a photon whose wavelength we 

can hope to shift. We stress here that we are considering micro-cavities with mode 

frequency spacing that are much larger than the inverse of the relevant time scale for the 

adiabatic change, 1/T. We have yet to apply our single photon model to the case in which 

other modes are accessible and thus excited when 1/T ~ Δω. We expect that, as in the 

semi-classical case, the wavelength conversion will lose fidelity as a result of the 

distribution of the injected (or extracted) energy over several modes (as experimentally 

demonstrated [76]) , in turn leading to an increase in the effective entropy of the system 

(as more microstates, viz. the other modes become available), thus introducing a non-
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adiabatic component to the energy transfer. We shall study the details of this more 

complicated case elsewhere. 

 

Fig.3.3 Single photon final state as a function of the tuning time. The conversion efficiency degrades with 

slower tuning (the switching time changes from zero to one photon life time going from back to front). 

We now analyze another test to verify that the probability of detecting a photon in the 

new (old)  eigenstate after the conversion is P=1 (P=0). A cavity is placed in series with 

the dynamic cavity and the experiment is performed twice. Initially, the output cavity is 

tuned to the original eigenstate and second to the new eigenstate in such a way as to 

probe the photon energy at the output of the dynamical system.  The equations of motion 

describing the systems can be derived in a way analogous to that discussed in Section II 

resulting in the system, 
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The numerical results and a schematic of the system considered are shown in Fig.3.4  

     

Fig.3.4 The state inside the cavity changes with 100% efficiency. During the transition period the photon 

follows the state of the cavity (new/old wavelength amplitude changes from 0/1 after the tuning). 

We see that the conversion efficiency is 100% with a zero probability of detecting the 

original photon energy after the conversion process took place. This established that the 
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wavelength conversion of the single photon is complete and that it leaves the photon 

wave packet intact. 

3.3 Experimental results 

The setup of the experiment is shown in Fig.3.5. The systems consist of attenuated 

optical pulses from an OPO with an average number of photons of 0.1 per pulse. The 

pulses are coupled to a ring silicon ring resonator through a custom made fiber and a 

polarization controller. The custom made fiber is used to synchronize the 1550nm pulse 

with the top pumping at wavelength of 415nm.  

 

Fig.3.5 Experimental setup for single photon state manipulation through dynamic control of silicon ring 

resonator. 

The experiment goes as follows, when the 1550nm pulses are coupled to a specific mode, 

the refractive index of the cavity is changed through injection of carriers. The ring used 

here has a FSR of 0.85nm (diameter of 200 micrometer). This ring size will ensure 

observing more complex phenomenon which is discrete transitions of photons in the 

cavity modes. 
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Fig.3.6 Single photon transitions in a ring resonator. The central large peak is the initial wavelength of the 

photons and is tuned to one resonance. When the resonators is dynamically tuned using the free-carrier 

plasma dispersion effect the photons make transitions to other resonator states (the two smaller peaks).   

The photon-count as a function of wavelength is shown in Fig.3.7. There is a dominant 

adiabatic shift at 1554nm, in addition to discrete transitions to higher energy (1550nm) 

and lower energy (1557nm) modes. As will be explained in Chapter 5, certain transitions 

can be made more probably by carefully designing the photonic states. 

3.4 Summary 

In this chapter we studied the effect of dynamic tuning of a resonator on a trapped photon 

wavepacket. The theoretical result follows the adiabatic invariance principle; it manifests 

itself as changing the eigen energy of the photon. We also studied the effect of the 

modulation speed on the final state of the photon. Following the theoretical model, we 

experimentally demonstrated discrete photonic transitions in a cavity with closely spaced 

modes.   
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CHAPTER FOUR 

PHOTON TRAPPING IN EIT-LIKE SYSTEMS 

4.1 Introduction 

Delay elements play an important role in quantum computing [77,78] and optical signal 

processing [79,80]  which calls for the need of efficient controlled delay elements with 

large characteristic storage time. Passive optical delay lines have a fundamental tradeoff 

between the bandwidth they can accept and the amount of delay they can deliver [81-83] .  

In order to break this limit dynamic tuning from an initially large bandwidth state (small 

group index) to a narrow bandwidth state (large group index) is required [28,29,84,85]. 

Recently such systems were demonstrated on a silicon chip using an all-optical analogue 

of electromagnetically induced transparency (EIT) [28,86] and a coupled cavity-mirror 

system [85]. However, the amount of delay demonstrated was significantly limited to 

much less than one-hundred picoseconds [28,85]. This small amount of delay is due to 

the absorption of the stored light by the free-carriers that are inherently required to 

dynamically capture, store and release the pulse of light. Here we propose a novel 

solution to this problem by separating the primary functionalities (capture, storage and 

release of the light pulse) of the light storage system into separate cavities. By doing so 

we can ensure that the light only minimally interacts with free-carriers. As a result we 

experimentally demonstrate delay that can be continuously varied over ~300ps (with an 

intrinsic exponential decay time of ~160ps). The delay achieved in our system is four 

times larger than previously demonstrated active optical delays [28,86]. Our technique is 
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only limited by the quality of the cavities used and can be easily extended to nanosecond 

delays with lower-loss cavities which inherently have a longer photon life time [57].  

 

Fig. 4.1 Schematic the system and its operation principle, (Step 1) shows the acceptance state of the system. 

Bits are stored as shown in (Steps 2 and 3) then released in (Steps 4 and 5). 

Our proposed scheme for achieving tunable delay is shown in Fig. 4.1. It consists of three 

rows of resonators. The first and last rows are used to capture/release a pulse of light 

into/from the system. The middle row is the low loss storage unit where the light 

circulates until it is released and is equivalent to the EIT structure in [28]. The system 

works as follows: 1) Capture stage: Light is input into the large-bandwidth capture switch 

represented by the top cavity (Fig.4.1-Step 1). The capture cavity initially has the same 

resonant wavelength as the storage unit so light automatically couples into the storage 

unit. 2) Storing stage: Once the light is completely in the storage unit the resonant 

wavelength of the capture switch is detuned by injecting free-carriers (cavity color 

changes from blue to green as seen in Steps 2 and 3). This effectively decouples the light 
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from the input/output waveguides, which dramatically increases the group index of the 

system. In addition, the light is isolated from the free-carrier loss used to tune the system. 

This is the key for achieving the large and low loss delays demonstrated here. 3) Release: 

The signal can be released at any time by injecting carriers into the release switch (the 

ring in the third row). This aligns its resonance (color changes from red to blue in Fig. 4.1 

Steps 4 and 5) with the storage unit resonance. The light automatically leaks out into the 

output cavity and then into the output waveguide.  

In order to prove that our device is insensitive to free-carrier loss we used time domain 

coupled mode theory to compare our design with the previously demonstrated EIT delay 

element  [28]. The following describe the equations used to model the time evolution of a 

field a inside a resonator that is evanescently coupled to two waveguides with fields 

E
through

 and E
drop

, respectively [87]. 

1 2

1 1 1
( ) through drop

o In In

int through drop

da
j a j E j E

dt
  

  
                 4.1 

    1

through through

Out InE E j a                      4.2 

                 2

drop drop

Out InE E j a                              4.3 

where ωo and κ  are the resonance frequency of the cavity and the coupling coefficient 

from through/drop waveguides to the resonator, respectively. The times τint, τthrough, and 

τdrop represent the field decay constants through internal cavity loss, coupling to the 

through port, and coupling to the drop port, respectively. Eq. (4.1), (4.2) and (4.3) were 

applied to each of the cavities in Fig. 4.1 and they were coupled to each other by 

appropriate waveguide amplitudes (Et
hrough

 and E
drop

). In addition, we assumed that there 

was no internal cavity loss in order to highlight the effect of free-carriers and also let 
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κ1=κ2 for simplicity. To model the effects of the free-carriers during the 

capture/release steps we applied Eq. (4.4), (4.5) and (4.6) to the evolution of the field a in 

the resonator over one round trip: 

                       
0.5( ) j l l

oa l a e                      4.4 
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                         4.5 

                              
18 188.5 10 6.0 10N P                      4.6 

where ΔN cm-3 (electrons) and ΔP cm-3 (holes) are the injected carrier densities, and Δβ 

and Δα represent the changes in the propagation and attenuation constants in a waveguide 

with effective index neff  and length l (which is the circumference of the resonator) 

[28,88]. The results of the coupled mode simulations are seen in Fig. 4.2. Light is 

captured in the storage unit at t~100ps and released at t=700ps. By comparing Fig. 4.2A 

(our design) and Fig. 4.2B (EIT) it is clear that our system stores the light signal in the 

system for a considerably longer time (potentially as long as 4.5ns in this example which 

is solely limited by the very small coupling to the capture switch in Step 3) than the 

comparable EIT system. This is even with the order of magnitude larger carrier density 

(5E18 cm-3) used in this example (and consequently order of magnitude larger 

absorption coefficient). And this free-carrier loss insensitivity applies for a very large 

range of carrier concentrations as plotted in Fig. 4.3 where the stored power is negligibly 

affected by the increase in the injected carrier density in our proposed scheme as 

compared to the fast decay with increasing the injected carrier density in the EIT 

structure [28]. Therefore, it is clear that by separating the capture/storage/release 

processes our system can be made insensitive to free-carrier loss.  
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Fig. 4.2 (a) Numerical simulations of storing a 20ps pulse in the proposed system with an injected carrier 

density of 5E18cm-3. (b) Same data is stored in the EIT device proposed in [28] with an injected carrier 

density of 5E17cm-3. 
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While the EIT structure could avoid the free-carrier loss by operating in the high free-

carrier loss state initially and then switching to a low loss state for storage (by pulling 

carriers from the system) the carriers would need to removed from the system in a time 

less than one photon life time of the rings (with the high loss), which is not realizable 

with current electro-optic modulators [88].  

One tradeoff of our approach is that the resonances need to be shifted farther than in the 

EIT structure. This will require more carriers and consequently more power. In addition, 

the injected carriers will broaden the capture switches resonance slightly however this 

effect is minimal (in this simulation the resonance is broadened to Δλ=0.8nm from 

Δλ=0.3nm with a 6.7nm shift in resonance). However, the higher carrier concentration is 

an acceptable tradeoff in order to obtain order of magnitude higher storage times.  

We see in Fig. 4.2A that approximately one-third of the input signal is released 

from the system. The first loss occurs in the initial storage of the pulse where we see 

~53% of the input power is stored in the system. Approximately one-third of the initial 

pulse is lost in the input ring during the storage process (Steps 2 and 3) where  it is 

changed to another wavelength via adiabatic wavelength conversion and also absorbed by 

free-carriers [32]. The remaining loss occurs because when the input ring and EIT mode 

are initially aligned in Step 1 the presence of the input ring actually disrupts the overall 

phase of the EIT mode, essentially opening it slightly, which allows some of the light to 

escape out of the other ports of the storage unit [28,56].   This disruption of the phase of 

the EIT mode also occurs during the release process when the resonance of the release 

ring is aligned with the storage unit resonance, which causes the final drop of power seen 

at t=700ps in Fig. 4.2A. However, we believe the overall efficiency observed in these 
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simulations is not a fundamental limit of our scheme and can be considerably improved 

by carefully selecting coupling coefficients and utilizing more cavities in the storage unit  

[89,90].    

 

Fig. 4.3  Numerical simulations of the stored power after 100picoseconds in the storage unit with different 

carrier densities. Our proposed scheme is in blue while a comparable EIT system in red. 

4.2 Passive device analysis 

We fabricated our proposed delay element on an SOI platform as shown in Fig.4.4 using 

E-beam lithography (JEOL 9300) with negative resist XR-1541 6%. However, instead of 

using a separate release cavity we removed it in order to simplify our experimental setup. 

This is because we found that the cavities have slight variations in the resonance 

positions from their predicted values due to fabrication imperfections, which can be 

corrected with thermal tuning. In order to reduce the number of cavities that need to be 

heated we only use three cavities in the fabricated structure, as opposed to four, which 
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significantly simplifies our experimental setup. The top cavity still works as a capture 

switch, and the remaining two make up the storage unit. We can use one of the cavities in 

the storage unit as a release switch. While carriers need to be generated in this switch our 

simulations show that the light interacts with these carriers for only a short single photon 

lifetime of the cavity, which only induces a small power loss [32,91].  

 

 

Fig. 4.4. (a) Schematic of the capture and release process of the three ring system similar to Fig.4.1. (b) 

Scanning electron microscope image of the fabricated device with three ring resonators. 

a 

b

) 
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The fabricated rings have a diameter of 42µm with a separation between the two storage 

rings of 132µm. The rings diameter and their separation were chosen to ensure 

constructive interference of the storage units supermode [28]. The waveguide dimensions 

are 250nm in height and 600nm in width in order to increase confinement of the mode 

and consequently minimize the loss from scattering along the rough etched sidewalls of 

the waveguides.  In addition, the input ring and one of the storage unit rings (used as an 

output switch) were designed to have a slightly smaller diameter (ΔR=-3nm). This will 

deliberately locate the resonances at shorter wavelength to allow for subsequent red-

tuning. In the switching process the applied heat from carrier recombination shifts the 

resonances to the correct position (all three rings in resonance). 

In order to couple data from the input port into the storage unit all the cavities in the 

system should have the same resonance. The loaded Q of the rings were measured to be 

5000 with an intrinsic Q of 200,000 ( int1 1 1 1 5000rinsic couplingQ Q Q  
). To align them we 

applied heat [8] . (supplied by the external laser used to switch the cavities as explained 

in following sections) to the top input ring and one of the storage unit rings, both of 

which are designed to be initially blue-shifted. Fig.4.5 shows the transmission through 

the middle port of the device with different heating.  The initial resonances with no 

heating are shown in Fig.4.5.A. It consists of an “open” EIT mode of the storage unit 

superimposed on the input ring transmission dip to the left the EIT peak. In order to move 

to a closed EIT state for storing data, heating is applied to the blue shifted storage ring 

(ring with slightly smaller radius initially) as shown in Fig.4.5.B. Consequently, the EIT 

peak will vanish creating a large photon life time state of 165ps for data storage [28]. 

There is still some leakage to the capture ring, however it is very minimal provided this 
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ring resonance is shifted enough in the capture step.  The final step is to align the input 

ring to the storage unit in order to couple light into the storage unit. The transmission 

after red shifting the input resonance is shown in Fig.4.5.C.   

 

                                    

Fig. 4.5 (A) Shows the transmission through the middle waveguide without heating (Open EIT), while (B) 

shows the transmission with heating of the blue storage ring (Closed EIT), finally (C) depicts the case when 

all the rings are approximately in resonance through heating of the input ring and the blue storage ring. 
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The small peak in the transmission spectrum in Fig.4.5.C at ~1555.2nm results from 

imperfect alignment of resonances. Unfortunately, the heat from the external laser was 

not enough to force all the resonance to align perfectly. The misalignment could be 

avoided in future designs by ensuring that the resonances are better-aligned initially. 

4.3 Dynamic photon trapping 

We can now store and release pulses of light now that the resonances are aligned by heat. 

The complete experimental setup is shown in Fig.4.6. It consists of a Ti:Sapphire laser 

generating 100fs pulses at a repetition rate of 80MHz. The pulses are centered at a 

wavelength of 830nm. The pulses are split using a 50/50 splitter. One half will be used to 

generate the bit to be stored at 1550nm telecom wavelength. The second half will 

generate the storage and release pulses at a wavelength of 415nm, which is efficiently 

absorbed by silicon micro-cavities The first half of the 830nm pulse is converted to 

1550nm using an OPO (optical parametric oscillator). The resulting signal is very 

broadband (~22.5nm due to the short ~200fs pulses) so the bandwidth of the pulse is 

reduced to match that of the rings in the system using a 0.25nm Tunable Grating Filter 

(JDS Uniphase TB3). To compensate for the 20dB reduction in the power after the filter 

an EDFA (Erbium doped fiber amplifier) is used. To eliminate the spontaneous emission 

noise from the EDFA we use another filtering stage with a bandwidth of 0.5nm. A 

variable delay line is then used to synchronize the data with the storage and release 

pulses. Next the pulses polarization is rotated to the TM state (E-field perpendicular to 

the chip) using a polarization controller and launched into the chip where it couples into 

the storage unit through the input ring. When the pulse is released it is detected with a 

fast photodetector (impulse response of ~33ps) and then recorded on an oscilloscope. 
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Fig. 4.6 Experimental setup.The stored pulses are generated in an OPO crystal from 830nm Ti-Sapphire 

laser, while SHG is used to generate 415nm storage and release signals. 

The second part of the 830nm pulses is converted to high energy blue light in order to 

switch the silicon cavities through linear absorption (which generates free-carriers). First 

the 830nm pulses pass through an Isolator to prevent any back reflection to the laser. 

Then 415nm blue light pulses are generated through SHG (second harmonic generation) 
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in a BBO (beta barium borate) crystal. The resulting 415nm pulses are split using a 50/50 

beam splitter where one half (store pulse) is used to store the light in the system and the 

second half (release pulse) is used to release the 1550nm light from the system at any 

arbitrary time (the time is adjusted with a translation stage). Both 415nm pulses are 

coupled to equal length fibers with cleaved ends which are placed in close proximity to 

their respective input/storage ring. While the pulses are short (~100fs) they induce a 

steady-state amount of heat via phonons produced by carrier recombination which is also 

used to tune the resonance positions as discussed in the previous section. 

4.4 Experimental Results 

As discussed earlier the data is stored and released in the following manner: First the 

1550nm pulse is coupled through the input ring to the storage unit in the closed EIT state. 

While the data is inside the storage unit the 415nm storage pulse switches the input ring 

decoupling it from the storage unit. The stored data is released from the system at any 

time by opening the EIT mode using a release pulse which switches one of the storage 

rings slightly off-resonance. The spot size of the switching pulses is 50µm in diameter 

with an overlap of 4% with each ring. Carriers of concentration 4E17cm-3 are generated 

in the waveguide through absorbing a pulse of energy of 0.73pJ from the 20pJ incident 

pulse (assuming 4% mode overlap with the ring). This causes a resonance shift of 0.8nm 

in the rings which is more than adequate to ensure that there is no coupling to the 

capture/storage rings in the experiment with a broadening in resonance from 0.3nm to 

0.37nm (reduction in Q from 5000 to 4000). The total storage time is controlled by 

varying the delay between the store and release pulses.  As seen in Fig. 4.7 we are able to 

achieve different storage times which can be continuously varied from zero up to ~300 
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picoseconds as seen in the specific examples in plots Fig. 4.7A-D (the smaller 

oscillations in the data come from the impulse response of the detector as independently 

verified by analyzing pulses of different powers outside the chip).  

 

Fig. 4.7 Different delays are measured through changing the time between the store and the release top 

pumping pulses. 

This large delay, as compared to previous dynamically tuned structures [28,85], is 

inherently due to the absence of free-carriers in the storage unit of our system.  We 

expect that using an identical system a delay of several nanoseconds is possible provided 

the inherent waveguide/cavity loss is low enough. Here our waveguide loss was 

measured to be an exceedingly high 8dB/cm due to fabrication issues which introduced 

considerable sidewall roughness.  This loss could be reduced to less than 3dB/cm with 
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similar waveguide dimensions and could be further reduced by using etchless waveguides 

(loss of <0.5 dB/cm) [92]. 

The initial larger peak seen at t~100ps is due to power that leaks out from the system 

before the storage process takes place. As discussed earlier the initial alignment of the 

input ring with the EIT mode slightly disrupts the overall phase of the EIT mode, 

allowing some light to escape the storage unit [28]  This peak was not visible in Fig. 4.2A 

because the output ring (which is absent in the experiment) does not transmit this initial 

peak. In the experiment there is also an additional power leakage from the imperfect 

closing of the EIT resonance using heat as seen and discussed in Fig. 4.5C along with the 

low extinction ratios of the resonators.  This initial peak can be minimized by utilizing a 

storage unit with multiple cavities and by tuning the coupling coefficients [89,90] . 

In order to compare the quality of the storing process against previously demonstrated 

systems the output power at different delays was measured as shown in Fig.4.8. The 

system shows the expected exponential relation between output power and storage time. 

The characteristic decay time of the system is measured to be 160ps which is four times 

larger than previous systems [10, 11]. In addition, data is stored for more than 32-times 

the pulse duration as opposed to a fraction of the input pulse duration as demonstrated in 

a passive delay element [93]. This delay is achieved with a maximum efficiency of 24% 

(relative to the input pulse), which significantly breaks the time-bandwidth limit of a 

single cavity. We would expect that a ~5picosecond pulse that is coupled to a cavity with 

a photon lifetime of ~160 picoseconds would have an efficiency of at a maximum of 3%. 

However, here we show more than 9% of the initial pulse is stored after 160 picoseconds 

in the unit which is significantly larger than the time-bandwidth limit of a passive single 
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cavity. And without the leakage of the light to the other ports of the storage unit during 

the storage/release process we would expect the efficiency could be further increased. We 

should note that in order to achieve 100% efficiency multiple cavities would need to be 

used in order to completely store the input pulse as proposed elsewhere [89,90,94]. 

 

Fig.4.8 Different delay measurements and data fit, the system has an intrinsic decay 

time of ~160ps. 

4.5 Quantum mechanical Analysis 

4.5.1 Theoretical Model 

After experimentally showing that the process is successful using high intensity light, we 

apply our dynamical analysis developed in Chapter to study the coherent trapping of a 

single photon wave packet in a multi-waveguide multi-ring system.  Similar classical 

light experiments have been performed which rely on a photonic EIT analogue 

[28,55,56,85,95]. Due to the importance of the quality of the storage unit we consider the 
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structure in [55] where the interaction between the photon and the dynamic parts of the 

system is minimal. This opens the door for efficient single photon processing unit based 

on silicon electronic devices, enabling the integration of hybrid structures capable of a 

wider range of functions. A schematic of the device is shown in Fig.4.9.     

 

 

Fig.4.9 Schematic the single photon storage unit, (Step 1) shows the acceptance state 

of the system. Bits are stored as shown in (Steps 2) then released in (Steps 3). 

Equations (4.7)-(4.14) below are the time evolution equations for the system. Note that 

that we are considering microcavities with no internal coupling between clockwise and 

counter-clockwise modes so that there will be a uni-directional excitation of waveguide 
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modes.  This implies in Fig. 4.9 that modes d1,d2, d3 ,and , d4 propagate in the left, right, 

left, and right directions, respectively. Furthermore, the initial state of the system (input 

state position and direction) determine the permitted coupling conditions. 
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The system operates as follows; initially the input cavity is tuned to the storage unit 

cavities to direct the single photon wave packet into the system. Next the eigenstate of the 

input cavity is changed to trap the photon in the storage unit. In order to release the 

photon from the system we tune the eigenstate of the output cavity to the storage unit. 

 



67 

 

4.5.2 Simulation Results 

The system of equations were solved numerically with a single photon Gaussian packet 

as our input state propagating from left to right in waveguide mode d1. First the packet is 

coupled to the storage unit then the storage unit is closed by detuning the input cavity and 

we see that we can hold the wave packet. At later times the input cavity is tuned back to 

the storage unit and the packet leaks back to the output port as shown in Fig. 4.10. In this 

way we have demonstrated the coherent storage and release of a single photon via linear 

optical interactions in a network microcavity system.  

 

Fig.4.10 Storage and release process of single photon wave packet. The input 

Gaussian pulse is shown at time step=600. The stored packet amplitude extends 

from  time steps=600-3600. The released wave packet decays from the storage unit 

at time step=3600 
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4.6 Summary 

We proposed, analyzed, and experimentally tested a novel design for an active delay 

element which has numerous applications ranging from optical signal processing to 

quantum computing. The dynamic nature of the system breaks the time bandwidth 

limitations imposed by static cavities, resulting in a storage time of approximately 

300ps.The storage time is only limited by the quality of the cavities used and could be 

significantly increased to several nanoseconds by using low loss cavities and by 

optimizing the fabrication process [57,84-86,93].  One tradeoff of our approach is it does 

require more power to realize the system (in order to ensure complete isolation of the 

capture switch from the storage unit). However, this is an acceptable tradeoff in order to 

achieve the large delays shown here. Finally we have presented a full quantum 

mechanical model and showed single photon trapping in a system of cavities. 
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CHAPTER FIVE 

ENNINEERED TRANSITIONS IN PHOTONIC MOLECULES 

5.1 Introduction 

The engineering and active control of resonant photonic  structures has enabled unique 

optical functionalities. In one recent work researchers showed that the direction of 

propagation and mode profile can be linked through photonic transitions – enabling a 

non-magnetic optical isolator  [34] , others broke the time-bandwidth limit in optical 

cavities by dynamically tuning the bandwidth of coupled cavities [28,55],  and others 

have realized 100% efficient linear wavelength conversion by trapping light while 

adiabatically tuning the eigenstate of a resonator – commonly known as adiabatic 

wavelength conversion [30-32,76,94,96,97]. However, these functionalities have been 

limited by the mechanism used to realize the refractive index change.  For example, the 

Silicon photonics platform is limited to the free-carrier plasma dispersion effect (PDE), 

which is used to reduce refractive index through carrier injection [18,22,35]. However, 

carrier injection always results in a resonant wavelength shift towards the blue – limiting 

adiabatic wavelength conversion to blue wavelength changes [98]. In contrast, here we 

show that it is possible to efficiently change the wavelength of light, to the red or to the 

blue,  regardless of the refractive index sign by engineering the states of a system of 

resonators.  
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Fig.5.1 Photonic transitions in atom-like photonic structure. Light initially excites 

one state of the resonator (t<t0). When the resonator is switched at a fast rate, 

multiple output states are excited (t>t0).  Δω is the relative shift of all of the states 

due to the refractive index change. 

It was shown in [76] that when a resonator is non-adiabatically perturbed it is possible to 

transition photons to other resonant modes – even towards the red, albeit with an 

extremely low efficiency. The reason for this low efficiency is that the final state of the 

system couples to a continuum of output modes - with a dominant excitation of the 

adiabatic shift as seen in Fig.5.1. [32]. Here we show that by carefully designing the 

states of a system of cavities, which we call a  photonic-molecule, nearly all of the light 

can be non-adiabatically transitioned to just one state – even towards the red.  This opens 

the possibility of using the PDE for both blue and red shifts of light. 
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Fig.5.2  Photonic transitions in molecule-like photonic structure. Photonic 

transitions are engineered using the resonance of the input and output cavities. Only 

one state is allowed after switching the transition cavity. The remaining transitions 

lie inside forbidden states in the energy diagram. 

5.2 Designing system states 

The proposed photonic molecule is shown in Fig.5.2. It consists of an input and output 

cavity each with large Free Spectral Range (FSR) and a transition cavity having closely 

spaced states. By initially aligning one resonance of the input cavity and one resonance of 

the transition cavity it is ensured that the system only has one allowed state, as shown as 

a double solid line in the figure (the double lines indicate that there is mode splitting at 

this allowed state) [99]. We note that although there are many internal degrees of 

freedom for the transition cavity, they are not allowed due to the phase matching 

condition enforced by the input cavity. On the other hand, the output cavity has a red 
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shifted resonance from the input state (lower energy in Fig.5.2 [-Eg/2]). Consequently, 

light cannot escape from the input state into the output cavity due to the misalignment of 

the states. 

In order to transition the light efficiently to the red-shifted output cavity we induce a non-

adiabatic perturbation of the transition cavity through a refractive index reduction.  This 

will blue-shift all of the states of the transition cavity, including the initially excited input 

state. However, now the input cavity will be in a forbidden state and the output cavity 

will be on-resonance with the (m-1) mode of the transition cavity – forming a newly 

allowed state. It is important to note that this is the only allowed output state of the 

system due to phase matching between the cavities. Consequently, the light is red-shifted.  

 

 

Fig.5.3 The building block of the photonic molecule consists of a single cavity. The 

fields are related through coupling coefficients  and time evoltuion operators 

equations 1-3. Radiation and scattering losses are lumped in the field absorption 

cofficient γ. 
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In order to demonstrate this we describe our model which uses temporal matrix analysis [99] 

including all the evolution operators and coupling coefficients. The following equations govern the 

different relations between fields inside an individual resonator, as shown in Fig.5.3.  
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Here γ and Ф(t,λ) are the loss coefficient and phase accumulated after one 

round trip around the ring. The time evolution operator U links the field after 

half round trip propagation inside the resonator )2/),(2/exp(  tiU  . Ex 

represents the different fields in the system. The coupling and transmission 

coefficients satisfy the power preserving relation 1
22
 t . 

The initial steady state response of each ring isolated from the rest of the system is shown 

in Fig.5.4. In the model we consider realistic parameters – a typical value of waveguide 

loss of 3dB/cm is assumed, the input and output ring resonators have a  radius  of  

approximately Rinput/output=10μm and the transition resonator has a radius of 

Rtransition=100μm (FSRs of 8.8nm and 0.437nm, respectively). Note that, for clarity the 

individual ring resonances were calculated separately to visualize the position of different 

resonances with respect to each other, while in the actual system they will be coupled. 

We see in Fig. 4 that initially the input cavity and the transition cavity have the same 

resonance. The output cavity is placed at the midpoint of the gap between the (m) and 
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(m-1) mode of the transition cavity. This will ensure that when the transition cavity is 

blue-shifted using the PDE that it will be in-resonance with the output cavity. This will 

effectively create a phase-matched state with lower energy. 

 

Fig.5.4. Transmission of different rings in the intial state of the system. The input 

cavity and the transition cavity have the same resosnance condition, while the output 

cavity is purposly shifted toward red wavelengths half FSR away. 

5.3 Red transitions with blue index change 

The controlled transition towards lower energies (red) is demonstrated in Fig. 5 by 

injecting a carrier density of 4E16/cm
3 

(n=-1.9E-4) in the transition resonator while a 

pulse of light  is trapped inside. The switching is performed over 100fs, a time much 

smaller than the photon life time in order to ensure  non-adiabatic transitions in the 

transition ring [76]. In Fig.5.5 we see that most of the light is red shifted by =+0.16nm 
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and there is minimal excitation of the other states. Consequently, by engineering the 

states of the system it is possible to induce any state transition.  We note that the new 

state is positioned slightly away from the center of the bandgap of the transition ring due 

to mode splitting. However, by changing the coupling between the resonators and 

positions of the resonances, different states can be created. An important point to be 

emphasized here is the fact that this is a true mode coupling in the transition ring, not a 

filtering effect - the spectrum shown in Fig.5.5 is measured inside of the transition ring 

not at the output port. Furthermore, this shows that only one red shifted mode is created 

in the transition ring due to the nature of the system. 

 

Fig.5.5 States before the switching (blue) and after switching (red) inside the transition ring. The 

conversion efficiency is 96%. 

To verify the above theory, we numerically simulated the dynamic process by solving Maxwell’s 

equations using the finite difference time-domain (FDTD) method [100]. The system has the 

same configuration as the one described earlier but with scaling differences in order to speed up 
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the computation process (Radii of Rtransition=24μm and Rinput/output=4μm. These correspond 

to FSRs of ~4nm and ~26nm, respectively).  

 

            

Fig.6. (a) FDTD result of red wavelengths  created in the transition ring. (b) Field distribution in the system 

after the conversion. The converted light is now coupled to the output port through the output ring, 

which is initially red shifted. 
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We see in Fig. 5.6(a) that with an index shift of Δn= -2E-03 the light is red-shifted by 2nm. The 

behavior is qualitatively the same as the results obtained with temporal matrix analysis. However, 

the conversion efficiency is slightly lower (88%) since the non-adiabatic transition is not as 

efficient with the large FSR used in the FDTD simulation. This is not a fundamental limitation 

provided the FSR of the transition ring is small enough. In Fig.5.6b we can see that light is 

coupled into the output port which was initially detuned from it. 

In order to maximize the conversion towards the red it is important to place the output rings state 

at a half an FSR away from the input state (m). Moving this resonance closer to the input state 

results in unintended adiabatic coupling to original (m) state.  In addition, it would require a larger 

index change to achieve red-shifting since the initial (m-1) mode would be even farther away 

from the output state. On the other hand, placing the output ring state closer to the initial (m-1) 

state will also reduce the efficiency because the input and output state are initially further apart, 

but the refractive index change would be smaller – resulting in a weaker non-adiabatic transition. 

This could be overcome, however, by using resonant transitions where the resonator is switched 

at a rate corresponding to the difference the state [96] spacing.  In addition, without resonant 

transitions it is important to switch the transition resonator as quickly as possible in order to 

maximize the non-adiabatic transition process, as seen in Fig. 5.7 

5.4 Summary 

In conclusion, we demonstrated that by engineering the states of a photonic molecule, and using 

non-adiabatic transitions, it is possible to obtain wavelength changes that are independent of the 

refractive index change mechanism. This new phenomena can lead to more flexibility in 

designing integrated optical systems. 
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Fig.5.7  Red wavelength conversion efficiency vs. switching time. The efficiency decreases as switching speed is 

slowed due to the enhancement of the adiabatic shift in the resonator.  
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CHAPTER SIX 

NON-MAGNETIC CMOS COMPATIBLE PHOTON ISOLATOR 

6.1 Introduction 

Optical Isolators play a vital role in optical integrated circuits by only allowing 

transmission of data in one direction. In optical fiber and bulk optical systems isolators 

are realized using a system of polarizers and Faraday Rotators.   However, Faraday 

Rotation inherently requires a DC magnetic field and a gyrotopic material, such as, 

Bismuth Iron Garnet (BIG) or Yttrium  Iron Garnet (YIG). These materials are simply 

incompatible with low-cost CMOS fabrication processes and have been difficult to 

miniaturize and integrate on a silicon nanophotonic chip, which is now the leading 

platform for next generation photonic circuits and interconnects [101]. 

Fundamentally optical isolation is made possible by realizing a non-reciprocal system. 

Making a system that behaves depending on the direction of propagation of the light 

through it. A very novel method was presented that realizes such a system by inducing 

interband transitions between the fundamental and higher-order modes of a multimode 

optical waveguide [34]. The transition only occurs when the light is phase matched which 

is realized by modulating small parts of the waveguide through a temporal and spatial 

periodic refractive index modulation at 10’s of GHz speeds. However, there will be 

considerable challenges in realizing this in practice.  In addition, due to the limited 

refractive index change that is possible in silicon the required length of the device is on 

the order of millimeters. While it is possible to reduce the size of the device using a ring 
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resonator it will be difficult to avoid unintentional excitation of the higher-order modes of 

a multimode ring resonator similar to what occurs in disk resonators [31]. 

In contrast here we present a simple isolator that is based on an adiabatic wavelength 

conversion effect that was recently demonstrated in silicon microcavities [30-33,102] . 

Isolation is achieved by dynamically tuning the refractive index of a resonant cavity. 

There are no requirements on what resonant mode is used, how quickly it is tuned, or 

how the modes are spaced. In addition, the entire resonator can be tuned to achieve 

isolation as opposed to precisely engineered portions thus greatly reducing the device 

design constraints. One tradeoff with our approach is it inherently only works with pulses 

but since high-bit-rate data signals are essentially pulsed this is not a significant 

limitation.  

A schematic of the proposed isolator is shown in Fig.6.1. The device works by inputting 

a “red” wavelength signal travelling from left-to-right into a wavelength converter. This 

converts the input signal to a “blue” wavelength and then lets it travel to the rest of the 

photonic circuit. If any of the “blue” light is reflected, it will travel past the wavelength 

conversion unit and will be caught by a “blue” filter. This will effectively keep it from 

travelling back to the input of the photonic circuit, in turn, realizing complete optical 

isolation. Wavelength conversion is achieved by using a micro-resonator that traps light 

for a brief time in a “red” resonant mode. While the light is trapped the refractive index 

of the entire resonator is adiabatically tuned. This shifts the lights wavelength to a new 

“blue” wavelength via the adiabatic wavelength conversion process explained in the 

following section and elsewhere [30,32]. The adiabatic process theoretically has 100% 

conversion efficiency [30] provided that the light is completely trapped in the resonator. 
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However, due to the dynamic nature of the pulse-resonator interaction it is difficult to 

realize 100% conversion with a single resonator. Therefore, here we propose a novel 

scheme using several resonators to achieve complete conversion. 

 

Fig.6. Schematic of the isolator. A red input signal is converted to a blue output signal by a adiabatic 

wavelength conversion unit (Red to Blue). If any of the blue signal is reflected it is filtered out so that it 

cannot propagate back to the input of the circuit. 

6.2 Adiabatic wavelength conversion (AWC) 

We initially study the adiabatic wavelength conversion process before going into details 

of the isolator operation. We first consider the behavior of electromagnetic waves in a 

dynamic media [103]. The input signal can be expressed as an infinite sum of uniform 

plane waves each having a unique direction, a unique frequency of oscillation, and a time 

varying envelope. 
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Each term of the sum satisfies Maxwell’s equations at this particular frequency and wave 

vector. To see the effect of a dynamically tuned system we consider a time-varying 

permittivity in the wave equation: 
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We substitute the expression of the field in (6.2) at specific k vector value then apply the 

slow varying envelop approximation. We can easily get a general differential equation 

describing the propagating wave in the system at any instant of time. 
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  and 0  are the static dielectric constant of the medium and the center frequency of the 

signal propagating through the systems.  The dynamic tuning in the dielectric constant is 

generally less than one percent of the static value which can be neglected in the sum as 

shown above. 

The last step in obtaining an expression of the wave going through the system is to solve 

(6.3). This is done by integrating it with respect to time using an initial value of the signal 

)( 0tf at time 0t  when the dynamic tuning starts. 
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By examining the expression above we can clearly see that the frequency of the signal is 

a function of the dynamic tuning of the system. The frequency is found by taking the 

derivative of the signal’s phase with time. 
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This simple analytical approach shows that the frequency of light is changed by simply 

modulating the materials permittivity with time. Inherently this assumes that the entire 

signal senses the permittivity change. While this could be done in a waveguide in 
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practice the light needs to be trapped/confined in a particular area to achieve a spatially-

independent process [30,32].  It is also seen from (6.5) that the conversion efficiency of 

the process is 100%, meaning that all the photons that experienced the index change in 

the system get converted to the new wavelength. However, it is actually impossible to 

have all of the photons in a pulse experience the dynamic tuning which limits the 

conversion efficiency to about 35% when cavities are used for trapping light [32]. 

In order to explain the low conversion efficiency of single resonator we initially consider 

a simple system [32] shown in Fig. 6.2. It simply consists of two waveguides and an 

optical cavity. When the input signal matches the resonance of the cavity (both red) it 

gets coupled to the cavity for one photon life time. If the cavity is dynamically tuned the 

trapped wave will change its wavelength following the resonance shift of the cavity (both 

cavity and signal shift to blue). However, this simplistic picture does not take into count 

the time-bandwidth product of both the input pulse and the cavity. To understand how 

this is important to the total conversion efficiency consider a time-bandwidth limited 

optical signal x(t), with a Fourier transform X(w). This signal has constant time-

bandwidth product that comes directly from the definition of the transform of the signal 

(i.e. Ct  . ).  Similarly the cavity has a time-bandwidth limited response which is 

also important to consider.  
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Fig. 6.2 Ideal wavelength conversion system. 

We assume for the moment that the bandwidth of the cavity is larger than the bandwidth 

of the input signal (i.e. very long input pulse). In terms of bandwidth argument the pulse 

will fit perfectly inside the cavity allowing for efficient trapping and high conversion 

efficiency. But due to the time-bandwidth limit only a small fraction of the pulse in time 

gets trapped inside the cavity at a particular instant. This is due to the small photon 

lifetime of time of the cavity (large bandwidth). At this instant if the cavity is tuned only 

the portion of the signal that is inside gets converted. The rest of the signal in the input 

waveguide senses a different cavity resonance which stops it from coupling. This is 

shown in Fig 6.3a. On the other hand if the pulse is short then most of the signal 

bandwidth is not supported by the narrow bandwidth of the cavity. This results again in a 

low efficiency, because only the frequencies that couple to the cavity get converted. This 

is shown in Fig 6.3b. 
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Fig. 6.3   Long pulse (a), and a short pulse (b) coupled to a cavity while dynamically tuning the resonance 

of the cavity. 

In dealing with high data rate signals even if the cavity and signal parameters are closely 

matched some of the pulse escapes before the cavity is dynamically tuned. While some 

cannot couple to the cavity after it has been tuned due to the change in resonance. 

Consequently, the net conversion efficiency is on the order of 30-40% when the pulse 

and cavity are closely matched [32].  

In conclusion a system of a single resonator cannot achieve 100% conversion efficiency. 

In the following sections we will present two novel techniques in time and frequency 
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domains for 100% conversion efficiency. These represent the heart of the isolator 

proposed in the following sections. 

6.2.1 Frequency domain sampling (FDS) technique 

One way of breaking the 35% efficiency barrier is using frequency domain sampling 

technique by dividing the input bandwidth into smaller segments as shown in Fig.6.4 and 

delaying each part of the bandwidth with a constant delay. Then reconstructing the signal 

again after the conversion takes place. Consider an input signal )(tx  with a Fourier 

transform (FT) )(X . This FT can be expressed as a sum of weighted segments of width 

  which is identical to the original transform in the limit when the number of segments 

goes to infinity. 
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Fig. 6.4 frequency sampling of the input spectrum. 

The procedure described above can be realized using cascaded high Q optical cavities to 

sample the frequency response of the signal as shown in Fig.6.5. Each cavity can be 

approximated by a delay element at the resonance frequency when the Q is high. The 

frequency domain representation of a cavity in high Q condition is approximated in (6.7), 
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which is centered the resonance frequency of the nth cavity mode n . The difference 

between the resonances of consecutive cavities must be larger than twice the bandwidth 

of the cavity so that the modes of different cavities will not overlap.  
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Fig. 6.5 Schematic of FDS system. 

Due to the fact that the modes do not couple, each segment in the input spectrum will 

couple only to one cavity. As a result all frequencies will have the same delay given that 

the cavities are identical (produce the same delay). The output is given by the following 

sum which vanishes except for knm   
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Taking the IFT of the previous equations yields the expected result for the output which 

is simply a delayed version of the input. 
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Each resonator satisfies the time-bandwidth limit but the presented system allows us to 

increase the photon life time by using high Q cavities while still accept large frequency 
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content. The minimum number of the cavities needed equals the ratio between the 

bandwidth of the signal and the bandwidth of a single cavity. 

6.2.2 Time domain sampling (TDS) technique 

The addressed problem can be solved in a different fashion using time domain approach. 

This is done using multiple identical optical cavities with a bandwidth larger than the 

input bandwidth to ensure that all frequencies are coupled to individual cavities. 

Although the delay of an individual cavity is small because of their small photon life time 

but using an array of them any delay value can be obtained without any limit on the 

bandwidth. Again each cavity satisfies the time-bandwidth limitations but the whole 

system breaks it.  Fig.6.6 shows a schematic of the system.  

 

Fig. 6.6 Schematic of TDS system. 

To prove this analytically we first consider the same band limited input signal )(tx  with 

a FT )(X  . Because the bandwidth of the pulse lies completely within the allowed 

frequency range of each cavity (very small Q), the output of a single cavity is represented 

in frequency domain as a simple delay given by (6.10). 
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Where tk is the time delay produced by kth cavity. In the case of large number of cavities 

(n) the output is delayed by ntk.  
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Finally taking the IFT we find that the output of the system is a delayed version of the 

input with a delay equal to the number of cavities multiplied by the photon life time of a 

single cavity.  
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The process explained above allows us to trap a pulse of light completely inside a system 

of microcavities for 100% adiabatic wavelength conversion efficiency. The minimum 

number of cavities needed equals the ratio between the duration of the signal to the 

photon life time of a single cavity. 

6.3 Uni-directional active isolator 

In this section we will present a novel design for unidirectional isolator using TDS 

technique. The isolator is shown in Fig.6.7. It contains an input ring (blue) with a 

resonance wavelength 2 . The middle part represents the TDS wavelength conversion 

unit. It consists of seven rings side coupled to a waveguide. The large number of rings is 

a consequence of the small photon life time (high radiation loss due to the small radius). 

All the rings have radius of 2µm. The dimensions of the silicon waveguides used are 

460nmX250nm surrounded by silicon oxide. 
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 The isolator works as follows: when an input signal centered at 1  ( 21   ) is 

launched through the input port it passes by the input ring then enters the system of the 

cascaded rings. We will see that the pulse is distributed in time between the rings which 

allows for 100% conversion when index change is applied. The index change is chosen 

so that the converted signal is now centered at the resonance wavelength of the input ring

2 . 

  

Fig. 6.7 Schematic of the isolator. 

FDTD simulations were done to prove the analytical model and monitor light propagation 

through the systems in varies conditions. To examine the forward propagation 

characteristic of the system excitation is added. The input signal used is a TM polarized 3 

picoseconds wide Gaussian pulse centered at wavelength 1554.9nm which matches the 

resonance wavelength of the rings used in the conversion unit. The simulated structure 

and pulse propagation are shown in Fig.6.8. As the pulse propagates through the system it 

passes by the input ring without any coupling to it (no light is coupled to the drop port of 

that ring in the bottom waveguide). Next the pulse is distributed in time between the 

conversion unit rings allowing for wavelength conversion. The conversion is done by 

changing the index of the rings. For practical cases the index is changed for a time less 
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than the photon life time of the cavities. With this novel TDS design large photon life 

times can be achieved by cascading cavities as explained. This opens the door for a 

mechanical index change of the system [54], using extremely force sensitive effective 

index structures [104].  After the conversion takes place the pulse is directed to the output 

port. This completes the forward propagation of the pulse through the system.  

 

Fig. 6.8 Forward propagation simulation, where no power is coupled to the input ring. 

The modulation strength nn /  of the index change used is 1.4E-03 which is relatively 

large because of the low Q of the rings. After performing the time domain analysis the 

spectrum of the input signal and output signal is calculated using FT. The results are 

shown in Fig.6.9. The input signal is shown in red centered at a wavelength of 1554.9nm 

while the output signal after the conversion is shown in blue centered at wavelength 

1552.7nm. The relative change in the index is proportional to the relative change in the 

index .//  nn  

The system shows 100% conversion efficiency indicating that all photons inside the 

cavities got converted to the new wavelength with no red signal in the output co-

propagating with the converted blue. This also can be demonstrated using high Q cavities 

each centered at a different wavelength to span the input spectrum in FDS technique. 
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Fig. 6.9 Input signal (first), and the output signal (second). 

After examining the forward characteristic of the isolator, we now move to the isolation 

characteristic in the case of waves propagating the opposite direction.  The isolation is 

tested through using a high reflectivity broadband mirror placed at the output to redirect 

the converted waves back to the input port. Another test is performed using the same 

mirror when the conversion unit is not used while monitoring the coupling through the 

input port from the backward waves. 

A schematic of the broadband mirror is shown in Fig.6.10. The mirror is simply a Bragg 

reflector that consists of eight low index holes in the center of the waveguide each hole 
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has a radius of 100nm [105]. The separation between the centers of two adjacent holes is 

420nm. To find the reflectivity of the mirror with wavelength an ultra short 10fs pulse is 

launched then the FT is calculated to get the power reflection coefficient. 

 

 

Fig. 6.10 Mirror reflectivity with wavelength. 

From Fig.6.10 we can see that the mirror has high reflectivity in the operating wavelength 

from 1400nm to 1700nm. The next step is including the mirror in the system after the 

conversion unit to back reflect all the light to the input. 

A pulse with the same parameters in the forward characteristics was launched through the 

system. The converted signal now gets reflected by the mirror placed in the end of the 

structure. When the signal reaches the blue input ring it gets coupled to it because the 

pulse now is centered at the resonance wavelength of that ring (1552.7nm) due to the 

conversion process that took place. This ring works as band stop filter for all the reflected 

waves after the conversion. It redirects light away from the input waveguide to the drop 
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port in the bottom waveguide. Looking at Fig.6.11 we can see that all the reflected waves 

after the conversion are completely isolated from the input.  

With this approach 24dB isolation is achieved using non-magnetic materials in a compact 

and implementable fashion. Because of the flexible design of the system, the isolation 

ratio can be further increased by increasing the number of blue rings in the systems. The 

isolator relies on adiabatic wavelength conversion in single mode waveguides, which is 

desirable in integrated optical systems. It requires no complicated modulation techniques 

to modulate portions of rings or waveguides as in [34]. In addition, all the rings support 

the same spatial mode. 

 

Fig. 6.11 Backward propagation.  

For practical circuits all the rings can be efficiently tuned, using already implemented 

tuning systems [8]. The isolator works for a pulsed signal which is the desired operation 

in high data rate optical systems. The conversion unit timing can be synchronized using 

already implemented active optical delay elements [28,55,56,85,91]. Fig.6.12 shows the 

spectrum of the forward and backward propagating waves in the input ports with 

isolation of 24dB. 
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Fig. 6.12 Spectrum of forward and backward signals. 

 

All the red input gets back reflected to the input port when the conversion unit is OFF as 

seen in Fig.6.13.  

 

Fig. 6.13 Back reflected waves couple to the input when the conversion is not used. 
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6.4 Bi-directional Isolation 

The increasing need for complex optical system with small foot print and less processing 

steps requires flexible multifunctional optical systems. Here we present a bidirectional 

optical isolation system which enables us to integrate two complete circuitries on both 

sides and get independent isolation for each direction. Although the system is reciprocal 

and can work equally as an isolator in both directions, it still exhibits non-reciprocal 

properties to isolate due to active tuning. An example of such system is shown in 

Fig.6.14. 

 

Fig. 6.14 Schematic of bidirectional isolation system. 

It consists of two input rings as shown with wavelength conversion unit in the center. 

Relying on the fact that the WC processes produces a blue shift and the large bandwidth 

of the cavities in TDS systems, we can engineer the resonances of these rings with 

respect to the TDS unit. Let port one ring have a resonance wavelength 3  (blue 

Fig.6.15) while port two input ring 2  (green Fig.6.15). The position of these resonances 

on the spectrum of the converter is shown in Fig.6.15. Port one operates at the green part 

of the spectrum while port two at the red part of the spectrum. 
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Fig. 6.15 The spectrum of the wavelength conversion unit with the different resonances 1  , 2  and 3  

(blue green and red). 

Left to right operation 

It works as follows; first when port one is used the operating wavelength is green. Light 

passes through the input ring (blue) because of the mismatch in the resonance condition. 

Then, it couples to the wavelength conversion unit which supports the signals at the green 

wavelength as shown in Fig.6.15. After the conversion takes place the new wavelength of 

the signal is blue which enables it to pass through the output ring without any coupling. 

Any reflected signals as in the unidirectional isolator will be isolated from the input 

through the drop port by the blue ring. 

Right to left operation 

If port two is used as an input port. The pulse is centered at red wavelength. The place of 

this wavelength in the conversion spectrum is shown in Fig.6.15. Light passes through 

the input ring (green) because of the mismatch in the resonance condition, then couples to 

the wavelength conversion unit. This will change the wavelength to green according to 

Fig.13. This allows it to pass by the blue because of the mismatch in the resonance 

conditions and couple to the output port. All back reflections are filtered from using the 

green filter in a similar fashion to the uni-direction  isolator.  
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6.4 Summary 

We present a novel design for an active integrated optical isolator for high bit rate 

transmission of data employing adiabatic wavelength conversion to realize a non-

reciprocal system that consists mainly CMOS compatible components. The isolator uses 

novel sampling methods (time domain sampling or frequency domain sampling) to 

ensure complete isolation of optical pulses. The presented device achieves isolation of up 

to 24 dB. In addition, we have presented a bi-directional isolation device which can play 

a crucial role in high bit rate wavelength division multiplexed system (WDM). The 

system delivers bidirectional isolation of separate wavelength channels to help integrate 

more complex photonic system on a single chip 
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CHAPTER SEVEN 

BROADBAND ULTRA-FAST PHOTON SWITCH 

7.1 Introduction 

Nanophotonic circuits have great promise for overcoming the limitations of electronic 

interconnects, especially in applications that require high bandwidths, low powers and 

low noise. Crystalline silicon is now the preferred platform for building these 

nanophotonic devices because of its low intrinsic loss at telecommunication wavelengths, 

the compatibility with CMOS processes, and high index contrast. 

One of the most important components of a nanophotonic communication system is a fast 

electro-optic modulator, which takes in a DC optical input signal and switches it on/off 

using a high data-rate electronic signal. Modulation is achieved by inducing a change in 

the phase or the intensity of the light, using a refractive index change or an absorption 

change, respectively. In silicon the free-carrier plasma dispersion (FCPD) effect can 

achieve both [23,26,27,106]. However, in all recently demonstrated electro-optic devices 

the FCPD has been relatively small, requiring either very large photonic devices or 

devices that leverage resonant effects to increase the sensitivity to small refractive index 

changes. However, using resonant effects come with a tradeoff – the bandwidth of the 

device dramatically decreases. This is especially true for modulators based on micro-

resonators, such as rings or discs [23,26,27,107]. The bandwidth of these resonators is so 

small that they are extremely sensitive to temperate variations, and very small fabrication 

imperfections. To overcome this limitation, high powered and complicated compensation 

techniques are required to precisely set and maintain the resonant wavelengths of all of 
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the devices on the chip [108]. Alternatively, Mach-Zehnder interferometer modulators 

have been demonstrated which significantly increase the optical bandwidth [22,35]. 

Although the system described in  [45] achieves modulation speeds up to 30Gb/s, it is 

relatively large (~3mm long) due to the small overlap of the light with the carrier 

modulation. While sub-micron waveguides can reduce the overall size of the modulator 

[46], the overall photonic structure has a more complex structure than the one proposed 

here.  In addition, both modulators in [22,35] suffer from significant free-carrier 

absorption due to the overlap of the optical mode with doped regions and/or injected 

carrier densities.  In contrast, here we utilize the inherent free-carrier absorption present 

in FCPD modulators to realize a broadband, high speed, compact, electro-optic 

modulator. 

Here we propose a very simple modulator that solves the problems encountered with the 

previous structures. This modulator is fundamentally different from all the other recently 

demonstrated modulators in that it relies on the absorption change in silicon instead of the 

refractive index change. Therefore, it does not require a resonance or interference effect, 

it just requires a simple short waveguide. Since light is just absorbed, the device 

inherently operates over the entire bandwidth of the waveguide where the mode has 

sufficient confinement (more than 100nm bandwidth centered at wavelength of 1.55µm). 

As a result of this the device has minimal sensitivity to process variations which allows 

the integration of multiple matched devices on the same chip without the use of any 

complicated structures for wavelength insensitivity [109]. The modulator is realized by 

integrating Schottky diodes into the waveguide to control the free-carrier density.  

Schottky diodes have a significant advantage over traditional PN/PIN diodes because 
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they are majority-carrier devices that operate with very low turn on voltages, and are very 

fast [23]. The proposed design has a very high overlap between the optical mode and the 

large modulated carrier density, which results in a large change in the optical absorption 

over a short length. This is in stark contrast to previously demonstrated electro-absorption 

modulators based on free-carriers in Silicon that were inherently slow and large in size 

due to their reliance on PN/PIN diodes [25,110]. In addition, while Germanium-on-

Silicon modulators based on the Stark effect are showing initial promise they inherently 

require a significantly more complicated integration and fabrication scheme than the 

device proposed here [111]. In the following sections the design of our simple modulator 

is presented with models to monitor the behavior of the device and the transient response 

for fast switching operation. 

7.2 Modulator design 

The modulator structure is simply a 100µm long silicon-on-insulator single mode 

waveguide. The waveguide dimensions are 250nm in height, including a thin 50nm rib, 

and 450nm in width, as seen in Fig.7.1. The middle region of the waveguide is lightly 

doped to 10
16

cm
-3

 with P type dopant (Boron). This concentration as will be seen in our 

simulations results in a low OFF state loss, and a wide depletion region due to the 

internal voltage difference between the Schottky contact and the doped silicon. The ribs 

on the sides of the waveguide are heavily P doped to 10
19

cm
-3

. When the device is turned 

ON holes from these ribs are injected into the middle region where the optical mode 

resides. The device has three terminals, two ohmic Aluminum contacts connected to the 

heavily doped ribs 700nm away from the waveguide in order to minimize the loss, and a 

single 50-nm wide Aluminum Schottky contact (Gate) connected to the top of the 
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waveguide. The contact resistance in the modeling is assumed to be 2KΩ which matches 

previous analytical models [24] and experimental results [27]. While the positioning of 

the gate on top of the waveguide and the P+ doped regions do induce some insertion loss, 

the total insertion loss of the device is only 2.98dB. While a larger metal region will be 

needed to make electrical contact to this gate, a modest via of size 200X200nm placed 

anywhere along the top of the waveguide would introduce an additional attenuation of 

only 3%.  The electrical arrangement of our modulator has a significant advantage over 

commonly used PN/PIN based approaches such as [22,27] in that the carriers are forced 

to flow directly through the center of the waveguide where the optical mode resides, 

ensuring optimal light and free-carrier concentration overlap. 

 

Fig. 7.1  Cross-section of the Schottky diode waveguide modulator. The device consists of a lightly doped 

center region where the light is confined. A 50nm wide Schottky contact is attached to the top. A 50nm 

highly doped rib is at the bottom of the waveguide where ohmic contacts (700nm away from the center 

region) are attached. The waveguide is embedded in silicon dioxide. The device length is 100 µm (not to 

scale). 

7.3 Electrical and optical modeling 

The device is simulated using a two-dimensional simulation package ATLAS from 

SILVACO [112]. This program simulates internal physics and device characteristics of 
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semiconductor devices by solving Poisson’s equation and the charge continuity equations 

for electrons and holes numerically. The software allows a complete statistical approach 

(Fermi–Dirac statistics) when heavily doped regions are considered [21]. The suitability 

of this device modeling package to analyze electro-optic modulators in SOI waveguides 

has been demonstrated by several other authors [19-21,24]. Several physical models were 

used to accurately predict the behavior of the device such as field and concentration 

dependant mobility, Shockley-Read-Hall (SRH) recombination model, Auger 

recombination model and band narrowing for the regions with high carrier concentration. 

A surface recombination model is also used to account for the semiconductor/insulator 

interface recombination. The carrier interface recombination velocity and the surface 

recombination velocity are taken as 8000 cm/s each [55], while the electrons and hole 

lifetimes in bulk silicon are taken as 3μs and 10μs respectively [55]. The highly doped 

are assumed to have an abrupt junction [53]  for simplicity. This has a negligible effect 

on the carrier transport phenomena of the devices compared to realistic Gaussian profiles 

with 35nm normal deviation [54]. The design of these devices allows for the junctions to 

have a fast lateral decay rate when they are realized using low KeV ion implantation.  

The top Schottky contact is made from Aluminum which has a work function of 4.1eV 

[23]. The ohmic contacts are also made from Aluminum and connected to the heavily 

doped P regions. The behavior of the aluminum contact (i.e. whether it is ohmic or 

Schottky) simply depends on the doping level/work function of the silicon it is attached 

to. In practice a short low-temperature anneal (400-500C) may be required to form a 

good quality Schottky contact. 
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A finite difference mode solver was used to calculate the complex effective index of 

the waveguide in order to characterize the wave propagation and loss. Taking into 

account all of the doped regions, carrier concentrations [18] and metal contacts (analyzed 

with Drude model) the complex effective index of the mode obtained from the optical 

simulation is used to calculate the transmittance of an optical signal through the 

modulator using the following equations: 
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 α denotes the power absorption coefficient, L is the length of the device, ng is the 

group index of the waveguide, Re(neff) is the real part of the complex effective index, λ 

is the wavelength of operation and Im(neff) is the imaginary part of the effective index. 

The first term of equation 4.39 essentially accounts for the slowed propagation of the 

light due to the reduced group velocity of the mode in the waveguide. This term is 

important in nanosized waveguides because the group index is significantly larger than 

the effective index of the mode [113]. The group index is calculated using the mode 

solver and the well known equation: 
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7.4 Performance Analysis 

Fig 7.2 shows the calculated hole carrier distribution profile when the device is OFF. 

Taking this off-state carrier concentration into account and all other sources of optical 

losses, such as the metal contacts, a characterization of the optical mode was made to 

measure the effective index and intrinsic loss of the device. 
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Fig 7.2. The hole carrier concentration density profile in the devices off-state.  It is seen that there is a 

very low carrier concentration in the center waveguide region where the light resides. 

 

Fig 7.3 shows the calculated mode profile for the magnetic and electric fields of the TE 

mode.  It is seen that most of the light resides in the central region with a very low carrier 

concentration, and consequently low initial loss.   

               

                                          (A)                                                                                  (B)       

 

Fig.7.3. The (A) vertical magnetic field intensity and (B) horizontal electric field for the TE mode of the 

waveguide. 

The dependence of the real and imaginary part of the effective index on wavelength is 

shown in Fig 7.4 taking into count the material dispersion of silicon, oxide, and 

aluminum [114]. . At the operating wavelength of 1550nm the real part of the effective 

index is found to be 2.5817, and the imaginary part is 5.17E-04. The absorption 

coefficient is related to the imaginary part of the refractive index by equation (7.1), which 

then can be used to calculate the transmission of the device using equation (7.2). From 

this we find that the device has an insertion loss of only 2.98dB for a device length of 
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100µm (ng=3.996) even though there is metal directly on top of the waveguide. In 

addition, the insertion loss only varies by .78 dB over a 100nm bandwidth as plotted on 

the right y-axis of Fig 7.4b, which demonstrates the very broadband nature of the device.  

 

 

Fig.7.4 (A) Real part of the effective index (blue) and the amount of power confined in the central silicon 

region where the carrier concentration is modulated (green). (B) Imaginary part of the effective index (red) 

and the total insertion loss of a 100µm long device (green). 

Unfortunately losses are much higher for the other polarization state but with the recent 

demonstration of polarization rotators on a chip, it is possible to have an entire chip 

operating at a single polarization [115]. 

a 

b 
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As mentioned earlier modulation in the optical signal is achieved through a change in 

absorption by injecting/extracting a high carrier density into the optical mode. The carrier 

concentration is modulated by applying a forward or reverse bias to the gate while 

connecting the other two ohmic terminals to ground. Here we use a maximum reverse 

bias voltage of +1.25V, and a minimum forward voltage of -1.25V. Reverse bias 

(forward bias) occurs with a positive (negative) voltage because the device is P doped We 

can see the low hole concentration in the waveguide region under reverse bias in Fig 

7.5(a), and the very high hole concentration in the forward biasing operation in Fig 

7.5(b).  It is seen that there is a very large change in carrier concentration (10
19

) exactly 

where the optical mode resides. Such a large carrier concentration change results in a 

very large change of the absorption coefficient of the device, which is directly leveraged 

to modulate light in the waveguide.   

        A     

        B     

 

Fig.7.5. The log of the hole density profile with a (A) 1.25V reverse bias and  (B) a 1.25V 

forward bias. The change in the absorption coefficient is calculated using the change in 

the electron and hole concentration with the following equation. 
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where fc is the change in the free-carrier absorption coefficient per unit length (cm
-1

), 

and N and P are the change in the electron and holes density per cm
3
, respectively. 

The carrier distribution in Fig 7.5.a represents the reverse biased condition (OFF state) 

where the operating voltage is below the threshold of the device and there is low carrier 

concentration where the optical mode resides. Although the carrier density changes with 

space (10
9
cm

-3
 to 10

14
cm

-3
 over the whole waveguide) it has a negligible effect on the 

free carriers loss at this state according to equation (7.4) ~ 0fc . Once a current is 

established in the device (forward biased junction, voltages >0.5V) the carrier 

concentration is  extremely uniform (10
15

cm
-3

 ) over the entire active region of the mode 

due to the small waveguide dimensions and the vertical design of the contacts as seen in 

Fig. 7.5b. Therefore, as a simplification it can be assumed that the carrier concentration is 

a constant over this entire region in the forward bias operation and the approximate 

change in the modes absorption coefficient is given by [113] : 
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where Δα is the change in modes absorption coefficient, ng is the group index, 
bn is the 

γfc is the free-carrier spatial confinement factor of the 

mode which accounts for the amount of light that interacts with the modulated free-

carrier concentration (i.e. in the center) and is give by equation (7.6) [113]. Due to the 

strong overlap of the light with the free-carriers we find that this confinement factor is 

87%. 
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Since ng/nb=1.15, we find that Δα=1.003Δαfc, which allows us to simplify that the 

change in the absorption of the mode is approximately just given by equation (7.4). From 

this we can directly calculate the change in transmission from the modulated carrier-

concentration using equation (7.1). Lastly, the right y-axis of Fig 4.32a shows the change 

in the confinement factor given by equation (7.6) as a function of wavelength. We see 

that it varies by only 9% and the approximation we make here is approximately valid 

over more than 100nm bandwidth. 

Fig 7.6 shows the negative of the input signal applied to the gate (the signal is flipped to 

conform with normal convention that positive voltages correspond to a forward-biases) in 

order to demonstrate the high speed of the proposed modulator. It is seen that the forward 

bias voltage is pre-emphasized with a -4V short voltage pulse and then reduced to -

1.25V. This pre-emphasis technique has been commonly used in the forward biasing of 

previously demonstrated ring resonator and Mach Zehnder PIN modulators [24,35]. Pre-

emphasis effectively increases the power of the high frequency components of the input 

signal which consequently increases the speed that the effective carrier concentration is 

injected.   

Fig 7.8 shows the optical response of the 100micrometer long waveguide device to the 

voltage signal applied in Fig 7.7 (calculated using Equation 7.1and 7.4). 
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Fig. 7.6 10 Gbit/s gate voltage applied to the Schottky modulator device.  

 

Fig. 7.7  Gate current in the Schottky modulator device.  

It is seen that the modulation depth of the device is more than 65% (~4.6 dB). A larger 

modulation depth can be achieved with a tradeoff in insertion loss as explained below. 

Fig 7.9 gives a closer look at the response of the carriers over one period of the voltage 

input signal. The device reaches steady state OFF transmission (High carrier 

concentration) in only 30ps from the ON state (Low carrier concentration), and only takes 

60ps to go from OFF to back ON.  The high speed of the device and large majority 

carrier concentration change (1E19) are directly enabled by the use of a Schottky junction 

which work by thermionic emission of majority carriers over the barrier created by the 

unequal work functions between a metal-semiconductor interface. 
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Fig. 7.8 Optical response of the Schottky modulator to the gate signal applied in Fig. 

7.7. It is seen that a modulation depth of > 4.6 dB is achieved at a bit-rate of 10 Gbit/s. 

This is in stark contrast to the operation of PN/PIN devices, which are limited by 

relatively small and slow minority carrier concentration processes, which inherently 

require ultrasensitive and complex interference based optical devices in order to achieve 

significant modulation [22,27,35,106]. The fast transition times of the Schottky device 

enable operation at speeds of 10 Gbit/s and our modeling indicates that even faster 

switching is possible with a tradeoff of higher insertion loss. 

 

Fig.7.9 Hole concentration over one period of an applied gate signal. It is seen that the 

rise time of the concentration is only 30 picoseconds and the fall time is 60 ps. 
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It is important to note that our device does not have any RC constant limitations due to 

the low capacitance of Schottky diodes in comparison with PIN diodes. The depletion 

capacitance of the entire device was calculated to be 50fF compared to larger values in 

PIN structures of 200fF [46]. In order to accurately characterize the RC time constant of 

the system, the resistivity of the top aluminum contact (thickness of 110nm) was 

determined based on theoretical models and experimental measurements in [116]. 

Usually metal contacts such as copper with a line width approaching the electron mean 

free path (EMFP) (39 nm at room temperature) experience a strong increase in resistivity 

that is attributed to surface and grain boundary scattering. This phenomenon can be 

studied in different metals using Fuchs–Sondheimers (FS) surface scattering and 

Mayadas–Shatzkes (MS) grain boundary scattering models. However, this increase in the 

resistance is less pronounced in aluminum contacts with the same size due to the small 

EMFP of 15nm [22]. The sizes of the contacts used (gate 50nmX110nm) in the design are 

much larger than the EMFP size limit, which makes the resistivity approach the bulk 

values of 2.66 µohm.cm for aluminum. Based on the resistivity value we can easily 

calculate the input resistance to be 245Ω (equation 4.44) looking from the gate to the 

drain and the source. Although the current in the modulator flows vertically from the gate 

to the source and drain there is some current conduction along the length of the device 

through the gate contacts due to the finite conductivity of aluminum when voltages are 

connected to the vias (gate region shown in Fig 7.1) while the drain and source are 

grounded. This creates an equipotential point in the center of the gate. Lastly, the input 

resistance can be further reduced using multiple vias with a tradeoff of more insertion 

loss. 
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Where   is the resistivity, L is the contact length (50µm) and A is the contact area 

(110nmx50nm). The time constant of the device can be calculated as follows 

                                     

7.8 

Finally the cut-off frequency of the device is calculated from the RC time constant 
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The cut-off frequency is higher than the operation speed of the device of 10GHz. This 

shows that the device has no RC speed limitations. 

As explained earlier there is an inherit tradeoff between modulation depth and insertion 

loss in the proposed device.  As the device is made longer the off-state insertion loss from 

the metal gate and highly doped regions increases as seen in Fig 7.10. However, the 

modulation depth is increased due to the additional free-carrier absorption from the 

majority carriers. These trade-offs can be varied slightly by modifying the device 

geometry (wider gate contact, with a tradeoff in additional loss), but this also results in a 

change in the operating speed and maximum carrier concentration of the device. One 

additional source of loss in the system which has a negligible effect on the performance is 

scattering loss. It mainly consists of an inherent waveguide scattering loss and mode 

mismatch loss through coupling light to the modulator. The first type comes from the 

rough side-walls of the waveguide due to the etching process. A typical value for the 

attenuation is 3dB/cm [117] which comes to an insertion loss of ~0.03dB for the total 

length of the modulator (100µm). The second type of scattering loss comes from the 
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small mode mismatch at the input/output ports of the modulator with the silicon 

waveguide. This is due to the presence of contact vias and aluminum gate on the top of 

the waveguide. We performed mode mismatch calculations and estimated the insertion 

loss from this effect to be ~0.2dB. In summary the total insertion loss of the device 

including all the scattering loss mechanisms metal loss, carrier losses, scattering loss, and 

mode mismatch loss is approximately 3.25dB,  

 

 

Fig. 7.10  Insertion loss and modulation depth of the device as a function of device length.  

Lastly, although the device draws more current than PIN devices (consequently more 

power), its high switching speed and ultra-high continuous bandwidth (more than 100nm) 

makes it a vital component in broadband optical communication systems. Hundreds of 

channels from different systems can be processed in the same device because of the 

absence of any wavelength dependence.  While large ring resonators (radius>100 µm) 

have been demonstrated to switch many ITU channels simultaneously, they would 

require a similar switching power as used here due to their inherently large circumference 

of ~1 mm [118]. However, they would still require the use of complicated temperature 
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compensation schemes. Another advantage is the robustness of the design to fabrication 

imperfections; because the device simply consists of a straight waveguide it can be built 

in any length without having precise dimensions and even looped as spirals to reduce the 

overall footprint on chip. In terms of modulation there are no complexities of matching 

resonances or using feedback techniques for stable operation through fixing the operating 

point as required in resonant or interference structures.  

7.5 Summary 

Here we’ve proposed a design for a simple broadband silicon electro-optic modulator 

based on free-carrier absorption in a silicon-on-insulator waveguide. The device is 

capable of at least 10 Gbit/s operation and with further tuning of the device geometry, 

such as waveguide dimensions and the Schottky gate width, the device can be tuned for 

higher speed operation or lower loss. The modulator design maximizes the overlap 

between the optical mode and injected carriers which resulted in the compact size of the. 

The broadband nature of the systems enables it to modulate hundreds of wavelength 

multiplexed channels without the use of any complex tuning or compensation techniques.  
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CHAPTER EIGHT 

CONCLUSION AND FUTURE DIRECTION 

8.1 Conclusion 

In this work we have theoretically investigated and experimentally demonstrated novel 

photonic devices that manipulate photons on silicon chip. The research mainly focused 

on the interaction between photon number states and traveling wave photonic cavities. 

The active nature of the cavities along with non-classical behavior of photon number 

states result in exciting new phenomena. The energy eigenstates of photons can be 

manipulated. In addition, time-bin entangled states can be created in a compact cavity 

which opens the door for new quantum encryption schemes. Also, we showed that 

photons can be stored efficiently in multi-cavity systems. This will aid the development 

of on-chip optical signal processing where delay elements are essential. Moreover, we 

demonstrated that by designing a system of cavities a photonic transition can be 

controlled. The results play an important role in WDM systems where blue- and red-

wavelength shifts are needed when carriers are injected. Finally, incorporating active 

control on the cavities can dramatically change the transmission characteristics of the 

system to isolate certain paths. The following section summarizes the major contributions 

of the work. 

8.2 Major Contributions 

The following are major novel contributions presented in the work: 

1- Derived a dynamic model for single-photon cavity interaction. 
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2- Developed a novel FDTD algorithm that predicts the scattering behavior of 

single-photon wavepackets with cavities in space-time domain. 

3- Proved that photons change their eigenenergy state in active optical cavities with 

100% efficiency. 

4- Experimentally demonstrated adiabatic wavelength conversion and discrete 

transitions of single photons in active cavities. 

5- Experimentally generated photon pairs in an atom-like photonic structure through 

4-photon scattering. 

6- Designed and experimentally demonstrated an on-chip photon memory with a 

record storage time of 300 picoseconds. 

7- Proposed and numerically investigated a photonic molecule structure that controls 

photonic transitions regardless of the index change sign. 

8- Analyzed a novel CMOS compatible isolator that breaks the time reversibility 

using only active optical cavies. 

9-  Designed and numerically tested a new broadband photon switch with a 

bandwidth of more than 100nm operating at 10Gb/s. 

8.3 List of My Publications 

Most of the original contributions have been published in journals or presented at 

conferences. Following is the list of publications and patents I achieved in this research 

with number of citations as of October 2011. 
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8.4 Future Direction 

The field of quantum photonic circuits is fast growing field with many research 

possibilities. After improving each building block in the network, the natural step is to 

start integrating on the system level. This can be done by combining multiple elements 

together to form small networks. Then we can study the effects of integration and the 

linearity of the overall system. In addition, unique states interaction with optical cavities 

needs to be investigated such as high order N00N states and squeezed states which are 

very important in quantum communication. Moreover, for all of these systems to be 

useful, the fabrication process needs to improve dramatically to reduce the waveguide 

loss, which is a big challenge with the current circuits resulting in low signal to noise 

counts. Also, more research is required to integrate single photon super conducting 

detectors on chip to reduce the size of the system and efficiently process the results. This 

will require an extensive study of the compatibility of these materials with silicon 

platform. In addition, a detailed study of the behavior of silicon waveguides, cavities, and 

carrier dynamics at cryogenic temperatures must be performed. 

Finally, these systems are although difficult to implement at the moment, but when 

developed they will revolutionize the way we think about computers in addition to the 

ultra-fast and secure communication we can achieve.  
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APPENDICES 

Appendix I 

Resonator with carrier injection (Classical CMT model Matlab) 

% ******* defining constants and field matrices ******* 

Ea1(1:time_steps)=0; Eb1(1:80000)=0; Ec1(1:time_steps)=0; 

Ed1(1:time_steps)=0;  

Ea2(1:time_steps)=0; Eb2(1:80000)=0; Ec2(1:time_steps)=0; 

Ed2(1:time_steps)=0; 

E_through(1:time_steps)=0; E_drop(1:time_steps)=0; 

index(1:time_steps)=0;neff(1:time_steps)=0;phase(1:time_steps)=0; 

gamma(1:time_steps)=0;field_absorption_per_meter(1:time_steps)=0; 

Q(1:time_steps)=0;carriers(1:time_steps)=0; index(1:time_steps)=0; 

  

%% 

q=1.6e-19; 

c=299792458; 

Resistance=200;                        % silicon/metal contact 

resistance 

vth=0.7;                                % Threshold voltage for PIN 

tauc=(1/2.3)*1e-9;                      % Carrier life time 

capacitance=1e-15; 

volume=2*pi*R*1e2*.45e-4*.25e-4;        % Ring volume in cm3 

%dt=ng*pi*1e-6/c; 

  

t_through=sqrt(1-k_through.^2); 

t_drop=sqrt(1-k_drop.^2); 
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        if k_drop>0 

            % loss from drop ring   

            gamma0=0.6908*100*2*pi*R*0.5; 

        else     

            % loss from throgh port for critical coupling    

            gamma0=sqrt(1-k_through.^2);     

            gamma0=-log(gamma0); 

        end 

 

% ******* Main time evolution loop ******* 

for tt=20:time_steps 

        if voltage(tt)>0 

                Q(tt)=Q(tt-1)+dt*((1/Resistance)*(voltage(tt-1)-vth)-

Q(tt-1)/tauc); 

        else 

              if Q(tt)>0 

                Q(tt)=Q(tt-1)+dt*((1/Resistance)*(voltage(tt-1)-vth)-

Q(tt-1)/tauc); 

              else 

            %   Q_M1P1(tt)=Q_M1P1(tt-

1)+dt*((1/Resistance)*(voltage_M1P1(tt-1)-Q_M1P1(tt-1)/capacitance)-

Q_M1P1(tt-1)/tauc);     

                Q(tt)=0; 

              end 

        end 

      carriers(tt)=Q(tt)/(q*volume); 

      index(tt)=(8.8e-22*carriers(tt)+8.5e-18*carriers(tt)^.8);   
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      neff(tt)=n_eff-real(index(tt)); 

      phase(tt)=neff(tt)*(2*pi/res_wavelength)*2*pi*R; 

      field_absorption_per_meter(tt)=.5*14.5e-18*carriers(tt)*100; 

      gamma(tt)=gamma0+field_absorption_per_meter(tt).*2.*pi.*R; 

  

% ******* saving time domain matrices ******* 

    Ea1(tt)=E_input(tt); 

    Eb1(tt)=Ed2(tt-R/1e-6)*exp(-gamma(tt)/2+1i*phase(tt)/2);                 

    Ec1(tt)=t_through*Ea1(tt)+1i*k_through*Eb1(tt);                             

    Ed1(tt)=1i*k_through*Ea1(tt)+t_through*Eb1(tt);                              

    Ea2(tt)=0;                                                  

    Eb2(tt)=Ed1(tt-R/1e-6)*exp(-gamma(tt)/2+1i*phase(tt)/2);                 

    Ec2(tt)=t_drop*Ea2(tt)+1i*k_drop*Eb2(tt);                               

    Ed2(tt)=1i*k_drop*Ea2(tt)+t_drop*Eb2(tt); 

    E_through(tt)=Ec1(tt); 

    E_drop(tt)=Ec2(tt); 

    indx(tt)=index(tt); 

end 

    E_through(1,time_steps+1)=0; 

    E_drop(1,time_steps+1)=0; 

    

    carriers(1,time_steps+1)=0; 

    indx(1,time_steps+1)=0; 

end 
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Appendix II 

Single Photon-Cavity Dynamics (Quantum FDTD model Fortran) 

MATLAB SECTION 

%% ***** CALL FORTRAN ROUTINE ****** 

clear all 

close all  

clc  

!g95 photon1.f95  

!a  

%% ***** TIME DOMAIN MATRICES *****  

load time 

load h 

load in 

load out 

load wc 

load dt 

ht=h(:,1)+1i*h(:,2); 

int=in(:,1)+1i*in(:,2); 

outt=out(:,1)+1i*out(:,2); 

figure 

subplot(3,1,1) 

plot(time(:,1),ht.*conj(ht),'-r', 'LineWidth', 3) 

title('|0 1> state in the cavity') 

xlabel('time') 

subplot(3,1,2) 

plot(time(:,1),int.*conj(int),'-b', 'LineWidth', 3) 

title('|1 0> input state waveguide') 
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xlabel('time') 

subplot(3,1,3) 

plot(time(:,1),outt.*conj(outt),'-g', 'LineWidth', 3) 

title('|1 0> output state waveguide') 

xlabel('time') 

%% ***** FFT OF TIME MATRICES ***** 

N=length(ht); 

hf=fft(ht,N); 

hf=fftshift(hf); 

inpf=fft(int,N); 

inpf=fftshift(inpf); 

outf=fft(outt,N); 

outf=fftshift(outf); 

frequency=((-N/2):(N/2-1))*1/(N*dt);  

figure 

subplot(3,1,1) 

plot(2*pi*frequency/wc,flipdim(hf.*conj(hf)/N,1),'-r', 'LineWidth', 3) 

title('|0 1> state in the cavity') 

xlabel('frequency unit wc') 

xlim([0 4]) 

subplot(3,1,2) 

plot(2*pi*frequency/wc,flipdim(inpf.*conj(inpf)/N,1),'-b', 'LineWidth', 

3) 

title('|1 0> input state waveguide') 

xlabel('frequency unit wc') 

xlim([0 4]) 

subplot(3,1,3) 

plot(2*pi*frequency/wc,flipdim(outf.*conj(outf)/N,1),'-g', 'LineWidth', 

3) 
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title('|1 0> output state waveguide') 

xlabel('frequency unit wc') 

xlim([0 4])  

%% ***** DFT PART IN CODE ***** 

% load hf 

% load inpf 

% load outf 

% figure 

% subplot(3,1,1) 

% plot(frequency(:,1),hf(:,1).^2+hf(:,2).^2) 

% xlim([5e5 15e5]) 

% subplot(3,1,2) 

% plot(frequency(:,1),inpf(:,1).^2+inpf(:,2).^2) 

% xlim([5e5 15e5]) 

% subplot(3,1,3) 

% plot(frequency(:,1),outf(:,1).^2+outf(:,2).^2) 

% xlim([5e5 15e5]) 

 FORTRAN SECTION 

PROGRAM photon 

IMPLICIT none 

!***** constatnts***** 

INTEGER, PARAMETER :: N=1E3, tend=1E5, N1=495, N2=505,fend=1E6 

REAL, PARAMETER :: vg=1, dt=0.5E-8, dx=1E-8, wc=1E6, wo=1E6, twidth=1E-

5, pi=3.14159265 

!***** variables definition ***** 

INTEGER j,i,d 

REAL gamma,df 

REAL, ALLOCATABLE, DIMENSION(:,:) :: time, frequency 
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COMPLEX, ALLOCATABLE, DIMENSION(:,:) :: f,fold,h,in,out,hf,outf,inpf 

COMPLEX ci,sum,V 

ci = cmplx(0.,1.) 

V=.01*ci*wc 

gamma=.01*wc 

df=10 

100 format (9999E15.6) 

ALLOCATE(f(1,1:N)) 

ALLOCATE(fold(1,1:N)) 

ALLOCATE(in(1,1:tend)) 

ALLOCATE(out(1,1:tend)) 

ALLOCATE(h(1,1:tend)) 

ALLOCATE(time(1,1:tend)) 

ALLOCATE(frequency(1,1:fend)) 

ALLOCATE(hf(1,1:fend)) 

ALLOCATE(inpf(1,1:fend)) 

ALLOCATE(outf(1,1:fend)) 

!***** initialize variables ***** 

sum=0 

f=0 

fold=0 

in=0 

out=0 

h=0 

time=0 

frequency=0 

hf=0 

inpf=0 

outf=0 



128 

 

!***** Main loop**************** 

do i=2,tend 

!***** source two pulses at wc and 2wc**************** 

f(1,2)=EXP(-1*((i*dt-tend*dt/4)**2)/((twidth)**2))*EXP(-

ci*i*wc*dt)+f(1,2) 

f(1,2)=f(1,2)+EXP(-1*((i*dt-3*tend*dt/4)**2)/((twidth)**2))*EXP(-

2*ci*i*wc*dt)  

!***** Cavity differential equation ***** 

do j=N1,N2 

sum=sum+f(1,j) 

enddo 

h(1,i)=h(1,i-1)+dt*(-ci*wc*h(1,i-1)-gamma*h(1,i-1)+V*sum)  

!***** waveguide differential equation ***** 

do j=2,N 

fold(1,j)=f(1,j) 

enddo 

do j=2,N 

d=0 

if (j.le.N2) then  

if (j.ge.N1) then  

d=1 

endif 

endif 

f(1,j)=fold(1,j)+dt*(-ci*wo*fold(1,j)-vg*(fold(1,j)-fold(1,j-1))/dx-

d*ci*V*h(1,i)) 

enddo  

!***** saving time outputs ***** 

in(1,i)=f(1,N1-1) 

out(1,i)=f(1,N2+1) 
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time(1,i)=i*dt 

enddo  

!***** calculating DFT ***** 

!do i=1,fend 

!do j=1,tend 

!sum=f(1,i) 

!hf(1,i)=hf(1,i)+h(1,j)*EXP(-ci*2*pi*i*dt*j*df); 

!inpf(1,i)=inpf(1,i)+in(1,j)*EXP(-ci*2*pi*i*dt*j*df); 

!outf(1,i)=outf(1,i)+out(1,j)*EXP(-ci*2*pi*i*dt*j*df); 

!enddo 

!hf(1,i)=hf(1,i)*dt/(2*pi); 

!inpf(1,i)=inpf(1,i)*dt/(2*pi); 

!outf(1,i)=outf(1,i)*dt/(2*pi); 

!frequency(1,i)=i*df 

!enddo  

!***** writing output files *****  

OPEN(UNIT=1, file='wc', status='unknown') 

 WRITE(1,100) wc 

CLOSE(1)  

OPEN(UNIT=1, file='dt', status='unknown') 

 WRITE(1,100) dt 

CLOSE(1) 

OPEN(UNIT=1, file='h', status='unknown') 

do i=1,tend 

 WRITE(1,100) h(1,i) 

enddo 

CLOSE(1) 
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OPEN(UNIT=1, file='in', status='unknown') 

do i=1,tend 

 WRITE(1,100) in(1,i) 

enddo 

CLOSE(1)  

OPEN(UNIT=1, file='out', status='unknown') 

do i=1,tend 

 WRITE(1,100) out(1,i) 

enddo 

CLOSE(1)  

OPEN(UNIT=1, file='out', status='unknown') 

do i=1,tend 

 WRITE(1,100) out(1,i) 

enddo 

CLOSE(1) 

OPEN(UNIT=1, file='time', status='unknown') 

do i=1,tend 

 WRITE(1,100) time(1,i) 

enddo 

CLOSE(1)  

!OPEN(UNIT=1, file='frequency', status='unknown') 

!do i=1,fend 

! WRITE(1,100) frequency(1,i) 

!enddo 

!CLOSE(1)  

!OPEN(UNIT=1, file='hf', status='unknown') 

!do i=1,fend 

! WRITE(1,100) hf(1,i) 

!enddo 
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!CLOSE(1) 

!OPEN(UNIT=1, file='inpf', status='unknown') 

!do i=1,fend 

! WRITE(1,100) inpf(1,i) 

!enddo 

!CLOSE(1) 

!OPEN(UNIT=1, file='outf', status='unknown') 

!do i=1,fend 

! WRITE(1,100) outf(1,i) 

!enddo 

!CLOSE(1)  

!***** deallocate variables *****  

DEALLOCATE(h) 

DEALLOCATE(f) 

DEALLOCATE(fold) 

DEALLOCATE(in) 

DEALLOCATE(out) 

DEALLOCATE(time) 

DEALLOCATE(frequency) 

DEALLOCATE(hf) 

DEALLOCATE(inpf) 

DEALLOCATE(outf) 

END PROGRAM 
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Appendix III 

Photon Trapping (Classical CMT model Matlab) 

clc 

close all 

clear all 

T=0e-12;  

write_step=320; 

read_step=3000; 

carriers=5e18; 

index_change=(8.8e-22*carriers+8.5e-18*carriers^.8);  

field_absorption_per_meter=.5*14.5e-18*carriers*100; 

neff_out=2.4+index_change;  

neff=2.4; 

neff_in=2.4; 

ng=4.3; 

R=10E-6;  

c=299792458; 

dt=.5*ng*pi*R/c; 

k_in=.25; 

k_out=.25; 

k_store=.25; 

t_in=sqrt(1-k_in^2); 

t_out=sqrt(1-k_out^2); 

t_store=sqrt(1-k_store^2); 

seperation=.5*pi*R; 

lambda_res=pi*R*2.4/(49); 

gamma=0; 

gamma_in=0; 
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gamma_out=0; 

  

time(1:4000)=0; 

  

Ea1_in(1:4000)=0;  

Eb1_in(1:4000)=0;  

Ec1_in(1:4000)=0;  

Ed1_in(1:4000)=0;  

Ea2_in(1:4000)=0;  

Eb2_in(1:4000)=0;  

Ec2_in(1:4000)=0;  

Ed2_in(1:4000)=0; 

  

Ea1_out(1:4000)=0;  

Eb1_out(1:4000)=0;  

Ec1_out(1:4000)=0;  

Ed1_out(1:4000)=0;  

Ea2_out(1:4000)=0;  

Eb2_out(1:4000)=0;  

Ec2_out(1:4000)=0;  

Ed2_out(1:4000)=0;  

  

Ea1_r1(1:4000)=0;  

Eb1_r1(1:4000)=0;  

Ec1_r1(1:4000)=0; 

Ed1_r1(1:4000)=0;  

Ea2_r1(1:4000)=0;  

Eb2_r1(1:4000)=0;  
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Ec2_r1(1:4000)=0; 

Ed2_r1(1:4000)=0; 

  

Ea1_r2(1:4000)=0;  

Eb1_r2(1:4000)=0;  

Ec1_r2(1:4000)=0; 

Ed1_r2(1:4000)=0; 

Ea2_r2(1:4000)=0;  

Eb2_r2(1:4000)=0;  

Ec2_r2(1:4000)=0;  

Ed2_r2(1:4000)=0;  

  

phase_r1=neff*(2*pi/lambda_res)*2*pi*R; 

phase_r2=neff*(2*pi/lambda_res)*2*pi*R;  

phase_in=neff_in*(2*pi/lambda_res)*2*pi*R;  

phase_out=neff_out*(2*pi/lambda_res)*2*pi*R;  

  

dlambda=0; 

dw=c*2*pi*(1/lambda_res-1/(lambda_res-dlambda));  

index_linear_shift=linspace(0,index_change,T/dt); 

loss_linear_shift=linspace(0,field_absorption_per_meter,T/dt); 

ss=0; 

pp=0; 

for tt=12:4000 

 if tt>=write_step && tt<(write_step+T/dt-1)  

        ss=ss+1; 

        neff_in=2.40-index_linear_shift(ss); 

        phase_in=neff_in*(2*pi/lambda_res)*2*pi*R;  
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        gamma_in=loss_linear_shift(ss)*2*pi*R; 

%         gamma_in=0;  

 end 

     if tt>=(write_step+T/dt-1) 

        neff_in=2.40-index_change; 

        phase_in=neff_in*(2*pi/lambda_res)*2*pi*R;  

        gamma_in=field_absorption_per_meter*2*pi*R; 

%         gamma_in=0;  

     end 

if tt>=read_step && tt<(read_step+T/dt-1) 

        pp=pp+1; 

        neff_out=2.4+index_change-index_linear_shift(pp); 

        phase_out=neff_out*(2*pi/lambda_res)*2*pi*R;  

        gamma_out=loss_linear_shift(pp)*2*pi*R; 

%         gamma_out=0; 

end 

       

   if tt>=(read_step+T/dt) 

        neff_out=2.40; 

        phase_out=neff_out*(2*pi/lambda_res)*2*pi*R;  

        gamma_out=field_absorption_per_meter*2*pi*R; 

        gamma_out=0; 

    end 

    Ea1_in(tt)=exp(-(tt*dt-40E-12)^2/(20E-12)^2)*exp(j*dw*tt*dt);  

    Eb1_in(tt)=Ed2_in(tt-2)*exp(-gamma_in/2+j*phase_in/2);                 

    Ec1_in(tt)=t_in*Ea1_in(tt)+j*k_in*Eb1_in(tt);                             

    Ed1_in(tt)=j*k_in*Ea1_in(tt)+t_in*Eb1_in(tt);                              

    Ea2_in(tt)=Ec1_r1(tt-1)*exp(j*2.4*(2*pi/lambda_res)*seperation);                                                  
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    Eb2_in(tt)=Ed1_in(tt-2)*exp(-gamma_in/2+j*phase_in/2);                 

    Ec2_in(tt)=t_in*Ea2_in(tt)+j*k_in*Eb2_in(tt);                              

    Ed2_in(tt)=j*k_in*Ea2_in(tt)+t_in*Eb2_in(tt);      

     

    Ea1_r1(tt)=0; 

    Eb1_r1(tt)=Ed2_r1(tt-2)*exp(-gamma/2+j*phase_r1/2);                  

    Ec1_r1(tt)=t_store*Ea1_r1(tt)+j*k_store*Eb1_r1(tt);                             

    Ed1_r1(tt)=j*k_store*Ea1_r1(tt)+t_store*Eb1_r1(tt);                               

    Ea2_r1(tt)=Ec1_out(tt-1)*exp(.5*j*2.4*(2*pi/lambda_res)*pi*R);         

    Eb2_r1(tt)=Ed1_r1(tt-2)*exp(-gamma/2+j*phase_r1/2);                  

    Ec2_r1(tt)=t_store*Ea2_r1(tt)+j*k_store*Eb2_r1(tt);                               

    Ed2_r1(tt)=j*k_store*Ea2_r1(tt)+t_store*Eb2_r1(tt);                               

                         

     

    Ea1_out(tt)=Ec2_r2(tt-1)*exp(.5*j*2.4*(2*pi/lambda_res)*pi*R);    

    Eb1_out(tt)=Ed2_out(tt-2)*exp(-gamma_out/2+j*phase_out/2);                 

    Ec1_out(tt)=t_out*Ea1_out(tt)+j*k_out*Eb1_out(tt);                             

    Ed1_out(tt)=j*k_out*Ea1_out(tt)+t_out*Eb1_out(tt);                              

    Ea2_out(tt)=0;                                                  

    Eb2_out(tt)=Ed1_out(tt-2)*exp(-gamma_out/2+j*phase_out/2);                 

    Ec2_out(tt)=t_out*Ea2_out(tt)+j*k_out*Eb2_out(tt);                              

    Ed2_out(tt)=j*k_out*Ea2_out(tt)+t_out*Eb2_out(tt);     

                              

     

    Ea1_r2(tt)=Ec2_in(tt-1)*exp(.5*j*2.4*(2*pi/lambda_res)*pi*R);        

    Eb1_r2(tt)=Ed2_r2(tt-2)*exp(-gamma/2+j*phase_r2/2);                 

    Ec1_r2(tt)=t_store*Ea1_r2(tt)+j*k_store*Eb1_r2(tt);                               

    Ed1_r2(tt)=j*k_store*Ea1_r2(tt)+t_store*Eb1_r2(tt);                               
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    Ea2_r2(tt)=0;                                                  

    Eb2_r2(tt)=Ed1_r2(tt-2)*exp(-gamma/2+j*phase_r2/2);                  

    Ec2_r2(tt)=t_store*Ea2_r2(tt)+j*k_store*Eb2_r2(tt);                               

    Ed2_r2(tt)=j*k_store*Ea2_r2(tt)+t_store*Eb2_r2(tt);                               

     

    time(tt)=dt*tt; 

end 

  

plot(time*1e12,Ea1_in.*conj(Ea1_in),'b')                   

hold on 

plot(time*1e12,Ec1_r1.*conj(Ec1_r1),'r')  

plot(time*1e12,Ec2_out.*conj(Ec2_out),'g')  

  

legend('Blue representts tthe input signal','Red representts tthe 

sttored signal','Green representts tthe outputt signal') 

xlabel('time in picoseconds') 

ylabel('Inttensitty a.u.') 

figure 

hold on 

c=299792458;  

S1=fft(Ea1_in,16*2048); 

f=[-16*2048/2:(16*2048/2-1)]*1/(16*dt*2048); 

S1=fftshift(S1); 

S1=abs(S1).^2; 

S2=fft(Ec1_r1(write_step:read_step),16*2048); 

f=[-16*2048/2:(16*2048/2-1)]*1/(16*dt*2048); 

S2=fftshift(S2); 

S2=abs(S2).^2; 
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norm=max(S1); 

S3=fft(Ec2_out(read_step:4000),16*2048); 

f=[-16*2048/2:(16*2048/2-1)]*1/(16*dt*2048); 

S3=fftshift(S3); 

S3=abs(S3).^2; 

plot(f,S1/norm,'b',f,S2/norm,'r',f,S3/norm,'g') 

legend('Blue representts tthe input signal','Red representts tthe 

sttored signal','Green representts tthe outputt signal') 

xlabel(' frequency in Hz') 

ylabel(' power spectrum normalized to the input power') 

axis([-1e10 1e10 0 max([S1 S2 S3])/norm]) 
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