
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Presentations and other scholarship Faculty & Staff Scholarship

2006

Experiences with alloy in undergraduate formal methods Experiences with alloy in undergraduate formal methods

Michael Lutz

Follow this and additional works at: https://repository.rit.edu/other

Recommended Citation Recommended Citation
Lutz, Michael, "Experiences with alloy in undergraduate formal methods" (2006). Accessed from
https://repository.rit.edu/other/14

This Conference Paper is brought to you for free and open access by the RIT Libraries. For more information,
please contact repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/other
https://repository.rit.edu/facstaff
https://repository.rit.edu/other?utm_source=repository.rit.edu%2Fother%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/other/14?utm_source=repository.rit.edu%2Fother%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

Experiences with Alloy in Undergraduate Formal Methods

Introduction

At the core of all engineering endeavors is the modeling of proposed system designs and the use
of these models to determine system properties. While some models are physical, the vast
majority use mathematics to both describe and analyze the consequences of design decisions. In
the case of traditional engineering disciplines, most models are based on continuous
mathematics, e.g., calculus and differential equations. The situation is quite different in software
engineering, however, where the applicable models are more likely to be drawn from discrete
mathematics, logic, and set theory. The term of art for such modeling approaches is formal
methods.

One complaint about formal methods, voiced by both practitioners and students alike, is the lack
of applicability to “real” problems. While some of these objections are undoubtedly based on an
unwillingness to learn the relevant mathematics, this does not mean they can be dismissed out-
of-hand. To be useful in practice, a modeling method must provide engineers with information
that more than compensates for the cost of learning the technique and creating its models. Model
checking is one formal method that has proven its value as a tool for describing and analyzing
concurrency effects1,2. Alloy3,4,5, a modeling tool created by Daniel Jackson’s research group at
MIT, provides similar value when modeling and analyzing the structural and behavioral
consequences of software design decisions.

This paper reports on the value Alloy has brought to the undergraduate formal methods course
within the software engineering program at RIT. The next section introduces Alloy by way of a
well-known example problem, the birthday book6. This is followed by a section discussing the
advantages Alloy for teaching undergraduates, especially as compared to traditional methods
such as VDM7 and Z8. The final section discusses some areas where Alloy’s support for
instruction needs improvement.

Birthday Book Example

Consider a system for maintaining a birthday book (that is, a book that lists birthdays for some
set of persons). In Alloy, we would start by defining the necessary signatures: Named sets of
indivisible, immutable, atomic objects and the relations that hold among these sets.

sig Person{}
sig Date{}
sig BirthdayBook {
 known : set Person, // those persons known in this book
 dates : Person -> Date // the birth day for each known person
}

Here we have defined three signatures, Person, Date, and BirthdayBook, along with two
relations, known and dates. The signature declarations implicitly state that the three underlying
sets of atoms partition the universe of all atoms (that is, the three sets are pair-wise disjoint and
their union is the universe). At the modeling level, however, all that exists are relations – Person,

Date, and BirthdayBook are really unary relations, containing a 1-tuple for each of the elements
in the underlying set.

The declaration of a relation within a signature means the relation consists of tuples whose first
element is an atom from the signature’s underlying set. Thus known is a binary relation mapping
each book to those persons recorded in the book, and dates is a ternary relation, whose tuples
consist of a book, a person known in that book, and that person’s birthday. Or at least that’s what
we intend: without further constraints there is nothing to ensure the persons known in a book are
exactly those whose dates are recorded.

To create the needed constraints we add “facts” – predicates that must hold in any legal state of
the system. In our case, we can state our constraint in one fact:

fact {
 all b : BirthdayBook | b.known = b.dates.Date
}

This fact says “the persons known in book b are exactly those who have a birthday recorded in
b” – but how? Consider first the declaration b : BirthdayBook. Since everything in Alloy is a
relation, then b must be a relation, and it is – it’s a singleton subrelation of BirthdayBook, which
is itself a unary relation. This is as close as we can get to a set element in Alloy – a singleton,
unary relation. As Alloy uses first-order relational logic, there is no danger of tripping over
Russell’s paradox, so we can use “element” and “singleton set” interchangeably.

The expression b.known is a relational join between the (singleton, unary) relation b and the
binary relation known. In Alloy, relational join matches the last column of every tuple from the
left relation to the first column of every tuple in the right relation; on a match, the tuples are
concatenated and the two matching columns are dropped. In this case, we get the unary relation
(set of) Persons who are listed in book b.

The expression b.dates.Date is similar – first we join unary relation b to ternary relation dates,
resulting in a binary relation between Persons and Dates. This is then joined (on the right) to the
unary relation Date; the effect is to simply “strip off” the Date column from the binary relation,
leaving a unary relation (set of) Persons. The equality simply states that the two sets of Persons
defined by the joins are identical – just what we want.

So far Alloy seems to be just another formal method: similar to C in syntax, and with its own
peculiarities (e.g., everything is a relation), but nothing new. What makes Alloy stand out,
however, is its support for exploring the consequences of a design. First of all, we can create
predicates describing the properties we wish to see in a solution; the properties become, in effect,
temporary constraints in addition to the facts. What is more, we can “run” a predicate and have
the tool produce a conforming solution (or tell us that it cannot).

pred show() {
 some known
}
run show for 3

The show() predicate above has a body that says there must be some (one or more) tuples in the
known relation. That is, there must be at least one BirthdayBook that knows of at least one
Person (and, given our fact, this Person has a birthday recorded in the book).

The run command instructs the Alloy tool to search for a solution which has at most three
elements in each of the declared signatures. Alloy compiles the declarations, facts, and predicate
into a Boolean expression that is then sent to a Boolean constraint satisfier (SAT); if the satisfier
finds a solution, Alloy displays it in one of several formats. Figure 1 gives the graphical version
of one possible solution for our model:

Figure 1 – Solution to run show for 3

There’s something peculiar about this solution, however – Person0 has two distinct birthdays
recorded in the BirthdayBook. Assuming we don’t want this, we can add another fact
constraining the solution so that no person can have more than one birthday recorded in a given
book:

fact {
 all b : BirthdayBook, p : Person | p in b.known <=> one p.(b.dates)
}

The expression p in b.known says relation p is a subrelation of b.known. Given that p is an
element (singleton, unary relation) and b.known is a set (unary relation), this is equivalent to the
traditional “element of” predicate from set theory. In general, however, both operands of in will
be relations, in which case we have a subrelation (or subset) test. Indeed, the keyword in was
chosen for its ambiguity, as it can represent either “element of” or “subset of,” depending on the
left operand involved.

From the previous discussion, we know that b.dates is a binary relation between Persons and
Dates; thus p.(b.dates) is a set (unary relation) consisting of those Dates associated with Person
p. The expression one p.(b.dates) states this set has exactly one member. Thus the whole
predicate, p in known <=> one p.(b.dates) says a Person is known if and only if the Person has
exactly one Date recorded for their birthday. In the context of the universal quantifier, this states
that any Person known in any BirthdayBook will have exactly one birthday in the book.

After adding this fact, running the show() predicate produces the solution in Figure 2.

Figure 2 – run show() with augmented facts

Alloy has many features and facilities beyond those shown in this simple example, including

• Functions that extract information from the solution state,
• Checkable assertions (i.e., universal claims that follow from the declarations and the

facts), and
• State changing operations modeled by predicates relating the pre and post states.

The goal of this section was simply to give a flavor of Alloy; more information can be found in
the Alloy documentation3,4,5.

Pedagogical Advantages

Alloy’s primary advantage over traditional methods such as VDM and Z is that it supports
analysis and exploration without the need to become a mathematician. Tools for these traditional
methods come in two basic forms: simple syntax checkers and complex proof assistants, neither
of which is appropriate for undergraduate education. Syntax checkers do little to help students
understand the consequences – often quite subtle – of what they design. That is, while the syntax
checker can ensure the model is meaningful, it cannot help determine whether that meaning is
what is intended.

The only way out of this problem is to do formal proofs of claims made in the model. When done
by hand, such proofs are tedious and error prone. When done via proof assistant tools, students
soon see the necessity of deep knowledge of both proof theory and the idiosyncrasies of the
specific tool they are using. The tradeoff is obvious: Either hope the models says what you want
to say, or become expert in mathematics at a level not required of any other engineering
discipline9,10. In light of this, it is hard to refute student perceptions that formal methods provide
no improvement over informal and ad hoc methods for designing, validating, and verifying
software.

Alloy, on the other hand, requires one to be knowledgeable of discrete mathematics but not an
expert mathematician. One need only understand what Alloy’s constructs mean and be able to
interpret its graphical or textual output in order to use the tool effectively for exploring the
consequences of design decisions. The dirty work of finding solutions (or looking for
counterexamples to universal claims) is left to the sophisticated SAT systems on which Alloy is

built. One must make compromises, of course – Alloy cannot express higher order constructs,
and it is limited to searching finite state spaces – but in practice these compromises are rarely
problematical. If a counterexample to a claim cannot be found in a relatively small state space,
say 3-5 atoms per signature, then it is highly unlikely (but not impossible) that a counterexample
exists in an infinite universe.

There is another advantage that should not be dismissed: Alloy is interactive, allowing users to
iterate among design, specification and analysis. This makes Alloy much more attractive to
students familiar with interactive, integrated development environments. One can easily explore
large state spaces from the keyboard, making design verification much more comprehensive than
with unit testing. This interactivity is a boon to instruction as well; I often build a model in class,
asking students to fill in key facts, predicates, and assertions, and then I use the tool to see if their
solutions are correct. Alloy also makes it easier to take side-tracks that either interest students or
reinforce material they find confusing. There is no need to anticipate every possible problem – an
impossible task in any event – rather, one can let the nature of student questions and answers
direct the creation of a model.

Instructional Needs

Despite its manifest advantages, Alloy is not without problems. Fortunately, none of these
involve the tool per se, but rather the pedagogical framework needed for effective undergraduate
instruction.

First and foremost, a solid undergraduate text based on Alloy is a critical need. It wasn’t until
Kramer and Magee’s text1 on concurrency in Java that research on safety and liveness in the
context of interacting state machines was brought to a level appropriate for undergraduates.
Jackson’s new book on Alloy5 is a step in the right direction, but the presentation is a bit too
terse for a text. A book that presents Alloy with many examples and periodic review exercises
would be a great pedagogical aid.

In addition, a set of real (or at least realistic) case studies is needed, with the studies presented at
a level accessible to undergraduates. In part this would serve to provide a rich set of examples
that could be emulated; in part it would be useful propaganda to help persuade students that
formal methods are worth consideration.

Finally, we need the equivalent of “design patterns” for Alloy. That is, we need prepackaged
templates showing proven modeling approaches to common design problems. Such a pattern
library would help students become proficient that much sooner, and allow instructors to assign
design problems that bring to light the value of formal modeling.

Conclusion

All in all, Alloy is the most satisfying tool I’ve used in the 15+ years I have been teaching formal
methods. My hope is this paper at least sparks some interest in others who teach this material,
and that they will consider adopting Alloy or a similar tool. After all, if we are to place software
engineering on a firm mathematical foundation, we must do so in a way that makes this useful to
practicing engineers. To my mind, Alloy is a step in this direction.

References
1. Jeff Magee and Jeff Kramer. Concurrency: State Models & Java Programs. John Wiley & Sons, 1999.
2. Michael Lutz and James Vallino. “Concurrent System Design: Applied Mathematics & Modeling in Software

Engineering Education.” 2005 ASEE Annual Conference and Exposition, June, 2005.
3. Daniel Jackson. “Alloy: A lightweight object modelling notation.” ACM Transactions on Software Engineering

and Methodology, November, 2002.
4. The Alloy Analyzer. http://alloy.mit.edu/
5. Daniel Jackson. Software Abstractions: Logic, Language, and Analysis. MIT Press, 2006.
6. J. M. Spivey. The Z Notation. Prentice-Hall, 1992.
7. John Fitzgerald and Peter Gorm Larsen. Modelling Systems: Practical Tools and Techniques in Software

Development. Cambridge University Press, 1998.
8. Jonathan Jacky. The Way of Z. Cambridge University Press, 1997.
9. David Parnas. "Mathematical Methods: What We Need And Don't Need", IEEE Computer, April, 1996.
10. Michael Lutz. “Formal Methods and the Engineering Paradigm.” SEI Conference on Software Engineering

Education, October, 1992.

http://alloy.mit.edu/

	Experiences with alloy in undergraduate formal methods
	Recommended Citation

	Alloy Paper.doc

