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Abstract

Phonon transport in micro- nanoscale crystalline materials can be well modeled

by the Boltzmann transport equation (BTE). The complexities associated with solv-

ing the BTE have led to the development of various numerical models to simulate

phonon transport. These models have been applied to predict thermal transport from

the diffuse to ballistic regime. While some success using techniques such as the Monte

Carlo method has been achieved, there are still a significant number of approxima-

tions related to the intricacies of phonon transport that must be more accurately

modeled for better predictions of thermal transport at reduced length scales.

The objective of the present work is to introduce a Statistical Phonon Trans-

port (SPT) model for simulating thermal transport in crystalline materials from the

diffuse to ballistic regime. The SPT model provides a theoretically more realistic

treatment of phonon transport physics by eliminating some of the common approx-

imations utilized by other numerical modeling techniques. The SPT model employs

full anisotropic dispersion. Phonon populations are modeled without the use of scal-

ing factors or pseudo-random number generation. Three-phonon scattering is rigor-

ously enforced following the selection rules of energy and pseudo-momentum. The

SPT model provides a flexible framework for incorporating various phonon scattering

mechanisms and models.



Results related to the determination of allowable three-phonon interactions are

presented along with several three-phonon scattering models. Steady-state and tran-

sient thermal transport results for silicon from the diffuse to ballistic regimes are

presented and compared to analytical and experimental results. Recommendations

for future work related to increasing the robustness of the SPT model as well as

utilizing the SPT model to predict thermal transport in practical applications are

given.
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CHAPTER 1

Introduction to Multiscale Thermal Transport

The objective of this work is to provide a numerical model for the simulation of

thermal transport in crystalline materials from the diffuse to ballistic regime. The

work will begin with an introduction to each of these topics.

1.1 Thermal Energy Carriers in Solid Crystals

Before a discussion related to thermal transport in crystalline materials at

micro- and nanoscales can occur it is first necessary to define the dominant ther-

mal energy carriers. In semiconductors heat is conducted through the motion of

atoms about their equilibrium positions. The motion of each atom is influenced by

neighboring atoms through the interatomic potential. Figure 1.1 shows a typical in-

teratomic potential profile where the interaction force is equivalent to the derivative

of the potential.

1



Figure 1.1 A typical interatomic potential profile (thick line) along with a parabolic

potential of an harmonic oscillator (thin line).

An ideal crystal is an infinite periodic array of atoms arranged in a lattice. Consider

the atoms and interatomic interactions to be represented by masses connected with

springs, as depicted in Fig. 1.2.

Figure 1.2 A mass-spring system representing interconnected atoms in a crystal.

2



In the harmonic approximation the interatomic forces are proportional to the atomic

displacements, thus the springs depicted in Fig. 1.2 are linear. Although, in real

crystals, as shown in Fig. 1.1, the interatomic forces are nonlinear. This nonlinearity

(anharmonicity) leads to interactions between lattice waves as will be discussed in

Chapter 3 § 3.15. If a mass from Fig. 1.2 was oscillating at a particular frequency, ω,

it would be possible for the vibration to propagate throughout the entire mass-spring

system in the form of a wave. Similarly, in a crystal the motion of atoms about their

equilibrium positions can be represented by a superposition of the various lattice

waves. These lattice vibrations have energy equivalent to ~ω, where ~ is Planck’s

constant divided by 2π. The energy quanta of lattice vibrations are known as a

phonon.

Phonons have both wave and particle characteristics. If coherence effects can be

ignored, phonons can be considered as individual particles without considering phase

information [1]. Therefore, the mass-spring system shown in Fig. 1.2 can be replaced

by phonon particles in a box. Analogous to waves travelling and interacting with one

another, each phonon particle in the box can drift and interact with other particles.

Figure 1.3 A phonon gas model replacing the mass-spring system in Fig. 1.2.
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These phonon particles can interact with impurities, grain boundaries, and geometric

boundaries. Additionally, they can interact with other phonon particles. It is these

phonon particle interactions that govern thermal conduction in semiconductors.

1.2 Macroscale Thermal Conduction

It is well known that Fourier’s law

q = −k∇T , (1.1)

accurately models heat conduction at the macroscale, where q is the heat flux, k is the

thermal conductivity, and ∇T is the temperature gradient. Thermal conduction can

be defined as the energy transfer process through a medium, caused by a temperature

difference due to the random motion of heat carriers [1]. These heat carriers include

electrons, phonons, photons, and molecules. Fourier’s law assumes the material to

be in local thermodynamic equilibrium. When material characteristic length scales

become comparable to the mean free path of the heat carriers or when time scales are

comparable to the relaxation times of the heat carriers Fourier’s law becomes invalid

since local thermodynamic equilibrium is not guaranteed [2]. Therefore, when con-

sidering thermal transport at micro- and nanoscales it becomes necessary to consider

the individual heat carriers and their various scattering mechanisms.

1.3 Micro- Nanoscale Thermal Transport Modeling Techniques

1.3.1 Boltzmann Transport Equation. The general form of the Boltzmann

transport equation (BTE)is

∂f

∂t
+ υ · ∇f + F

∂f

∂p
=

(
∂f

∂t

)
scattering

, (1.2)

where F is the force applied to the particles and υ is the velocity. The statistical

distribution function, f , represents an ensemble of particles that varies with time t,

particle position vector r, and momomentum vector p [2, 3]. The BTE can be applied
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to problems involving gas molecules, electrons, phonons, and photons. It can be used

to simulate heat conduction processes from nanoscale to macroscale in the classical

size effect regime. The BTE can describe both equilibrium and non-equilibrium

phenomena which makes it well suited for describing phonon transport. The left

hand side of Eq. (1.2) represents the drift term of the particle ensemble away from

equilibrium. The right hand side of Eq. (1.2) is the scattering term that restores the

particle ensemble to equilibrium. The distribution function f is a function of several

variables, making it diffi cult to solve deterministically. Typically, a relaxation time

approximation is invoked to simplify the scattering term which allows the BTE to be

solved. This form of the BTE is given as

df

dt
+ υ · ∇f + F

∂f

∂p
=
f0 − f
τ(r,p)

, (1.3)

where f0 is the equilibrium distribution at the local temperature and τ is the relax-

ation time which is a function of position and momentum.

For phonon transport, because no external force exists, Eq. (1.2) takes on the

following form
∂nK,p
∂t

+ νK,p · ∇nK,p =

(
∂nK,p
∂t

)
scattering

, (1.4)

where n is the phonon excitation number for a phonon of wave vector K and polar-

ization p, which at equilibrium is given by the Bose-Einstein distribution function,

and ν is the phonon group velocity. The collision term on the right hand side of Eq.

(1.4) consists of various forms of phonon scattering such as three-phonon scattering,

geometric boundary scattering, and isotope scattering.

In the past, analytical models were used to solve the BTE for phonons in the

relaxation time approximation to predict thermal conductivities in semiconductor

materials [4—6]. Approximations to phonon dispersion and the use of relaxation

time expressions for three-phonon interactions that contained approximations within

themselves were commonly used. Further detail on these limiting assumptions have
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been discussed in literature [7, 8]. The usage of these models has been limited to

simplified cases.

Numerical solutions of the BTE have been obtained for modeling thermal trans-

port in semiconductor materials [9—15]. The relative merits of the techniques such

as the finite volume method [9, 11] and the Monte Carlo (MC) method [10, 12—15]

used to numerically solve the BTE have been reviewed previously [16, 17]. Due to

the expensive computational costs associated with these numerical solutions, most

work in solving thermal transport has been limited to problems with simplified ge-

ometries. Using a Monte Carlo (MC) technique to stoichastically solve the BTE

offers the potential of modeling thermal transport in complex geometries.

1.3.2 Molecular Dynamics Technique. In the molecular dynamics (MD)

simulation technique the motion of atoms interacting with a prescribed interatomic

potential, as shown in Fig. 1.1, are predicted using Newton’s laws of motion. There

are two distinct approaches used in MD simulations: equilibrium and non-equilibrium.

In non-equilibrium MD, a non-equilibrium condition is typically initialized by impos-

ing a temperature gradient to the boundary regions of the simulation domain. Ther-

mal conductivity can be determined by computing the ratio of the imposed heat flux

to the temperature gradient. In general, nonequilibrium techniques suffer from three

major drawbacks:

1. the simulation domain must contain enough atoms in the boundary regions to

stabilize the boundary temperatures, which increases the overall cost of the

simulation;

2. the systems that can be simulated with current computing technologies are

smaller than the phonon mean free path and their small size also restricts the

maximum phonon wavelength;
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3. an unphysically large temperature gradient is required to converge tempera-

ture statistics, making it diffi cult to determine the thermal conductivity at a

particular temperature [18].

Nonequilibrium MD simulation techniques have been applied to various nanoscale

and nanostructured materials including nanowires [19], superlattice nanowires [20],

and thin films [21]. In equilibrium MD, small statistical temperature fluctuations

cause instantaneous heat fluxes. Using the heat flux autocorrelation function and the

Green-Kubo relationship, thermal conductivity can be determined [22]. Convergence

is slow, but the equilibrium approach is free from the drawbacks associated with

the nonequilibrium technique [18]. Equilibrium methods have been used recently to

predict thermal conductivities in nanofilms, nanowires, and nanoparticles [22].

In addition to using MD techniques to determine thermal conductivities of var-

ious materials [23, 24], MD simulations have been used to study interfacial thermal

transport [25, 26]. Also, from the time histories of individual atoms in a MD simula-

tion, phonon spectral properties can be analyzed by discrete Fourier methods. Thus,

relaxation times and other important properties such as group velocities and density

of states can be determined [27, 28]. These properties could be incorporated into

a BTE or Monte Carlo (MC) model to improve the accuracy of thermal transport

calculations. Unfortunately, using MD techniques it is not possible to distinguish

between phonon-phonon scattering processes. Therefore a full understanding of the

complex nature of intrinsic scattering is not possible. The major limitations of MD

simulations of thermal transport are the determination of accurate potentials and the

size of systems that can be studied with reasonable computational time.

1.3.3 Monte Carlo Technique. The use of the MC method stems from

work done in the 1940’s where the method was utilized to solve neutron diffusion

problems [29]. The MC method is a numerical method of approximately solving

mathematical and physical problems by random sampling. MC methods are used

in a wide range of applications such as computational physics, structural mechanics,
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reliability theory, IC design, and stock market forecasting [30]. A crucial task in the

application of the MC method is the generation of appropriate random samples [30].

Thus, the generation of random or pseudo-random numbers are essential to the MC

method. The success of a MC calculation often is decided by how well the random

samples reflect true randomness [30].

1.3.4 Monte Carlo Technique in Thermal Transport. The MC technique

in thermal transport involves modeling phonons as individual particles as described

by Fig. 1.3, tracking them as they drift and interact in various forms of scatter-

ing over a period of time. In the MC technique many phenomena associated with

phonon transport are approximated utilizing pseudo-random number generation in a

probabilistic manner. To assist in understanding the MC model overview, consider

a rectangular geometry with isothermal boundary conditions at each end along the

x-axis illustrated in Fig. 1.4.

Figure 1.4 A rectangular parallelepiped geometry with isothermal boundary con-

ditions at the x-axis minimum and maximum walls.

In the MC technique, the geometric domain is divided into cells or spatial bins. An

initialization step occurs in which phonons are randomly positioned in the cells that

make up the geometric domain. The equilibrium number of phonons introduced is
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determined from the Bose-Einstein distribution. Typically, this number is quite large

even for relatively small domains, therefore scaling factors are employed to reduce the

actual population of phonons down to something that is computationally manageable.

Once all cells within the domain are populated, for each phonon the properties of

frequency, polarization, and direction are randomly assigned. The group velocity of

each phonon is then determined using the frequency and polarization along with the

isotropic dispersion curves. At the isothermal walls, the emitted phonon flux required

to represent the isothermal wall temperature is determined. Following initialization,

a drift step occurs in which each individual phonon moves in straight line at its

individual group velocity and direction for a given time step. The positions of each

phonon are individually tracked. If a geometric boundary is encountered, phonons

will either specularly or diffusely reflect. Next, a scattering step occurs in which

phonons are allowed to engage in scattering events such as three-phonon scattering

and phonon-impurity scattering. The scattering step results in modifying individual

phonon properties. The combination of the drift and scattering steps mimics the

particle picture of phonon transport. At this point in the model one time step is

complete and an effective temperature distribution can be determined based on the

individual cell energies. Also, the effective thermal conductivity can be determined.

This is done by computing the total heat flux based on the total energy emitted

from the emitting walls and the total energy incident on the emitting walls during

this time step. Energy and momentum conservation rules are not directly imposed for

each scattering interaction in such a MC model. Energy conservation is imposed in an

approximate way. Before the scattering step of phonon transport, a target energy is

computed in each cell. Upon completion of the scattering step, phonons are added or

removed from each cell to ensure that the target energy remains unchanged. The MC

technique can be computationally intensive since it requires tracking a large number

of energy carriers. Being able to treat complex problems with nontrivial geometries

makes MC advantageous.
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1.3.5 Previous Studies Utilizing the Monte Carlo Solution Technique . The

MC solution technique solves the BTE in a statistical framework. It has been used

extensively for thermal radiation computations [31] as well as in the simulation of

electron transport in microelectronic devices [32]. Its usage for simulating phonon

transport is relatively recent. [12—15, 33—39]

Early studies using the MC technique focused on being able to demonstrate

both the diffusive and ballistic thermal transport regimes. Also, thermal conduc-

tivities of bulk materials as well as thin films were determined. Klitsner et al. [35]

applied the MC technique to study radiative phonon transport in a crystal. Phonons

were assumed to travel ballistically between the crystal surfaces. Scattering in this

model only occured at the interfaces. Peterson [33] used a MC technique based

on the Debye model, in which all phonons were assumed to have the same veloc-

ity. The interactions between phonons were accounted for by assuming an average

phonon lifetime. More recently, Mazumder and Majumdar [12] developed a com-

prehensive MC model based on Peterson’s work [33] that included both polarization

and isotropic non-linear phonon dispersion. The various phonon scattering processes

were considered independently. The model was used to investigate thermal transport

in three-dimensional geometries and predict thermal conductivities in silicon. This

model captured both the diffusive and ballistic transport regimes. Results showed

that by fitting one parameter using experimental thermal conductivity data at one

temperature, predictions of silicon thermal conductivity agreed well with experimen-

tal data over a wide temperature range. Lacroix et al. [13] utilized a model very

similar to Mazumder and Majumdar’s [12] to study phonon transport in silicon and

germanium in both the diffusive and ballistic regimes. Their model incorporated

a new distribution function in order to respect energy conservation during phonon

scattering processes.

Knowing that the classical regime of thermal transport would not hold in all

cases and quantum effects would become necessary to consider, Chen [14] used the

MC technique to study phonon transport in single crystalline silicon nanowires. Sim-
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ilarly, this model was based on the work of Mazumder and Majumdar [12]. A genetic

algorithm which met both momentum and energy conservation requirements was used

to model three-phonon normal and Umklapp processes. The results from this model

showed that for high temperatures it is necessary to include momentum conservation

for normal processes to accurately model thermal conductivity. Chen [14] also com-

pared silicon nanowire thermal conductivity using both a dispersion relation solved

from elastic wave theory and one from experimental data of bulk silicon. The results

suggested that the confinement effect was significant when the nanowire diameter

appoached tens of nanometers.

In order to decrease computational time, Song [34] used a slightly different ap-

proach to study microporous silicon thin films. His work used a gray-media approach

and a unit cell concept. The thermal conductivity values of simulated solid and

porous silicon films were generally higher than corresponding experimental results.

This was attributed to usage of the gray-media approximation since long wavelength

phonons that have a long mean free path are more sensitive to the presence of closely

spaced boundaries. Song mentioned that pore orientation did not significantly affect

the thermal conductivity. This model was limited by the size of the computational

domain and the usage of the gray-media approximation. With a larger computa-

tional domain, a better study of randomly oriented micropore sizes and orientations

could be done.

As a first attempt to determine thermal conductivities of nanocomposite mate-

rials with the MC technique, Yang [36] used an approach very similar to Song [34] to

model silicon/germanium nanocomposites. The model incorporated both the gray-

media approximation and the unit cell concept. The size effects of phonon transport

in nanocomposites were studied. Results showed that the thermal conductivity of

nanoparticle composites could be lower than the alloy value. Size and position of

the silicon nanoparticles within the germanium host were studied. It was found that

randomly distributed nanoparticles in nanocomposites resulted in thermal conduc-
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tivities similar to that of periodically aligned mono-size nanoparticles. This model

seemed to suffer from the same issues as Song’s model.

These MC models all utilize approximations related to the polarization and dis-

persion behavior of phonons as well as the representation of three-phonon scattering.

In order to obtain accurate thermal transport results, these approximations need to

be more robust.

1.4 Motivation for Modeling Thermal Transport

1.4.1 Thermoelectrics. The field of thermoelectrics provides motivation for

modeling thermal transport in nanostructures. The simplest thermoelectric generator

consists of a thermocouple, shown in Fig. 1.5. The thermocouple has two legs,

one of which is an N-type semiconductor and contains negatively charged mobile

carriers in the form of electrons, while the other leg is a P-type semiconductor and

contains positively charged mobile carriers called holes. These two legs are connected

electrically in series and thermally in parallel. In the presence of an externally

applied temperature gradient, the carriers conduct heat from the hot junction to the

cold junction. This causes a voltage drop to occur between the two electrodes. The

generation of voltage across a material for an applied temperature gradient is known

as the Seebeck effect.
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Figure 1.5 Illustration of thermoelectric generation.

In a thermoelectric cooler, current is passed through the legs of the thermocouple as

shown in Fig. 1.6.

Figure 1.6 Illustration of thermoelectric cooling.

Both the electrons and holes carry heat away from the cold junction. The temperature

gradient between the hot and cold junction varies with the amount of applied current.

In addition to cooling, when current is applied, heat generation due to Joule heating

occurs within each leg. The magnitude of Joule heating is equal to the product of the

13



square of the current and the electrical resistance of the leg. Therefore, thermoelectric

materials with low resistivity are necessary. Additionally, in order to prevent the back-

flow of heat from the hot to cold junctions, materials with a low thermal conductivity

are also required.

In a typical thermoelectric device, N-type and P-type thermoelectric elements

are sandwiched between two high thermal conductivity substrates. State of the art

thermoelectric elements are based on Bi2Te3 and its alloys. Thermoelectric devices

follow the same principles as previously discussed. Most thermoelectric modules are

square with a range in length and width from approximately 2.5 - 50 mm and in

height from approximately 2.5 - 5mm [40].

Thermoelectric performance is measured in terms of the figure of merit (ZT)

defined as follows:

ZT =
S2σ

k
, (1.5)

where S is the Seebeck coeffi cient, σ is the electrical conductivity, and k is the thermal

conductivity. A material with high thermoelectric performance needs to have a large

Seebeck coeffi cient (low carrier concentration semiconductors and insulators), a large

electrical conductivity (high carrier concentration metals), and a low thermal conduc-

tivity. The ideal thermoelectric material is an electron crystal - phonon glass where

high mobility electrons are free to transport charge and heat, but the phonons are

disrupted at the atomic scale from transporting heat [41]. Heavily doped semicon-

ductor materials allow the thermal conductivity to be reduced without degrading the

electrical conductivity. In nanoengineered materials, thermal conductivity can be re-

duced by size, surface, and interfacial effects. This reduction in thermal conductivity

is directly related to the performance increase in thermoelectric devices. Therefore,

an accurate model for determining thermal conductivity of nanoengineered materials

would be beneficial.

1.4.2 Nanostructured Materials. Alloying results in a reduction in thermal

conductivity compared to that of the bulk constituents without a significant reduction
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in electrical conductivity. This is due to mass difference scattering. Experimental

and theoretical results show that the thermal conductivity of nanstructures, such

as superlattices, can be less than that achieved through alloying. Size effects dis-

cussed are mainly responsible for this. Additionally, it has been demonstrated that

dispersion relations change when length scales are on the order of 10 nm [14, 42].

Superlattices are periodic semiconductor structures as shown in Fig. 1.7.

Figure 1.7 Depiction of a superlattice structure where the two different colors rep-

resent two different materials.

Recently it has been reported that Bi2Te3/Sb2Se3 superlattices [43] and PbTe/PbTeSe

based quantum dot superlattices [44] result in a ZT>1. There have been numerous

studies, both experimental and theoretical, on the thermal conductivity of superlat-

tices. Even though superlattices are promising low thermal conductivity materials,

thin film deposition fabrication techniques are not suitable for large scale applica-

tions [36]. Thus, nanoporous and nanocomposite materials have been proposed as

alternatives to superlattices.

Nanocomposite materials consist of nanowires, nanotubes, or nanoparticles em-

bedded in a host semiconductor material as shown in Fig. 1.8.
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Figure 1.8 Depiction of a nanocomposite structure with nanowires embedded in a

host material.

Recently Zhao et al. [45] reported promising results of a reduction in effective thermal

conductivity of a Bi2Te3 nanocomposite with tubular Bi2Te3 nanowire inclusions. It

is believed that nanocomposites may provide a way to enhance the nanoscale effects

observed in superlattices [46, 47]. If nanocomposites are to be used to increase ZT

it is important to consider constituent materials that have significant differences in

lattice properties, but negligible differences in electrical properties.

1.5 Statement of Work

The potential to engineer nanostructured materials to have desired thermal

properties for various applications is rapidly gaining attention. To effectively engi-

neer materials, it is necessary to have robust numerical models that can accurately

predict thermal transport. When a structure has a characteristic length on the order

of tens of nanometers, phonon scattering at material interfaces and domain bound-

aries dominate heat transfer, making macroscale theory (diffuse regime) ineffective in

predicting thermal transport.

The goal of the Statistical Phonon Transport (SPT) model presented herein is

to provide a probabilistic simulation that can model thermal transport in crystalline
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materials from nanoscale (ballistic regime) to the macroscale (diffuse regime). The

SPT model aims to

1. approximate the BTE while rigorously enforcing the conservation of energy and

pseudo-momentum selection rules,

2. employ a fully anisotropic model for the dispersion characteristics of silicon in

stochastic modeling of phonon transport,

3. extend the accuracy of phonon transport by eliminating the need to use scaling

factors common to MC techniques, thus truly modeling actual phonon popula-

tions across various length scales,

4. provide a framework to permit side-by-side comparisons of alternative scattering

algorithms,

5. provide a framework to permit side-by-side comparison of alternative scattering

interaction selection rules,

6. provide a foundation to study the phenomena of ballistic jump at isothermal

boundaries evident in many MC models,

7. provide a foundation for modeling thermal conductivity of nanomaterials

8. allow modeling of acoustic or acoustic + optical phonon branches,

9. be extendable to complex three-dimensional geometries necessary for engineer-

ing device design,

10. incorporate a probabilistic treatment of phonon transport that does not require

the use of pseudo-random number generation.
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CHAPTER 2

Introduction to Crystal Structure and Phonon Theory

Knowledge of the structure of solids is fundamental in the study of solid state physics.

Most physical properties of solids are dependent on how atoms or molecules that make

up the solid are arranged. In this work, we aim to understand the energy quanta that

are related to lattice vibrations of a crystal, called phonons. Here an introduction to

crystal structure and phonon theory related to bulk silicon is given as a foundation

for further discussions concerning the intricate mechanisms of phonon transport.

2.1 Crystalline Solids

An ideal crystal is an infinite three-dimensional periodic array of groups of

atoms in space. The group of atoms, known as the basis, may consist of one or more

atoms. The three-dimensional configuration of points to which the basis is attached

is called the lattice. The crystal is defined by the addition of the basis to every point

in the lattice. Silicon is a group IV element having a diamond crystal structure as

depicted in Fig. 2.1.
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Figure 2.1 Diamond crystal structure.

The diamond crystal structure consists of a face-centered cubic (FCC) lattice, shown

in Fig. 2.2, with a diatomic basis at coordinates (0, 0, 0) and (1
4
, 1
4
, 1
4
) associated with

each point of the FCC lattice.

Figure 2.2 A unit cell for the face-centered cubic lattice.
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The lattice can be described by three translational vectors a1, a2, and a3 such that

the arrangement of atoms in the crystal appear the same when viewed from point r

as when viewed from any other point r′ translated by an integral multiple of three

translational vectors

r′ = r + `1a1 + `2a2 + `3a3 , (2.1)

where `1, `2, and `3 are integers which will be referred to collectively as ` [48]. If

every point equivalent to r is included in the set r′, the lattice points and translation

vectors are primitive. The parallelpiped defined by the primitive axes a1, a2, and

a3 is called the primitive cell. A primitive cell consists of one lattice point. The

primitive cell for an FCC lattice is shown in Fig. 2.3.

Figure 2.3 The primitive cell of the face-centered cubic crystal. The primitive trans-

lation vectors connect the lattice point at the origin with lattice points

at the face centers.

By drawing perpendicular bisector planes of the line segments connecting a single

lattice point to all the nearby lattice points, a Wigner-Seitz primitive cell is created.

The Wigner-Seitz cell for an FCC lattice is shown in Fig. 2.4.
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Figure 2.4 The Wigner-Seitz cell for a face-centered cubic lattice.

The Wigner-Seitz cell is the region for which locations in the cell are nearer to the

central lattice point than any other lattice point. The volume of the Wigner-Seitz

cell is given as

Ω = a1 · (a2 × a3) . (2.2)

2.2 Reciprocal Lattice and First Brillouin Zone

Lattices are periodic structures and position-dependent physical properties that

depend on the structural arrangement of the atoms are also periodic. As any quantity

which varies with time can be described as a sum of Fourier components in the

frequency domain, the spatial properties of a crystal can be described as the sum of

components, in Fourier space, or reciprocal space [49]. For a given real space lattice,

a reciprocal space lattice can be defined in terms of three primitive reciprocal lattice

vectors b1, b2, and b3, which are related to the real space lattice vectors by

bi = 2π
(aj × ak)

(a1 × a2) · a3
, (2.3)

where i, j, and k represent a cyclic permutation of the indices 1, 2, and 3. The

Wigner-Seitz primitive cell of an FCC real space lattice in reciprocal space is known
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as the first Brillouin zone (BZ). The BZ can be defined as the smallest polyhedron

confined by planes perpendicularly bisecting the reciprocal lattice vectors, as depicted

in Fig. 2.5 for an FCC real space lattice [50].

Figure 2.5 Brillouin zone of a face-centered cubic real space lattice in reciprocal

space with the irreducible wedge depicted.

The volume of the BZ, VBZ , is given as

VBZ = b1 · (b2 × b3) =
(2π)3

Ω
. (2.4)

The BZ contains 14 reciprocal lattice vectors, eight vectors in 〈111〉 directions with a

length of
√

3 · 2π/a and six vectors in the 〈100〉 directions with a length of 2 · 2π/a.

The anisotropy and shape of the BZ is of special importance when considering lattice

vibrations and how they affect thermal transport.

2.3 Excitation Level

Phonons follow the Bose-Einstein statistical distribution, therefore at thermal

equilibrium the excitation number of a phonon having wave vector, K, and polariza-
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tion, p, is given by [51] as

nK,p =
1

exp
(
~ωK,p
kBT

)
− 1

, (2.5)

where ω is the phonon frequency, ~ is Plank’s constant divided by 2π, T is the

temperature, and kB is Boltzmann’s constant. Excitation numbers are properties

of the crystal and completely independent from the spatial domain volume. During

thermal transport excitation numbers will transition while maintaining the energy of

the spatial domain constant [42].

The total energy of a crystal can be written according to [51] as

Ũ =
∑
p

∑
K

~ωK,pnK,p . (2.6)

The summation in Eq. (2.6) is performed over all polarizations (longitudinal opti-

cal (LO), transverse optical (TO1, TO2), longitudinal acoustic (LA), and transverse

acoustic (TA1, TA2)) and over wave vector space. In considering a spatial domain of

volume Vdomain, the number of phonon wave packets having polarization p and having

a wave vector in the neighborhood δK about K is given by [42] as

NK,p =
Vdomain

Ω

(
δK

VBZ

)
nK,p =

Vdomain
Ω

δK

(2π)3 /Ω
nK,p =

VdomainδK

(2π)3
nK,p , (2.7)

where Ω is the volume of the Wigner-Seitz cell of the Bravais lattice and VBZ is the

volume of the BZ. It is important to emphasize that the number of wave packets is

dependent on the spatial domain volume, Vdomain.

2.4 Phonon Dispersion

In order to account for the anisotropy associated with the BZ as well as the

polarization and frequency dependence that distinguish phonon wave packets from

one another, it is necessary to compute dispersion curves for arbitrary wave vectors.
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Many models [12—15, 33—39] use an isotropic assumption for dispersion. In order to

accurately model the complex nature of phonon transport an isotropic assumption

is insuffi cient. Therefore, it is necessary to develop a robust method for computing

dispersion curves. In this chapter a lattice dynamics (LD) approach to compute

phonon dispersion is introduced. Dispersion curves of bulk silicon are calculated

and group velocity data is extracted. The LD model presented in this chapter is

incorporated into a preprocessing step in the SPT model.

2.4.1 Lattice Dynamics. The lattice dynamics model used to determine

the frequency given an arbitrary wave vector and polarization was adopted from

Ghatak and Kothari [48]. Their model is a semi-classical LD model that assumes

the harmonic approximation to find the normal modes of a crystal. Therefore, the

force acting on an atom is linearly proportional to the displacement of that atom

from its equilibrium position. Their model also assumes that nearest neighbor atoms

interact with angular forces and next-nearest neighbor atoms interact with central

forces. While other approaches such as the adiabatic bond charge models [52] have

better agreement with experimental data [9], the LD method was incorporatated into

the SPT model for convenience of computation.

2.4.2 Equation of Motion. As previously described in § 2.1, the equilibrium

position of any point in a perfect lattice of infinite extent in all directions is given as

r (`) = `1a1 + `2a2 + `3a3 , (2.8)

where `1, `2, and `3 are integers which will be referred to collectively as `. The vectors

a1, a2, and a3 are the primitive translation vectors of the lattice. As a result of thermal

fluctuations, an atom can get displaced from its equilibrium position by an amount

u(`). Its components can be written as uα(`), where α = 1, 2,and 3 corresponding to
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the x, y, and z directions, respectively. The total kinetic energy of the lattice is then

T̃ =
1

2
MA

∑
`

∑
α

u̇2α (`) , (2.9)

whereMA is the atomic mass. The potential energy of the lattice, Ṽ , can be expanded

in a Taylor series in powers of atomic displacement u(`) as

Ṽ = Ṽ0 +
∑
`

∑
α

Ṽαuα (`) +
∑
`

∑
`+

∑
α

∑
β

Ṽαβ(``+)uα (`)uβ
(
`+
)

+ . . . , (2.10)

where Ṽ0 is the potential energy of the lattice corresponding to the equilibrium con-

figuration of the atoms [48]. The negative of the gradient of the potential given as

Ṽα (`) =
∂Ṽ

∂uα (`)

∣∣∣∣∣
0

, (2.11)

represents the force acting on an atom at r (`). At equilibrium the net force on each

atom must be zero. Thus, under the harmonic approximation higher order terms of

the potential energy in the Taylor series expansion shown in Eq. (2.10) are neglected,

therefore the potential energy of the lattice simplifies to

Ṽ =
∑
`

∑
`+

∑
α

∑
β

Ṽαβ(``+)uα (`)uβ
(
`+
)
, (2.12)

where

Ṽαβ
(
``+
)

=
∂2Ṽ

∂uα (`) ∂uβ (`+)

∣∣∣∣∣
0

. (2.13)

From Eqs.(2.9) and (2.12) using the Lagrangian procedure of classical mechanics, the

equation of motion of the lattice is

MAüα (`) =
∑
`+

Fα

(
`+
)
, (2.14)
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where

Fα

(
`+
)

= −
∑
β

Ṽαβ(``+)uβ
(
`+
)
. (2.15)

Fα (`+) represents the α-component of forces acting on the `th atom when the `+th

atom is displaced from its equilibrium position. Following the assumption that

nearest neighbor atoms interact with angular forces and next-nearest neighbor atoms

interact with central forces, the non-central forces acting on the `th atom from the

`+th atom due to their displacements is

F (`+) = Fc (`+) + Fa (`+)

= αa [u (`+)− u (`)] + (αc − αa) [ε (`+) · (u (`+)− u (`))] ε (`+) .
(2.16)

The parameters αc and αa in Eq. (2.16), can be determined by fitting experimentally

measured dispersion curves or from elastic constant data.

2.4.3 Dynamical Matrix and Secular Determinant. The equations of motion

given by Eq.(2.14) form an infinite set of simultaneous differential equations. Due to

the periodicity of the lattice, a solution of the following form can be assumed

uα (`) = Aαexp[−i(ωt−K · r (`))] , (2.17)

where Aα represents the amplitude of the wave. Substituting Eq. (2.17) into Eq.

(2.14) yields

ω2Aα =
∑
β

Dαβ(K)Aβ , (2.18)

where Dαβ is the dynamical matrix given by

Dαβ(K) =
1

M

∑
`?

Ṽαβ(``+)exp[−iK · (r
(
`+
)
− r (`))] . (2.19)

Equation (2.18) requires solving three linear homogeneous equations in three un-

knowns Aα. For confined structures the assumption of an infinite periodic lattice
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is not valid therefore the dynamical matrix will be larger. Equation (2.18) can be

rewritten as ∑
β

[Dαβ(K)− ω2δαβ]Aβ = 0 , (2.20)

where δαβ is the Kronecker-delta function defined as δαβ=1 if and only if α=β. For

non-trivial solutions the determinant of the coeffi cients must equal zero

∣∣Dαβ(K)− ω2δαβ
∣∣ = 0 , (2.21)

Equation (2.21) is known as the secular determinant and is of the order 3s, where s

is the number of atoms in a unit cell. Thus, for diatomic crystals such as silicon, for

a given value of K there will be 3s roots corresponding to 3 acoustic branches and

(3s-3) optical branches.

2.4.4 Bulk Silicon Dispersion. For the diamond crystal structure of silicon

the dynamical matrix is given as

Dαβ (K) =



A 0 0 B C D

0 A 0 C B E

0 0 A D E B

B∗ C∗ D∗ A 0 0

C∗ B∗ E∗ 0 A 0

D∗ E∗ B∗ 0 0 A


, (2.22)

where
A = 4(αc+2αa

3
)

B = −(αc+2αa
3

)(1 + ei
(Kx+Ky)

2
a + ei

(Ky+Kz)

2
a + ei

(Kz+Kx)
2

a)

C = −(αc−αa
3

)(1 + ei
(Kx+Ky)

2
a − ei

(Ky+Kz)

2
a − ei (Kz+Kx)2

a)

D = −(αc−αa
3

)(1− ei
(Kx+Ky)

2
a − ei

(Ky+Kz)

2
a + ei

(Kz+Kx)
2

a)

E = −(αc−αa
3

)(1− ei
(Kx+Ky)

2
a + ei

(Ky+Kz)

2
a − ei (Kz+Kx)2

a)

, (2.23)
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Kx, Ky, and Kz are the three components of an arbitrary wave vector K, a is the

lattice constant, αc and αa are the central and angular force constants, and B∗, C∗,

D∗, and E∗ are conjugate to B, C, D, and E, respectively [48]. In the present work,

the central and angular force constants were determined by fitting to experimentally

measured dispersion curves in the high symmetry directions. The values of the

central and angular force constants used herein are 2.75 and 0.65, respectively.

Figure 2.6 shows dispersion curves for silicon obtained using the model previ-

ously described for high symmetry directions within the first BZ.

Figure 2.6 Dispersion curves for bulk silicon in high symmetry directions. The fine

lines are from lattice dynamics, the thick lines are from the bond charge

model and the solid circles are from experiment [9].

2.4.5 Thin Film Dispersion. The lattice dynamics model described through-

out § 2.4.1 can also be utilized for the computation of dispersion relations in confined

structures such as thin films and nanowires. In confined structures, physical bound-

aries influence the continuous spectrum of wave vectors in the BZ. It has been

shown [42] by comparing the DOS, group velocities, and specific heat in silicon films

and nanowires at various film thicknesses and wire diameters that confinement are
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absent until film thicknesses are less than 10 nm and wire diameters are less than

approximately 5 nm. Additionally, from comparisons of specific heat, confinement ef-

fects were observed only at temperatures below 100 K where the predominant phonon

wavelengths are comparable with the physical dimensions of the structure [42].

2.5 Phonon Density of States

The density of states is defined as the number of energy levels between frequen-

cies ω and ω + δω, or, equivalently, between wave vectors K and K + δK [53]. The

density of phonon states D(ω) per unit volume is given by

D (ω) =
1

V

∑
p

∑
K

δ(ω − ωK,p) , (2.24)

where the summation is performed over all wave vectors in the BZ and all polariza-

tions. A histogram technique can be used to compute the density of states following

Eq. (2.24). A histogram is generated with equally spaced frequency bins that span

the frequency band being considered for the given material. Then, using the lattice

dynamics model described in § 2.4.1, frequencies for a large number of uniformly

spaced wave vectors can be determined. Counting the number of frequencies within

particular frequency intervals associated with the bins in the histogram results in the

generation of a phonon density of states. A normalized density of states plot for bulk

silicon is shown in Fig. 2.7.
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Figure 2.7 Density of states for bulk silicon adapted from [42].

It was mentioned in § 2.4.5 that confined structures result in dispersion relations that

differ from that of bulk. It is noted that the DOS of confined structures will also

differ from bulk.

2.6 Specific heat

The specific heat of a crystal is defined as a change in lattice energy density

with respect to a change in temperature. Therefore, using Eq.(2.6) the lattice specific

heat is given as

Clattice =
1

V

∑
p

∑
K

~ωK,p
∂nK,p
∂T

=
1

V

∑
p

∑
K

~ωK,p
∂

∂T

 1

exp
(
~ωK,p
kBT

)
− 1


=

1

V

∑
p

∑
K

kB

(
~ωK,p
kBT

)2 exp
(
~ωK,p
kBT

)
(
exp

(
~ωK,p
kBT

)
− 1
)2 . (2.25)

2.7 Phonon Group Velocity

In addition to having an accurate picture of the energy distribution within a

crystal it is also important to understand how that energy propagates. The group
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velocity is defined as the gradient in reciprocal space of the angular frequency. For a

wave packet of wave vector K and polarization p, the group velocity is given as

νK,p = ∇KωK,p . (2.26)

The group velocities for acoustic and optical polarizations along the [100] direction of

the BZ are shown in Fig. 2.8. These group velocities are computed using dispersion

curves based on quadratic fits to experimental data in the [100] direction [10].

Figure 2.8 Group velocities for acoustic and optical phonon modes along the [100]

direction in bulk silicon from [10].
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CHAPTER 3

Introduction to The Statistical Phonon Transport Model

Micro- and nano-scale thermal transport modeling is of interest for a variety of ap-

plications ranging from modeling hot spots in semiconductor materials to developing

novel materials having desired thermal properties. Increasingly accurate physics-

based models of phonon transport are needed to support such applications. The

semi-classical Boltzmann transport equation (BTE) can be used to model distribu-

tions of carriers and their numerous transport mechanisms. The MCmethod has been

used successfully in simulating electron transport [32] and has been recently utilized

to simulate phonon transport [10, 12—15]. The adaptability of the MC technique due

to its probabilistic nature make it one of the most promising methods for simulat-

ing phonon transport. Most MC methods employ several approximations to reduce

computational time, and include the use of scaling factors, approximations related

to the polarization and dispersion behavior of phonons, and the representation of

phonon-phonon scattering. In order to advance the field of thermal transport, these

approximations must be addressed. The statistical phonon transport (SPT) model

described herein obviates the need for several assumptions that currently limit the
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MC technique, while retaining the probabilistic view of phonon transport that makes

the MC technique so powerful.

3.1 Motivation for SPT Model Development

The primary goal of this research was to develop a full three-dimensional prob-

abilistic simulation that could model thermal transport from nanoscale to bulk semi-

conductor materials. The motivation to develop a novel model for simulating phonon

transport stems from the interest in being able to engineer materials that could have

desired thermal transport characteristics, as mentioned in Chapter 1 § 1.4. Additional

motivation came from the want to develop a model that could accurately predict ther-

mal transport in semiconductor materials across multiple length scales with the ability

to capture the complex transport mechanisms from the ballistic to diffuse transport

regimes.

The modeling techniques reviewed in Chapter 1 § 1.3 show promise for various

aspects of multiscale thermal transport modeling, but only the MC technique showed

promise for being able to address most of the foreseen challenges. Significant research

into the capabilities and limitations of the MC technique was performed. The follow-

ing list of "strengths" and "weaknesses" of the MC technique was made. Surely some

of these can be argued, but for the most part these statements accurately assess the

technique and identify areas needing improvement.

MC Strengths:

1. Conceptually simple (model the physics of individual particles as they drift and

scatter).

2. Capable of modeling complex geometries due to each particle being tracked.

3. Can treat various drift and scattering mechanisms individually.

MC Weaknesses:
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1. Pseudo-random number generation requires that several runs of the same sim-

ulation be done so that results can be averaged.

2. Must track each particle’s location throughout its entire lifetime which is com-

putationally intensive.

3. Due to the computational requirements associated with having to track each

particle throughout its lifetime, the use of scaling factors is required for most

simulations.

4. The majority of works reported in the literature utilize an isotropic BZ. This is

mainly due to computational requirements. This limits the scattering models

to be based on the relaxation time approximation where heuristic parameters

are commonly used to hone features of the three-phonon scattering so thermal

transport results match experimental results.

5. Results have been shown to be dependent on the number of phonons considered.

6. The majority of works add or delete phonons at the end of scattering to conserve

energy.

7. The isotropic assumption commonly used does not allow for pseudo-momentum

to be conserved.

It is noticeable that there are several limitations to the model that could poten-

tially lead to errors in predicted results. Although, even with all of the approximations

and limitations in the MC technique, encouraging results related to thermal trans-

port have been presented in the literature [10, 12—15]. Therefore, a model that could

eliminate many of the weaknesses associated with the MC technique while retaining

the positive aspects would be a significant contribution to the field.

3.2 SPT Model Algorithm Description

The structure of the SPT model algorithm in a serial processing framework is

shown in the Fig. 3.1.
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Figure 3.1 Flow chart of the SPT model algorithm.
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The various aspects of the model depicted in Fig. 3.1 are described in the following

sections. An example of the SPT model input file and a sample of the three-phonon

interaction table can be found in the appendices.

3.3 SPT Model Assumptions

The following assumptions underlie the work to be presented herein.

1. Central and angular force constants used in a lattice dynamics model for com-

puting dispersion curves are determined by fitting experimentally measured bulk

silicon dispersion curves. The lattice dynamics model is used to determine the

corresponding frequency for any arbitrary wave vector in the BZ.

2. The classical particle description of phonon transport is assumed. The critical

domain dimensions are greater than the phonon coherence length and wave-

length in silicon [54].

3. Bulk anisotropic phonon dispersion is considered. The critical domain dimen-

sions are greater than those that would require consideration of confinement

effects on dispersion [14].

4. A manually selected acceptance criteria, ωε is used for satisfying conservation

of energy in the creation of a three-phonon interaction table. Conservation of

pseudo-momentum is accomplished through the definition the pseudo-states.

The influence of this assumption is evaluated herein.

5. Phonons are uniformly distributed over theK-space of a pseudo-state, with each

phonon assigned the frequency, energy, and group velocity of the pseudo-state

centroid.

6. Phonons are uniformly distributed over the spatial volume of a geometric ele-

ment.

7. Two methods are presented for determining the probability that any particu-

lar event contained within the interaction table will be allowed to proceed at
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any instant of time. The first method, herein called simply scattering model

"A" assumes that each scattering iteration is infinitely long, and that all events

have an equal probability of occurrence. In model A, the probability of whether

a phonon participates in a scattering event is driven by the distance that the

pseudo-state is above or below its equilibrium population, and the entire popu-

lation of partner phonons available for each reactant state to interact with. The

second method, herein called model "B", employs a relaxation time based prob-

ability adapted from the perturbation model [55]. Here the decaying phonon

populations are distributed uniformly across all candidate scattering interac-

tions and are then limited by the available population of phonon partners.

8. Phonons are considered to be the only heat carriers in the SPTmodel. Thus, the

model is valid for simulating thermal transport in semiconductor and dielectric

materials. While it is clearly understood that optical branch phonons partici-

pate in phonon-phonon scattering, indirectly playing a role in impeding thermal

transport through interactions with high frequency acoustic modes, in this work

they are neglected. Optical modes may be included within the proposed SPT

model framework, but this effort is deferred to a future work.

9. Two methods for modeling isothermal boundary cells are employed. In Model

A, each boundary is "self-scattered" at the start of each time step. In Model

B, the boundary cells are reset to the local thermodynamic equilibrium.

3.4 Phonon Pseudo-State Definition

The definition of phonon pseudo-states lies at the heart of the SPT model. A

phonon pseudo-state can be uniquely defined by its properties of wave vector and

polarization. Each pseudo-state represents a discrete volume of the BZ. The first BZ

consists of an angular space of extent 4π as well as a wave number space [0, Kmax],

where Kmax depends on the direction of the wave vector, K [9]. The discretization

of the BZ leads to a finite number of pseudo-states. Details of the discretization are

37



discussed in § 3.5, but for now consider the discretization results in NEoctant elements

in the first octant of the BZ.

The number of phonon pseudo-states, M , within the BZ is

M = NEoctant ×Np ×Noctant . (3.1)

where NEoctant is the number of elements in the first octant and Np is the number

of polarizations considered. For silicon, Np=6 and includes the TAI, TAII, LA, T0I,

T0II, and LO branches. The pseudo-states in the first octant can be extended to

represent the entire first BZ by performing the necessary rotations using planes of

symmetry as described in Chapter 2 § 2.2. The lattice dynamics eigenvalue prob-

lem described in Chapter 2 § 2.4.1 is solved at the centroid of each BZ element to

determine the frequency of all Np modes in the BZ element. Phonons are assumed

to be uniformly distributed over the K-space of a pseudo-state with each phonon

assigned to the pseudo-state polarization and having a frequency, and group velocity

of the pseudo-state centroid. All phonons that are later populated into the pseudo

state associated with a BZ element are assigned the frequency (and hence, energy)

and group velocity of the BZ element centroid. Each BZ element has a unique wave

vector and a polarization-dependent frequency for each pseudo-state, providing a full

anisotropic model of the dispersion curves, group velocities, and density of states.

The group velocity is determined using the same lattice dynamics eigenvalue problem

solved at the face centers of the BZ element, and the results are employed to estimate

the group velocity νm of pseudo state m, having a wave vector K and polarization p

using a second order central finite difference model to the gradient resulting in

νm= νK,p = ∇KωK,p . (3.2)

Each pseudo state (consisting of a unique wave vector and polarization) may have a

unique group velocity.
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3.5 BZ Discretization

The BZ discretization is directly related to the pseudo-state definition. There-

fore, it is an important aspect of the model.

Several works [9, 55] discretize the anisotropic BZ in their finite volume models

of phonon transport. They use a methodology of dividing the angular space into

Nθ × Nφ control angles each of extent ∆Ωi, where Ω is the 4π solid angle, and θ

and φ are the polar and azimuthal angles, respectively. The wave number space is

discretized into bands of extent ∆Kj. This discretization results in elements that have

unequal volumes.

For electron transport modeling both structured and unstructured BZ dis-

cretizations have been utilized. Structured meshes consist of uniform volume hexahe-

dral elements. Unstructured meshes consist of uniform volume tetrahedral elements.

Both have their advantages and disadvantages.

The BZ discretization currently used in the SPT model utilizes a structured

hexehedral mesh, however the SPT model is not limited to utilizing this discretiza-

tion.
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Figure 3.2 A typical structured discretization of the first octant of the BZ used in

the pseudo-state definition.

In contrast to Fig. 3.2, the BZ shown previously in Fig. 2.5 has 1/48th symmetry.

One forty-eigth of the BZ is known as the irreducible wedge. Any point within

the BZ can be represented by an equivalent point in the irreducible wedge. When

using an unstructured mesh it is possible to mesh the irreducible wedge and use the

appropriate reflections and permutations to expand the mesh throughout the BZ. In

using a structured mesh it is convenient to utilize the first octant of the BZ (1/8th

symmetry), which has been done in this work. The first octant wave number space

is discretized in the x, y, and z directions into an equal number of ∆K bins. This

generates a cube of hexahedral elements. Then, a check is performed to determine

whether or not the element is fully within the BZ. Any element outside the BZ is not

utilized in the pseudo-state definition. A structured mesh consisting of equal volume

hexahedral elements is utilized to discretize the first octant of the BZ as shown in Fig.

3.2. For this work, a 12× 12× 12 BZ element mesh in the first octant is utilized for

many results. Additional mesh discretizations are demonstrated. For a 12× 12× 12

BZ element mesh in the first octant approximately one-half of the 1,728 hexahedral
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elements lie within the first BZ. This equates to approximately 41,000 pseudo-states

within the entire BZ.

3.6 Spatial Discretization

Consider a homogeneous semiconductor material with isothermal boundaries at

the Xmin and Xmax domain surfaces and periodic adiabatic boundaries at the Ymin,

Ymax, Zmin, and Zmax domain surfaces, as shown in Fig. 3.3.

Figure 3.3 A typical domain discretization used in the SPT model.

The material is discretized into a three-dimensional computational domain consisting

of C rectilinear cells. Each cell, c, contains the full population of Nc,m phonons in

each pseudo-state, m, for the represented volume in reciprocal space.

Nm=Vcnm
∂K

(2π)3
, (3.3)
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where Vc is the cell volume. A local state vector, {LSV }c of length M is defined for

each geometric cell, 1 ≤ c ≤ C, in the domain as

{LSV }cm=



N1

N2
...

NM


, (3.4)

where the phonon population, N c
m, is the population of phonons of pseudo-state

m, 1 ≤ m ≤ M contained in cell c. The phonon populations associated with a

given pseudo-state are assumed to be uniformly distributed across the volume of each

geometric cell. It is also noted that unlike MCmodels, scaling factors are not utilized.

Therefore, each geometric volume contains the actual number of phonons specified by

Eq. (3.3), evaluated at the cell’s specified initial condition temperature distribution.

For reference it is noted that the number of phonons present in any simulation is

quite large. As an example, a 100 nm cubic cell at 500 K contains approximately

9× 107 phonons spread across approximately 41, 000 pseudo-states for a 12× 12× 12

BZ discretization.

3.7 Preprocessing

The material properties associated with each pseudo-state are pre-computed

and stored in a data object. Each pseudo-state inherits a unique wave vector, polar-

ization, number density, and group velocity. As the number of hexahedral elements

used to model the pseudo-states increases, the K-space volume associated with each

pseudo-state decreases. Following creation of the pseudo-states, the table of permissi-

ble interactions (which are pre-computed to satisfy energy and momentum) is created

and stored as three vectors of integers, corresponding to the pseudo-states participat-

ing in each reaction. The pseudo-state data and interaction table are computed once

and stored for subsequent use. After initialization, the SPT model proceeds sequen-

tially through a series of time steps, from the initial condition until a steady state
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is achieved. Each time step is divided into three distinct phases: drift, balance, and

scattering.

3.8 Phonon Pseudo-State Drift

The drift phase is considered to be from time step τ to time step τ + 1/2, while

the scattering phase occurs from time step τ + 1/2 to time step τ + 1. The spatially

uniformly distributed population of phonons associated with each pseudo-state in

each cell are allowed to drift in a probabilistic manner. The computational time step,

∆t, is limited by the cell size and the group velocity associated with the pseudo-states.

In order to avoid ballistic jump over several cells, the following conservative time-step

limit is enforced

∆t=
`min
νm,max

, (3.5)

where `min is the minimum cell length and νm,max is the maximum group speed in the

x,y, and z directions for all pseudo-states [13]. During the drift phase pseudo-states

drift linearly at their respective group velocities (using the mean values associated

with each pseudo-state) for the prescribed time step. A general pseudo-state drift

scheme along with three distinct boundary conditions (isothermal, periodic and adi-

abatic specular/diffuse) is briefly described.

Consider the two-dimensional geometric cell, c, of size `x by `y as shown in Fig.

3.4, having eight neighbors as indicated.
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Figure 3.4 A depiction of the interior cell drift scheme for a given pseudo-state.

This cell contains a uniformly distributed population of phonons in each pseudo-state

1 ≤ m ≤ M . Consider one particular pseudo-state, m, whose population is initially

uniformly distributed across the volume of the cell, c, and moving with a group

velocity, νm. After a small interval of time, ∆t, the uniform population of phonons

will drift as shown by the shaded area in the Fig. 3.4. The probabilities that the

phonon population will drift into neighboring cells are given by:

PEAST = dy(`x − dx)/(`x`y)

PNORTH = dx(`y − dy)/(`x`y)

PNORTHEAST = (dxdy)/(`x`y)

PNORTHWEST = 0

PWEST = 0

PSOUTHWEST = 0

PSOUTH = 0

PSOUTHEAST = 0

, (3.6)
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where dx equals νm,x ∆t and dy equals νm,y ∆t . The probability that the phonons

will remain in the center cell, c, is given as

PC = (`x − dx)(`y − dy)/(`x`y) . (3.7)

A drift state vector, DSV , of length M is constructed for each cell, c, in the domain.

The DSV is used to store pseudo-state populations as they drift. Let us denote the

DSV ’s using an object-oriented matrix notation. Thus, we can say that

Cell{c}.DSV [Neighbor][m] = PNeighbor ∗ Cell{c}.LSV [m] , (3.8)

for 1 ≤ Neighbor ≤ 9 (in two-dimensions) and 1 ≤ m ≤M , noting that Neighbor =9

represents the DSV for the current cell since some of the pseudo-state populations

will not drift out of the current cell. At the end of the drift phase, the LSV for each

cell is empty as the entire population of each pseudo-state has been distributed to one

of the DSV ’s associated with the cell c. This formulation is significant, in that any

one cell, c, contains all information needed to populate its drift state vectors for all

neighbors, without communication to any other cell in the domain. Drift calculations

can be completely conducted in parallel.

3.9 Boundary Conditions

3.9.1 Isothermal Boundary Drift. An isothermal process is a thermody-

namic process in which the temperature of the system remains constant. Similarly, an

isothermal boundary condition is a constant temperature boundary condition. The

isothermal boundary condition is implemented by resetting the LSV ’s of the isother-

mal cells to a pseudo-state population corresponding to the Bose-Einstein distribution

at a prescribed boundary temperature at the beginning of each computational time

step. During the drift phase of the computational time step the pseudo-state phonon

populations of the isothermal cells are allowed to drift into the cells within the com-

putational domain that border the isothermal cells, just as interior cells are allowed to
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drift. Figure 3.5 depicts a 2-D depiction of a pseudo-state drifting from an isothermal

boundary cell into the domain.

Figure 3.5 A depiction of the isothermal cell drift scheme for a given pseudo-state.

However, after the drift phase is completed, we discard all phonons entering the

boundary from its neighbors, and restore it to its pre-drift condition. For the case

of a one-dimensional isothermal boundary cell, we have:

Cell{b}.LSV [m] = Cell{b}.DSV [CENTER][m] + Cell{b}.DSV [EAST ][m] +

Cell{b}.DSV [WEST ][m] , (3.9)

for all boundary cells, b, and all pseudo-states, 1 ≤ m ≤M .

3.9.2 Periodic Boundary Condition. A periodic boundary condition is used

to simulate a direction having infinite extent. This is achieved by assuring that there

is no net loss of energy in the specified direction. So, for a given direction, the flux

leaving one extreme boundary will immediately be replaced back into the domain at

the opposite extreme boundary. When a pseudo-state drifts within a cell that borders

a periodic boundary, some portion of the pseudo-state population may encounter the

periodic boundary. The portion of the pseudo-state population that would normally

leave the cell had the periodic boundary not been present is reintroduced back into the
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cell, in the same pseudo-state. Since all neighbors are stored as indices to other cell

numbers, the periodic boundary condition is readily achieved by a simple definition

of "neighbor."

Figure 3.6 A depiction of the periodic boundary condition.

Consider Fig. 3.6 consisting of a one-dimensional domain such that the only sig-

nificant cells are, WEST , CENTER, and EAST . All cells above and below the

centerline are considered to be periodic boundary conditions. For each interior cell,

c, we can define its periodic boundary neighbors as:

Cell{c}.CENTER = Cell{c}.NORTH = Cell{c}.SOUTH = c

Cell{c}.EAST = Cell{c}.NORTHEAST = Cell{c}.SOUTHEAST = c+ 1

Cell{c}.WEST = Cell{c}.NORTHWEST = Cell{c}.SOUTHWEST = c− 1

,

(3.10)

Thus, implementation of periodic boundary conditions becomes trivial and they may

be balanced the same as interior cells.
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3.9.3 Adiabatic Specular/Diffuse Boundary Condition. An adiabatic process

is a thermodynamic process in which the net heat transfer is zero. Thus, at an

adiabatic boundary the heat flux is zero. When a pseudo-state drifts within a cell

that borders an adiabatic boundary some portion of the pseudo-state population

may interact with the adiabatic boundary. The SPT model allows the specularity

of an adiabatic boundary to range from completely specular to completely diffuse.

Adiabatic boundary scattering is an elastic process, thus it only effects the direction

at which the pseudo-state travels.

Consider a pseudo-state, m, in a cell, c, that borders a completely specular

domain. During drift, if a portion of the population interacts with the specular

domain, that portion of the pseudo-state, m, will be reflected such that the angle of

incidence is equal to the angle of reflection, resulting in a new pseudo-state, ḿ, as

shown in Fig. 3.7.

Figure 3.7 A depiction of the specular boundary condition.
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Therefore, the LSV will lose a portion of the phonon population of pseudo-state m

and will gain that portion in pseudo-state ḿ, thus conserving energy. Pseudo-state

ḿ has the same frequency and wave number as pseudo-state m, but a different group

velocity direction.

During drift, if a portion of the population interacts with a diffuse domain, that

portion of the pseudo-state m will be reflected such that the outgoing pseudo-states

group velocity direction is independent of the incoming group velocity direction, while

conserving energy. This is achieved by uniformly distributing the reflected population

of m to all pseudo-states ḿ that have the same frequencies, polarizations, and normal

velocity components to the diffuse surface of opposite sign. Similarly, the LSV will

lose a portion of its population of pseudo-state m and will gain a portion in the

resulting ḿ pseudo-states.

When the boundary specularity is between fully specular and fully diffuse, both

drift mechanisms previously described will be invoked. Thus, some portion of the

interacting pseudo-states population will be specularly reflected and the remaining

portion will be diffusely reflected. The SPT model permits any knowledge of the sur-

face properties to be used in determining the appropriate specular or diffuse reflection

probabilities.

3.9.4 Interfacial Boundary Condition. Phonon transport can be quite dif-

ferent even in materials having similar crystal structures. When considering phonon

transport across interfaces of different materials such as in superlattices or nanocom-

posites it is necessary to have an interfacial boundary condition model that can ac-

count for various phenomena that affect phonon transport across interfaces, such as

differences in phonon spectra. Interfacial transport models such as the acoustic mis-

match model, diffuse mismatch model or a variation of either could be implemented in

a similar manner to the boundary conditions previously described. A full description

of the interfacial transport models within the SPT model are deffered to future work.
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3.10 Phonon Pseudo-State Balance

Upon completion of the drift phase, a phonon balance is conducted upon all

interior cells. Each cell may retain a fraction of its original LSV population, and

may gain and lose phonons in each pseudo state from and to its neighbors.

3.10.1 Interior Cell Balance . In the case of a one-dimensional interior cell,

this is easily expressed by:

Cell{c}.LSV [m] = Cell{c}.DSV [CENTER][m] + Cell{c− 1}.DSV [EAST ][m] +

Cell{c+ 1}.DSV [WEST ][m] , (3.11)

for all interior cells, c, and all pseudo states, 1 ≤ m ≤M .

3.10.2 Isothermal Boundary Cell Balance. After the drift phase is com-

pleted, we discard all phonons entering the boundary from its neighbors, and restore

it to it pre-drift condition. For the case of a one-dimensional isothermal boundary

cell, we have:

Cell{b}.LSV [m] = Cell{b}.DSV [CENTER][m] + Cell{b}.DSV [EAST ][m] +

Cell{b}.DSV [WEST ][m] , (3.12)

for all boundary cells, b, and all pseudo states, 1 ≤ m ≤ M . The balance phase

requires communication between neighboring cells. In a parallelized computer imple-

mentation, the balance phase requires inter-processor communication.
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3.11 Compution of Cell Energies

Upon completion of the balance phase, the energy of each cell can be computed

from its LSV as

Cell{c}.U = [N1, N2, . . . , nm, . . . NM ]
τ+1/2
1xM



~ω1

~ω2
...

~ωM


Mx1

(3.13)

where Cell{c}.U represents the energy contained in each cell, c, in the domain.

3.12 Compution of Energy Flux

Several aspects of the validation require consideration of the net energy flux

across computational domain. The net energy flux, qnet, across the cth cell, can be

defined as the sum of the flux in a given direction for each pseudo-state within the

cell, where the flux for a given pseudo-statem in the x, y, and z directions are defined

respectively as

qm,x = Cell{c}.LSV [m]
Vc

(~ωm)νm,x ,

qm,y = Cell{c}.LSV [m]
Vc

(~ωm)νm,y ,

qm,z = Cell{c}.LSV [m]
Vc

(~ωm)νm,z .

(3.14)

The net energy flux can be used to determine when steady-state has been reached

and additionally in the calculation of effective thermal conductivity by analogy to

Fourier’s law.

3.13 Compution of Equivalent Cell Temperatures

A local temperature for each cell, Cell{c}.T emperature, can be obtained by

fitting the Bose-Einstein distribution with the assumption of local thermodynamic

equilibrium. This is done numerically by using a bisection algorithm on the cell

energy. First an LSVguess is created as shown by Eq. (3.4) using an initial temper-
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ature guess. From LSVguess, the Cell{c}.Uguessis computed using Eq. (3.13). This

energy is then compared to the actual energy of the cell, Cell{c}.U. If the cell energy

is within a small tolerance, then the cell temperature is reported, otherwise a new

temperature guess is made and the bisection algorithm continues to iterate until the

cell temperature is determined.

3.14 Computation of Effective Thermal Conductivity

As mentioned is § 3.12, once steady-state has been reached, the effective thermal

conductivity can be calculated by analogy to Fourier’s law. A second order central

finite difference approximation to the temperature gradient is utilized along with the

net energy flux incorporating Fourier’s law. For a 1-D case, the effective conductivity

is computed as

k = 2(qnet,x)
`x

Cell{c− 1}.T emperature− Cell{c+ 1}.T emperature . (3.15)

The SPT model is fully anisotropic, so for a 3-D domain it is possible to calculate

conductivity tensor.

3.15 Three-Phonon Scattering

Recently there has been significant discussion pertaining to the concept of

phonon engineering. Additionally there have been considerable efforts to modeling

thermal transport in submicron semiconductor materials with the goal of simulating

thermal transport in micro- nanoscale semiconductor devices. However, the complex

mechanisms of phonon transport, in particular phonon-phonon interactions, are not

fully understood. Detailed information regarding phonon-phonon interactions can-

not be obtained experimentally. Theoretical studies for the most part have used

approximations and fitting parameters that overshadow the intricacies of intrinsic

scattering [56]. An improved understanding of phonon-phonon interactions is of crit-

ical importance to advance the field of micro- nanoscale thermal transport.
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The Monte Carlo (MC) technique, applied to solving the BTE numerically,

has been used over the past years to simulate conduction at submicron length scales

[10, 12—15]. Even with rather crude approximations related to phonon-phonon scatter-

ing, the use of isotropic dispersion, and the inherent issues associated with stochastic

methods that involve pseudo-random number generation, the MC technique has been

shown to be quite promising. Researchers have shown the capability of MC tech-

nique to predict thermal transport in both the diffuse and ballistic regimes as well

as bulk and thin film thermal conductivities that compare well with experimental

data [10, 12—15]. Although, since Mazumder and Majumdar [12] presented the first

comprehensive MC research, relatively little progress in actually advancing the ability

to better model the intricate physics of phonon transport has been made.

Phonon-phonon interactions are due to third and higher order terms in the lat-

tice potential energy. As a result, a phonon of a particular wave vector and polariza-

tion will decay into other phonons after a finite amount of time [57]. Phonon-phonon

scattering involving four or more phonons is important only at temperatures above

the Debye temperature [17]. Therefore, most discussions of phonon-phonon scattering

are limited to three-phonon scattering.

3.15.1 Three-Phonon Scattering Processes. Three-phonon processes arise

due to the anharmonic nature of the interatomic potential energy. There are two type

of three-phonon processes, normal and Umklapp. These processes are governed by the

conservation laws of energy and pseudo-momentum. There are two distinct ways in

which a phonon may scatter in a three-phonon interaction. Type I interactions consist

of two phonons combining and resulting in a third phonon. Type II interactions

consist of a single phonon decaying into two phonons.
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Figure 3.8 Type I and Type II three-phonon interaction processes.

The Type I three-phonon scattering interaction is described in terms of the partici-

pating pseudo-states as

m1 +m2 = m3 . (3.16)

For a three-phonon interaction, the conservation of energy is given as

ω1 + ω2 = ω3 . (3.17)

The conservation of pseudo-momentum for normal processes is given as

K1 + K2 = K3 . (3.18)

The conservation of pseudo-momentum for Umklapp processes is given as

K1 + K2 = K3 + G . (3.19)

where G is the reciprocal lattice vector as described in Chapter 2 § 2.1.
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Figure 3.9 A three-phonon normal scattering process in the BZ.

In Fig. 3.9, the wave vectors K1 and K2 represent the momenta of the incoming

phonons that when added result in a phonon with momentum K3 residing in the first

BZ. Since normal processes conserve both energy and momentum they do not pose

any resistance to heat transfer. Umklapp processes involve two phonons interacting

resulting in a third phonon in which G from Eq. (3.19) does not equal zero. Figure

3.10 depicts an Umklapp process where the boundary of the BZ is 2π/a.
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Figure 3.10 A three-phonon Umklapp scattering process in the BZ.

It is apparent that the vector sum of K1 and K2 extends beyond the boundary of the

first BZ. Since any point outside the first BZ is physically equivalent to a point within

the first BZ, K3 can be replaced by a vector within the first BZ by adding to it a

reciprocal lattice vectorG. Since Umklapp processes do not conserve momentum they

directly pose resistance to heat transfer. Umklapp processes are highly temperature

dependent and are not active at very low temperatures where boundary and isotope

scattering dominate thermal transport. Normal and Umklapp processes may both

progress as forward and reverse reactions as shown in Eqs. (3.18) and (3.19).

3.15.2 Review of Monte Carlo Approach to Three-Phonon Scattering. One

of the most complicated aspects of phonon transport is phonon-phonon scattering.

Attempts at capturing this phenomenon utilizing the MC technique are far from

suffi cient. Mazumder and Majumdar [12] accounted for the acoustic phonons with

an isotropic dispersion model. Scattering probabilities between acoustic modes were

computed using a cumulative distribution function for the exponential distribution

given as

P = 1− e(−λt) (3.20)
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where λ represents the rate parameter. The rate parameter used to compute the

scattering probabilities was based on heuristic expressions for relaxation times from

Holland [5]. Since the selection rules associated with energy and pseudo-momentum

conservation were not strictly followed during scattering, an ad-hoc method of en-

ergy conservation was adopted. It involved phonon addition/deletion within com-

putational cells post-scatter to bring the resulting phonon distribution energy to

its pre-scattering level. This scattering methodology did not obey detailed balance.

Chen et al. [14] utilized similar scattering probabilities to that of Mazumder and

Majumdar [12], but they developed a genetic algorithm that enforced energy conser-

vation during phonon-phonon scattering. Understanding the importance of a phonon-

phonon scattering model obeying detailed balance and being self consistent, Lacroix

et al. [13] modified the method or phonon addition/deletion post-scatter by inclusion

of a new distribution function that guaranteed energy conservation during phonon-

phonon scattering. Recently, Mittal and Mazumder [10] included the optical branch

in their isotropic dispersion model. They used a combination of Holland’s [5] relax-

ation time expressions for normal processes and Han and Klemens [58] relaxation time

expressions for Umklapp processes. The inclusion of optical phonons offered insight

into their importance and role in phonon-phonon scattering.

From this brief review it is apparent that a significant amount of fundamental

work is needed to further understand phonon-phonon scattering. One reason that

significant advances have not been made is the computational cost associated with

the MC technique. For this reason, current MC algorithms require the use of scaling

factors on phonon populations and isotropic dispersion assumptions. With this coarse

of a representation of the phonon distributions, a rigorous implementation of phonon-

phonon scattering obeying the selection rules associated with energy and pseudo-

momentum conservation over the entire anisotropic Brillouin zone is hardly feasible.

3.15.3 Compution of Three-Phonon Scattering Events. Following the dis-

cretization of the BZ, an interaction table is computed and stored for subsequent
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use. The approach used for creating the interaction list is a variation of those by

Wang [9] and Pascual-Guiterrez et al. [55]. Multiple sample points are created within

the elements of the discretized BZ and an exhaustive search is conducted computing

all normal and Umklapp interactions following the energy and pseudo-momentum

conservation selection rules. The three-phonon scattering model used herein simi-

larly accounts for all frequency and wave vector combinations. To illustrate the three

phonon scattering selection process, consider two pseudo-statesm1 andm2 in the first

octant of the BZ, shown as a two-dimensional slice in Fig. 3.11, participating in a

Type I normal process.

Figure 3.11 Momentum conservation of two pseudo-states during a Type I three-

phonon normal scattering process.

The phonons occupying each reactant pseudo-state, m1 and m2, are assumed to be

uniformly distributed over the K-space of the pseudo-state. When these phonon

pseudo-momentum distributions are vectorially added together, they will result in

a population of phonons distributed across 4 product states, m3, (8, in the actual

three-dimensional K-space) as shown in Fig. 3.11. These resultant populations are

guaranteed to conserve pseudo-momentum (with the addition of a reciprocal lattice
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vector for Umklapp processes). Every BZ element is compared to every other BZ

element in the entire BZ, including all 8 octants. Each pairing of two BZ elements will

result in the original population of phonons from the reactant state being distributed

across at most eight product states. Some of the product states resulting from a

reactant pair may be normal processes, and some may be Umklapp processes. All

eight product states, m3, are known to conserve pseudo-momentum and must be

checked for conservation of energy, for each polarization, p. The centroid frequencies

of each element m1, m2, and m3 are used to check for conservation of energy, and the

energy imbalance is proportional to the frequency imbalance

∆ω = ωK3 ,p3 −(ωK1,p1 + ωK2,p2) . (3.21)

An interaction is considered valid and added to the interaction list if the following

frequency criteria is met
|∆ω|
ωK3,p3

< ωε . (3.22)

For every pair of reactant pseudo-states, m1and m2, Eq. (3.22)is checked against the

eight possible product pseudo-states, m3. The selection of the energy conservation

criteria, ωε, is a critical parameter in defining an acceptable interaction event. If ωε,

is chosen to be too large of a value, then energy is only loosely conserved, and the

interaction table will contain too many elements to effectively manage. Conversely, if

ωε, is chosen to be too small, then energy may be conserved to a very tight tolerance,

but a relatively small number of interactions may be permitted depending on the

density of the BZ discretization. The selection rule for conservation of energy and

pseudo-momentum is mentioned in numerous MC articles, but the influence of the

selection rule is not typically a subject of robust investigation.

The SPT model assumes that the phonons in a pseudo-state are uniformly dis-

tributed across the K space of the state, but they are tracked with a single frequency

to represent the mean energy content of the population. This approach permits the

59



SPT model to forgo the requirement of tracking positions of individual phonons, and

instead model populations of phonons sharing similar characteristics.

3.15.4 Three-Phonon Scattering Model A. To introduce model A, assume

that each pseudo-state is populated with some number of phonons, Nm. The energy,

U , associated with this population of phonons can be computed from Eq. (3.13).

The energy stored within a geometric volume of space can then be used to deter-

mine an equivalent temperature, by fitting the Bose-Einstein distribution with the

assumption of local thermodynamic equilibrium. Given the equivalent temperature

associated with the current phonon population distribution, the equilibrium popula-

tion of phonons associated with each pseudo-state, N∗m is computed. If the current

phonon population is above its equilibrium population, then that pseudo-state is more

likely to serve as a "donor" state, while if the current phonon population is below its

equilibrium population, then that pseudo-state is more likely to serve as a "recipient"

state. If the current population is at the equilibrium population, then it is equally

probable to participate in any particular interaction as either a donor or a recipient.

A simple linear cumulative distribution function (CDF), Fig. 3.12, illustrates the

probability of pseudo-state m being a donor, P d
m.
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Figure 3.12 Linear cumulative distribution function.

While a more sophisticated CDF may be used, the linear CDF is computationally

effi cient, and is suffi cient following many scattering iterations.

The equilibrium-limited probability that a Type I reaction will occur as a result

of the distance from equilibrium, P I
eq, is assigned to be

P I
eq = (P d

m1
)(P d

m2
)(1− P d

m3
) . (3.23)

while the equilibrium-limited probability that a Type II reaction will occur as a result

of the distance from equilibrium, P II
eq , is assigned to be

P II
eq = (1− P d

m1
)(1− P d

m2
)(P d

m3
) . (3.24)

The interaction list is studied for every pseudo-state m. The number of possible Type

I events for row i of the interaction table is limited by the lesser of the populations

of pseudo-states m1 and m2:

eIi = min(Nm1 , Nm2) . (3.25)
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while the number of possible Type II events for row i of the interaction table is limited

by the population of pseudo-state m3.

eIIi = Nm3 . (3.26)

The total number of events that each pseudo-state participates in, Em, is the sum-

mation of Eqs. (3.25) and (3.26) over all rows of the interaction table given as

EI
m =

NInt∑
i=1

eIi ,

EII
m =

NInt∑
i=1

eIIi .

(3.27)

The population-limited probability that a Type I reaction in row i of the interaction

table will occur is taken to be dependent upon all potential partners that each pseudo-

state m1 and m2 may interact with:

P I
pop−i = min(

eIi
EI
m1

,
eIi
EI
m2

) , (3.28)

while the population-limited probability that a Type II reaction in row i of the inter-

action table will occur is taken to be

P II
pop−i = (

eIIi
EII
m3

) . (3.29)

After the interaction table has been evaluated in light of the current phonon popula-

tions, then the total probability that row i of the interaction table will occur is given

by the product of the equilibrium-limited and population-limited probabilities:

P I
Total−i = (P I

pop−i)(P
I
eq)

P II
Total−i = (P II

pop−i)(P
II
eq )

. (3.30)
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The overall probabilities for each row i of the interaction table are applied to each

event, and the initial phonon populations are redistributed to a new phonon popula-

tion as a result of the scattering events. The entire process may then be repeated in

an iterative fashion. For model A, three-phonon scattering is applied to all interior

and isothermal boundary cells. For model B, three-phonon scattering is applied only

to interior cells.

3.15.5 Three-Phonon Scattering Model B. Considering that all three-

phonon interactions have been computed within the discretized BZ and stored in

an interaction table, it is possible to adapt the time-dependent perturbation theory

to compute individual transition rates for each event within the list [9, 55]. This is a

viable method that may be incorporated into the SPT model, although at significant

computational expense. A computationally less demanding approximation is em-

ployed here. Model B also begins with a known population of phonons Nm occupying

each pseudo-state in the BZ. While model A used the concept of "donor probability"

to determine whether a phonon population would be more or less likely to participate

in any given interaction, and neglected the time dependence of the event, model B

conversely considers the current mean lifetime of the phonon population relative to its

relaxation time, and then determines the probability that the population will decay

instantaneously at the current time. An empirical model, loosely based on the work

of Pascual-Gutierrez et al. [55] is used to estimate the relaxation time for the acoustic

modes of silicon as:

τ p = Apω
Bp . (3.31)

A power law fit was applied to the relaxation time curves reported by Pascual-

Gutierrez et al. [55].
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Figure 3.13 Power law fit to the relaxation times from [55] at 500K.

For mode TAI, A = 34021 and B = -1.202 . For mode TAII, A = 8E9 and B =

-1.634, while for mode LA, A = 1×1020 and B = -2.431, with all units expressed

in SI. The mean lifetime of the phonon populations of pseudo-state m is denoted

as tm, and is a weighted average of the lifetimes of all phonons in the pseudo-state

m population, updated once each scattering iteration using a sequential estimation

algorithm. Model B is used to estimate the fraction of the population of pseudo-state

m that will decay at the current time:

PDecay
m = 1− e−(

tm
3τm

) . (3.32)

The number of phonons of pseudo-state m to scatter at the current time is taken to

be

NDecay
m = PDecay

m Nm . (3.33)

while the remaining phonons of pseudo-state m persist in an unscattered state. The

total number of rows, i, from the interaction table that engage pseudo-state m is
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counted, and tallied as Im. The decaying phonons from pseudo-state m are uniformly

distributed over these Im rows independent of the event populations eIi or e
II
i associ-

ated with these rows. If state m participates in interaction row i as a Type I reactant,

then the number of scattered phonons of pseudo-state m is limited by the smaller of

the available reactant populations given as

N I,Decay
m = min(

NDecay
m

Im
,
NDecay
m2

Im2

)× Limit , (3.34)

subject to the perturbation Limit as the population approaches equilibrium, where

Limit = (n1n3 + n2n3 − n1n2) + (3.35)

[−n1(n0,2 − n0,3)− n2(n0,1 − n0,3) + n3(n0,1 + n0,2 + 1)] , (3.36)

or Limit = 1 for populations far from equilibrium. If pseudo-state m participates

in interaction row i as a Type II reactant, then the number of scattered phonons of

pseudo-state m is given by

N II,Decay
m = (

NDecay
m

Im
) . (3.37)

3.15.6 Pseudo-State Population Updating. During the creation of the inter-

action table, the centroid energy of the pseudo-states is approximately conserved, as

noted by Eq. (3.22). The SPT model tracks large quantities of phonons, and small

errors in energy will rapidly accumulate over multiple scattering iterations. When

scattering events are computed, only whole phonons are permitted as reactants. How-

ever, the number of products is computed as a real number in order to achieve strict

energy conservation. Effectively, this enforces the quantum effects of discrete events,

but mitigates the error in assuming that all phonons within a pseudo-state exist at

the centroid frequency, even though they are distributed across K-space within the
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pseudo-state. For a Type I reaction, the number of products is given by

N I
Products =

(ωK1,p1 + ωK2,p2)

ωK3,p3

N I
Reactants . (3.38)

The reciprocal relation is used for Type II reactions as

N II
Products =

ωK3,p3

(ωK1,p1 + ωK2,p2)
N II
Reactants . (3.39)

The ratio of products to reactants is approximately unity.

As a result of scattering, the initial pseudo-state phonon populations are re-

distributed to new pseudo-state phonon populations. This is performed for a given

pseudo-state m as follows

N τ+1
M = N

τ+ 1
2

M +

NInt∑
i=1

(N I,Products,i
m −N I,Reactants,i

m ) + (N II,Products,i
m −N II,Reactants,i

m ) ,

(3.40)

for 1 ≤ m ≤ M. The entire process is repeated in an iterative fashion, and the

mean lifetime of each pseudo-state is updated based on the populations of phonons

persisting in their unscattered state, the number of phonons destroyed at the current

time, and the number of phonons created at the current time. The mean lifetimes

are updated using a sequential estimator. The mean lifetime is given as

t
τ+1
M = 1

Nτ+1
M

{tτ+
1
2

M ×N τ+ 1
2

M +
NInt∑
i=1

(N I,Products,i
m ∆t−N I,Reactants,i

m t
τ+ 1

2
M )+

NInt∑
i=1

(N II,Products,i
m ∆t−N II,Reactants,i

m t
τ+ 1

2
M )} ,

(3.41)

for 1 ≤ m ≤M.

3.15.7 Isotope Scattering. Isotope scattering becomes important at temper-

atures below 200 K [55]. At these temperatures the phonon populations associated

with high wave number pseudo-states are scarce, therefore the availability of partners
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for Umklapp is limited. Thus, in addition to boundary scattering, isotope scat-

tering influences phonon transport. The elastic isotope scattering events can be

calculated in a similar manner as three-phonon scattering events, and tabulated in

the pre-processing step of the SPT model. In this work, isotope scattering is not

addressed.
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CHAPTER 4

Preprocessing Results

Accuracy in thermal transport modeling starts at the level of material characteriza-

tion. For the SPT model the current focus has been on crystalline semiconductor

materials such as silicon and germanium. The isotropic assumption that has been

assumed in many past studies is replaced by a fully anisotropic material descrip-

tion. The SPT model material characterization of silicon is performed as described in

Chapter 2. The anisotropic BZ is discretized and a lattice dynamics model is utilized

to extract wave vector and polarization dependent properties. Results are now pre-

sented that demonstrate the material characterization of silicon used in subsequent

thermal transport results. Justification for the chosen BZ discretization is provided.

4.1 Brillouin Zone Discretization

In order to numerically model phonon transport it is necessary to discretize the

BZ. A structured hexahedral mesh is utilized for the current work as shown in Fig. 3.2.

The results described in this section pertain to the two different levels of refinement

for the structured mesh, namely 12× 12× 12 and 18× 18× 18. These discretizations

correspond to approximately 40,000 and 140,000 pseudo-states respectively. Figure
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4.1 shows a comparison of the 12×12×12mesh discretization (a) with the 18×18×18

discretization (b).
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Figure 4.1 Comparison of two different BZ discretizations, 12 × 12 × 12 (a) and

18× 18× 18 (b).
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4.2 Dispersion

Dispersion relations are useful to understand the relation between frequency

and wave vector for the pseudo-states defined in Chapter 3 § 3.4, representing the

anisotropic BZ. The dispersion relation distributions shown here are for acoustic and

optical polarizations. These distributions include all wave vectors in the BZ.
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Figure 4.2 Comparison of the transverse acoustic I dispersion distributions for 12×

12× 12 and 18× 18× 18 BZ discretizations.
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Figure 4.3 Comparison of the transverse acoustic II dispersion distributions for

12× 12× 12 and 18× 18× 18 BZ discretizations.
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Figure 4.4 Comparison of the longitudinal acoustic dispersion distributions for 12×

12× 12 and 18× 18× 18 BZ discretizations.
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Figure 4.5 Comparison of the transverse optical I dispersion distributions for 12×

12× 12 and 18× 18× 18 BZ discretizations.
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Figure 4.6 Comparison of the transverse optical II dispersion distributions for 12×

12× 12 and 18× 18× 18 BZ discretizations.
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Figure 4.7 Comparison of the longitudinal optical dispersion distributions for 12×

12× 12 and 18× 18× 18 BZ discretizations.
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It is noted that with the finer BZ discretization that the distributions get denser, but

the overall characteristic shapes do not change. The dispersion relations in Fig. 2.6

are given for the high symmetry directions. In most MC models the [100] direction is

utilized for the isotropic dispersion assumption. If we compare the dispersion distri-

butions shown in Figs. 4.2 through 4.7, utilized by the SPT model, to the isotropic

dispersion relations in Fig. 2.6, employed by most MC models, we can see that the

isotropic assumption is a significant simplification that may not be suffi cient. The

ability to consider individual events in intrinsic scattering comes from the represen-

tation of the anisotropic BZ shown by the dispersion distributions.

4.3 Group Velocity

In order for the pseudo-state phonon populations to drift throughout a domain

at an accurate velocity it is important that the group velocities are accurate. Figures

4.8 through 4.13 show the magnitude of the group velocity distributions in a similar

manner to how the dispersion relations were plotted. Similarly, as the mesh dis-

cretization is refined, the group velocity distributions get more dense, but the overall

shape remains similar.
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Figure 4.8 Comparison of the transverse acoustic I group velocity magnitude dis-

tributions for 12× 12× 12 and 18× 18× 18 BZ discretizations.
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Figure 4.9 Comparison of the transverse acoustic II group velocity magnitude dis-

tributions for 12× 12× 12 and 18× 18× 18 BZ discretizations.
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Figure 4.10 Comparison of the longitudinal acoustic group velocity magnitude dis-

tributions for 12× 12× 12 and 18× 18× 18 BZ discretizations.
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Figure 4.11 Comparison of the transverse optical I group velocity magnitude dis-

tributions for 12× 12× 12 and 18× 18× 18 BZ discretizations.
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Figure 4.12 Comparison of the transverse optical II group velocity magnitude dis-

tributions for 12× 12× 12 and 18× 18× 18 BZ discretizations.
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Figure 4.13 Comparison of the longitudinal optical group velocity magnitude dis-

tributions for 12× 12× 12 and 18× 18× 18 BZ discretizations.
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The group velocity magnitude distributions shown here that are utilized in the SPT

model, can be compared to those in the [100] direction for bulk silicon in Fig. 2.8

that are commonly used in MC models. It is obvious that the group velocity mag-

nitude distributions obtained from the anisotropic BZ give a much more complete

representation of how the pseudo-state phonon populations are allowed to drift.

4.4 Density of States

The density of states informs how the energy of a crystal is distributed with

respect to frequency. The density of states for four different BZ meshes, 6×6×6,

10×10×10, 12×12×12, and 18×18×18 denoted as Mesh 6, 10, 12, and 18, respec-

tively, are illustrated in Fig. 4.14.

Figure 4.14 Comparison of density of states for silicon for several BZ discretizations.
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The density of states shown in Fig. 4.14 was generated using the method described

in Chapter 2 § 2.5. These DOS curves were prepared using 50 frequency bins. As

the BZ mesh density increases, it is feasible to employ finer frequency bins. For the

purpose of assessing BZ mesh density, it is valuable to retain consistent frequency bins

for all DOS curves. The DOS of BZ Mesh 6 clearly shows that many frequency bins

are not fully described by the discretization, and some of frequency bins are wholly

absent. As the BZ mesh density increases, the DOS curves populate all of the bins.

The finest discretization, BZ Mesh 18, exhibits a well behaved, smooth distribution

for the density of states, and is it quite apparent all frequency bins are present. The

DOS curves plotted as a function of BZ mesh refinement are helpful to understand

the fidelity of the material property characterization. As the DOS plots converge

with BZ mesh refinement, we can be increasingly confident of the accuracy of a

particular material model. Additionally, the DOS curves make it possible to evaluate

the computational tradeoffs associated with increasing the BZ mesh refinement. The

density of states for silicon shown in Fig. 4.14 can be compared to that adapted from

Pascual-Gutierrez et al. [55] shown in Fig. 2.7.

4.5 Density of Interactions

The density of states provides insight into the accuracy of the material model,

but does not provide insight into the fidelity of three-phonon scattering interactions

contained in the interaction table. A new concept, denoted as the "density of in-

teractions" (DOI), is introduced as a tool for studying the fidelity of three-phonon

scattering events, given a candidate BZ Mesh and frequency acceptance criterion.

Upon completion of the interaction table using the energy and pseudo-momentum

conservation rules presented previously, the density of interactions may be plotted as

a histogram of frequency in a fashion similar to that of a density of states. This DOI

depicts the overall participation level of pseudo-states involved in three-phonon inter-

actions, both normal and Umklapp as a function of frequency. The DOI is created by

considering each interaction and incrementing the number in the histogram frequency
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bin associated with the frequency of each of the three participating pseudo-states. The

DOI is shown in Fig. 4.15 for three different meshes for interactions involving only

acoustic polarizations. The frequency bins used are consistent with those employed

for the density of states. The choice of ωε is important to the quality of the density

of interactions. A relatively large value of ωε, ωε = 5×10−3 was used in generating

Fig. 4.15.

Figure 4.15 Comparison of density of interactions for acoustic polarizations for sev-

eral BZ discretizations.

The DOI is normalized by the total number of states represented in the interaction ta-

ble (three times the number of rows in the interaction table, since each row references

three pseudo-states). While a figure of this nature has not been reported previously,

it has been found that the interaction density spectrum is an excellent measure for

the accuracy of the interaction list for a given BZ discretization. In particular, when

one frequency band, (particularly) low frequency phonons, dominates the density of
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interactions, then the subsequent three phonon scattering results are incorrectly dom-

inated by these events. This effect is implicitly present in the selection rules employed

by MC methods, but may be masked through the influence of scaling parameters and

other heuristics. Fundamentally, the density of interactions quantifies the quality of

stochastic scattering models.

4.6 Pseudo-State Interaction Density

An additional measure of interaction table quality, introduced herein as a "Pseudo-

state Interaction Density" (PID), is useful for studying the participation of pseudo-

states in the three-phonon scattering interactions. The PID is created by considering

each interaction in the interaction table and incrementing the number in the pseudo-

state bin associated with each pseudo-state in each row of the interaction table. The

PID shown in Fig. 4.16 is for all pseudo-states, m, in the first octant of the BZ for

Mesh 12, with ωε = 5×10−4. The PID is normalized by the total number of entries

in the data set.
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Figure 4.16 Pseudo-state Interaction Density for acoustic phonon pseudo-states in

the first ocatant of the BZ, using a three-phonon scattering interaction

table computed from BZ Mesh 12.

It is apparent from Fig. 4.16 that some pseudo-states appear in the interaction ta-

ble more often than others. Detailed evaluation of Fig. 4.16 shows that low energy

pseudo-states, near the center of the BZ, occur up to one order of magnitude more

often than certain high energy pseudo-states. Depending upon the choice of discretiza-

tion and frequency acceptance criteria, some pseudo-states may be fully absent from

the PID. Also, some pseudo-states may appear only as Type I reactants, and others

may appear only as Type II reactants.

A close up of Fig 4.16, shown in Fig 4.17., illustrates the PID for the TA1

phonon pseudo-states along the [100] direction of the first octant of the BZ.
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Figure 4.17 Pseudo-state Interaction Density for TAI phonon pseudo-states along

the [100] direction with the scattering table computed from a BZ Mesh

12.

The highest energy pseudo-state, m=66, had only one appearance in the interaction

table, while the lowest energy pseudo-state, m=0, appeared 720 times. Pseudo-state

m=66 appeared only as a Type II reactant, while pseudo-state m=0 appeared only

as a Type I reactant. This observation suggests that, based on the BZ discretization

and frequency acceptance criterion used here, as a particular state, such as m=66,

experiences a Type II decay into two phonons, it adds to the population of a low energy

pseudo-state, such as m=0. The design of a subsequent three-phonon scattering

algorithmmust consider this case in order to enforce Kirchoff’s law for those particular

pseudo-states.
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CHAPTER 5

Three-Phonon Scattering Model Verification

5.1 Single Cell Scattering

The SPT scattering models A and B may be investigated with a single geo-

metric cell. The term "geometric cell" is used to distinguish the discretization of

the geometric domain from the term "BZ element" which is used to describe the

discretization of reciprocal space. The geometric cell is assumed to be completely iso-

lated from its surroundings, with periodic boundary conditions on all sides, so that

all drift phenomena, boundary scattering effects, and other influences such as geom-

etry and isotope scattering may be neglected. A single geometric cell of dimensions

`x× `y× `z is taken to be isolated at a temperature of T (K). The number of phonons

associated with a particular pseudo-state m for this cell volume, pseudo-state number

density, and temperature is given by Eq. (3.3), where Vc is the cell volume. It is noted

that in the SPT model the full population of phonons is considered without the use

of scaling factors. At a temperature of 500 K, with `x=`y=`z=100 nm, the total

number of phonons contained in the single geometric cell is 9.024 × 107, which are

distributed across 41, 472 pseudo-states in accordance with Eq. (3.4) for a 12×12×12

BZ discretization. Note that only acoustic modes are considered for scattering in the
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current work, while both acoustic and optical modes may be populated for computing

the proper internal energy of the geometric cell. Optical modes are present as storage

terms, but are not permitted to scatter in the current presentation.

In order to evaluate the SPT framework, and compare scattering models "A"

and "B", a single cell scattering study was performed. In this study phonon pseudo-

state populations were initialized at an equilibrium distribution corresponding to

an arbitrary temperature T=500 K using Eq. (3.3). The pseudo-state populations

were uniformly distributed throughout a single three-dimensional cell of volume Vc =

`x × `y × `z. Multiple iterations of three-phonon scattering for acoustic only modes

were performed and the relative rates of Type I and II events for each process, resulting

distributions, and several other key aspects were studied.

5.1.1 Scattering Model A Results. If an interaction scheme is to be deemed

reasonable, the phonon pseudo-state population distribution should remain the same

after successive iterations of the three-phonon scattering algorithm at equilibrium.

The following figure shows the population history for several exemplar states along

the [100] direction of the BZ. These states represent acoustic mode TAI. In order to

illustrate both the positive and negative aspects of model A, the linear CDF illus-

trated in Fig. 3.12 was chosen to have a broad distribution, allowing the populations

of each pseudo-state to vary +/−45% of its equilibrium population. In this example,

the geometric cell was populated with phonons at the Bose-Einstein equilibrium dis-

tribution for T = 500 K. The single cell was then permitted to scatter in accordance

with the rules of model A for 10, 000 iterations. The resulting phonon population

history for selected states is illustrated in Fig. 5.1.
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Figure 5.1 Scattering model A phonon population history for selected pseudo-states

along the [100] direction of the BZ.

The pseudo-state phonon populations shown in Fig. 5.1 gradually move towards

their equilibrium populations as a result of three-phonon scattering. The iteration

history of each pseudo-state shows the change in the pseudo-state phonon population

throughout the single cell scattering study. The results clearly indicate that states

m = 0 and m = 6 gain a disproportionate share of phonons, while higher frequency

states lose a relatively small number of phonons. At long times, the populations

come to a new equilibrium condition, which is reflective of the accuracy of the BZ

mesh used to model the material. As the mesh is increasingly refined, its accuracy

improves and the error associated with approximating the pseudo-state energy with

its centroid frequency is reduced. It should be noted that the very broad limits

allowed for the linear CDF are the primary reason for allowing the large shift in

the population of low frequency states. A tighter limit on the CDF (a more strict

definition of donor and recipient phonon-states) reduces the population shift directly.
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As the limit approaches zero, fewer scattering events are permitted to occur. Note

also that model A assumes that all frequencies of phonons decay at equal rates,

while it is well known that lower frequency acoustic phonons have longer relaxation

times than higher frequency phonons. Through selection of tighter limits on the

CDF, it is possible to demonstrate results which exhibit virtually no change from

Bose-Einstein equilibrium. However, permitting the large variation in population is

instructive. Numerical experimentation shows that a poor choice for ωε, coupled

with a wide CDF, will cause the low frequency phonons to dominate the response

since there are many more interactions which conserve energy and allow the low

frequency states to participate. The density of interactions is helpful to understand

this dynamic. The SPT model facilitates thorough investigation of the assumptions

underlying proposed interaction and scattering algorithms. Such investigation is not

possible, or is computationally prohibitive for MC simulations.

Figure 5.2 shows the ratio of forward to reverse interaction probabilities for the

first 100 successive iterations.

Figure 5.2 Ratio of forward to reverse interactions for 100 iterations of scattering

model A.
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From the initial condition until the conclusion of 100, 000 scattering iterations, the

energy within the cell was conserved at 3.6461 × 10−13 Joules, and a cumulative

2.8×1011 phonons were scattered, in approximately equal numbers of Type I and Type

II events. Figure 5.2 illustrates that Kirchoff’s law is satisfied within the accuracy of

the mesh model, and as the system approached an equilibrium condition the number

of Type I and Type II events remained nearly equal. At equilibrium, large numbers

of scattering events were observed, but virtually no net change in phonon populations

resulted.

5.1.2 Scattering Model B Results. Model B was investigated in a manner

similar to model A. However, the perturbation limit used in Eq. (3.35) causes the

number of scattering events to go to zero at equilibrium. Thus, when the geometric

cell was populated with phonons in accordance with Eq. (3.4), and the system was

allowed to iterate under model B, no scattering events occurred. In order to induce a

disturbance to the system, 5% of the energy was removed from pseudo-state m = 12

and was added to pseudo-state m = 54. The phonon population response subject

only to the limitations of model B are illustrated in Fig. 5.3, using a time step of

0.001 ps.
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Figure 5.3 Scattering model B phonon population history for selected pseudo-

states.

Because the perturbation model places no upper limit on the phonon populations,

but rather shuts it "off" as equilibrium is approached, the population of pseudo-

state m = 18 grows to four times its equilibrium population in response to the

small disturbance. This is primarily a manifestation of the manner in which the

interaction table was constructed, and the fact that the simplified relaxation time

model does not accurately account for the anharmonic nature of discrete scattering

events. As with model A, the ratio of Type I to Type II events was monitored, and

it was confirmed that Kirchoff’s law was satisfied, as were conservation of energy and

pseudo-momentum.

Model B contains a simplified relaxation time model to reflect the dynamic

response of the system in contrast to model A, which modeled the scattering events

independently of time scale. The ratio of the mean phonon lifetime for the populations
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of phonons over the corresponding relaxation time for the pseudo-state is presented

for several exemplar pseudo-states in Fig. 5.4.
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Figure 5.4 Scattering model B mean pseudo-state lifetime ratio for selected pseudo-

states along the [100] direction of the BZ.
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As illustrated in Fig. 5.4, pseudo-states m = 54 and m = 60 exhibit ratios in excess

of unity, while the other states exhibit lifetimes below unity. The linear growth of

each curve at early times reflects the fact that the mean lifetime of the populations

has not yet risen to a level to enable scattering of that pseudo-state. As the mean

lifetimes increase, the probability of the pseudo-state participating in scattering events

increases, and the pseudo-state population changes accordingly.

In investigating various pseudo-states mean lifetime ratios it was noticed that

some states grew unbounded. It was determined that these pseudo-states were only

represented in the reaction side within the interaction table. These tended to be lower

wave number pseudo-states who could not decay into two pseudo-states following the

energy and pseudo-momentum selection rules.

5.1.3 Scattering Model Observations. Two models for scattering have been

investigated, employing attributes common to many MC methods. Scattering model

A permits a treatment of fully anisotropic scattering and requires no empirical inputs.

Additionally, it allows the system to be bounded around an equilibrium distribution

through specification of a narrow or wide linear cumulative distribution function.

Scattering model B permits a realistic treatment of phonon lifetimes and is built

upon a perturbation theory foundation, although greatly simplified in the interest

of computational effi ciency. Neither proposed scattering model captures all of the

features desired for an effective three-phonon scattering model. The SPT framework

permits a rigorous investigation of scattering algorithms and provides insight into

the dynamic response of phonon transport systems. Future work will investigate a

hybrid of both scattering models, using the first model to limit populations to a

band around equilibrium, and the second model to capture the dynamic response

characteristics. A full perturbation model, following Pascual-Gutierrez et al. [55] is

believed to be the "ideal" scattering state transition model for the SPT model, but

is not computationally feasible at the current time. Subsequent thermal transport

results presented herein will utilize scattering model A.
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CHAPTER 6

Thermal Transport Validation

Verification results of the SPT model in both the diffuse and ballistic transport

regimes are presented using scattering model A. Additionally, the ability of the SPT

model to handle adiabatic boundary conditions is demonstrated. Comparisons of re-

sults from the SPT model are compared to similar results from literature generated

using the MC technique.

6.1 Adiabatic Boundary Verification

Based on the previous description of the isothermal boundary condition, its

validation can be accomplished by considering a domain similar to that shown in Fig.

3.3 with all cells initialized at the same arbitrary temperature. If the drift phase of

the model is implemented, the domain temperature should remain constant and the

net energy flux throughout the domain should be zero throughout the simulation. To

verify this, the dimensions of the silicon domain were chosen to be Lz = `z = 50 nm,

Ly = `y = 50 nm, Lx = 250 nm, and `x = 50 nm. For the y and z domain boundaries

the periodic boundary condition was used, representing 1-D transport. The isother-

mal boundary temperatures Th and Tc were both held at 30 K, respectively. The
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simulation was allowed to run for 4 ns and after each time step the temperature of

the domain and net flux at the isothermal boundaries were computed. It was verified

that the temperature remained at 30K throughout the domain with zero net flux after

each time step.

To validate the adiabatic boundary condition thoroughly it is necessary to con-

firm that as the degree of specularity of the boundary surfaces changes that the model

exhibits the correct behavior, qualitatively. The SPT model was used to simulate a

silicon thin film of dimensions Lz = `z = 50 nm, Ly = `y = 50 nm, Lx = 500 nm,

and `x = 50 nm. These results were previously reported by Brown and Hensel [59].

The isothermal boundary temperatures Th and Tc were held at 40 K and 30 K, re-

spectively. The z domain boundaries represent adiabatic scattering walls. The degree

of specularity of these surfaces was varied from zero to unity. No other forms of

scattering were considered. The results are shown in Fig. 6.1.
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Figure 6.1 Steady-state temperature distribution in a silicon thin film in the bal-

listic transport regime for various degrees of specularity [59].

As the degree of specularity was decreased, boundary scattering at the z domain

boundaries increased and a temperature gradient was established across the thin

film. These results further validate the adiabatic boundary condition. These results

are consistent with results obtained using the MC technique [10, 15]. The following

figure illustrates the quality of results obtained for a similar simulation using the MC

technique [15].
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Figure 6.2 Influence of scattering by boundaries on the heat conduction across sil-

icon films of 500 nm thickness at very low temperatures [15].

The results from the SPT model shown in Fig. 6.1 do not exhibit statistical noise

as the results in Fig. 6.2 do since the SPT model does not require random number

generation during the simulation.

6.2 Ballistic Transport Regime Verification

In the ballistic regime, phonon transport is governed by the Stefan-Boltzmann

law. The SPT model was then used to simulate ballistic transport in a silicon

nanowire of dimensions Lz = `z = 50 nm, Ly = `y = 50 nm, Lx = 250 nm, and

`x = 50 nm. For the y and z domain boundaries the periodic boundary condition was

used, representing 1-D transport. The isothermal boundary temperatures Th (cell 0)

and Tc (cell 6) were held at 25 K and 15 K, respectively. All interior cells (1 − 5)

were given an initial temperature of Tc. The steady state analytical solution from the

Stefan-Boltzmann law and the numerical SPT model results are shown in Fig. 6.3.
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Figure 6.3 Comparison of steady-state temperature distribution in silicon in

the ballistic transport regime using the SPT model and the Stefan-

Boltzmann law.

The relative error was approximately 1%. These results confirm the ability of the SPT

model to simulate thermal transport in the ballistic regime. Results from Mazumder

and Majumdar [12] are shown in Fig. 6.4.
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Figure 6.4 Comparison of the temperature profile obtained by MC solution of the

BTE for phonons with analytical results in the ballistic limit [12].

It is evident that both the SPT model and MC technique appear to be capable of

predicting thermal transport in the ballistic regime. However, the MC result shown

in Fig. 6.4 exhibits slight fluctuations in the steady-state temperature profile that

are not present in the SPT model or the analytical solution.

6.3 Size Effect Verification

Next, the role of the size effect on thermal transport and the ability of the SPT

model to capture this phenomena was studied. As the characteristic dimensions of

a structure approach that of the phonon mean free path, regardless of temperature,

ballistic transport should be observed. The domain dimensions were Lz = `z = 50

nm, Ly = `y = 50 nm, and `x was held constant at 50 nm while Lx was varied from

200 nm to 2000 nm. The isothermal boundary temperatures Th and Tc were held at

505 K and 495 K, respectively. Similarly, all cells were given an initial temperature

of Tc. The resulting steady-state temperature profiles are shown in Fig. 6.5.
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Figure 6.5 Steady-state temperature distribution in silicon in the mixed transport

regime.

These results show that as the domain length decreases a mixed thermal transport

regime is present and that the SPT model is able to capture this phenomenon.
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Figure 6.6 Steady-state temperature for silicon, influence of the slab thickness;

comparison to the analytical solution in the diffusive and ballistic limits

[13].

Similar to previous comparisons, by comparing results from the SPT model shown

in Fig. 6.5 with those from the MC solution technique [13] shown in Figure 6.6 it is

apparent that the SPT model does not suffer from the fluctions present in the MC

model.

6.4 Diffuse Transport Regime Verification

In the diffuse regime phonon transport is governed by Fourier’s Law. The

ability of the SPT model to accurately predict thermal transport in the diffuse regime

was examined using a domain similar to that in the ballistic verification study. The

domain dimensions were Lz = `z = 50 nm, Ly = `y = 50 nm, and Lxwas held

constant at 2000 nm while `x was varied. The isothermal boundary temperatures Th

and Tc were held at 505 K and 495 K, respectively. Similarly, all cells were given an

initial temperature of Tc.

The steady state profile compared to the Fourier solution is shown in Fig. 6.7.
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Figure 6.7 Steady-state temperature distribution for bulk silicion in the diffuse

transport regime.

It is observed that there is a slight ballistic effect occurring near the boundaries of the

domain, which decreases as the number of cells in the x direction is increased from 5

to 40. There is a less noticeable change in the temperature jump at the boundaries as

the number of cells is increased from 40 to 80. Ballistic effects near domain boundaries

have been mentioned by several MC investigators [12, 13].

In addition to computing the temperature of each cell during the simulation,

the mid-plane cell flux is computed based on Eq. (3.14). For the current simulation

the flux results are shown in Fig. 6.8. It is noticed that as the domain mesh is refined,

the average flux tends to decrease.
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Figure 6.8 Steady-state flux for bulk silicon in the diffuse transport regime.

Once a simulation has reached steady-state and the flux at each cell midplane

is extracted for the entire domain, Fourier’s law can be used to compute the effective

thermal conductivity. Figure 6.9 contains effective thermal conductivity data for the

simulation.
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Figure 6.9 Steady-state effective thermal conductivity for bulk silicon at 500K.

It is apparent that the effective thermal conductivity decreases as the domain mesh

is refined. Each of these simulations was run for 60 ns. The simulation for the

80 cell case was only run for 30 ns, which was not long enough to reach steady-

state. Therefore, the average thermal conductivity would be slightly higher than at

steady-state. The average thermal conductivities for the 5, 40, and 80 cell cases were

263 W/mK, 222 W/mK and 188 W/mK, respectively. The experimental value of

thermal conducitivity at 500K is approximately 80 W/mK [5].

Several researchers have investigated the contribution of phonon polarizations

to the heat flux [10, 55]. The results from Mittal and Mazumder [10] suggest that LA

phonons contribute most to the heat flux, while Pascual-Gutierrez et al. [55] suggest

that TAII phonons are the dominant polarization. In the current work, much like

that of Pascual-Gutierrez et al. [55], the selection rules of three-phonon processes are

strictly obeyed. Similarly, it is found that TAII phonons contribute the most to

the heat flux. Figure 6.10 shows the heat flux as a function of polarization in each

computational cell of the domain at steady-state.
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Figure 6.10 The polarization dependent heat flux in bulk silicon at 500 K.

In addition to investigating steady-state thermal transport in the diffuse regime, the

transient behavior was also considered using the same domain parameters. Figure 6.11

contains transient temperature results along with an analytical solution, assuming a

constant thermal diffusivity of αSi = 0.37× 10−4 m2/s, given as

T (x, t)− T (L, t)

T (0, t)− T (L, t)
=

[
erfc

(
x

2
√
αt

)
− erfc

(
2L− x
2
√
αt

)
+ erfc

(
2L+ x

2
√
αt

)]
, (6.1)

where t is the time, L is the domain length, x is the position along L, erfc is the

complimentary error function and α is the thermal diffusivity [13].
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Figure 6.11 Transient temperature response for bulk silicon in the diffuse transport

regime.

Similarly, as the domain mesh is refined the transient results approach the analytical

solution.

The heat flux at the center of the domain was computed every tenth time step

during the transient simulation and is shown in Fig. 6.12.
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Figure 6.12 Transient flux response for bulk silicon in the diffuse transport regime.

It is interesting to point out that the heat flux has small fluctuations from one time

step to the next. As previously described, for any given iteration there are approx-

imately 1.8 × 109 phonons present per geometric cell in the model that both drift

and scatter. Due to the large number of Type I and Type II events occurring at

equilibrium in a given time step under scattering model A, there will be inherent and

physically realistic statistical fluctuation in the flux.
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CHAPTER 7

Conclusions

The goal established in Chapter 1 § 1.5 has been achieved. The Statistical Phonon

Transport (SPT) model is a full three-dimensional probabilistic model that can sim-

ulate thermal transport from nanoscale to bulk semiconductor materials. The SPT

solution of the BTE has been shown to employ a fully anisotropic dispersion model.

Three-phonon scattering has been demonstrated with a rigorous enforcement of en-

ergy and pseudo-momentum. The SPT model does not require the use of pseudo-

random number generation, which is typical of other stochastic solutions to the BTE.

The SPT model provides a flexible framework that permits incorportation of addi-

tional scattering mechanisms and various scattering models. The SPT model may

be used to simulate the complex three-dimensional geometric domains necessary for

simulating thermal transport in semiconductor devices.

A framework has been presented for a Statistical Phonon Transport model. The

SPT model requires no random number generation, unlike Monte Carlo methods, but

permits a statistical analysis of phonon transport in crystalline solids. Phonon pop-

ulations are modeled using pseudo-states, enabling the use of the full number of

phonons without reliance on scaling factors. The material properties are modeled
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using lattice dynamics, with few underlying assumptions. The SPT model includes

a discretization of the BZ and yields a fully anisotropic model for phonon disper-

sion. The SPT model provides a density of states that is fully consistent with the

dispersion curves. Phonon group velocities are calculated directly from the dispersion

model used to define the pseudo-states. The group velocities and energy of a pseudo-

state are approximated by their centroid values. The pseudo-state drift model allows

full phonon populations to move throughout a geometric domain considering several

boundary scattering regimes. Pseudo-momentum is rigorously conserved using an

assumption of a uniform distribution of phonons across reciprocal lattice space for

each pseudo-state. Normal and Umklapp scattering events are modeled in a fully

anisotropic manner. Energy is conserved within a specifed tolerance during the cre-

ation of an interaction table. Use of too strict of an energy tolerance may cause

important interactions to be overlooked, while too lenient of an energy tolerance

may cause low frequency phonon populations to dominate the response. A density

of interactions histogram has been introduced, which permits understanding of the

three-phonon selection criteria in a manner similar to the way in which the density of

states histogram permits assessment of the accuracy of a material model. Selection

rules for interactions have been discussed only to limited extent in prior work. The

current work demonstrates that interaction selection rules and interaction probability

rules are essential elements in any statistical treatment of phonon transport, includ-

ing Monte Carlo methods. During scattering, conservation of energy is enforced in a

manner consistent with the use of centroidal frequencies and the approach of modeling

phonon populations as opposed to individual phonons.

Validation of the SPT model against analytical test cases has shown that the

SPT model is capable of predicting thermal transport in the diffuse, mixed and bal-

listic regimes. Each result shown was achieved in a single run of the simulation.

Averaging of multiple runs is not required. All results shown (temperature, heat

flux and conductivity) are self-consistent. The silicon thermal conductivity at 500 K

predicted by the SPT model along the [100] direction with a cell size of 25 nm in
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the transport direction is twice that of the experimentally reported value of approx-

imately 80 W/mK [5]. It is believed that the inaccuracies in thermal conductivity

results can be attributed to the BZ discretization as well as the selection rules for

creating the interaction table.

While certain MC investigators [10, 12, 13, 15] have reported a closer approxima-

tion to experimentally observed values of thermal conductivity, each of those results

have required the use of a user-specified heuristic parameter to achieve the result.

Conversely, the SPT scattering model A requires no such heuristic parameter. SPT

scattering model B does permit a tuneable relaxation time parameter, which may be

appropriate for engineering heat transfer simulations.

Work is currently under way to address the near-boundary ballistic jump phe-

nomena observed in the current work and common to other models. Future work to

investigate a more sophisticated scattering algorithm with modest increases in com-

putational time is anticipated. Concurrently, investigation into more robust criteria

for including three-phonon events in the scattering table will be performed. The

relationship between the near-boundary ballistic jump, the three-phonon scattering

interaction table, and non-local equilibrium at the domain edges remains under in-

vestigation.
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CHAPTER 8

Recommendations for Future Work

A number of extensions to the current work may be investigated to improve the pre-

diction of thermal transport at reduced length scales using the Statistical Phonon

Transport (SPT) model. The following future work can be divided into two distinct

sections; recommendations for increasing SPT model robustness (1-5) and recom-

mendations for utilizing the SPT model to predict thermal transport in practical

applications (6-8).

1. Interaction table study

The interaction table generated in the preprocessing step of the SPT model

is crucial to accurately represent the possible scattering events (three-phonon

or isotope) that can and should be permitted to occur. A criterion for select-

ing events that follow the energy and pseudo-momentum conservation selection

rules was given. Also, several measures of the quality of the interaction table

were presented in this research. Further work into the selection criteria should

be investigated.

2. Improvements to the three-phonon scattering models
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The current work presented two models for three-phonon scattering rate algo-

rithms. The first model does not include any relaxation time component. The

second model utilizes curve fits of relaxation time data to predict scattering

rates for the pseudo-state phonon populations. These average relaxation times

do not distinguish between Type I and Type II scattering events or normal

and Umklapp processes. It is possible to calculate transition rates for unique

three-phonon scattering events using perturbation theory and Fermi’s Golden

Rule [55]. With the current model if individual transition rates for particular

events in the interaction table were known they could easily be incorporated into

the SPT model. There is some concern that this would significantly increase

computational costs. Therefore, it is recommended that individual scattering

rates are computed for individual events and these rates are incorporated into

the SPT model’s treatment of three-phonon scattering. Once results are inves-

tigated for both accuracy of phonon transport and computational cost require-

ments a decision can be made as to the possibility of implementing a hybrid

model that could help reduce computational costs while retaining accuracy in

the three-phonon scattering model.

3. Isotope scattering

The SPT model may be extended to include the treatment of isotope scatter-

ing in addition to three-phonon scattering. Incorporation of isotope scattering

within the SPTmodel requires creation of an isotope scattering interaction table

and development of an appropriate isotope scattering rate algorithm.

4. Extension of boundary condition library

An interfacial scattering model is required in order to investigate thermal trans-

port in super-lattice or nano-composite structures. Incorporating geometric

elements of multiple materials within a domain having interfacial scattering

boundary conditions would increase the applicability of the SPT model to the

design of novel devices.
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5. Brillouin Zone (BZ) mesh refinement study

Currently the first octant of the BZ is discretized using a structured mesh

of equal volume hexahedral elements. This discretization benefits from 1/8th

symmetry of the BZ octants. It is known that the BZ has up to 1/48th symmetry

by considering the irreducible wedge. Using an unstructured tetrahedral mesh

may provide benefits related to the representation of the BZ, allowing for a finer

mesh without increasing computational costs.

6. Thermal transport in complex geometries

The SPT model accounts for 3-D phonon transport, but in the current work

is limited to 1-D thermal transport examples. Extending the SPT model to

handle complex 3-D geometries to investigate thermal transport is desired.

7. Metal—oxide—semiconductor field-effect transistor (MOSFET) Simulation

MOSFET device thermal transport simulations require coupling both a macroscale

Fourier conduction model with a model that can accurately predict thermal

transport at reduced length scales. Additionally, the transmission coeffi cients

across the interfaces between the two computational domains must be addressed.

Incorporating a multigrid method above the SPT model is desired to be able to

predict thermal transport in devices.

8. Electron-phonon scattering

In order to investigate thermal transport in bulk silicon transistors it is neces-

sary to have the appropriate heat generation rates to be assigned to different

pseudo-state groups. Attempts to couple full-band MC simulators with phonon

transport models have been single-sided. Extending the SPT model to couple

with electron MC models to run in parallel is desired.
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APPENDIX A

Statistical Phonon Transport Model Input Files

The SPT model requires several input files. In this appendix examples of each of

these input files are given.

The SPT model requires information related to the material that is being sim-

ulated. This includes not only various constants associated with the material such

as the lattice constant, but also information related to the discretization of the BZ.

Figure A.1 contains an example of the material property input file.
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Figure A.1 An example of the material property input file used in the SPT model.
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The three-phonon interaction table is related to the discretization of the BZ

and is a required input for the SPT model. Figure A.2 contains an example of the

interaction table utilized during the three-phonon scattering phase of the SPT model.

Figure A.2 An example of the three-phonon scattering interaction table used in the

SPT model.
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In addition to material property information, the SPT model requires informa-

tion related to the geometric domain that is to be modeled. Typically, for a given

material, by changing on this input file many simulations can be performed. The

following figure is an example of the geometric domain input file.

Figure A.3 An example of the geometric domain input file used in the SPT model.
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