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Abstract 

RIT’s undergraduate software engineering program 
has a strong emphasis on design, including formal 
mathematical modeling. However students (and 
professional software engineers) are skeptical about 
the use of mathematical models in their day-to-day 
work. Alloy has proven to be successful in addressing 
some of this skepticism, but further work is needed to 
make formal modeling a norm in software 
development. 

Introduction: The RIT Context 

In 1996, the Rochester Institute of Technology (RIT) 
launched the first baccalaureate software engineering 
program in the United States [1]. Doing so was in the 
best RIT tradition of offering innovative career-
oriented programs in a wide variety of professional 
disciplines. Our goal was to educate a new type of 
engineer who could design, develop, and deliver 
software that was comparable in quality to the 
products of other engineering disciplines. 

The program’s foundations are in computer science, 
mathematics, and natural science. Building on this, 
students are exposed (via coursework and co-
operative education) to key process and product 
quality issues across the product life cycle. That 
being said, our program’s emphasis is on design, 
including design synthesis and analysis, modeling, 
patterns, and software quality attributes. The focus of 
this paper is on mathematical modeling incorporated 
in our required formal methods course. 

(Software) Engineering and Mathematics 

A confession: I am not an engineer by training 
(though I’ve played one in industry). My 
undergraduate degree is in mathematics, and my 
graduate work was in computer science. Thus my 
discussion of mathematics and engineering below is 
based not on formal education, but on observation of 
practicing engineers in industry and the use of 
mathematics in engineering curricula (two of my 
children are engineers). For what it’s worth, a former 
engineering dean at RIT told me I think like an 
engineer; I took that as a compliment. 

The first thing to note is that engineers are pragmatic, 
using any tools that advance their understanding of a 
problem or help them assess the consequences of 
proposed designs [2]. Mathematics, of course, while 

being a very useful tool, is not sufficient – if it were, 
universities could reclaim a lot of lab space from 
their engineering schools. Still, much traditional 
engineering practice involves the use of mathematics, 
specifically continuous mathematics. 

As a general rule, engineers are less interested in 
proofs of mathematical results than in the application 
of those results to engineering problems. Stated 
another way, engineers are intelligent, informed users 
of mathematics, but they are rarely mathematicians. 
If formal methods are to have the same effect on 
software development that continuous mathematics 
has on traditional engineering, it is imperative that 
they provide equivalent applicability to practical 
software problems. 

The reluctance of the software industry to adopt more 
mathematical approaches is due less to math phobia 
than engineering cost/benefit analysis. Analyzing 
model properties in languages such as Z and VDM 
involves manipulating logical formulae, which in turn 
necessitates some knowledge of axioms, theorems, 
rules of inference, and proof techniques. The very 
generality of such systems means tools are either 
simple example checkers or complex theorem 
provers requiring significant mathematical maturity 
on the part of users. Neither of these approaches is 
appealing to engineers (or, in the RIT environment, 
to student engineers-in-training). 

Fortunately, things are changing. Model-checking has 
proven its value in analyzing concurrent and 
distributed systems. At RIT we have successfully 
incorporated model checking tools [3] in our design 
courses with little pushback from students – they can 
see the applicability for themselves. Now, with 
Alloy [4], we have a promising tool for modeling and 
analyzing software entities, structures, and their 
transformations. 

Alloy in Undergraduate Education 

In the RIT context, Alloy addresses many of the 
problems we had with student resistance to Z, VDM, 
and similar formalisms. 

The prerequisite discrete mathematics courses 
provide the necessary background in logic and set 
theory, but with Alloy students need not resort to 
proofs from first principles in order to perform useful 
analysis. Alloy’s first-order system means some 



things cannot be modeled, and its use of SAT 
algorithms restricts the generality of some results. 
But used with a modicum of engineering judgment, 
the notation is sufficient to create and analyze many 
systems. This is in the best tradition of pragmatic 
engineering: some information is better than none. 

In addition, the concrete syntax, being so similar to 
C++ and Java, helps overcome students’ initial 
anxiety to the use of mathematics. In my experience, 
it’s a mistake to dismiss the importance of familiar 
syntax, especially at the undergraduate level. 

In the formal methods course, I use several strategies 
to help students become competent in developing 
small models. My primary approach is to alternate 
between lecturing on concepts and exploring their 
consequences via the Alloy Analyzer. Students 
access the models on their lab computers, and can 
mimic my explorations or take side excursions on 
their own. “What if” and “how would you express 
this” questions require pairs of students to extend or 
modify the model on their own. Out of class 
exercises on related but distinct problems, supported 
by asynchronous discussions on our course 
management system, serve to expand student 
experiences beyond what is possible in class. Finally, 
the course requires a major team-based modeling 
project that pushes students to explore issues in 
scaling Alloy to larger problems. 

There are a few areas where further work is required. 
These have little to do with the Alloy notation or the 
analyzer tool, but reflect the lack of material on 
effective use of Alloy: 

1. Better documentation is needed on the analyzer 
tool itself, most particularly on how to use the 
visualization system. Students spend too much 
learning how to use color, shapes, and projection 
in ways that illuminate rather than obscure the 
analyzer’s output. 

2. Real case studies – those that show the value of 
Alloy in industrial software design – would 
greatly aid in demonstrating the value of Alloy to 
skeptical students. 

3. Students have few problems using Alloy to 
describe a static model defining legitimate 
structural states of a system, and in this arena 
facts are an invaluable aid to capturing state 
invariants. Things get much trickier, however, 
when moving from such a static model to a 
dynamic one, where “operation” predicates 
define state transformations. 

a. First, one must decide how to model time. 
The two most common approaches are a 

“primed” notation reminiscent of Z, and an 
explicit Time signature whose atoms index 
time-variant relations. What’s missing are 
heuristics to guide the selection of an 
appropriate approach. 

b. Second, when facts are carried over to the 
dynamic model (after adjusting as 
appropriate for time), students develop a 
false sense of security. Students overlook 
the need for preconditions to guarantee state 
closure, and the analyzer is of no help in 
ferreting out these omissions. The reason is 
that facts are too strong – because they must 
hold in the final state of an operation, the 
analyzer will never produce 
counterexamples to closure assertions even 
when required preconditions are missing. 

4. These observations illuminate the need for 
heuristics – patterns or refactoring procedures – 
to transform static facts into equivalent dynamic 
predicates and assertions that will help detect 
missing preconditions. What’s required is well-
known in the formal modeling community; 
what’s needed is a practitioner friendly approach 
to performing these model transformations. 

5. Finally, guidelines on going from designs to 
code would help persuade students of Alloy’s 
value. Part of our success in using [3] is due to 
the connection between formal models and 
corresponding Java classes and methods. 

Summary 

Alloy has already proven successful in our formal 
methods class, with students able to define and 
analyze interesting systems. The challenge is to build 
on this success so that students use Alloy to explore 
design issues in subsequent courses. 
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