
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Theses

3-2016

A Search Engine for Finding and Reusing Architecturally A Search Engine for Finding and Reusing Architecturally

Significant Code Significant Code

Ibrahim Jameel Mujhid
ijm9654@rit.edu

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation Recommended Citation
Mujhid, Ibrahim Jameel, "A Search Engine for Finding and Reusing Architecturally Significant Code"
(2016). Thesis. Rochester Institute of Technology. Accessed from

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact
repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F8982&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/8982?utm_source=repository.rit.edu%2Ftheses%2F8982&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

A Search Engine for Finding and
Reusing Architecturally Significant

Code

by

Ibrahim Jameel Mujhid

A Thesis Submitted
in

Partial Fulfillment of the
Requirements for the Degree of

Master of Science
in

Software Engineering

Supervised by

Dr. Mehdi Mirakhorli

Department of Software Engineering

B. Thomas Golisano College of Computing and Information Sciences
Rochester Institute of Technology

Rochester, New York

March 2016

ii

The thesis ”Search Engine for Finding and Reusing Architecturally Significant Code”

by Ibrahim Jameel Mujhid has been examined and approved by the following Examination

Committee:

Dr. Mehdi Mirakhorli
Assistant Professor
Thesis Committee Chair

Dr. Meiyappan Nagappan
Assistant Professor

Dr. Stephanie Ludi
Professor

iii

Dedication

To my beloved family and friends, for all of your support along the way

iv

Acknowledgments

I am grateful to my thesis advisor Dr. Mehdi Mirakhorli. I could not have achieved this

without his invaluable motivation, patience, and dedication to this work. I also thank Dr.

Meiyappan Nagappan for serving on my thesis committee and his insightful comments and

encouragement. Furthermore, I thank the rest of the department faculty and staff for their

support through my study.

I would like to express my gratitude to Joanna Cecilia for her active participation in

this research work and for her knowledge and contribution for it. Also, I would like to

thank my team member Raghuram Gopalakrishnan for assisting in conducting experiments

for my research. Finally, I would like to thank the Iraqi High Committee of Education

Development for the full scholarship to complete my Master study.

v

Abstract

A Search Engine for Finding and Reusing Architecturally Significant
Code

Ibrahim Jameel Mujhid

Supervising Professor: Dr. Mehdi Mirakhorli

Architectural tactics are the building blocks of software architecture. They describe so-

lutions for addressing specific quality concerns, and are prevalent across many software

systems. Once a decision is made to utilize a tactic, the developer must generate a con-

crete plan for implementing the tactic in the code. Unfortunately, this is a non-trivial task

even for experienced developers. Developers often resort to using search engines, crowd-

sourcing websites, or discussion forums to find sample code snippets to implement a tactic.

A fundamental problem of finding implementation for architectural patterns/tactics is the

mismatch between the high-level intent reflected in the descriptions of these patterns ,and

low-level implementation details of them. To reduce this mismatch, we created a novel

Tactic Search Engine called ArchEngine (ARCHitecture search ENGINE). ArchEngine

can replace this manual Internet-based search process and help developers to reuse proper

architectural knowledge and accurately implement tactics and patterns from a wide range

of open source systems. ArchEngine helps developers find implementation examples of

tactic for a given technical context. It uses information retrieval and program analysis

techniques to retrieve applications that implement these design concepts. Furthermore, the

search engine lists the code snippets where the patterns/tactics are located. Our case study

vi

with 21 professional software developers shows that ArchEngine is more effective than

other search engines (e.g. SourceForge and Koders) in helping programmers to quickly

find implementations of architectural tactics/patterns.

vii

Contents

Dedication . iii

Acknowledgments . iv

Abstract . v

1 Introduction . 1
1.1 Motivation . 2
1.2 Hypothesis . 5
1.3 Challenges . 5
1.4 Contribution of the Thesis . 7
1.5 Organization of the Thesis . 8

2 Background and Related Work . 9
2.1 Related Work . 9
2.2 Software Architectural Tactics . 11
2.3 Inverted Index . 14
2.4 Vector Space Model . 15

3 Design . 17
3.1 Overview of Approach . 17
3.2 Creating Ultra-Large Scale Repository of Open Source Projects 19
3.3 Source Code Indexing . 20
3.4 Detecting Architectural Tactics . 22
3.5 Matching Technical Problem . 24
3.6 Ranking Algorithm . 26
3.7 Search Process . 27

4 EXPERIMENT AND EVALUATION . 28
4.1 Evaluation and Comparison with State-of-the-Art 28

viii

4.2 Methodology . 29
4.3 Assigned Architecture-Prototyping Tasks 31
4.4 Hypothesis . 32
4.5 Evaluation Metrics . 32
4.6 Results . 33
4.7 Threats to Validity . 34

4.7.1 Internal Validity . 35
4.7.2 External Validity . 36

5 Conclusions . 38
5.1 Conclusion . 38
5.2 Future Work . 38

Bibliography . 40

A ArchEngine Demo . 44

ix

List of Tables

3.1 Overview of the projects in ArchEngine’s Source Code Repository 20

4.1 Tasks assigned to students in the experiment 30

x

List of Figures

1.1 Developers seek help in online forums to implement architectural patterns/tactics 3

2.1 Inverted Index Structure . 14

3.1 The architecture of our search engine . 18

4.1 Comparison of ArchEngine’s performance with state-of-the-art code search
engines . 37

A.1 Developer prompt Tactic,Language, and Technical problem to the ArchEngine 44
A.2 A snapshot from the search result for query in figure A.1 45
A.3 The developer click on full code button for on of the code snippets in figure

A.2 . 45

1

Chapter 1

Introduction

A complex software systems architecture is cautiously built to fulfill various concerns and

needs such as security, usability, safety, dependability, and other vital qualities [7]. In or-

der to fulfill and address such concerns, architects use architectural patterns, also known as

styles, and architectural tactics to build the complete software system [23, 24]. The founda-

tion of the entire software architecture is done using the architectural tactic, which comes

in various shapes and sizes to tackle a range of quality issues. The usability of architectural

tactics can be seen especially in fault tolerant and high performance systems. For example,

reliability tactics such as redundancy with heartbeat, voting, and check pointing provides

some solutions for mitigating, detecting, and recovery of faults, while performance tactics

such as resource pooling and scheduling helps in optimizing response time and latency

[10].

The implementation of such tactics in a robust and effective way becomes challenging

for less experienced developers. This is because they contain variability points and huge

number of design decisions that need to be taken care of before implementing the tactic.

Any failure in implementing these tactics will lead to degradation of the complete archi-

tecture [34, 9, 39], therefore they may search on online forums and search engines because

they did not understand how to implement specific tactics. Existing search engines and

software repositories are the main sources that the programs use to learn or get ideas on

how to implement a specific problem in their software or to reuse the existing source codes.

However, this can be challenging when it comes to reusing fragments of architecture tactics

due to the difficulties in identifying tactics in the source code [22].

2

To facilitate source code reusability problem, researchers have applied data-mining and

natural language processing (NLP) techniques to build source code recommender systems

[19], and search engines by matching keywords in queries to words in the descriptions

of applications, comments in their source code, and the names of program variables and

types. However, the primary intent of these techniques is retrieving generic functional

code rather than tactical code. Difficulties in detecting patterns and lack of support in the

current search engines are two main reasons as to why the notion of reusing architecturally

significant source code is not well explored in the software architecture community.

In this work, we address these limitations by presenting a novel approach for au-

tomating the discovery, extraction, and indexing of architectural tactics across 116,609

opens source systems and to build a tactic search engine. Our approach utilizes advanced

data mining techniques to reverse engineer the architectural tactics from a source code of

116,609 open source systems index, and use such knowledge to build ArchEngine. We

built ArchEngine as part of a big data compatible architecture and conducted a case study

with 21 professional programmers to evaluate this tactic search engine. The results show,

with strong statistical significance, that users find more relevant tactical code snippets with

higher precision using ArchEngine than those with other search engines such as Open Hub,

Krugle, and GitHub.ArchEngine is available for public use at 1.

1.1 Motivation

Source code search is a fairly common task done by software developers. However, rel-

atively little is known about how and why developers perform code search [33]. Not too

many surveys have been done on this particular topic. A useful study has been published by

Sim et al [37]. According to the study, code search is often done during the development

and maintenance of software. They mentioned several reasons for code searching. The four

main motivations have been mentioned as; (1) defect repair, (2) code reuse, (3) program

1http://juno.main.ad.rit.edu:8081/ArchEngine/

3

Figure 1.1: Developers seek help in online forums to implement architectural pat-
terns/tactics

understanding, and (4) impact analysis.

With the increasing adoption of iterative incremental software development practices

and integration of coding and design activities, there is an increasing need for a search

engine that helps developers identify and reuse code snippets related to the architectural

tactics. In a very trivial search, one can find several examples of developers posting requests

for help to the online forums because they could not understand how to implement specific

patterns/tactics. Figure 1.1 shows three examples of such questions. One developer is

seeking help regarding the generic implementation of a Pooling tactic. While two others are

looking for specific implementation of tactics in particular situations/technology. Another

one developer wants to implement role-based access control along with Struts framework,

while the third one is seeking samples to implement heartbeat reliability tactic between a

client and a server. These examples show that typically developer’s query for a sample

tactical code has two parts, (i) the desired tactic and (ii) a particular context or technology

4

in which the tactic needs to be implemented. Therefore, a search engine not only needs to

identify and index occurrence of architectural tactics, but also need to identify the technical

context in which the tactic is implemented.

For example, a developer may be implementing a new feature in a software using Heart-

beat tactic. She may look into the documentation and find out a method to accomplish a

task, but the documentation may rarely have example code of how to use tactics. There-

fore, she may search online for code that uses a Heartbeat. From the search result she may

get the examples of the usage of the method. Existing code search engines e.g. Google

Code, technical websites such as StackOverflow, and open source software repositories

have been made to support different code search needs. They have been the primary re-

sources that developers have used for reusing code, or even to obtain ideas to implement

their software. However, this can be challenging when it comes to reusing fragments of

architecture, design knowledge or what is so called architecturally significant code snip-

pets [30]. A fundamental problem is related to the difficulties in identifying and tagging

architectural patterns and tactics in the source code [22]. Therefore, current search engines

fail to incorporate these design concepts in their underlying search algorithms. This may

increase the percentage of non-relevant answers in search results. We, therefore propose a

novel search technique that attempts to take into account the required architectural tactic as

well as technical context (e.g. TCP, UDP, httpConnection, ...,etc) that are specified in the

user query as input. By technical context we mean , framework, technology, programming

languages, and/or APIs in which the tactic needs to be implemented. The search results

returned by our system reflect those relationships among the technical problems and tactic.

For example: if a user types ”Heartbeat for TCP”, then our system tries to find the best

code snippets that implement Heartbeat for TCP connection.This is significant because this

is first of its kind code search engine that enables developers to reuse tactical code snippets

This novel technique makes our system different from any existing work.

5

1.2 Hypothesis

In this Thesis, we aim to evaluate the following hypothesis:

Hypothesis: ArchEngine users find more relevant architectural code snippets com-

pared to Open Hub, Krugle, and GitHub users.

Chapter 4 reports on the experiment conducted for this hypothesis. We aim to verify

whether there is a statistically significant difference between the precision and accuracy of

ArchEngine compared to other code search engines. We proposed a set of queries that a

developer may come up with from a task assigned to 21 graduate students in architecture

class. We give those queries as input to ArchEngine and other engines and save the output

for each search engine. Consequently we manually scrutiny each of those results and find

out whether they are accurate in our context or not, and compare these results with the

results of Koders, GitHub,and Krugle. The results indicate a higher accuracy index of

ArchEngine compared to other engines.

1.3 Challenges

There are several tasks associated with our code search system. We can , Roughly break

down the major tasks into the following:

• Collection: The collection of large amounts of source code from open source repos-

itories, in order to build a local repository for ArchEngine. The primary challenge in

collecting source code from the online repositories is that there is no standard method

of distribution. Open source projects are generally hosted by large open source repos-

itories, such as SourceForge, GitHub, and Apache, which rarely provide hooks for

performing this type of collection. The use of different version control systems,

download protocols, and constantly changing format/content makes automating this

collection process rather tedious.

6

• Analysis: We intend to do a statically analysis for projects in order to extract infor-

mation and generate a dependency matrix for each source code file in the repository.

In order to fully extract structural information from source code, the code must be

declaratively complete; i.e. all the dependencies must be resolved. Unfortunately,

this is become challenging when it come to source code from open source repositories

for two reasons. First, diversity of programming languages used in the repositorys

projects; it was hard to find a tool that could analyze all projects and generate depen-

dencies matrix for them. Second, there is no guarantee that the code is declaratively

complete; missing dependencies and incomplete files are quite common. Scaling the

analysis to thousands of projects pose further complicates matters, as it eliminates

the feasibility of performing any type of manual processing.

• Searching for Tactical and Technical Context: A direct approach for finding highly

relevant code snippets is to search through the descriptions and source code of the

projects to match keywords in queries to the names of the program variables and

types. This approach assumes that programmers choose meaningful names when

creating source code, which is often not the case. This is partially addressed by pro-

grammers who create meaningful descriptions of the applications in software repos-

itories. However, it becomes challenging for developers to guess exact keywords

because no single word can be used to perfectly describe a programming concept.

The main challenge in this work is proposing an appropriate technique that enables

the developer to search for tactics, as well as technical context through large scale

repository in a light and scalable way to find highly relevant source code.

• Prototype Development: Due to the challenges posed by collection, analysis, and

searching, it is often impossible to rapidly design and evaluate a useable application

that enables developers to search through large quantities of source code .

• Displaying Output: Our search engine performs structural relationship search be-

tween tactical files and their neighbouring files. For the technical problem, the tool

7

searches the tactical file and its direct dependencies file to see whether the problem

was implemented or not. Due to this nature of the search, the output display is differ-

ent from the traditional full-text search engines. In full-text search engines, only the

portions of a document which contain matched terms from keyword query are usu-

ally displayed. Structure based code search may require displaying code snippets that

may be far apart in the same document or may consist of multiple documents. For

example: A query ”Heartbeat for Tcp connection” may return a Doc1 that implement

a method ”HeartbeatSender”. In Doc1, ”HeartbeatSender” may call a ”TcpConnec-

tion” method which is implemented in Doc2. In this case we have to show both Doc1

and Doc2. Displaying the output in a suitable manner is a daunting task and requires

some mechanism to solve this. We have kept this problem out of the scope of this

work.

Our main focus in this work is on item no. 3 mentioned above. In chapter 3, we discuss

in details how we hope to address the challenges related to this item. For the challenges

under remaining tasks, we do this work just to support the work under item no. 3.

1.4 Contribution of the Thesis

To the best of our knowledge, none of the aforementioned work exactly matches our ap-

proach. In this thesis, we make the following contribution:

• Proposing a source code search engine for architectural tactics that relies on a novel

text-based classification technique to automate the discovery, extraction and indexing

of architectural tactics across 116,609 open source systems.

• Implementing a big data compatible architecture to search efficiently through 22 mil-

lion source files.

• Utilizing information retrieval and structural analysis techniques to detect tactics and

to identify the technical context in which the tactic has been used.

8

• Introducing a novel ranking algorithm to order the retrieved tactical files based on

both tactic correctness and relevancy to the technical context stated in the users query.

• Conducting a series of experiments to prove that our techniques are fairly successful

at finding tactics that are mentioned in the user query and outperformed existing

source code search engines.

1.5 Organization of the Thesis

The organization of the thesis is as follows. The initial part of Chapter 2 discusses the

background work. The later part of the chapter defines some related concepts. Chapter 3

proposes the solution to the problem. It describes the necessary definitions, techniques and

algorithms of the proposed solution. The experiments are described in Chapter 4, and also

evaluates the outcome of those experiments. Chapter 5 provides the conclusion and the

possible future expansions.

9

Chapter 2

Background and Related Work

This chapter reviews the thesis primary area of focus, software architecture tactics, and

give an overview of the previous work that has been done on code search.

2.1 Related Work

Over the years, several code search engines have been made to support different code search

needs. Usually, these systems maintain a cached archive of source code and/or metadata

about these artifacts and use a set of heuristics to define the relevance of an artifact which

is subsequently used in their ranking algorithm. They differ on various aspects such as

types of input supported (e.g. free text [2, 18], search queries inferred from source code

[11, 41], etc), granularity level of produced output (such as functions [18], source files [2],

code fragments [6, 12, 14], components [11, 41], etc), releasing approach (as a Web site

[12, 17, 18], an Eclipse plugin [2, 3, 11, 14], etc), underlying code search technology and

so on.

In this context, Prospector [14] and Sniff [6] are tools for obtaining code snippets in

Java, i.e., fragments of a source file which perform a specific task. On one hand, Prospec-

tor is released as an Eclipse plugin, so it creates search queries on-the-fly from the code

being developed in the Eclipse editor and outputs a set of recommended code snippets for

developers to reuse [14]. On the other hand, Sniff gets free text as inputs and return code

fragments based on merged data from API documentations and publicly available Java code

[6]. Similarly to Prospector and Sniff, Kim et al [12] presents a code search engine which

10

outputs Java API documentations along with sample code snippets that use those APIs.

McMillan et al. proposed Portfolio for finding functions written in C/C++ and allowing

users to navigate among these functions based on their call dependency [18, 20]. Its ranking

approach adapts the PageRank algorithm to match functions based on the terms within the

function itself and in the invoked functions and ranking them based on the frequency of

usage (i.e. how many times a function is called). In spite of the fact that the portfolio has

been proved to better meet the developer’s needs for finding reusable code snippets, their

focus is way too low-level (at the function level) and returns only C/C++ code.

Sourcerer [2, 3] is a code search engine for retrieving reusable open-source code. For

fetching and ranking the results, it verifies structural properties, dependencies and entities

within the source code files. Such structural analysis represents an improvement over a

keyword-based matching of source files. Similarly to ArchEngine, it crawls public source

code available in the Web, stores those files in a local code repository and extracts, for each

file, a list of keywords storing them in an index. However, differently from ArchEngine,

it is limited for only files written in Java and does not use any heuristics for extracting the

best code snippets for any architectural tactic and technical problem.

For fulfilling the need of finding reusable higher-level artifacts, Code Conjurer [11] and

Codebroker [41] are search engines for finding reusable components developed in Java.

Both of them do not require that developers explicitly provide search queries to their en-

gine, instead they perform the search based on parsed information from source code being

written by developers. The difference is that Code Conjurer generates search queries from

test cases whereas Codebroker analyses the comments in the code written by program-

mers. Another tool for higher-level searches is Exemplar [17] which focuses on finding

executable Java software projects for reuse. Unlike ArchEngine, they only return Java

components/projects and do not support any heuristic for optimizing results to address the

demand for finding sample code for architectural tactics.

Invented by M. Merakhorli, Archie [26, 30], is one of the automated data mining tools

11

that is used to discover any architectural tactics used in the source code. It works by de-

tecting any tactical elements in the architecture of the source code by using its internal set

of codebase classifiers. These code classifiers have the ability to detect a variety of archi-

tectural tactics such as authentication, heartbeat, audit, role-based access control (RBAC),

asynchronous invocation, scheduler, resource pooling, and secure session. All these code

classifiers have been studied and prepared using open source code fragments that have been

taken from hundreds of projects consisting of these architectural tactics.

Besides these code search engines proposed and developed by the research community,

there are also proprietary engines for retrieving specific source code. Examples of such

engines are Koders (now named as Open Hub Code Search), Krugle and so forth. In ad-

dition, some public repositories (e.g. GitHub and SourceForge) support the search of code

snippets and/or software projects.

There are many differences when we compare ArchEngine with the search engines dis-

cussed previously. First, the techniques used in ArchEngine are mainly focused on finding

source code related to architectural tactics while traditional code search engines usually do

full-text search on the source code documents and their capability to perform architectural

tactics searches is limited or inexistent. Second, they output code in a specific program-

ming language (e.g Java) and focus on retrieving lower-level results (such as functions and

code fragments). Even if the search engine outputs higher-level artifacts (i.e. components

or projects), their search heuristics does not emphasize finding artifacts that satisfy quality

requirements through implementing architectural tactics.

2.2 Software Architectural Tactics

A complex software systems architecture is cautiously built to fulfill various concerns and

needs such as security, usability, safety, dependability, and other vital qualities. In order to

fulfill and address such concerns, architects make use of architectural patterns, also known

as styles, and architectural tactics to build the complete software system [23, 24]. The

foundation of the entire software architecture is done using the architectural tactic, which

12

comes in various shapes and sizes to tackle a range of quality issues . The usability of

architectural tactics can be seen especially in fault tolerant and high performance systems.

On one hand where reliability tactics such as redundancy with heartbeat, voting, and check

pointing provides some solutions for mitigating, detecting, and recovery of faults, on the

other, performance tactics such as resource pooling and scheduling helps in optimizing

response time and latency[28].

The focus of this research is limited to 14 specific tactics, in order to keep the scope of

this work manageable. They were selected based on representation of an array of reliability,

performance, and security requirements. These specific tactics defined as follows [7]:

• Active Redundancy: Configuration where in all of the nodes(active or redundant

spare) in a protection group receive identical inputs in parallel, so recovery and repair

can occur in milliseconds.

• Audit Trial: A copy of each transaction and associated identifying information is

maintained. This audit information can be used to recreate the actions of an attacker,

and to support functions such as system recovery and non-repudiation.

• Authentication: Ensures that a user or a remote system is who it claims to be. Au-

thentication is often achieved through passwords, digital certificates, or biometric

scans.

• Check Point: Recording of a consistent state created periodically or in response to a

specific event.

• HeartBeat: A reliability tactic for fault detection, in which one component (sender)

emits a periodic heartbeat message while another component listens for the message

(receiver). The original component is assumed to have failed when the sender stops

sending heartbeat messages. In this situation, a fault correction component is noti-

fied.

13

• Kerbrose: A network authentication protocol. It is designed to provide strong au-

thentication for client/server applications by using secret-key cryptography.

• Load Balancing: An application of the scheduling resources tactic would ensure

that one broker is not overloaded while another one site is idle.

• PBAC: Use of digital policies compromised of logical rules, to guide authorization

decision.

• Ping Echo: An asynchronous request/response message pair exchanged between

nodes that is used to determine the reachability and round-trip delay through the

associated network path.

• Resource Pooling: Limited resources are shared between clients that do not need

exclusive and continual access to a resource. Pooling is typically used for sharing

threads, database connections, sockets, and other such resources. This tactic is used

to achieve performance goals.

• RBAC: User/Process Authorization is used to ensure that an authenticated user or

remote computer/process has the rights to access and modify either data or services.

• Scheduler: Resource contentions are managed through scheduling policies such as

FIFO (First in first out), fixed-priority, and dynamic priority scheduling.

• Secure Session: Allows an application to only require the users to authenticate once

to confirm that the user requesting a given action is the user who provided the original

credentials.

• Validation Interceptor: Checks if there is any validation errors or not, used to get

information about the error messages defined in the action class.

14

2.3 Inverted Index

Inverted index is an index data structure storing a mapping from content, such as words or

numbers, to its locations in a database file, or in a document or a set of documents [1]. The

inverted index is the most widely used index model at present. All words in the documents

are indexed as keywords in inverted index. The recording item for each word includes

the documents that contain the word, as well as its location in the document. Thus, when

user search a word in the index, he can easily find the document which contains the word

and its location in the document. For inverted index of search engine, since the number

of web pages related to lexical items is dynamically changed, and so is the content of the

web pages, it is more difficult to maintain the inverted index. However, inverted index

has great advantage in query system. Inverted index is widely used in the system, which

has high demand for the response time of searching, since one may find all document

information that contains the word in just one search. Many researchers have discussed the

key technologies of inverted index [13]. The inverted index is an indexing mechanism for

words. It can improve search speed. Each index entry in the inverted index is composed of

index term and its appearance, each index term has a posting list to record all information of

the word appearing in the documents. This information contains the index ID, the position

in the document and the index appearing frequencies, etc [36].

Figure 2.1: Inverted Index Structure

15

In this work, we use one of the most high-performance, scalable, full-featured, open-

source inverted index libraries named Apache Lucene [8]. Apache Lucene is a search

library written in Java. Its popular in both academic and commercial settings due to its

performance, configurability, and generous licensing terms. Lucene index, as shown in

Figure 2.1 is a set of documents that are to be searched. The index may be composed of

multiple sub-indexes, or segments. Each segment is a fully independent index, which could

be searched separately. A document is essentially a collection of fields. A field consists of a

field name that is a string, and one or more field values. Fields are constrained to store only

one kind of data, binary, numeric, or text data. There are two ways to store text data: string

fields store the entire item as one string; text fields store the data as a series of tokens,the

text is broken up into terms at index time. Lucene provides many ways to break a piece of

text into tokens, as well as hooks that allow developers to write custom tokenizers. We built

our search engine on top of Lucene index that contains all source files in our repository. In

section 3.3 we discuss in detail how this index was built.

2.4 Vector Space Model

Vector space model is an algebraic model used by search engines to rank matching docu-

ments according to their relevance to a given search query. VSM is a bag-of-words retrieval

technique that ranks a set of documents based on the terms appearing in each document, as

well as the query. In the statistically based vector-space model, a document is conceptually

represented by a vector of keywords extracted from the document, with associated weights

representing the importance of the keywords in the document and within the whole docu-

ment collection; likewise, a query is modeled as a list of keywords with associated weights

representing the importance of the keywords in the query.

The weight of a term in a document vector can be determined in many ways. A common

approach uses the so called tf -idf method, in which the weight of a term is determined by

two factors: how often the term j occurs in the document i (the term frequency tfi,j)

and how often it occurs in the whole document collection (the document frequency dfj).

16

Precisely, the weight of a term j in document i is

wi,j = tfi,j ∗idfj = tfi,j ∗logt(N/dfj) (2.1)

where N is the number of documents in the document collection and idf stands for the

inverse document frequency. This method assigns high weights to terms that appear fre-

quently in a small number of documents in the document set. Once the term weights are

determined, we need a ranking function to measure similarity between the query and doc-

ument vectors. A common similarity measure, known as the cosine measure, determines

the angle between the document vectors and the query vector when they are represented in

a V-dimensional Euclidean space, where V is the vocabulary size. Precisely, the similarity

between a document Di and a query Q is defined as

sim(Q,Di) =
(
∑v

j=1 wQ,j ∗ wi,j)(√∑v
j=1 wQ,j ·

√∑v
j=1 wi,j

) (2.2)

where wQ,j is the weight of term j in the query, and is defined in a similar way as wi,j

(that is, tfQ,j idfj). The denominator in this equation, called the normalization factor,

discards the effect of document lengths on document scores. Thus, a document containing

{x, y, z} will have exactly the same score as another document containing {x, x, y, y, z, z}

because these two document vectors have the same unit vector. We can debate whether this

is reasonable or not, but when document lengths vary greatly, it is crucial to to take them

into account.

17

Chapter 3

Design

3.1 Overview of Approach

The architecture of our search engine and its components are depicted in Figure 3.1. The

first component is an ultra-large-scale source code repository, which contains over 116,609

open-source projects extracted from various online software repositories. The second com-

ponent is our novel source code indexing technique, which represents projects and their

source files in a form of index that is efficient for performing information retrieval tech-

niques. The third component is a tactic detector [21, 31] capable to detect various architec-

tural tactics in the indexed code artifacts. The tactic detector relies on information retrieval

techniques, and its accuracy was previously validated in a series of experiments [21, 31].

The fourth component is a dependency analyzer, which generates a dependency matrix

for each tactical file in the source code of a project. This matrix is then used by the fifth

component - Matching Technical Problem - to find whether the implementation of a given

tactic is related to a technical problem/context or not. Technical context refers to a frame-

work, technology, programming language, or APIs which can be used to implement the

tactic or technical problem in which the tactic needs to be implemented.

The final component is a novel Ranking algorithm, which ranks the source files in the

search results based on; (i) the semantic similarity of a source file to a searched tactic (ii)

the semantic similarity of a source file and its direct dependent files to a technical problem

represented in the search query.

18

Matching	Technical	
Problem	(SVM)

In
de

xin
g

Term-Documents	
Indexes	(TF/DF/IDF)	
for	over	22	Million	

Source	Files

Ta
ct
ic	
De

te
ct
or

Ru
nn

in
g	
on

	In
de
xe
s

Tscore

Coding	
idea

Searched	
Tactic	

Structure	Analysis

Tactical	File	
NBR	Matrix

Ra
nk
in
g	

Al
go
rit
hm

Search	Query	
Formation

Dscore
nbrDScore

Terms	for	the	
Technical	 Problem

Exploring	Samples

Offline	pre-processing

❷

❸ ❹

❺

❻

❶

Identifying	tactical	 files

Id
en
tif
yi
ng
	te
ch
ni
ca
l-c
on

te
xt

Selecting	best	files	matching	tactic	&	contextPresenting	ordered	 results	to	the	developer

Figure 3.1: The architecture of our search engine

19

The search process is initiated when a user provides a preliminary description of the tac-

tic implementation problem represented in the form of a query. Examples of such inquiries

are provided in Figure 1.1. This description is used to initiate the search query composing

of desired tactic and technical context in which the tactic should be implemented. The

user is asked to separate the tactic and technical problem. For instance, when a developer

is searching for “sample implementations of Heartbeat tactic when it is used in a multi-

threaded program to monitor HTTP type processes”, the query will have the following

two pieces, (Tactic, Heartbeat) and (Technical Problem, Multi-threaded HTTP process).

ArchEngine breaks this query into two pieces of tactic-and-problem so it can retrieve the

cluster of files implementing the tactic first. Then, it filters these files based on how sim-

ilar each cluster of tactical files is to the requested technical problem. A tactic-similarity

score and context-similarity score will be calculated for each file (described in section 3.6).

Subsequently, the ranking algorithm order the results based on these two metrics.

3.2 Creating Ultra-Large Scale Repository of Open Source
Projects

The first component is a large scale repository of software projects extracted from online

open-source repositories. The current version of our repository contains 116,609 projects

extracted from GitHub, Google Code, SourceForge, Apache, and other software reposi-

tories. We have developed different code crawling applications to retrieve projects from

all these code repositories. To extract the projects from GitHub, we make use of a torrent

system known as GHTorrent1 that acts as a service to extract data and events and gives it

back to the community in the form of MongoDB data dumps. The dumps are composed

of metadata about projects such as users, comments on commits, programming languages,

pull requests, follower-following relations, and others.

1http://ghtorrent.org/

20

We also used Sourcerer [38], an automated crawling, parsing, and fingerprinting appli-

cation developed by researchers at the University of California, Irvine. Sourcerer has been

used to extract projects from publicly available open source repositories such as Apache,

Java.net, Google Code, and Sourceforge. Its repository contains versioned source code

across multiple releases, documentations (if available), project metadata, and a coarse-

grained structural analysis of each project. We downloaded the entire repository of open

source systems from these code repositories.

Table 3.1: Overview of the projects in ArchEngine’s Source Code Repository
Language Freq. Language Freq. Language Freq.

Java 32191 Matlab 354 Scheme 80
JavaScript 22321 Arduino 321 Prolog 77

Python 9960 Emacs Lisp 321 F# 74
Ruby 8723 Rust 308 D 72
PHP 8425 Puppet 286 Pascal 60
C++ 5271 Groovy 253 FORTRAN 45

C 4592 SuperCollider 185 Racket 44
C# 4230 Erlang 154 VHDL 43

Objective-C 2616 Visual Basic 134 Verilog 43
Go 1614 ActionScript 120 Bison 39

CoffeeScript 1187 OCaml 105 Cuda 37
Scala 729 Assembly 98 Objective-C++ 33

Perl 699 ASP 85 SQF 26
Lua 458 Dart 84 Mathematica 25

Clojure 456 Julia 84 Apex 22
Haskell 456 Elixir 82 PureScript 22

*Total number of projects:116,609, *Total number of source files: 23M

Having extracted all these projects from GitHub and other repositories, we performed

a data cleaning in which we removed all the empty or very small projects (i.e. projects that

have less than 20 source files). Table 3.1 shows the frequency of all the projects in different

programming languages in our repository as well as its size in terms of number of projects

and source code files.

3.3 Source Code Indexing

ArchEngine uses text-mining techniques to identify and retrieve tactical code snippets. This

requires efficient indexing of terms across all the source files in our ultra large scale repos-

itory. The second component of ArchEngine is a term-document indexing module, which

21

indexes the occurrence of terms across source files of each project in our code repository.

This component, known as Indexing, first pre-processes each source file in which it uses:

(i) a stemmer to reduce words to their root forms, the stemming task was performed using

Porter’s Stemming Algorithm [40], (ii) a stopper to remove common terms, (iii) a splitter

that splits variable names based on the common coding conventions. After these prepro-

cessing, the source files are indexed.

The index stores statistics about each documents (source files) such as term frequency

(TF), document frequency (DF), TF/IDF and location of source file in order to make term-

based search more efficient. This is an inverted index, which can list the source files that

containing a specific term [16]. Furthermore, the index stores the metadata (language,

project etc.) for each source file.

The indexing process is the core function of ArchEngine that is used during identifi-

cation of tactic and indexing tactical files, searching, and other associated tasks such as

highlighting, querying, language analysis, and so forth. All the files that were retrieved

from the earlier step are given as inputs to the indexing system. The ArchEngine index is

based on the popular Apache Lucene [16] information retrieval engine. The index model

equates a Lucene document to every source file in the repository. A document is made up

of a collection of fields, each field being a name/value pair. The simplest form of value

is a collection of terms, where a term is the basic unit for search and retrieval. Terms

are extracted from various parts of a source file, and stored in the fields of the document

corresponding to that file. ArchEngine index model can be categorized into five fields:

• Id: Stores the full path of the source file in the repository.

• Dependencies: Stores the dependency matrix of that file.

• Contents1: Stores the actual contents of the source file in the repository. This field

was used to match the tactical files.

• Contents2: Stores the actual contents of source files and all theirs neighbouring files.

This field was used in matching the technical context.

22

• Language: This field stores the programing language used in that file.

3.4 Detecting Architectural Tactics

To identify which source codes from our repository are architecturally-relevant (i.e. imple-

ments an architectural tactic), we use the tactic detection algorithm developed previously

[32]. This technique uses a custom-made supervised machine learning algorithm trained

with manually collected code snippets that implement an architectural tactic. This detec-

tion algorithm encompasses three phases: Data Preparation Phase, Training Phase and

Classification Phase. These phases work as follows:

• Data Preparation Phase: In this phase, the training set is preprocessed using standard

information retrieval methods. In this preprocessing, the stop words (i.e. irrelevant

words, such as programing language keywords) are removed and the identifiers are

split into their primitive parts. Subsequently, those splitted identifiers are stemmed

in order to find their root forms. Lastly, the source codes are broken down into a list

of terms which are used in the next phase.

• Training Phase: As the name suggests, in this phase the classifier mechanism is

trained with the list of terms extracted in the previous phase from the manually es-

tablished dataset of code snippets that implement a tactic. From this training data, the

training mechanism obtains a list of indicator terms, i. e., terms that are a represen-

tative for the tactic. Also, a weight value is given to each indicator term. This weight

value shows the level of importance of an indicator term with respect to the tactic.

For example, the term ”role” is one of the most used terms when implementing the

”Role-Based Access Control”, so it receives a higher weight value.

A formal definition is given as follows: let q be a tactic of interest (e.g. Heartbeat).

The indicator terms of the tactic q are mined by considering the set Sq of all classes

within the training set that are related to the tactic q. The cardinality of Sq is de-

fined as Nq. Each term t is assigned a weight score Prq(t) that corresponds to the

23

probability that a particular term t identifies a class associated with tactic q. The

frequency freq(cq, t) of the term t in the class description c related with the tactic q,

is computed for each tactic description in Sq. Then, the Prq(t) is computed as:

Prq(t) =
1

Nq

∑
cq∈Sq

freq(cq, t)

|cq|
∗ Nq(t)

N(t)
∗ NPq(t)

NPq

(3.1)

• Classification Phase: In this phase, the indicator terms of an architectural tactic

(calculated in the Training Phase using the Equation 3.1) are used to calculate the

probability score (Prq(c)) which indicates the likelihood that a given source code

c is associated with the tactic q. Let Iq the set of indicator terms for the tactic q

identified during the training phase. The classification score that class c is associated

with tactic q is then defined as follows:

Prq(c) =

∑
t∈c∩Iq Prq(t)∑
t∈Iq Prq(t)

(3.2)

where the numerator is computed as the sum of the term weights of all type q indica-

tor terms that are contained in c, and the denominator is the sum of the term weights

for all type q indicator terms. The probabilistic classifier for a given type q will assign

a higher score Prq(c) to a source code c that contains several strong indicator terms

for q. Source codes are considered to be related to a given tactic q if the classification

score is higher than a selected threshold.

The threshold value is established through the 10-fold cross-validation process [5],

a standard approach commonly used in software engineering research to evaluate

accuracy and generalizability of data mining techniques. In this process, there are

ten groups in which each of them contains one architectural-related code snippet and

four unrelated ones. The system repeatedly is trained with nine of these groups and

the remaining one is the testing set (i.e. it has the five source codes classified into

architectural-related or unrelated). This execution is repeated until all groups are

used as testing sets for a variety of threshold values. Since we know from the testing

set which files are related/unrelated to an architectural tactic, we can verify which

24

threshold value has a better performance in the detection accuracy of architectural

tactics. The accuracy of tactic detection has been previously evaluated in a number of

extensive studies [31, 21]. Currently our approach is able to accurately detect over 14

architectural tactics such as heartbeat, scheduling, resource pooling, authentication,

authorization, secure session management, ping-echo, checkpointing and audit trail,

Role-based access control (RBAC) [31, 29, 27, 21].

3.5 Matching Technical Problem

Until previous step, ArchEngine was able to detect tactical files across our ultra large scale

repository, In the next two steps, it will calculate a score for the technical-context in which

the tactic is implemented. This would help us not only identify the tactical file but also sep-

arate tactic instances which are implemented using technologies or deal with the technical

problems stated in the developers’ query.

The technical context can be discovered from the areas of the code where a tactic is

adopted. To discover the technical-context, ArchEngine uses the latent-topics within the

tactical file itself and neighboring files which use or provide utilities for the tactical file.

This is done because the technical context is not fully presented in the tactical file itself

and is reflected in the surrounding files. For example, in case of the Authentication tactic,

the files which use the authentication function describe the technical context rather than the

files which implement the authentication. There might be cases the technical-context can

be observed in both tactical file and the neighboring files which have direct method call

with the tactical file. Therefore, ArchEngine needs to identify the technical context for the

tactic by looking at the files which interact with the tactical file.

Therefore, the Structural Analysis component is used to find the source files that have

direct method call with the tactical files. This component is responsible for statically an-

alyzing all projects in ArchEngine’s repository and generating a call graph represented in

the form of dependency matrix for each tactical file.

The dependency matrices extracted for each tactics are used by the next component

25

- Matching Technical Problem - which implements a paralleled version of Vector Space

Model (VSM) [35] to calculate a score for the relevance of the tactic’s technical-context

and what is stated in the developer’s query. The developer’s query is broken into two parts:

the tactic under search and the technical context. The second part of the query is used by

this component to calculate a score for the tactic’s technical context.

This component is capable of running over 22 million source files in a few seconds.

Vector Space Model (VSM), is a standard approach typically used by search engines to

rank matching documents based on their relevance to a given search query.

In the VSM, the developer’s query (technical problem part) q and each source file f is

represented as a vector of terms T = t1, t2,, tn defined as the set of all terms in the set

of queries. Therefore, a source file f is represented as a vector ~f = (w1,f , w2,f , ..., wn,f),

where wi,f represents the weight of the term i for source file f . A query is similarly rep-

resented as ~q = (w1,q, w2,q,, wn,q). The standard weighting scheme known as tf − idf

is used to assign weights to individual terms [35], where tf represents the term frequency,

and idf the inverse document frequency. Term frequency is computed for source file f as

tf(ti, f) = (freq(ti, f))/(|f |), where freq(ti, f) is the frequency of the term in the docu-

ment, and |f | is the length of the document. Inverse document frequency idf , is typically

computed as:

idfti = log2(n/ni) (3.3)

where n is the total number of source files in the tactic collection, and ni is the number of

source files in which term ti occurs. The individual term weight for term i in source file f

is then computed as wid = tf(ti, f)× idfti. A similarity score ContextSim(f, q) between

source file f and technical query q is computed as the cosine of the angle between the two

vectors as

ContextSim(f, q) =
(
∑n

i=1wi,fwi,q)(√∑n
i=1wi,f ·

√∑n
i=1 wi,q

) (3.4)

The similarity score between the technical part of the query and the topics in tactical

file and its neighboring files is used as a score for relevance of the technical context. This

26

score is used to identify the source files that are relevant to the technology used alongside

with the tactic. In the next section, we present a formula for ranking the results based on

the tactic and technical scores.

3.6 Ranking Algorithm

To rank the results of our search engine, a custom ranking algorithm has been developed.

There are three components that compute different scores in the ArchEngine’s ranking

mechanism presented in formula 3.5: (i) a component that computes a tactical score for

a given file, reflecting the probability that a source file implements a tactic (TScore(f, t),

calculated using formula 3.2, where f is a source file and t is a tactic,), (ii) a component

that computes a score called ContextSim(f, q) for the similarity of q, a technical problem

queried by the user and content of the tactical file, f . This score is calculated based on

word occurrences and cosine similarity formula described in equation 3.4. Lastly, (iii) a

component that computes an average technical similarity score for all the files interacting

the tactical file (nbr: all the neighboring files for f). This last component provides a score

for the context in which the tactic has been adopted. This is particularly important since

in some tactics, the frameworks or technology used by the developers are not implemented

in the same files. Developers sometimes separate the tactical functions and the contextual

concepts where the tactic is implemented with.

The total ranking score is the weighted sum of these components. Each component

produces results from different perspectives (i.e., tactical matches, direct technological

matches, indirect technological matches). Our goal is to produce a unified ranking by

putting these orthogonal, yet complementary, rankings together in a single score. To do so,

we compute the rank of a result for a given tactic and search query as follows:

rank(f, t, q) =TScore(f, t) + ContextSim(f, q) +

∑
d∈nbr(f) ContextSim(d, q)

nbr(f)

(3.5)

27

3.7 Search Process

A developer initiates the search process by first selecting the desired tactic. He then pro-

ceeds to specify the problem where the tactic is used to address the technology, or frame-

work used to implement the tactic. Separating these two pieces will help ArchEngine to

better identify the context in which the tactic is implemented and return the results which

match the described in the query. Examples of such queries are:

Query#1: Heartbeat implementation over UDP socket programming

Query#2: Secure session management using HttpSession of Java

Query#3: Thread pooling multi-thread implementation executor

service of java

28

Chapter 4

EXPERIMENT AND EVALUATION

We conducted some experiments with the system we developed. The goal for this exper-

iment was to evaluate how our proposed search technique performed. In the following

sections, we discuss more about our experiments.

4.1 Evaluation and Comparison with State-of-the-Art

A set of experiments were conducted to compare the performance of ArchEngine against

other generic code search engines. For this purpose, we evaluated ArchEngine against

Open Hub 1 (which used to be known as Koders), Krugle 2, SourceForge 3 and the built-in

search in GitHub repository 4. These Web systems were chosen as representative sam-

ples of code search engines used periodically by developers when performing their coding

activities.

We believe ArchEngine, like many other code search engines, is useful for junior de-

velopers and those with less programming experience. Senior developers, who are familiar

with architectural tactics and technologies, are less likely to search for sample code snip-

pets to get implementation ideas. Therefore, to evaluate the practicality of ArchEngine, we

recruited graduate students as subjects who are familiar with architectural concepts but do

not necessary have extensive experience as architect or software developer.

1https://code.openhub.net/
2http://opensearch.krugle.org/
3http://sourceforge.net/
4https://github.com/search/

29

Any code search engine needs to be evaluated regarding the accuracy of the items in

the results, as well as their ranking. In the next subsections, we detail each step performed

to execute this experiment, the metrics that were collected for assessing the performance of

the tools, and the results we obtained.

4.2 Methodology

This experiment involved a total of 21 subjects enrolled in a graduate Software Architecture

course. They were asked to complete three architecture prototyping tasks. The subjects

were required to implement a minimal functional system and satisfy a quality requirement

(availability, security or performance) through the usage of specific architectural tactics.

The tactics under consideration were: Heartbeat, Secure Session Management, and Thread

Pooling. A detailed discussion about these tactics is presented in [4]. Although the current

version of our search engine supports 14 architectural tactics [21], for the sake of evaluating

the ArchiEngine’s proof of concepts, we randomly selected the above 3 tactics out of 14.

Comparing multiple search engines for multiple tactics will be very time consuming, we

believe similar results will be obtained for the other tactics.

The subjects were asked to use ArchEngine and other provided code search engines to

find reusable sample source files or get ideas to implement the three tactics. The search

process was performed in pairs. Each pair of subjects created a set of queries containing

a list of keywords to search for architecturally relevant code snippets that could help them

complete the assigned tasks. These queries were applied to all the search engines. Later,

each code snippet returned was analyzed in terms of its correctness. A search result was

considered correct if it contained an implementation of the architectural tactic within the

queried technical context or frameworks of interest.

30

Ta
bl

e
4.

1:
Ta

sk
s

as
si

gn
ed

to
st

ud
en

ts
in

th
e

ex
pe

ri
m

en
t

Ta
sk

#1
:I

m
pl

em
en

tH
ea

rt
be

at
Ta

sk
#2

:I
m

pl
em

en
tP

oo
lin

g
Ta

sk
#3

:I
m

pl
em

en
tS

ec
ur

e
Se

ss
io

n
M

an
ag

em
en

t

Ta
sk

D
es

cr
ip

tio
n:

Im
pl

em
en

tH
ea

rt
be

at
Ta

ct
ic

.
T

he
im

pl
em

en
ta

tio
n

is
m

in
im

um
pr

ot
ot

yp
in

g
of

th
e

ta
ct

ic
th

an
fu

ll
im

pl
em

en
ta

tio
n

of
a

sy
st

em
.

C
on

si
de

ra
tio

ns
:

•
Se

le
ct

a
do

m
ai

n

•
D

ev
el

op
a

cr
iti

ca
l

pr
oc

es
s

(w
ith

m
in

im
um

fu
nc

tio
na

lit
y)

•
D

es
ig

n
a

N
on

-d
et

er
m

in
is

tic
fa

ilu
re

in
th

is
pr

oc
es

s
w

hi
ch

m
ak

es
it

cr
as

h.

•
Im

pl
em

en
tH

ea
rt

be
at

to
m

on
ito

rt
he

pr
oc

es
s

•
H

ea
rt

be
at

im
pl

em
en

ta
tio

n
sh

ou
ld

ha
ve

al
l

th
e

re
qu

ir
ed

fa
ul

td
et

ec
tio

n
fe

at
ur

es
.

•
Im

pl
em

en
t

se
nd

/r
ec

ei
ve

/m
on

ito
ri

ng
fu

nc
-

tio
ns

on
di

ff
er

en
tp

ro
ce

ss
es

C
on

st
ra

in
ts

:L
an

gu
ag

es
ar

e
no

tl
im

ite
d.

Y
ou

ca
n

us
e

th
e

ex
is

tin
g

fr
am

ew
or

ks
th

at
of

fe
rf

au
lt

de
te

ct
A

PI
s

or
im

pl
em

en
tt

he
ta

ct
ic

fr
om

sc
ra

tc
h.

Ta
sk

D
es

cr
ip

tio
n:

im
pl

em
en

t
“t

hr
ea

d
Po

ol
in

g”
Ta

ct
ic

.
T

he
im

pl
em

en
ta

tio
n

is
m

in
im

um
pr

ot
ot

yp
in

g
of

th
e

ta
ct

ic
th

an
fu

ll
im

pl
em

en
ta

tio
n

of
a

sy
st

em
.

C
on

si
de

ra
tio

ns
:

•
Se

le
ct

a
do

m
ai

n

•
D

ev
el

op
a

pe
rf

or
m

an
ce

cr
iti

ca
l

ta
sk

(w
ith

m
in

im
um

fu
nc

tio
na

lit
y)

•
C

re
at

e
a

po
ol

of
th

re
ad

s
to

ac
co

m
pl

is
h

th
at

pe
rf

or
-

m
an

ce
cr

iti
ca

lt
as

k

•
Po

ol
si

ze
sh

ou
ld

be
10

th
re

ad
s.

•
Pl

ea
se

de
ve

lo
p

an
y

hy
po

th
et

ic
al

ta
sk

s.
E

xa
m

pl
es

co
ul

d
be

:“
pr

oc
es

si
ng

fil
es

”,
“C

ra
w

lin
g

w
eb

-c
on

te
nt

”
or

“g
en

er
at

in
g

pr
im

e
nu

m
be

rs
”.

•
M

ak
e

su
re

yo
ur

ta
sk

w
ou

ld
ta

ke
m

or
e

th
an

10
th

re
ad

s
to

ac
co

m
pl

is
h

it.

C
on

st
ra

in
ts

:
L

an
gu

ag
es

ar
e

no
tl

im
ite

d.
Y

ou
ca

n
us

e
th

e
ex

-
is

tin
g

fr
am

ew
or

ks
or

im
pl

em
en

tf
ro

m
sc

ra
tc

h.

Ta
sk

D
es

cr
ip

tio
n:

im
pl

em
en

t“
Se

cu
re

Se
ss

io
n

M
an

-
ag

em
en

t”
Ta

ct
ic

.
T

he
im

pl
em

en
ta

tio
n

is
m

in
im

um
pr

ot
ot

yp
in

g
of

th
e

ta
ct

ic
th

an
fu

ll
im

pl
em

en
ta

tio
n

of
a

sy
st

em
.

C
on

si
de

ra
tio

ns
:

•
Se

le
ct

a
do

m
ai

n

•
C

re
at

e
a

lig
ht

w
eb

ap
pl

ic
at

io
n.

•
im

pl
em

en
ts

ec
ur

e
se

ss
io

n
m

an
ag

em
en

tw
ith

m
oc

k-
ta

sk
s.

•
T

he
w

eb
ap

pl
ic

at
io

n
ch

ec
k

if
th

e
us

er
is

al
-

re
ad

y
au

th
en

tic
at

ed
an

d
is

au
th

or
iz

ed
to

do
re

qu
es

te
d

op
er

at
io

n,
an

d
th

en
pr

oc
ee

d
w

ith
th

e
op

er
at

io
n

on
be

ha
lf

on
th

e
us

er
.

•
H

av
e

at
le

as
tt

hr
ee

us
er

s,
an

d
on

e
ta

sk
.

O
ne

us
er

is
au

th
or

iz
ed

to
pe

rf
or

m
th

e
ta

sk
,o

ne
is

no
t,

an
d

th
e

la
st

on
e

is
no

ta
ut

he
nt

ic
at

ed
.

C
on

st
ra

in
ts

:L
an

gu
ag

es
ar

e
no

tl
im

ite
d.

Y
ou

ca
n

us
e

th
e

se
ss

io
n

m
an

ag
em

en
tA

PI
s

of
an

y
ex

is
tin

g
lib

ra
ry

.

31

4.3 Assigned Architecture-Prototyping Tasks

Table 4.1 shows the assigned tasks to the subjects. Each task includes an architecture-

prototyping to implement basic components of a software system, mock business compo-

nents with minimum functions but fully implement the tactic. For each of these tasks, we

provided generic considerations and constraints that partially define how the tactic should

be developed (yet, subjects had the flexibility to select their software type and technolo-

gies).

The following three tasks were performed by subject teams (8 pairs and 4 individuals).

Task#1: Fault detection using Heartbeat. In the first task, subjects were asked to de-

velop a dependable system that could detect the failures of a critical component using the

Heartbeat tactic. Subjects were required to implement all the classical elements of heart-

beat: (i) a (heartbeat sender) process that emits a periodic heartbeat message to indicate

its availability, (ii) a (heartbeat receiver) which checks the availability of the sender and

lastly (ii) a (heartbeat monitoring) process which imitates the recovery in case of detecting

a failure [25].

Task#2: Resource arbitration & performance enhancement using Pooling. In the sec-

ond task, the subjects were asked to develop the Thread Pooling tactic to improve the

performance of a system. The requirement is that the system shall have resources that are

expensive to create, execute and maintain. Thus, the functionality is broken down into

chunks of executable units which are added to the pool of threads.

Task#3: Web-based secure session management. The third task requires the develop-

ment of a Web application with at least two tasks in that can only be completed by different

groups of authenticated and authorized users. To keep track of authentication and autho-

rization data, subjects needed to implement the secure session management.

Due to the extensive cost of implementing a system, subjects were asked to (i) fully

implement the tactic, (ii) develop the functional features as needed, (iii) implement mock-

components for the remaining domain components and features.

These subjects were advised to perform the assigned tasks either in pairs or individually.

32

Furthermore, they could develop a tactic from scratch or choose an existing framework to

implement it. They had the flexibility of working in any application domain. We presumed

that such freedom of choice would allow our search engine to be tested against a variety of

scenarios, thereby avoiding biases due to underlying technologies and software domains.

The subjects used the search engines introduced in previous sub-section to find sample code

snippets for their architecture-prototyping tasks.

4.4 Hypothesis

In this experiment, we aim to evaluate the following hypothesis:

Hypothesis: ArchEngine users find more relevant architectural code snippets com-

pared to the users of Open Hub, Krugle, SourceForge and the GitHub search.

Manually evaluating all the search results is not feasible because it requires a lot of time

to be completed. In the context of Web search, individuals are unlikely to go deeper in the

results of a search [15]. Therefore, we asked the subjects to analyze only the ten topmost

results with respect to their correctness, i. e., if the returned code snippet implements the

tactic using the technology under consideration.

The metrics described in the next section are used to verify whether there is a statisti-

cally significant difference between ArchEngine and existing search engines.

4.5 Evaluation Metrics

In the context of traditional information retrieval, precision and recall are commonly used

for evaluating the performance of a system. However, for web-scale information retrieval

techniques such as source code search engines, recall is no longer a meaningful metric, as

many queries have thousands of relevant source files, and few developers will be interested

in reading all of them. Instead, Precision at k (P@k) is recognized as a useful metric and

33

widely used by researchers (e.g., P@10 or “Precision at 10” corresponds to the number of

relevant results on the first search results page). In our first experiment we report P@10.

However, reporting precision at K is not enough for evaluating search engines. This

metric fails to take into account the ranking of the results, i.e., whether the relevant source

files are placed in the topmost positions. Therefore, besides using the P@10 to evaluate the

performance of the search engines, we also calculated the Normalized Discounted Cumulative Gain

(NDCG)- a metric which considers not only the relevance of a returned code snippet but

also its order in the result set. These two metrics, P@10 and NDCG, are computed as

follows:

P@k =
|{relevant tactical files} ∩ {top K items in the results}|

k
(4.1)

Given that we analyze only the first ten results, the value of k is equals to 10 in the

equation. This formula shows the accuracy of the search engines, the next formula is used

to examine the power of search engines in ordering the results.

NDCG =
rel1 +

∑n
i=2

reli
log2(i)

NF
(4.2)

where reli in this equation is a binary function that indicates the correctness of the

result (it is equals to 1 only when the result is correct, otherwise it yields zero). Given that

we analyze only the first ten results, the value of n is equals to 10. The NF in Eq. 4.2 is a

normalization factor equals to the highest possible value achieved when all the results are

correct (i.e. NF = 1 + 1/log2(2) + 1/log2(3)... + 1/log2(10) ≈ 5.25449).

These two metrics are commonly used together to evaluate the results of web-based

search engines.

4.6 Results

Figure 4.1 shows our experiment findings after evaluating the top 10 answers returned by

our system and other search engines. As previously mentioned, we compared ArchEngine

34

with Koders, Krugle, and GitHub in terms of their P@10 and the NDCG. We use a Box

plot to verify how metrics are distributed for each tactic. In particular, it shows the highest

and lowest values, as well as the median and the quartiles. As shown in this figure, in all

the three tasks assigned to the subjects in the Software Architecture class, the results of

ArchEngine outperformed other search engines.

Regarding the P@10, we calculated the mean P@10 achieved for all 12 distinct queries

evaluated by the subjects for a given tactic. We can see that ArchEngine achieved a value

of 0.63, 0.8 and 0.72 for Heartbeat, Secure Session Management and Thread Pooling, re-

spectively. These three values outperformed the other search engines, being at least 15%

higher than the other code search engines. Specifically, Thread Pooling had an outstanding

performance with its P@10 43%, 49% and 59% higher than Koders, Krugle and GitHub,

respectively.

ArchEngine was also able to achieve a better search ranking, having the correct links

mostly appearing on top of the list. Figures 4.1(a), 4.1(c) and 4.1(e) depict the box plots

for all the three tactics. NDCG value for ArchEngine was less dispersed, which means

that ArchEngine had a consistently good performance for the evaluated tactics. Moreover,

ArchEngine had higher NDCG values in most of its query results. In the case of Heartbeat,

even though the median is almost the same for ArchEngine and Koders, we can see that the

Koders’ results are more dispersed. Koders’ box plot is taller than ArchEngine’s ranging

from 0.15 to 0.69, whereas most of ArchEngine’s results fall into the range of 0.4 to 0.8.

The results of this experiment provide a positive answer to our research hypothesis, and

clearly show the feasibility and accuracy of our search engine in extracting and returning

tactic related code for a given technical problem.

4.7 Threats to Validity

In this section. we discuss the threats to the validity of our work. as well as the ways we

attempted to mitigate them. These threats are classified into internal and external validity.

On one hand, the internal validity refers to what extent a research study reduced systematic

35

errors and biases in order to draw conclusions about cause-and-effect relationships from

the data collected. On the other hand, the external validity is concerned with the level to

which our work is generalizable.

4.7.1 Internal Validity

In respect to the design of ArchEngine, the greater threat lies in the fact that we used

manually collected code snippets to train our tactic-classifier (the component responsible

for identifying which source codes are architecturally-relevant). Thus, the identification

of architectural code snippets was dependent upon the knowledge of the individuals who

collected the training data. Therefore, it is possible that our search engine does not find

additional implementation of tactics which used an entirely different terminology from the

training data. Despite the challenge of solving this threat, we partially mitigated this risk

by carefully locating real examples of implementation of tactics through systematically

searching, browsing and analyzing, with the aid of expert’s opinion, the code snippets we

found in public source code repositories.

Regarding our experiment design to evaluate ArchEngine, the main threat came from

the participants’ perception on judging the correctness of a search result. To evaluate the

correctness attribute of a search result, the individual should have a solid knowledge on

the purpose of the tactic and have an overall understanding on how these tactics are im-

plemented in the source code. Thus, if an individual does not have a full understanding

on architectural tactics, as well as how to develop it using a given programming language

and/or framework, then it can lead to biased results. We mitigate this threat by using stu-

dents that were enrolled in a graduate Software Architecture course which were previously

taught about these architectural tactics with class diagrams and real examples on how to

apply those tactics in real systems. Moreover, since they were allowed to use any pro-

gramming language and underlying frameworks/APIs, this gave freedom to the students to

choose the technologies they were most comfortable with, so reducing the risk of wrong

analysis due to lack of technical background.

36

4.7.2 External Validity

The main threat to the external validity of this work is that our search engine was eval-

uated for three architectural tactics mostly implemented with the following technologies:

C#/ASP.net, Java, PHP and Python. However, since the results demonstrated a good per-

formance for these subsets of technologies that were randomly chosen by students, it gives

us confidence that the results would not be significantly different if the same experiments

were performed for other programming languages and frameworks.

Another threat to our work is that, despite we have already downloaded over 100,000

of projects, yet our local repository is smaller than existing ones. For example, Source-

Forge claims to host about 430,000 projects. However, our repository is continuously be-

ing increased through downloading and indexing the source codes from public source code

repositories available on the Web. Thus, despite the relative small size of our repository, it

is increasing over time and yet, we were still able to get satisfactory results.

37

(a) Average Precision results for Heartbeat (b) NDCG results for Heartbeat

(c) Average Precision results for Secure Session Man-
agement

(d) NDCG results for Secure Session Management

(e) Average Precision results for Thread Pooling (f) NDCG results for Thread Pooling

Figure 4.1: Comparison of ArchEngine’s performance with state-of-the-art code search
engines

38

Chapter 5

Conclusions

5.1 Conclusion

We created an approach called ArchEngine for finding highly relevant source files that

implement an architectural tactic within a given technical context. ArchEngine uses an

extensively large code base repository. In ArchEngine, we combined various data mining,

information retrieval, and indexing techniques with a light weight source code analysis

approach to retrieve tactical files adopted within a specific technical context or developed

using a particular technology. Furthermore, we developed a novel ranking algorithm to sort

the search results. We evaluated ArchEngine with 21 junior programmers and found with

strong statistical significance that it performed better than Koders (Open Hub), Krugle, and

the built-in search in GitHub repository. ArchEngine performed better in both precision at

10 and Normalized Discounted Cumulative Gain (NDCG).

5.2 Future Work

There are a number of areas where we can improve our system. First, our search engine

works on a limited number of tactics e.g 14, our improvement will be adding new more

tactics to the search engines. Second, the current prototype shows only code snippets for

the tactical file but not the neighbouring files that tactical file might interacts with, our

improvement would be representing the output results such as tactical files and their de-

pendencies in a suitable manner. Third, we have implemented a code downloader module

that only downloads code projects from GitHub repository. There are many other software

39

repositories which we do not support yet. These repositories may require a different imple-

mentation to successfully download code projects. Therefore, another possible expansion

of our project could be supporting more software repositories. Last but not the least, natural

language processing (NLP) may be useful in interpreting user’s intent from the query. We

may consider integration of NLP to our search module to better understand user’s query

intent.

40

Bibliography

[1] R. Baeza-Yates, B. Ribeiro-Neto, et al. Modern information retrieval, volume 463.
ACM press New York, 1999.

[2] S. Bajracharya, T. Ngo, E. Linstead, Y. Dou, P. Rigor, P. Baldi, and C. Lopes.
Sourcerer: a search engine for open source code supporting structure-based search. In
Companion to the 21st ACM SIGPLAN symposium on Object-oriented programming
systems, languages, and applications, pages 681–682. ACM, 2006.

[3] S. Bajracharya, J. Ossher, and C. Lopes. Sourcerer: An internet-scale software repos-
itory. In Proceedings of the 2009 ICSE Workshop on Search-Driven Development-
Users, Infrastructure, Tools and Evaluation, pages 1–4. IEEE Computer Society,
2009.

[4] L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice. Adison
Wesley, 2003.

[5] A. Blum, A. Kalai, and J. Langford. Beating the hold-out: Bounds for k-fold and pro-
gressive cross-validation. In Proceedings of the twelfth annual conference on Com-
putational learning theory, pages 203–208. ACM, 1999.

[6] S. Chatterjee, S. Juvekar, and K. Sen. Sniff: A search engine for java using free-
form queries. In Fundamental Approaches to Software Engineering, pages 385–400.
Springer, 2009.

[7] P. C. Clements. Software architecture in practice. PhD thesis, Software Engineering
Institute, 2002.

[8] D. Cutting. Apache lucene, Feb. 2005.

[9] S. G. Eick, T. L. Graves, A. F. Karr, et al. A. mockus. does code decay? assess-
ing the evidence from change management data. In IEEETransactions onSoftware
Engineering. Citeseer.

41

[10] R. Hanmer. Patterns for fault tolerant software. John Wiley & Sons, 2013.

[11] O. Hummel, W. Janjic, and C. Atkinson. Code conjurer: Pulling reusable software
out of thin air. Software, IEEE, 25(5):45–52, 2008.

[12] J. Kim, S. Lee, S.-w. Hwang, and S. Kim. Towards an intelligent code search engine.
In Association for the Advancement of Artificial Intelligence (AAAI), 2010.

[13] N. Lester, J. Zobel, and H. Williams. Efficient online index maintenance for contigu-
ous inverted lists. Information processing & management, 42(4):916–933, 2006.

[14] D. Mandelin, L. Xu, R. Bodı́k, and D. Kimelman. Jungloid mining: helping to navi-
gate the api jungle. ACM SIGPLAN Notices, 40(6):48–61, 2005.

[15] C. D. Manning, P. Raghavan, H. Schütze, et al. Introduction to information retrieval,
volume 1. Cambridge university press Cambridge, 2008.

[16] M. McCandless, E. Hatcher, and O. Gospodnetic. Lucene in Action, Second Edition:
Covers Apache Lucene 3.0. Manning Publications Co., Greenwich, CT, USA, 2010.

[17] C. McMillan, M. Grechanik, D. Poshyvanyk, C. Fu, and Q. Xie. Exemplar: A source
code search engine for finding highly relevant applications. Software Engineering,
IEEE Transactions on, 38(5):1069–1087, 2012.

[18] C. McMillan, M. Grechanik, D. Poshyvanyk, Q. Xie, and C. Fu. Portfolio: find-
ing relevant functions and their usage. In Software Engineering (ICSE), 2011 33rd
International Conference on, pages 111–120. IEEE, 2011.

[19] C. McMillan, N. Hariri, D. Poshyvanyk, J. Cleland-Huang, and B. Mobasher. Rec-
ommending source code for use in rapid software prototypes. In Proceedings of the
34th International Conference on Software Engineering, pages 848–858. IEEE Press,
2012.

[20] C. Mcmillan, D. Poshyvanyk, M. Grechanik, Q. Xie, and C. Fu. Portfolio: Searching
for relevant functions and their usages in millions of lines of code. ACM Transactions
on Software Engineering and Methodology (TOSEM), 22(4):37, 2013.

[21] J. C.-H. Mehdi Mirakhorli. Detecting, tracing, and monitoring architectural tactics in
code. IEEE Trans. Software Eng., 2015.

[22] M. Mirakhorli. Why should software architects write code?, Feb. 2016.

42

[23] M. Mirakhorli and J. Cleland-Huang. A decision-centric approach for tracing relia-
bility concerns in embedded software systems. In Proceedings of the Workshop on
Embedded Software Reliability (ESR), held at ISSRE10, 2010.

[24] M. Mirakhorli and J. Cleland-Huang. Tracing architectural concerns in high assurance
systems (nier track). In Proceedings of the 33rd International Conference on Software
Engineering, pages 908–911. ACM, 2011.

[25] M. Mirakhorli and J. Cleland-Huang. Using tactic traceability information models
to reduce the risk of architectural degradation during system maintenance. In Pro-
ceedings of the 2011 27th IEEE International Conference on Software Maintenance,
ICSM ’11, pages 123–132, Washington, DC, USA, 2011. IEEE Computer Society.

[26] M. Mirakhorli, A. Fakhry, A. Grechko, M. Wieloch, and J. Cleland-Huang. Archie:
A tool for detecting, monitoring, and preserving architecturally significant code. In
Proceedings of the 22Nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering, pages 739–742. ACM, 2014.

[27] M. Mirakhorli, A. Fakhry, A. Grechko, M. Wieloch, and J. Cleland-Huang. Archie:
A tool for detecting, monitoring, and preserving architecturally significant code. In
CM SIGSOFT International Symposium on the Foundations of Software Engineering
(FSE 2014), 2014.

[28] M. Mirakhorli, P. Mäder, and J. Cleland-Huang. Variability points and design pattern
usage in architectural tactics. In Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software Engineering, page 52. ACM, 2012.

[29] M. Mirakhorli, P. Mäder, and J. Cleland-Huang. Variability points and design pattern
usage in architectural tactics. In Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software Engineering, FSE ’12, pages 52:1–52:11.
ACM, 2012.

[30] M. Mirakhorli, Y. Shin, J. Cleland-Huang, and M. Cinar. A tactic-centric approach for
automating traceability of quality concerns. In Proceedings of the 34th International
Conference on Software Engineering, pages 639–649. IEEE Press, 2012.

[31] M. Mirakhorli, Y. Shin, J. Cleland-Huang, and M. Cinar. A tactic centric approach for
automating traceability of quality concerns. In International Conference on Software
Engineering, ICSE (1), 2012.

43

[32] M. Mirakhorli, Y. Shin, J. Cleland-Huang, and M. Cinar. A tactic-centric approach for
automating traceability of quality concerns. In Proceedings of the 2012 International
Conference on Software Engineering, ICSE 2012, pages 639–649, Piscataway, NJ,
USA, 2012. IEEE Press.

[33] O. Panchenko, H. Plattner, and A. Zeier. What do developers search for in source code
and why. In Proceedings of the 3rd International Workshop on Search-Driven Devel-
opment: Users, Infrastructure, Tools, and Evaluation, pages 33–36. ACM, 2011.

[34] D. E. Perry and A. L. Wolf. Foundations for the study of software architecture. ACM
SIGSOFT Software Engineering Notes, 17(4):40–52, 1992.

[35] G. Salton. Automatic Text Processing: The Transformation, Analysis, and Retrieval
of Information by Computer. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1989.

[36] C. Seo, S.-W. Lee, and H.-J. Kim. An efficient inverted index technique for xml
documents using rdbms. Information and Software Technology, 45(1):11–22, 2003.

[37] S. E. Sim, C. L. Clarke, and R. C. Holt. Archetypal source code searches: A survey of
software developers and maintainers. In Program Comprehension, 1998. IWPC’98.
Proceedings., 6th International Workshop on, pages 180–187. IEEE, 1998.

[38] I. University of California. The sourcerer project. sourcerer.ics.uci.edu.

[39] J. Van Gurp, S. Brinkkemper, and J. Bosch. Design preservation over subsequent
releases of a software product: a case study of baan erp. Journal of Software Mainte-
nance and Evolution: Research and Practice, 17(4):277–306, 2005.

[40] P. Willett. The porter stemming algorithm: then and now. Program, 40(3):219–223,
2006.

[41] Y. Ye and G. Fischer. Supporting reuse by delivering task-relevant and personalized
information. In Proceedings of the 24th international conference on Software engi-
neering, pages 513–523. ACM, 2002.

44

Appendix A

ArchEngine Demo

Figure A.1: Developer prompt Tactic,Language, and Technical problem to the ArchEngine

45

Figure A.2: A snapshot from the search result for query in figure A.1

Figure A.3: The developer click on full code button for on of the code snippets in figure
A.2

	A Search Engine for Finding and Reusing Architecturally Significant Code
	Recommended Citation

	tmp.1461166441.pdf.0pnoW

