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Abstract

Dynamics and Power Generation Potential from a Tethered Kite Moving

in a Horizontal Flightpath

Glenn Romo Gavi

Supervising Professor: Dr. Mario W. Gomes

Tethered-wing power systems are a viable possibility for collecting energy from
stronger, more consistent winds found in the upper regions of the atmosphere where
conventional wind turbines are incapable of reaching. To date, all of the tethered-
wing systems fly with the tether oriented down-wind of the ground attachment point.
Examined here are the dynamics and performance of a novel system where the tether
is oriented both upwind and downwind of the ground attachment point during normal
operation of the device. Certain prototypes built by Makani and Ampyx Power are
considered to have motions analogous to the motions of the blade tips on conventional
horizontal-axis wind turbines. If true, this system has motions that are analogous to
conventional vertical-axis wind turbines. The system has a ground-based generator
which is mechanical coupled to the aircraft and energy is generated on the reel-out
phase of each cycle while a smaller amount of energy is consumed during the reel-in
phase of each cycle. A simple model was developed which captures the dominant
dynamics of this system and shows, via simulation, that the proposed system is viable
and capable of stable and unstable periodic motions with a simulated closed-loop
tether tension controller or a simple open loop reel-rate controller. In addition, it is
capable of motions which produce net positive power. The small system examined,
where parameter optimization was not performed, predicts an average cycle power of
more than 500 watts in a 10 m/s wind.
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θ̇ îĵ-Plane Tether Angular Velocity
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Chapter 1

Introduction

1.1 Motivation

Energy provides a certain standard of living that society is eager to keep. The sources

of energy currently maintaining this standard (Coal, Petroleum, Natural Gas, and

Nuclear Materials) are detrimental to the biosphere and are not sustainable in practice

nor supply. In 2014, the U.S. Energy Information Administration released projections

predicting how the country will satisfy its energy demand through 2040. Renewable

energies and biofuels contributed 9% of total U.S. energy demand in 2014 and will

only increase 3% by 2040 [11]. In order to facilitate a shift of demand to renewable

energies, multiple systems must be created that are applicable to different locations

and environments (e.g. urban, off-shore, climates). The goal should be to diversify

the energy collection portfolio with multiple large scale production sites [2].

A major supplier of renewable energy, Wind Energy, is commercially captured by

modern wind turbines with onshore and offshore sites for turbine arrays. Some of the

largest and highest capacity wind turbines are located offshore because of steadier

winds [16]. For example, the AMSC SeaTitan is capable of producing 10MW at max

capacity and has a operating wind speed range from 4-30 m/s.

Modern wind turbine rotors have a maximum energy extraction due to hub height,
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geographic location, rotor diameter, wind behavior, and turbine mechanical proper-

ties. However, there is a theoretical maximum called Betz Limit. Extracting energy

from the wind will cause the downstream velocity of the wind to decrease compared

to the upstream velocity since the wind is transferring kinetic energy to the turbine.

The downwind velocity must also stay >0 m/s because the air must pass through the

turbine and never become stagnant. Therefore, Betz Limit is an estimated maximum

of energy extraction from a wind system due to the necessary upwind and down-

wind velocity changes. Betz determined 1/3 of the original velocity must remain

downwind of the system, and that rotor efficiency can only gather 59.3% of the total

energy present in the wind. Using the equation for kinetic energy and mass flow rate,

the energy available in the wind is found in Eq. (1.1).

P =
1

2
ṁV 2

∞ =
1

2
ρAV 3

∞ P̄ ≈ 1

2
ρV 3
∞ (1.1)

where P is the total power of the wind, ṁ is the mass flow rate, ρ is the density of

air, A is the cross-sectional area, P̄ is the energy density, and Vw is the velocity of

the wind.

For the system proposed in this paper, Betz Limit still governs, however, cross-

wind motion systems are slightly different because they only remove a fraction of the

total energy in one pass and may pass through the same cross-sectional area again

depending on altitude of the kite. This is possible since the crosswind area profiles

are not circular and the path through the blades of are better represented as a vertical

axis wind turbine.

With a maximum energy extraction efficiency available for all wind systems a

standard called the capacity factor (CF) is used to compare wind energy systems. CFs

are ratios between actual energy extracted from the wind and the energy extracted

from the wind if the system performed at full capacity during the same time period.

Modern wind turbines will have a CF of 20-40% [1]. The low capacity factors are due
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to ambient wind speeds outside the range of operating conditions, typically higher

than the cutoff speed for modern wind turbines or energy dissipation by tilting the

blades to reduce damage on the unit.

Currently, modern systems produce energy with low CFs, and there is a high de-

mand to improve the performance. The increased performance in CF might therefore

be found in High Altitude Wind energy systems. High altitude winds are more con-

sistent and are hypothesized to increase CFs. Canale, whom performed a simulation

and experimental tests of a high-altitude tethered kite system, believes these systems

might double the CFs of current wind systems [10].

Therefore, crosswind kite systems designed with kite-tether combinations have a

high potential to increase the performance of wind energy systems. It is estimated

they will require 90% less material compared to modern wind turbines [13], they

are not restricted to the same height limitations of roughly 250m, and they will

perform in a wider range of wind speeds where modern turbines have a high cut-in

and low cut-out wind speed. The proposed kite system will reach heights >1000m

and will hopefully generate higher amounts of energy compared to its counterparts

while reducing material costs [13].

1.2 System Description

The proposed system is unique because rather than creating a system which pumps

back and forth with changing horizontal direction and altitude commonly found in

current ground generation systems, the proposed system will rotate around an an-

chored point, where a drum houses a tether, while keeping a relatively constant alti-

tude. Eventually, the system will adapt to variable changes in wind vectors and array

installations of these smaller systems will be possible. Figure 1.1 depicts the basic

setup and concept flightpath with increasing tether length downwind of the anchor

and decreasing tether length as the wing flies upwind of the anchor.
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Fig. 1.1: Isometric schematic of our variable tether-length airborne wind energy system which moves
in a horizontal flight path with the tether both upwind and downwind of the base station.
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Gravity acts in the negative Z-direction and the simulated wind travels in the

positive X-direction. The XY-plane is tangential to the surface of the earth at the

location of the anchor. As the wing begins to fly upwind of the anchor point, tether

tension is increased by reeling in the aircraft and, therefore, changing the apparent

velocity vector to keep the wing in flight.

A controller will govern the reel-in and reel-out rates of the tether along with the

range of angles for both phases shown in Fig. 1.2. The flightpath projection of a

single pass (wave) onto the XY-plane of the system then is an asymmetrical, oblong

circle. The plane of the flightpath likely will not lie on the tangential plane to the

surface at the anchor point but will rather have an adjusted planar angle due to the

reel-in and reel-out applied tension.

Y

X

V∞
θin

θout

L

D
T

L

D

T

L

D

T

LD

T

Reel OutReel In

Fig. 1.2: Phase Diagram of reel-in region for tether retraction and reel-out for tether release
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Fig. 1.3: Conventional horizontal axis wind turbine (HAWT) configuration[left] and a down-wind
tethered-wing airborne wind energy system. Note that the swept area of the tip of the HAWT
system is a scaled down version of the swept area of the airborne wind energy system (both annular
regions).

Modern wind turbines typically use an internally located generator to produce

energy from wing blades rotating in front of the main hub. Figure 1.3 shows a

Horizontal Axis Wind Turbine’s (HAWTs) front face with counter-clockwise rotating

blades. Current Airborne Wind Energy (AWE) systems are analogous to the tip

of a single HAWT blade rotating in the same counter-clockwise motion with mini-

generators located on-board the aircraft. The remaining wind turbine materials are

removed and reduced to a single aircraft and tether in AWE systems. The shaded,

annular region is the effective swept area of the AWE system displayed.

Tethered-wing systems can generate energy from the wind with generators located

on-board the aircraft or with generators located on the ground. The AWE system
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described in Fig. 1.3 is an on-board generating system and the anchoring tether is

simultaneously an electrically conductive line to transmit power from the aircraft to

the ground. As the aircraft sweeps around in the same fashion as the tip of a modern

wind turbine blade, wind passes through mini-turbine blades mounted on the aircraft

similarly to propeller planes. This motion creates rotations and torques on internal

generators to produce energy on-board the aircraft to be transferred along the tether.

Airborne wind energy systems generating power without the use of on-board tur-

bines create energy by mechanical coupling a ground station and the aircraft. The

ultimate result is a pumping motion on the tether from small or large wind force

on the aircraft (alternately lengthening and shortening the tether). As the aircraft

travels further away from the anchoring point, a drum unwinds while releasing cable

to increase tether length. The unwinding of the drum during reel-out is the positive

energy generation action taken to harvest wind energy. During reel-in, a motor is

used to wind the tether back onto the drum while using energy and is referred to as

the negative energy generation action. The goal is to reduce the wind force acting on

the aircraft during reel-in and increase the wind force on the aircraft during reel-out

to obtain a positive net energy generation.

As discussed, on-board generation systems are analogous to HAWT systems. Mak-

ing a similar argument, the proposed system is analogous to a Vertical Axis Wind

Turbine (VAWT) system. As shown in Fig. 1.4, the wing of the AWE system is

essentially a portion of a single VAWT blade with a circular, horizontal trajectory.

Removing the majority of the VAWT and replacing it with a tether and anchor point

will provide similar energy generation dynamics and effective cross sectional area to

that of a portion of a VAWT blade.

This AWE system was chosen because of the abilities to harvest energy from air

currents found in the upper regions of the atmosphere. These currents are stronger

and more consistent which will lead to increased capacity factors for wind energy
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Fig. 1.4: Conventional vertical axis wind turbine (VAWT) configuration [bottom left] with a top
view of the path of the blade sections furthest from the axis of rotation shown in the top left of the
figure. A schematic of an analog tethered-wing airborne wind energy system is shown on the bottom
right, with the path of the wing shown in the top right of the figure.



10

harvesting devices [21]. Not only are the upper air currents a benefit in switching

to AWE systems over conventional wind turbines, AWE systems reduce the amount

of materials by 90% [13], have a larger availability for site installation, including

remote locations, and increase the range of cut-in and cut-out wind speeds for energy

production. Drawbacks include the increase in complexity for steady flight operation

and competing airspace limitations.

The proposed system also is not without competition. Current prototypes from

both on-board and ground-based systems have been developed by several companies.

Consequently, there is an inherent disadvantage in pumping AWE systems versus on-

board generation since it is necessary to consume energy during the tether retraction

phase, but, as Loyd discusses in [14], systems with on-board turbines and those with

ground generators are capable of producing comparable amount of power in identical

wind conditions. This system will have several advantages over current prototypes:

1) The tether will not transfer energy and a high-voltage line from the ground to

the aircraft is unnecessary; 2) Mechanical subsystems are not needed to reduce lift

force during tether retraction; 3) There is a decrease in tether tension during tether

retraction because of kite orientation with the incoming wind.

1.3 Research Goals

1.3.1 Numerical Two-Dimensional Model

The primary goal is to develop a model to numerically integrate dynamic equations to

simulate the horizontal flightpath of the proposed variable-tethered kite. The model

will calculate energy generated by unraveling a tether as the wind force pushes the kite

away from the ground station, and energy consumed while the wind assists with the

reset (i.e. reel-in). The average net power production of the system is positive if the

system generates more energy during the reel-out phase of the kite than it uses for the
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reel-in phase. A controller, the ODE event trigger, will monitor the proposed system

by regulating reel-in and reel-out rates by determining when to switch reel-phases.

Net power is determined for a single cycle when the system operates at steady state.

The model will simulate the dynamic behavior of the system as the wing interacts

with the wind that is traveling horizontally across the face of the flightpath, as shown

in Fig. 1.2. A motor will retract the tether once the lift from the air stream is

no longer sufficient to keep the kite in flight, therefore a small amount of generated

energy is consumed during operation. This model is intended to analyze the flight

path, kite forces, and net average cycle power production from reel-out and reel-in

phases of the kite.

1.3.2 Steady, Periodic Motion and Cycle Power Production

Producing energy with a turbine is to design or discover environments that foster

periodic motion. This simulation will be a tool to model the dynamic behaviors of

the wing and tether combination. It will be used to determine which parameters

lead to periodic motions that result in net positive energy generation. Solutions will

consist of repeating patterns that consistently generate energy and will keep the tether

in constant tension. The net average cycle power will be calculated for each viable

solution found.

1.4 Literature Review

1.4.1 Energy Potential

Harvesting energy from the wind is a well-known concept. Wind mills and simple

mechanical turbines are commonly distributed pieces of technology. A less-known

approach becoming more popular today uses kites in high altitudes as a method to

extract energy from the wind. There are several ’High Altitude Wind Kite’ designs
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that generate electricity with turbine rotation. These systems can passively use the

speed of the wind, airbone wind energy systems (AWEs), or use crosswind velocities

that are faster.

Crosswinds occur when an airfoil placed inside a stream of air begins to cross

perpendicular to the direction of the air-stream flow. A new velocity vector is created

that describes the magnitude and direction of the wind the kite is experiencing while

flying through the air stream. The apparent velocity vector (
⇀

V A) is found from the

difference of the vectors of the air stream (
⇀

V ∞) and the wing velocity (
⇀

V kite), shown

in Eq. (1.2).

⇀

V A =
⇀

V ∞ −
⇀

V kite (1.2)

Modern wind turbine designs are fabricated to take advantage of crosswinds be-

cause of the rotated tips on the ends of each blade. The tip of the blades are twisted

to maximize lift in the new ‘apparent wind direction’ instead of the plane of motion of

the air stream. Using cross-wind velocities will provide much higher wind velocities,

thus, creating potential to generate larger amounts of energy with similar swept areas

by a crosswind system.

Loyd, in [14], analyzed the potential energy gains from crosswind velocities by an-

alytically modeling several systems in a downwind, tethered kite system. Figure 1.5a

contains Loyd’s diagrams depicting the flight pattern and orientation of a tethered

kite anchored to a ground station.

The air stream flows in the positive x-direction and crosswind occurs as the kite

moves orthogonal to the air stream flow. Figure 1.5b represents the forces placed

on the kite and the characteristics of the air stream at the kite.As the kite flows

through crosswinds, lift and drag vectors are created opposite the tether vector from

the apparent wind velocity (
⇀

V A) mentioned above. Achieving higher lift to drag ratios

will benefit power production by the square of the ratio [14]. As the lift to drag ratio
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(a) (b)

Fig. 1.5: Orbiting Pattern for system outlined in [14] to have an tethered kite downwind of a base
stating and the velocities or forces associated with the kite.

doubles, the power produced will quadruple. According to the analysis of a C-5A

aircraft, a single system comprised of a plane, ground station, and crosswind motion

with a lift to drag ratio of 20 would produce three times more power than other wind

turbines of that time, with the potential to reach twenty times the power production

with newer technology [14].

Yet where in the atmosphere should these systems be placed? According to Tiele-

man in [21], above the atmospheric boundary layer which separates inconsistent winds

and more reliable, stronger air streams. This boundary is usually found above 1300m

taking into consideration the landscape and regional wind pattern. The altitude of

the layer will occasionally decrease during the day while strong winds are prevalent,

but will rise again because they are not consistent at night. Therefore, depending

ont he time of the day, the optimal system might change altitude but it is expected

to have energy generation year round. Another study completed in Southeastern Eu-

rope by Marko Ban et al., in [8], found a large amount of the region is classified as

potential deployment locations for kite systems. Maps are provided in the paper, but

the largest available regions are offshore installations and several on-land locations

away from airports, railways, and regional roads.

The study found the energy density above the atmospheric boundary layer and
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below 2500m to average 350 W/m2. As a reference, the energy density from the sun is

referenced around 1000 W/m2 on Earth’s surface during a cloudless day while current

marketable solar panels have efficiencies around 12-20% with high end caps around

30-35%. [16]. The studies altitude cap of 2500m is introduced to decrease interference

with low flying aircraft and FAA regulations.

1.4.2 Kite Systems and Controllers

Fig. 1.6: Pumping Kite System in [15] with release
and retraction in the same plane while maintaining
stable flight control.

Several kite system prototypes are avail-

able today and researchers are maxi-

mizing the energy generation from these

systems to have commercially compet-

itive applications. The energy genera-

tion mechanisms vary between on-board

generation and mechanical coupling for

ground generation. The mechanical en-

ergy transformations also vary with each

system: downwind rotating kites, sta-

tionary flight with rotating turbines,

tether tension from crosswind flight-paths, or tether tension from reel-in and reel-

out pumping.

Tether tension tended to dominate research for alternative wind energy systems

in the late 1990s and early 2000s. Fuel savings were analyzed for tugging ships and

rigs with kite systems, and the concept of pumping mills/laddermills was rationalized.

Pumping mills are kites attached at intervals along the length of a tether and have the

appearance of a ladder which induce a pumping effect by increasing or decreasing lift

with variable angles of attack. A simplified diagram is provided in Fig. 1.6 containing

only one kite. The tether unwinds a drum as it is drawn out with the wind until a
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(a) (b)

Fig. 1.7: Physical testing system to verify kite behavior from [10] and the multi-kite proposed
carousel structure for large scale energy generation.

motor rewinds the drum at the end of the cycle.

Another system, KiteGen, was developed by Canale et al. to create rotational

motion of a carousel using multiple kites. Moment forces are induced by the tug of

the kites as they travel through a ’traction’ phase, shown in Fig. 1.7b. As the kites

reach a point where traction counters the desired rotation, they are placed into a

neutral ‘drag’ phase. With data obtained from the experiment of a single kite, shown

in Fig. 1.7a, feasibility to control two tether lines directing the kite between drag

and traction phases was achieved [10]. Discussed in the paper were estimates drawn

from data collected in the simulation for a full carousel unit. Potentially, 450kWs of

generation is capable from a single kite with possible gains up to 1GW with increased

kites and larger carousel. The advantage of this system is a large decrease in land

mass and an increase in nominal power. Variable wind speeds were used in the

simulation as linear functions of height, shown in Eq. (1.3) [10]. Capacity factor of

the proposed carousel was also shown to double that of a system similar in energy

output capabilities. The capacity factor of KiteGen was found by comparing power

curves of KiteGen and a 2MW, 90m diameter wind turbine along with wind speed

data of locations throughout Italy.
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(a) (b)

Fig. 1.8: Theorized system from [13] to provide pumping action similar to other downwind, tethered
kite designs but with a separate tether for energy generation directly beneath the kite. Second
system contains two kites working in unison to reduce power loss during tether retraction.

W0(z) =


0.04z + 8 z ≤ 100

0.0172(z − 100) + 12 z > 100

(1.3)

Based off the concept of Loyd, Goldstein proposed a system with a circular flight-

path but instead placed the energy generation on the ground, as shown in Fig. 1.8a.

The kite is connected to a separate tether wrapped around a drum underneath the

flightpath. As the kite gains height, the tether is drawn out and unwinds the drum,

generating energy. As the kite loses height, the motors of the drum retract the line,

consuming energy. A second concept placed two kites with flight-paths at 180◦ offset,

the tether connected the two kites together but would loop around a pulley on the

ground, shown in Fig. 1.8b. As one kite gained altitude, the other would lose height

and energy loss due to the motor rewind would not be necessary. The power gener-

ation from the system, through numerical analysis, is comparable to a modern wind

turbine and would cost a tenth of the amount in material costs [13].

Besides flying kites to create tension in a tether and using the pull to generate

energy, kites are flown in steady state operation in conjunction with crosswind ve-

locities. Modeling and experiments conducted at the University of California, Santa
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Barbara, with the same kite design as Canale’s carousel, Fagiano managed a stable

flight pattern with a controller and two tether lines, Fig. 1.9. The infinity pattern

reduces tether tangling and yields the greatest traction forces [12]. Figure 1.9 depicts

a loose, steady state operation for the kite with two motor controllers to determine

direction. Finer steady state operation is possible, but requires more energy from

the motors and reduces possible total energy production. Another advantage to the

experimental controller, which is based on angle and height of the kite, is the ability

to achieve stable infinity, curve flightpath without wind speed or the calculating the

apparent wind velocity vector.

Fig. 1.9: University of California, Santa Barbara,
flightpath of kite model to produce infinity shaped
pattern [12]

Most research thus far has used

steady winds because of the expecta-

tion that the systems will operate in

the steady air stream above the atmo-

spheric boundary layer. However, test-

ing takes place below this layer and

wind gusts, changes in steady air stream

state, or zero wind conditions are possi-

ble. Lozano and other researchers from

Gipsa-Lab in France developed a con-

troller to monitor wind variations and

manipulate the tethered kite to manage the new conditions [12]. The system models

a typical pumping kite but with a rigid wing and is similar to the design for Ampyx

Power discussed under Section 1.4.4. The experimental values of perturbations in

response to wind changes were captured using motion capture systems and image

processing.
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1.4.3 Tether Dynamics

High altitude wind kites use one or more tethers to anchor the system to the ground

and, depending on the system, may use the cable to transfer electrical energy into

a storage device. Argatov sought to analyze the energy loss and dampering of the

system from the dynamics of a dual-line tether model. Figure 1.10a shows the di-

mensions of the tether in reference to an origin and rotational coordinate system.

The tether lines bow due to weight causing the kite to vary in location than if the

tether was perfectly straight. The change in location would result in lower altitude

and shorter radial distance from the base station. The tether will also change the

angle of attack based on the angle of tether attachment (ω) on the rigid wing, shown

in Eq. (1.4) which can be modified with a simple bridle system.

α = α0 − ω + ∆α (1.4)

The base angle of attack is α0 and ∆α is the additional angle between the base

angle and the apparent wind vector. Simplifying the formulas with an approximation

assuming the tether is straight, therefore assuming ω � 1, then the drag is decreased

by a negligible percentage from the actual value [7] and the simplified model is as-

sumed an accurate solution.

The induced drag on the tether will significantly affect the system where the tether

is traveling faster (i.e. at the point connected to the kite) and not where the tether

is relatively stationary at the base. After numerical analysis, Argatov predicted the

tether would cause the capacity factor of the kite system to decrease dramatically as

the tether length increased [7]. Figure 1.10b contains a graph depicting the results

from the analysis. The system analyzed saw a loss of 20% mechanical output when

increasing the length of the tether from 400m to 800m.

Figure 1.10a shows the possible catenary orientation for a tethered wing. To
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(a) (b)

Fig. 1.10: Tether vector diagram from [7] showing tether catenary behavior and power reduction
from increasing tether drag

determine the catenary behavior in the tether, force vectors are calculated along the

line, without over-complicating the analysis, by breaking the tether into smaller line

segments along the length. By reducing the length of the line segments to infinitely

small lengths would result in a perfect representation of the catenary orientation.

Another method is to visualize the tether as a length of links (similar to bike chains)

pinned together at joints and hinging to accommodate and analyze catenary behavior.

Milan Milutinovic analyzed a similar tethered system as a straight line without

catenary behavior by using smaller segments along the cable [17]. Beginning with a

simple model with one segment and zero tension, the cord length was compared to the

stretched cord length to determine stretch speed to determine spring and damping

forces in the cable. For the simple model, the weight is assumed to sit at both ends

of the cable rather than distributed along the cable length.

From the simple rope model, Milutinovic modeled a tether with multi-mass dy-

namics and rested the mass of each segment at the connection point between each

segment. Segment 1 started at the airborne unit and increased segment numbers
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moved down the cable towards the winch. Each segment was equidistant from the

previous segment and contained the same natural length except for the kth segment

closest to the winch. This segment is different because it might not be fully released

by the winch.

Using the multi-mass rope model, tether drag is calculated with a linear wind pro-

file with respect to altitude and with the equation for aerodynamic drag [17]. Drag

force components from the oncoming wind and the cable segment vector provides a

force curve along the segment length and total drag force for the segment is found by

integrating this curve. Milutinovic ultimately determined that the catenary behavior

is accurately modeled with the multi-mass system but the drag is accurately deter-

mined using the simple rope method when considering simplicity and computational

power.

1.4.4 Industrial Prototypes

Fig. 1.11: Altaeros Energies 35ft Diameter Proto-
type [3]

Four companies creating prototypes are

outlined below. The four encompass the

range of systems used by industry to har-

vest high-altitude wind energy. Altaeros

and Sky Wind Power demonstrate static-

altitude operation and passively generate

wind energy on-board the kite. Makani

and Ampyx were chosen based on rel-

evance to Loyd’s concept of dynamic-

altitude on-board and ground station en-

ergy generation.

Altaeros Energies, shown in Fig. 1.11, uses a lighter-than-air vehicle to place a

wind turbine directly into the motion of the air stream at higher altitudes than current



21

wind turbines. The system is constructed from an inflatable balloon structure filled

with gases that are lighter-than-air to have buoyancy forces lift the system into higher

altitudes [3]. Fixed airfoils are placed on the top and sides for directional stability

and wires connected to three points on the lower, frontal face of the vehicle guide the

system to achieve steady flight. Steady state is achieved through use of a complex

controller algorithm and maneuvering of the three guide-wires. The turbine placed

at the center of the vehicle generates energy from the incoming flow of the air stream

and transfers the energy down one of the conductive lines that tether the system to a

ground station. The turbine, however, does not take advantage of crosswind motion

and is limited by the speeds of upper air currents. If deployed to higher altitude, the

system can achieve greater energy generation. The system also has the potential to

scale to larger dimensions but there must be a balance to keep the buoyancy force

greater than the weight of the system.

Fig. 1.12: Sky Wind Power Prototype [5]

Sky Wind Power is a stationary unit

placed at a specific height to passively

use the wind traveling through the four

rotary units, as shown in Fig. [5] to gen-

erate energy passed down through a high

voltage line. Each rotary unit produces

lift for the unit to keep the Flying Electric Generator (FEG) at the designated height,

and the excess energy is transferred into electrical energy. According to Roberts and

contributing authors, the capacity factor of a single FEG averages 80% with factors

as high as 90% [9]. Current prototypes demonstrate feasibility with power outputs

of 6-15kW. Projections to scale the prototype from a 10ft rotor diameter to 35 ft.

would increase power output to 240kW. Power output is calculated using an 18.4 m/s

wind speed while the operating height of the unit will reach an altitude 15,000 ft.

(4600m). Arrays are possible with the option to lower kites to perform maintenance
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and relocate based on direction of seasonal wind patterns.

Fig. 1.13: Makani Power Operating Height for
downwind tethered kite prototype [4]

Makani Power, a company now

owned by Google X, and Ampyx Power,

founded by Bas Lansdorp, first created

tethered kite systems to produce infinity-

curve flight-paths. Makani has since

shifted to circular patterns mimicking

the paths of Loyd’s system in Fig. 1.5a

using a tethered kite containing on-board

turbines. The system uses crosswind ve-

locities, as outlined in [14], and delivers energy to a ground-based storage device by

means of a conductive tether line. Currently, the system is not yet available on the

market. The average operating ’hub height’ for the Makani Power tethered system is

150% higher than typical land-based wind turbine systems, as shown in Fig. 1.13.

Capacity factor of the system coincides with research and is higher than competing

wind turbines. Makani’s goal is to reach higher altitude winds, generate more power

from these winds, and considerably increase the deployable locations compared to

modern wind turbines [4]. The increase in deployable locations is due to the avail-

ability of high altitude winds around the globe. Winds below 250m that are sufficient

for modern wind turbines are not common and are non-existent in many regions.

Ampyx Power, found in Fig. 1.14, uses mechanical coupling to transfer the kite

lift forces into a ground-based turbine where energy is produced on the ground. A

rigid wing is launched downwind of the air stream and traces infinity-curve patterns

within crosswind velocities. The tether reels-out and pulls on a drum housing the

tether to produce energy on the ground until reaching the maximum system tether

length [19]. After maximum length is reached, the angle of attack is reduced to reduce

lift, thereby reducing power consumption during reel-in, and allowing the wing to glide
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back towards the ground station. The difficulty for this particular type of system is

to reach a maximum energy generation where the net average cycle power is positive

when comparing the energy gain from reel-out and energy loss from reel-in.

1.5 Possible Research Areas of Improvement

Fig. 1.14: Ampyx Power patent images for infinity
kite flightpath pattern and mechanical coupling to
a ground energy generation turbine [19]

Loyd left several questions outlined in his

paper from the early 1980’s. Question

such as, ”How large can kites be made?

What ratios of strength to weight and

lift to drag can be achieved? How do

the costs vary with such factors? What

are the relative site and land-use costs?”

[14]. Answers to these questions were

attempted and answers hold to current

standards regulated by market limita-

tions. The market and researchers have

also not decided which systems are best

when balancing between simplicity, en-

ergy generation, and ecological impact. There is still room for testing new designs

and ideas to find better systems.

Significant headway was achieved with improvements to current systems in the

areas of material properties, manufacturing capabilities, construction advancements,

and types of systems. The rate at which advancement is progressing is indicative that

some limitations were previously lifted and more understanding of the topic is now

possible. There is also a need to develop newer systems and until a consensus in met

for consumers satisfy the need for a practical unit.

To add to the current literature, the proposed research will analyze a new system
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to determine if a new configuration is better in regards to energy generation. The

simulation will incorporate aspects of flight dynamics, control theory, and newtonian

dynamics to model the flight and power generation. The new system, also, does not

need a live wire to electrically couple the system to the ground, bypassing significant

ecological impact driven concerns.
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Chapter 2

Model Description

The 2D System Model is designed to model the behavior of a tethered kite without

including altitude. The initial model is necessary to determine if periodic motions are

possible and if these periodic motions are capable of producing a net positive energy

average. Several assumption were made to model the system with sufficient accuracy

to deem the 2D system feasible. The assumptions are listed in Table 2.1.

Table 2.1: Assumptions to simplify model to determine system feasibility and simplify areas to
reduce numerical computation

Simulation Assumptions

1 Kite is a Point Mass
2 Wind has constant velocity and direction with uniform profile
3 Power production is approximated by mechanical power
4 Well established airflow over the wing
5 2D Coefficients of lift and drag from experiments in [20]
6 Use Anderson’s Method to Transform 2D cL, cD to 3D CL, CD
7 Coefficients of lift and drag are at a Reynold’s number of 106

8 Moment coefficients are neglected (does not contain a bridle)
9 Finite wing with fixed geometry

10 Air density is 1.225 kg
m3

11 Air viscosity is 1.79(10−5) kg
m·s

12 Flightpath is Restricted to 2D plane
13 Angle between tether and chordline of the wing (β) is constant
14 Tether cannot twist
15 Tether is straight and massless
16 Tether can support non-zero compression forces but this

is monitored and results in a non-viable solution
17 Tether drag is neglected
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2.1 Flight Dynamics

Equations of motion were derived to serve as the state functions for a numerical

integration sequence in MATLAB. The system is based on a point mass with three

forces acting on the mass. Equation (2.1) states that the sums of tension, drag, and

lift forces multiplied by their respective unit vectors are equal to the mass of the kite

multiplied by the acceleration of the kite.

−T êr +Dλ̂D + Lλ̂L + Fpêθ = mkite
⇀
akite (2.1)

T is the tether tension; D is the magnitude of Drag; λ̂d is the unit vector of drag; L

is the magnitude of lift; λ̂l is the unit vector of lift; Fp is an optional propulsion force;

êθ is the rotational coordinate system unit direction; m is the mass of the kite; and

⇀
akite is the acceleration of the kite, as shown in Fig. 2.1.

Figure 2.2 shows the Free Body Diagram of the kite. The forces include lift, drag,

and tether tension. Figure 2.3 contains the velocity vectors from the wind, the kite,

and the apparent wind velocity vector from Eq. (1.2) along with rotational and polar

coordinate systems.

Equation (2.2) is the radius vector (
⇀
r P/O), or kite position vector, of the tether

from the base drum (Point O) to the mass in the air (Point P), shown in Fig. 2.1,

with l as the length of the tether and êr as the directional vector of the rotational

coordinate system.

⇀
r P/O = lêr (2.2)

Velocity and acceleration of the kite are found by taking the first and second

derivatives of the kite position vector with respect to time, ∂r̂
∂t

and ∂2r̂
∂t2

respectively.

⇀

V kite = l̇êr + lθ̇êθ (2.3)
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Fig. 2.1: Overall System Schematic for 2D model

⇀
akite = (2θ̇l̇ + θ̈l)êθ + (−θ̇2l + l̈)êr (2.4)

θ̇ is the angular velocity of the tether; θ̈ is the angular acceleration of the tether; l̇ is

the rate of change of the tether length, and l̈ is the acceleration of tether length.

By defining the apparent wind velocity vector, the unit vectors for lift and drag

can be found. The apparent wind velocity is found in Section 1.4.1, Eq. (1.2).

The unit drag vector is found by dividing the apparent wind velocity vector by

its magnitude since the vector for drag is parallel with the apparent wind velocity

vector. The unit vector of drag, λ̂D is shown in Eq. (2.5).

λ̂D =

⇀

V A

|
⇀

V A|
=

V∞[cos(θ)êθ + sin(θ)êr]− θ̇lêθ + l̇êr

|V∞[cos(θ)êθ + sin(θ)êr]− θ̇lêθ + l̇êr|
(2.5)
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-êr

T

D

L

λ̂D

λ̂L

P

Fp

êθ
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êr
êθ
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Because lift and drag are orthogonal, the unit vector for lift can be found by the

cross product of k̂ and λ̂D and dividing by its magnitude.

λ̂L =
k̂ × λ̂D
|k̂ × λ̂D|

(2.6)

Magnitudes of lift and drag are dependent upon aerodynamic derivations shown

in Eq. (2.7),

L =
1

2
Sρ(Vapp)

2cL D =
1

2
Sρ(Vapp)

2cD (2.7)

where S is the effective area of the kite, ρ is the density of air =1.225 kg
m3 (Wind Power

Data Standard) [16], cL is the coefficient of lift, and cD is the coefficient of drag.

Equation (2.7) determines the coefficients for a wing of infinite length. The kite lift

and drag coefficients are found in [20] for a 0-360o range in angles of attack at 10o

intervals after the air flow as been well established.

Equation (2.8) and (2.11) adjust the infinite wing coefficients of lift and drag based

on an induced angle of attack (αi) [6]. Downwash, the downward flow of air caused

by the kite traveling through the fluid, causes the geometric angle of attack to change

slightly and αi is the corrected angle of attack. To correct the for the finite wing,

Cl = a(α− αL=0) (2.8)

where a is the slope of the lift curve for a finite wing, α is the angle of attack for the

current orientation of the kite, and αL=0 is the angle of attack when lift is equal to 0.

a =
a0

1 + 180a0

π2e1AR

(2.9)

with a0 as the slope of the lift curve for an infinite wing, e1 is a coefficient based on

the geometry of the kite called the Oswald Efficiency Factor, and



30

AR =
b2

S
(2.10)

is the aspect ratio between the kite length and width. In Eq. (2.10), b is the length

(m) and S is the surface area of the wing, which is S = b ∗ c where c is the width of

the kite (m). Using CL,

Cd = cd +
C2
L

πe1AR
(2.11)

the corrected drag coefficient, CD, is found for a finite wing length. Substituting into

(2.7)

L =
1

2
Sρ(Vapp)

2CL D =
1

2
Sρ(Vapp)

2CD (2.12)

will produce the corrected lift and drag forces for a finite wing.

2.2 Numerical Integration and Equations of Motion

2.2.1 Integration Tolerance Convergence

The tolerance convergence is set to determine the integration tolerance level accept-

able to calculate accurate results from the numerical solver. Different minimum tol-

erances will calculate different results that are inaccurate up to a minimum tolerance

level.

The convergence plot in Fig. 2.4 shows the numerical integration value for angular

velocity (θ̇) with varying tolerance factors. Once the system reached a tolerance

factor of 10−6, the integration provided the same result for tolerance factors below

the minimum tolerance. The convergence plot both verifies that accurate results

are found and saves computer processing time by allowing the computer to use a

higher minimum tolerance when deemed capable to still provide accurate results.
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Fig. 2.4: Tolerance convergence plot for the solution of angular position (θ) after one pass through
the ODE45 solver during the reel-in phase to determine minimum solver tolerance

The simulations in this paper are at a tolerance level of 10−10, because the simulation

is fast enough to allow a smaller minimum tolerance level.

2.2.2 Reel-Rate Step Controller

The ODE45 Solver will calculate subsequent numerical solutions using a state space

technique. The equation for angular acceleration of the kite, Eq. (2.13) is used to

integrate the next time step in the series provided by the previous time-step value as

an initial condition for the lower-order derivative.

Equations (2.13), (2.14), and (2.15) were derived from a symbolic solver in MAT-

LAB outlining the derivations in this chapter. The simulation code is found in Ap-

pendix A.3.1.

θ̈ =
1

ml

Fp − 2ml̇θ̇ − Ll̇ +Dlθ̇ + V∞(D sin θ − L cos θ)√
(l̇ sin θ + lθ̇ cos θ)2 + (V∞ − l̇ cos θ + lθ̇ sin θ)2

 (2.13)
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Numerically integrating angular acceleration provides angular velocity, and inte-

grating angular velocity provides the angular position.

The same process is used to calculate tether length (l). Tether length is increased

based on a constant reel-rate set as an initial condition. The second order derivative,

tether length acceleration, is set to zero, and the first order derivative, tether length

rate of change, is set to a positive integer for reel-out and a negative integer for reel-

in. The tether length will then increase as the integral of the tether length rate of

change. For the tension controller, the tether length acceleration is used to change

the tether length rate of change and is discussed further in Section 2.2.3.

After the integration for kite position and tether length, the tether tension, Eq.

(2.14), is calculated from the state variables. The tether tension is not an integral

process and therefore must be calculated aside from the state variables.

T = mlθ̇2 −ml̈ +
Llθ̇ −Dl̇ + V∞(D cos θ + L sin θ)√

(l̇ sin θ + lθ̇ cos θ)2 + (V∞ − l̇ cos θ + lθ̇ sin θ)2

(2.14)

2.2.3 Tether Tension Step Controller

Another method for controlling the system is to specify a tension for the reel-in and

reel-out phases. In a physical system, this could be achieved by use of a closed-loop

controller for line tension. Airfoil properties, airborne dynamic equations, and free

body diagram remain the same for analysis. However, the reel-in and reel-out rates

are no longer constant values and must update based on tether tension, found in Eq.

(2.15).

l̈ =
1

m

mlθ̇2 − T +
Ll̇ +Dlθ̇ + V∞(D sin θ − L cos θ)√

(l̇ sin θ + lθ̇ cos θ)2 + (V∞ − l̇ cos θ + lθ̇ sin θ)2

 (2.15)
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2.3 Steady State Convergence

The simulation will assume steady, periodic motion when the system error satisfies

the steady state (SS) criteria. The SSerror, absolute percent difference between the

tether length (l) at the end of the wave and at the beginning of the wave summed with

the percent difference between the tether angular velocity (θ̇) at the end of the wave

and at the beginning of the wave, must converge to a value less than the convergence

criteria (ε). ε is a predefined percent difference < (10−5).

SSerror =

∣∣∣∣ lwaveend − lwaveinitlwaveinit

∣∣∣∣+

∣∣∣∣∣ θ̇waveend − θ̇waveinitθ̇waveinit

∣∣∣∣∣ ≤ ε (2.16)

2.4 Power Generation

To calculate the mechanical power generated during a single cycle, the tether tension

and velocity profiles are needed. Tension from a single periodic cycle is used to find

the net average energy generated per second. First, an instantaneous power (J) curve

for the cycle is calculated by multiplying the tension of the tether during a cycle and

the rate of reel-out or reel-in at each unit of time during the cycle.

Pinstant = T l̇ (2.17)

The integral over time of the instantaneous power curve is the net energy generated

per cycle (J) in periodic motion, and, if this value is positive, the system is generating

more energy in the reel-out phase than consuming in the reel-in phase. The integral

is approximated with a trapezoidal approximation MATLAB function (trapz).

E =

∫ tf

t0

Pinstantdt (2.18)

Net average energy generated per second, power (W), is calculated by dividing
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the average energy per cycle by the amount of time to complete the cycle.

P̄ =
E

tf − t0
(2.19)

2.5 Root Finding Methods

The Multidimensional Newton-Rhapson Method [18] is a mathematical solver to find

solutions to functions determined by the user. The two functions found in Eq. (2.20)

are the convergence equations modified to reduce the error of θ̇ to 0 rad/s or l to 0

m. Defining the before and after waves difference as 0 m or 0 rad/s will find periodic

motions in the system model.

F (θ̇) = θ̇waveend − θ̇waveinitial G(l) = lwaveend − lwaveinitial (2.20)

The standard simulation is the numerical integrating main file which allows the

dynamics of the system to control behavior if an experimental unit is created. Initial

conditions are given to the standard simulation to observe the behavior of the sys-

tem after a predetermined amount of time. For root finding purposes, one cycle is

performed with measurements for θ̇ and l at the beginning and end of the cycle.

After the standard simulation differences are calculated, the initial conditions

are altered by a small ∆ to find the slope change in function differences. A one-

dimensional root find uses either derivatives found in Eqs. (2.21) and (2.22) depending

which initial condition is governing the root find.

θ̇der =
F (θ̇ + ∆θ̇)− F (θ̇)

∆θ̇
(2.21)

lder =
G(l + ∆l)−G(l)

∆l
(2.22)
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The definition of the derivative is then used in Eqs. (2.23) and (2.24) to calculate

the next value closer to a solution of Eq. (2.20). Each calculation of the root find

will place the root find closer to the solution and will stop when a minimum tolerance

within the range of a solution is met, typically 10−7 or 10−9 for Eq. (2.20).

[
x∗
θ̇

]
= −1

θ̇der

[
θ̇waveend − θ̇waveinitial

]
+

[
θ̇waveinitial

]
(2.23)

[
x∗l

]
= −1

lder

[
lwaveend − lwaveinitial

]
+

[
lwaveinitial

]
(2.24)

The multidimensional root find uses a Jacobian matrix in lieu of single variable

derivatives. The Jacobian specifically for the θ̇ and l root find is located in Eq. (2.25).

J =

F∆θ̇(θ̇)−F (θ̇)

∆θ̇

F∆l(θ̇)−F (θ̇)
∆l

G∆θ̇(l)−G(l)

∆θ̇

G∆l(l)−G(l)
∆l

 (2.25)

Each derivative inside the Jacobian uses the same definition of a derivative as Eqs.

(2.23) and (2.24), but it mixes the numerators and denominators as outlined in [18].

The function differences for each beginning and end cycle for the Jacobian are found

in Eqs. (2.26) and (2.27).

F∆θ̇(θ̇) = θ̇∆θ̇waveend
− θ̇∆θ̇waveinitial

F∆l(θ̇) = θ̇∆lwaveend − θ̇∆lwaveinitial (2.26)

G∆θ̇(l) = l∆θ̇waveend − l∆θ̇waveinitial G∆l(l) = l∆lwaveend − l∆lwaveinitial (2.27)

Once the Jacobian is calculated it is placed into Eq. (2.28), inversed, and used to

calculate the solution to Eq. (2.20).
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x∗θ̇
x∗l

 = −J−1

θ̇waveend − θ̇waveinitial
lwaveend − lwaveinitial

 +

θ̇waveinitial
lwaveinitial

 (2.28)

2.6 Simulation Verification

Several reality checks, simple test cases, were used to determine if the simulation is

operating within physical limitations, such as, static behavior, ball and string, zero

wind conditions, external propulsion, Reynold’s number, and zero value reel-out/reel-

in rates and phase regions.

TEST CASE 1: The simulation remains static while there is a lack of wind and

the initial angular velocity is set to zero. Without wind, there is also a lack of lift and

drag forces. Figure 2.5 shows the system without wind and with an initial angular

velocity equal to 0 m/s. The wing, blue asterisk, stays in the same place and remains
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Fig. 2.5: Simulation verification to determine behavior with the wind speed at 0 m/s and 0 m/s
initial angular velocity
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Fig. 2.7: Simulation verification to determine transient behavior with the wind speed at 0 m/s, >0
m/s initial angular velocity, and lacking lift or drag forces
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at a constant angular velocity equal to 0 m/s. The green and red lines indicate the

reel-in and reel-out trigger, respectively.

TEST CASE 2: The ball and string scenario represents the system with an

initial angular velocity, lacking lift and drag forces, and the reel-rates equal to 0 m/s.

In the top graph of Fig. 2.6, the angular position of the wing consistently increases,

showing a constant rotation of the kite around the origin. The bottom graph is the

angular velocity and shows the wing rotating with a constant angular velocity similar

to a system with zero gravity and zero external forces. The top view of the kite path

for the ball and string scenario is found in Fig. 2.7 which shows the flightpath of the

wing. The length remains constant with the reel-in and reel-out rates equal to 0 m/s.

The system also shows that the 2 set ODE45 solvers are working correctly with the

reel-in and reel-out phase triggers to produce a full rotation about the origin.

TEST CASE 3: If the drag coefficient is non-zero, the system should lose energy,

and, as time increases, the system should decay to a zero angular velocity. Figure 2.8

shows the system with an initial angular velocity with the wind speed at 0 m/s. In

the top graph, the angular position increases and very slowly becomes constant while

the angular velocity of the kite decays towards zero as time approaches infinity. The

angular velocity never becomes equal to zero because drag is the only force causing the

system to slow down since drag is dependent upon the speed of the kite. Therefore,

the angular velocity will converge upon zero but never equal zero. Unfortunately,

since drag is the only counteracting force and it’s magnitude is correlated to (
⇀

V a)
2,

the system needs a large amount of time to slow. The check verifies that the wing

will eventually stop while there is a lack of wind.

TEST CASE 4: The reel-in and reel-out rate scenario, found in Fig. 2.9 and

2.10, show the system with reel-in set to -10 m/s, reel-out set to 10 m/s, and with lift

and drag forces set to 0 N. The top graph of Fig. 2.9 shows the tether length as it is

triggered between the two phases and corresponds with the bottom graph by reeling
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Fig. 2.8: Simulation verification to determine angular velocity behavior with the wind speed at 0
m/s

out when set to reel-out and reeling-in when set to reel-in. The value of reel-in and

reel-out when multiplied by the time spent in the phase also equals the correct length.

Figure 2.10 shows the two semi-circular paths during motion. The length differences

are equal due to the equal time spent in each phase and the symmetrical reel-out

triggers. The triggers are therefore shown to operate as expected which begins with

the reel-out phase at -90o, or an angular equivalent of the reel-out trigger (360on with

n as the cycle number), and continues to shift between phases at the correct trigger

locations.

TEST CASE 5: Along with the zero wind velocity check, an external force was

applied to the wing along the êθ unit vector to simulate propulsion from the wing.

This force would tend to increase the speed of the kite. Figure 2.11 shows the angular

velocity (θ̇) with the external force equal to 0 N, and Fig. 2.11 shows the angular

velocity with an external force equal to 200 N. Without the external force, the angular
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Fig. 2.9: Simulation Verification to verify reel-in and reel-out rates/triggers perform as expected
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Fig. 2.10: Simulation Verification to verify reel-in and reel-out rates/triggers transient performs as
expected
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Fig. 2.11: Simulation Verification with a 0 N force applied to the wing

velocity converges to an average of 4.8 m/s and will converge to and average of 22

m/s with the external force. This shows that the angular velocity and position are

logically adjusting due to external factors.

REYNOLD’S NUMBER ASSUMPTION CHECK: The Reynold’s number

curve for a typical solution, found in Fig. 2.13, ranges between 2x105-15x105. The

coefficients of lift and drag used from [20] are valid between the ranges of 104-107

with the data specific coefficients in the described model as 10x105. The straight line

in Fig. 2.13 reflects the Reynold’s number of the coefficients of lift and drag from

the Sandia National Labs experiments [20]. The exponential curve leading towards

a stabilized Reynold’s number is the Reynold’s number from the simulation and is

contrasted by the assumed Reynold’s number at 10x105. Therefore, the Reynold’s

Numbers achieved in the model are different than the Reynold’s Number used in

coefficients of lift and drag. Yet, the coefficients are assumed sufficiently accurate for
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simulation purposes compared to adding an additional interpolation for data sets with

1x105 or 20x105 since faster simulation calculations outweighs the benefit of slightly

more accurate coefficients (since the 2D model approach is largely insufficient when

considering a detail such as the Reynold’s number inconsistencies).

FORCE VECTORS DIRECTION CHECK: The force vectors for lift and

drag were verified using an animation window. The airfoil shape in Fig. 2.14 shows

the kite orientation based on the angular position of the tether and the beta angle

between the tether and the kite chord line. The three lines signify the apparent wind

velocity vector (cyan), the lift force vector (green), and the drag force vector (red).

Each vector is a ratio of the current value divided by the largest value to scale in

that simulation is between 0 and 1. The animation shows that the drag force is in

the same direction as the apparent wind velocity vector, the apparent wind vector is

pointing into the kite and the drag vector is pointing away from the kite, while the

lift vector is orthogonal to the drag vector. Several initial conditions were evaluated

to verify forces and apparent wind velocities, such as, 90o, 180o, 270o, and 360o to

check behavior with and without reel-rates equal to or greater than 0. Each condition

verified the vectors were in the appropriate directions.

The tether is shown to follow the same trajectory as the kite while the animation

is progressing as shown in Fig. 2.15. The tether tip location corresponds to the

location of the tether and kite connection point and follows the same path. Axes are

shown in meters. The red line indicates compression in the tether and visually shows

the violation of a solution.

2.7 Conclusion

The test cases were designed to test for inconsistencies and determine flaws in the 2D

model or simulation behavior. With the simulation behaving consistently with real

world validity checks, the simulation is assumed appropriate to model the behavior
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of the tethered kite system and provide basic observations of system feasibility.

Based on assumptions and simplicity of the model, the real world viability of the

system for a 3D application cannot be proven with the 2D model. The system does

not consider kite moments, tether twist, or variable wind speeds. Therefore, this

model can only provide a basic level understanding for the behaviors of a tethered

kite system rotating upwind of a base station and using a crosswind velocity vector

to have the wind assist with kite reel-in.
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Chapter 3

2D Model Behavior

3.1 Periodic Motion

3.1.1 Basic Periodic Solution

The purpose of this system is to achieve periodic flight around a base station and

to use the wind for two purposes. The main purpose is to push the wing and tether

downwind for energy generation and then to use the wind to push the system towards

the base station while upwind. The wind will assist with reeling-in the wing/tether

combination to reduce the energy consumed during reel-in. The 2D model behavior

is observed through a standard simulation which begins with initial conditions that

start the transient phase, and, depending upon system parameters, will approach

steady state behavior.

The set variable values in Table 3.1 are specifically set to the constant values shown

and are unchanged for all simulation results unless specifically stated otherwise.

Figure 3.1 depicts the transient response leading to steady state operation of a

Table 3.1: Simulation parameter constants for the results of parameter set unless specifically stated
otherwise

V∞ = 10 m/s c = 0.2 m β = 90o

m = 1.2 kg b = 1.2 m Fp = 0 N
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Fig. 3.1: Transient Behavior leading to Steady State Operation of the Proposed Kite System in a
parallel trigger orientation

system with reel-in and reel-out event triggers parallel at θ = 90o + n·360o and θ =

270o + n·360o (with n as the cycle number). The base station is located at (X = 0,Y

= 0) and is Point O in Fig. 2.1, about which the wing and tether rotate. The larger

circle is drawn at the max length of the system. The circle provides a reference to see

the flightpath is not completely circular and has varying length throughout flight.

The region from θ = -90o to 90o defines the reel-out phase while the region from

θ = 90o to 270o defines the reel-in phase shown in Fig. 1.2. The transient response is

shown with blue lines leading towards a darker blue, semi-circular region showing the

steady state operation of the system. This particular system is a viable solution by

satisfying the convergence criteria discussed in Section 2.3 and the positive tension

criteria. The blue circular flightpath defines the location of the wing at a given angle

and tether length during the flight of the system. As the wing rotates about the base

point, the length of the tether increases during reel-out and decreases during reel-in
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change
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with the longest length occurring at θ = 90o and the shortest length occurring at θ =

270o. The system will slowly increase or decrease the tether length during each cycle

until the change in location is small enough to trigger convergence, as shown in Fig.

3.2. The system begins with a reel-out rate of 1 m/s and ends with a reel-in rate of

-1 m/s. The trigger happens almost directly in the center of the graph showing the

times in each phase are almost equal for these parameters. However, this is based

on a time scale and the trigger locations are better seen with reference to angular

position (θ).

The flight path for this set of parameters is a nearly symmetrical, oblong circle

since predefined angles for initializing the reel-in or reel-out phases are 180o out of

phase. The cycle time for this case is ∼1.1 secs, shown in Fig. 3.2, and the ∆l is

also small at 0.15m, shown in Fig. 3.1. Both contribute to a low energy output and

average cycle power. This system operates at steady state with a positive net average

cycle power of 441.6W. This is mainly due to the low reel-out rate which is increased

in later solutions.

Tension stays positive, shown in Fig. 3.3, and depicts the discontinuity in tension

due to the step change in tether length rate as specified by the assumed tether length

controller at 90o. The maximum tension is 1.6 kN, but the system keeps positive

tension in the line throughout the cycle. Higher tether tension occurs during the

reel-out phase while the lower tension occurs during reel-in.

3.1.2 Convergence Determination and Inviability

Inviability must be determined when choosing periodic motions capable of providing

sustained flight. Two criterion are present to determine inviability. The first is the

ability to converge based on the steady state error found in Eq. (2.16) which provides

insight if the system is capable of sustaining periodic flight, and the second is to

maintain positive tether tension.



50

−250 −200 −150 −100 −50 0 50 100 150 200 250
−200

−150

−100

−50

0

50

100

150

200

X (m)

Y
 (

m
)

θin = 130o θ̇ = 30.93o

s l̇in = -9 m/s

θout = 260o l = 189.055m l̇out = 2.07 m/s

Fig. 3.4: Transient Behavior leading to non-convergence of the proposed kite system.

Figure 3.4 shows a solution that spiraled towards the base station and decreased

the tether length during a set number of cycles (50 minimum cycles in this case).

The position of the wing rotates about the base station and neither the tether length

nor the angular velocity return to the previous value needed to stop the simulation.

The system tether would rapidly converge to a zero length if the simulation were

to continue. Figure 3.5 travels too far out and will also fail to converge at the set

parameters. After 5 cycles, the wing was near 1500 m long and would continue to

diverge. Neither inviable case warrant a power calculation since the parameters do

not satisfy convergence.

The flightpath has two main contributing parameters controlling convergence.

Trigger locations must provide a proper combination of timing in the cycle during the

phases and reel rates need to work in conjunction with trigger locations to provide

logical parameters for convergence. For example, a reel-in phase region much less



51

−1000 −500 0 500 1000

−1000

−500

0

500

1000

X (m)

Y
 (

m
)

θin = 130o θ̇ = 30.93o

s l̇in = -3.75 m/s

θout = 260o l = 189.055m l̇out = 9 m/s

Fig. 3.5: Transient Behavior leading to non-convergence of the proposed kite system.

than the reel-out phase region cannot have a reel-in rate much less than the reel-out

rate because the system needs time to reel-in the system to the original length.

Also, upwind of the anchor point, the kite will travel slower than downwind be-

cause the kite is experiencing a smaller apparent wind velocity vector from θ = 90o to

180o with an incoming wind along the î-direction. The kite velocity is decreased since

the vector is maintained by the tether length multiplied by tether angular velocity

or by the reel-in rate. In order to make the system travel faster during the reel-in

phase, the tether must remain constant or increase to satisfy the first term (which

will reduce the apparent wind velocity vector and cause the kite to lose lift) or retract

the tether faster. However, this will cause a higher consumption of power and will

reduce the overall net average cycle power.

Another important behavior will occur when the reel-out angle is small. In the

downwind region, air flows at an appropriate angle of attack for the design of the
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Fig. 3.6: A system which has negative tension during the periodic cycle

airfoil without the need to use the reel-out rate to adjust the apparent wind velocity

vector (i.e. compared to the necessary larger reel-in rate to adjust the angle of attack

in the reel-in phase). The ability to increase tether length causes the velocity vector to

increase, accelerating the kite forward and greatly increasing angular velocity about

the anchor point. If the reel-out phase region were decreased, the reel-out rate would

need to be increased to balance convergence with a reel-in rate comparable to those

found for solutions in this section while the upper bound for reel-out rate is the speed

of the wind for the symmetrical airfoil, NACA0015, and with a tether to kite chord

line angle (β) of 90 o.

The second criteria declares that tension must remain positive to keep the tether

in tension. If the solution provides tension below zero, at any point, the tether is

essentially in compression (would lose tautness) and, for a physical system, would

result in a slack tether line. The solution in Fig. 3.6 is inviable because it violates the
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Fig. 3.7: Negative tether tension behavior for parameter set in Fig. 3.6

tension criteria but otherwise is indistinguishable from a viable solution. The tension

plot for this parameter set is found in Fig. 3.7.

The minimum tension is most likely to occur upwind since the wind will push the

wing towards the anchor point. Therefore, reel-in rate is the driving force to control

negative tension. In the case that negative tension occurs upwind, the reel-in rate

would need to increase in order to pull the wing faster than the wind would like to

push it and change the apparent wind velocity vector towards a proper airflow over

the wing.

Another possible scenario is reeling-out the kite too fast for the wind to establish

flow and assist pushing the system downwind and away from the anchor point. This

scenario is not as likely but will occur as the wing lift force is perpendicular into the

wind or approaching perpendicularity to the oncoming wind (around -90o or 90o).

This scenario is also the reason why the wind speed is the maximum reel-out rate for

this airfoil design and β angle. The wind will not establish flow over the kite, and

the tether, in this simulation, will push the kite outward instead of the wind.
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Fig. 3.8: Transient Behavior leading to Steady State Operation of the Proposed Kite System

3.1.3 Viable Solution

A parameter set satisfying all conditions is found in Fig. 3.8. The trigger locations

are the same for the non-converging tether length and negative tension parameters.

The transient phase is very small and convergences within a few cycles because a

solution was found through the multidimensional root find and initial conditions set

close to the solution (calculations for determining solution locations is discussed in

Section 3.3). If initial conditions started further away, the solution would slowly reach

convergence and have a larger transient response such as Fig. 3.1.

The net average cycle power for this parameter set is 559.6W. The periodic wave is

also very fast at 1.2 sec as shown in Fig. 3.9. The tension remains positive throughout

the simulation as is shown in Fig. 3.10 and there is a clear discontinuity at 130o and

260o to show distinct curves for reel-out versus reel-in.
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Fig. 3.10: Tether tension plot for the viable parameter set in Fig. 3.8 showing that the minimum
tension is > 0 N during the cycle
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Fig. 3.11: Instantaneous power for a steady state, periodic cycle from the parameter set in Fig. 3.1

3.2 Positive Net Power

An instantaneous power curve is generated for each solution that fulfills the criteria

of convergence and tension for a viable solution. As stated in Eq. (2.17), the power

curve is equal to the reel-rate multiplied by the tension in the tether. Figure 3.11

is the power curve for the symmetric solution found in Fig. 3.1. The phase triggers

for reel-in and reel-out are 90o + n·360o and 270o + n·360o, respectively (with n

as the cycle number). The curve depicts the instantaneous power for the particular

parameter set after one cycle about the origin for the periodic motion. The power

curve defines the initial time for the cycle (t0) at the reel-out trigger (-90o) to begin

producing positive energy and proceeds until the reel-in trigger (270o) where energy

consumption begins and the tether is retracted.

The switch between the two phases is shown at the 0.53 sec marker as a disconti-

nuity and again at the end of the cycle with final time (tf ). The curve flips from a
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positive area above the zero boundary and is a negative area below. The switch at

the beginning/end of the wave is shown with the small increase at the end of curve.

The parameter set for the symmetric, viable solution produces 447.6W of mechanical

power.

A baseline is set at zero joules to contrast the difference between producing and

consuming energy. The positive energy generation for each cycle is apparent from

the size of area underneath each portion of the curve. A larger positive area than

negative will lead to a positive net average cycle power, and vice versa.

Power curves are not generated for solutions that do not meet convergence criteria

because they are inconsistent and, therefore, not accurate to produce or quantify a

steady amount of energy. Parameter sets that lead to negative tensions are inviable

so average cycle powers for these motions are not calculated.

The power output for the asymmetric trigger location, viable solution from Fig.

3.8 is found in Fig. 3.12. It is similar to the power curve for the symmetric trigger

location solution in Fig. 3.11. During the reel-out phase, energy production is highest

when the tether tension is largest (where the kite chord line is perpendicular to the

air stream at θ = 0o) since the reel-out rate is always a constant. Both negative and

positive power have parabolic relationships in their respective phase regions with the

wind consistently traveling in the same direction. This relationship is obvious because

of the approximate location of the relative minimum and maximum of tether tension

occurring while the wing is within close proximity to a perpendicular geometry with

the wind, and increases or decreases as the wing is pushed away or pulled towards

the anchor point.

The net average cycle power of the asymmetric, viable solution with this particular

set of parameters is 559.6 W. A positive net average cycle power shows that the system

is producing more power during reel-out than consuming during reel-in.
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Fig. 3.12: Instantaneous Power for a Steady State Cycle for the asymmetric, viable solution found
in Fig. 3.8

3.3 Periodic Convergence Patterns

The convergence criteria described in Section 2.3 states that the difference between

the beginning and end wave angular velocity (θ̇) and tether lengths (l) must fall below

a convergence criterion (ε). Therefore, there must be solution along a certain range

of θ̇ and l initial conditions that satisfy when either condition is below the ε. For

convergence calculations, the θ̇ and l are saved at the end of each cycle, considered the

reel-out trigger since the initial conditions begin each simulation at the same trigger.

A single variable root find, Newton’s Method, determines where the difference

between beginning and end wave θ̇ and the difference between beginning and end

wave l were equal to 0 rad/s or 0 m, discussed in Section 2.5 and found in Eq. (2.20).

The results for each difference were located and used to create error curves depicting

where both differences of θ̇ and l were close to 0 rad/s or 0 m.
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Fig. 3.13: Solution curves for Eq. (2.20) from single variable root finding routines and the multidi-
mensional root finding routine path towards the zero error crossing of both variables

The two curves shown in Fig. 3.13 which are the solution curves as θ̇ and l fall

below ε are from the inviable, asymmetric, negative tension parameter set used in

Fig. 3.4.

A periodic solution satisfying Eq. (2.16) is located where the two curves cross.

A 2D root find, using a Multidimensional Newton-Raphson Routine, is used to find

convergence solutions with varying initial conditions for θ̇ and l. Figure 3.13 contains

the results from a multidimensional root find to determine where the solution for the

particular parameter set occurs to satisfy both difference equations used in the single

variable root finds. The red bullets denote each step the root find moves to reach a

tolerance of (10−7) difference with the convergence factor in Eq. (2.16). From the

initial conditions, the root find calculates the steady-state error and adjusts the initial

conditions for the next calculation which would be closer to a convergence solution.

The solution found in the parameter set for Fig. 3.13 are θ̇ = 0.5399 rad/s and l =
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Fig. 3.14: A close-up of Fig. 3.13 showing the solution to the difference curves crosing and the
multidimensional root finding routine leading towards a zero error crossing are consistent from both
methods

189.055 m and Fig. 3.14 shows a close up of Fig. 3.13. Both methods converge at

the same location.

As periodic motions are found with respect to θ̇ and l using the multidimensional

routine, viable solutions are found by introducing variations to a third variable that

affects minimum tension. This is discussed further in Section 3.4.

3.4 Parameter Variation

Periodic, positive tension solutions for the 2D system varies according to several

key factors, such as, wing characteristics, wing orientation, reel-rates, wind speed,

wind direction, and phase trigger locations. Wing design and the wind vector tend

to hold stronger effects on minimum tension since they have the largest effects on

tension. Reel-rates and trigger locations will affect convergence and at which angle
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Table 3.2: Parameters set at constant values for the parameter sensitivity study unless stated oth-
erwise

V∞ = 10 m/s c = 0.2 m θin = 130o θ̇ = 286.5o

s l̇in = -3.75 m/s

m = 1.2 kg b = 1.2 m θout = 260o l = 19 m l̇out = 2.07 m/s

the minimum tension occurs. Reel-rates can influence the minimum tension greatly,

but, as previously discussed, they have a limited range according to wind speed during

reel-out and reducing energy consumption during reel-in. A select amount of variables

were chosen and varied at certain intervals to determine their effects on the system.

The parameters in Table 3.2 are held constant unless varied at the ranges found in

this section. Note, the variables are set at the same initial condition values as the

viable solution from Fig. 3.8.

Three kite wing characteristics were analyzed to determine the relationship with

minimum tension: mass, chord length, and wingspan. The three kite wing character-

istic parameter variations were performed using the standard simulation. Minimum

tension was calculated for periodic motions (determined by the convergence criteria)

by varying the kite characteristics. All three characteristics have linear relationships

with minimum tether tension, however, minimum tether tension will increase by in-

creasing mass, and increasing chord length or wingspan causes the minimum tension

to decrease. The viable, asymmetric system found in Fig. 3.8 requires a mass of 1.2

kg to keep a minimum tension at or above 0N, as shown in Fig. 3.15.

The same parameters were used to determine chord length and wingspan. The

chord length of the kite in Fig. 3.16 and wingspan in Fig. 3.17 show there is a

balance between mass and these characteristics to maintain a minimum tension >

0 N. Defining the mass lower will cause the necessary chord length or wingspan to

decrease compared to having a higher mass. In Fig. 3.16, the necessary chord length

with a mass of 1.2 kg is 0.2 m. As the mass is increased to 3 kg, the minimum
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Fig. 3.15: Minimum Tension varying mass of the kite
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Fig. 3.17: Minimum Tension varying wingspan of the kite

chord length necessary to achieve a positive minimum tension is increased to 0.5 m.

Respectively, the wingspan in Fig. 3.17 increased from 1.3 m to 3.1 m with the same

change in mass. Therefore, an increase in the size of the wing will create a necessary

mass increase to achieve a positive tension without modifying the other variables

parameters affecting minimum tension. Essentially, any increase in the dimensions of

the wing will necessitate an increase in mass to offset the change and place minimum

tension in the positive region. To standardized the project analysis, mass is set at

1.2 kg, chord length is 0.2 m, and wingspan is 1.2 m to mimic the design of an R/C

plane.

Previously discussed in Section 3.3, a third variable is varied with the multidimen-

sional root find to determine effects on minimum tension. In Fig. 3.18, the reel-out

rate is varied for a specific range and the multidimensional root find is performed

to find the solutions for convergence. Solutions have distinct areas where positive
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Fig. 3.18: Minimum Tension varying reel-out rate of the parameter set

tension was found and provide information where false solutions are located for se-

lect parameter sets. This method provides a direct method to quickly find viable

solutions.

The reel-out rate (l̇out) shown in Fig. 3.18 is negative in the majority of converging

parameter sets found with the multi-dimensional root find. This does not state that

most converging or periodic solutions will have negative tension, but that solutions

found with the root find are more likely to have a short range for positive tension.

Figure 3.18 shows that the l̇out must be ≥2.114 m/s to achieve a positive minimum

tension for this particular parameter set. The figure also shows that the minimum

tension will quickly increase the farther away l̇out is set from the minimum value. As

minimum tension exponentially grows, a physical limit in the tether is set and an

increase in l̇out will not be possible.

Similar curves are produced for reel-in rate (l̇in), tether to kite chord line angle
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Fig. 3.19: Minimum Tension varying reel-in rate of the parameter set

(β), the reel-out trigger (θout), and the reel-in trigger (θin) in Figs. 3.19, 3.20, 3.21,

and 3.22 respectively. In Figs. 3.18, 3.19, and 3.21, the ranges of l̇out, l̇in, and θout

are very small with variations of the variables on the order of 102 which cause large

changes in minimum tension. Yet, in Fig. 3.20, the changes are so small that it will

not help drive the system into positive tension by changing this variable alone. If the

systems expands beyond the region shown, convergence is not met.

The most interesting variable is θin. Figure 3.22 shows θin has a moderate affect

on minimum tension. The order of magnitude changes to 10−1 and there is a larger

range of values for power calculations. Figure 3.23 contains the average cycle powers

for the positive tension solutions from Fig. 3.22. They are compared to the steady

state lengths of the system to show that comparable power outputs are possible from

multiple tether lengths. Steady state tether lengths ranging from 8.5-18m tend to

produce average cycle powers from 500-600W. As the tether length becomes shorter
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Fig. 3.20: Minimum Tension varying the angle between the tether and the chord line of the kite
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Fig. 3.21: Minimum Tension varying reel-out trigger of the parameter set
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Fig. 3.22: Minimum Tension varying reel-in trigger of the parameter set
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Fig. 3.23: Average Cycle Power for the multidimensional routine zero crossing solutions from varying
the reel-in trigger location
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Fig. 3.24: Steady state tether lengths for the multidimensional routine zero crossing solutions com-
pared to minimum tether tension from varying the reel-in trigger location

than 8.5m, the average cycle powers become sporadic and convergence is harder to

achieve. Figure 3.24 compares the minimum tether tension to the steady state tether

length and states that they are inversely related. As the initial length is increased,

the minimum tension decreases. The tether tension is much higher at lower tether

lengths due to the relationship between steady state variables discussed in the next

section.

3.5 Single Parameter Family

Periodic motions are not constrained to specific initial conditions and are not difficult

to achieve. The initial condition difference curves found in Fig. 3.13 are close to one

another for certain parameter sets, and when are sitting as close together as they are

(to within the distance of triggering convergence based on a small ε) the curves can
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Fig. 3.25: Steady state conditions for θ̇ and l if the behavior for the two curves are considered close
enough to provide a family of unstable solutions

be considered to lie on top of each other. Considering this approach, periodic motions

are found for several cases when varying the initial conditions angular velocity (θ̇)

and tether length (l), as shown in Fig. 3.25. The figure contains results from a

standard simulation with 10,000 cycles as it began on a diverging path from the

multidimensional zero crossing solution decreasing tether length. As the simulation

progressed, the θ̇ and l of each cycle were recorded with the path following the exact

curves found in 3.13 for the range of l shown.

As the initial l is increased or decreased, the transient phase, such as those found

in Fig. 3.1, will attain periodic motion along the curve generally in less than 4 cycles.

The particular initial initial l will adjust to a neighboring steady state θ̇ to produce

a periodic motion with a specific steady state l near the initial l. In Fig. 3.25, each

l contains a unique periodic motion with a unique θ̇. This behavior shows that the

system is capable of attaining periodic motion dependent upon one initial condition



70

that close to the difference curves. Figure 3.25 also shows that l has an inverse

relationship with θ̇ which as the tether angular velocity increases, the l decreases.

This relationship affects the minimum tension of the system. Figure 3.24 shows

that the minimum tether tension remains negative for a larger portion of l’s found in

Fig. 3.25. The minimum tether tension becomes positive for a smaller range of l’s

found below 20 m. The minimum tension rapidly increases as l is reaching the lower

bound of 0 m and will create a vertical asymptote at l = 0 m.

3.6 Unstable Periodic Solutions

The zero difference solutions found with the multidimensional root find are placed

back into a standard simulation model as initial conditions to generate the figures to

show transient phases. The standard simulation model is used to determine system

behavior while only affected by flight dynamics and system inputs. The standard

simulation stops only when the convergence criteria are met, the minimum number

of cycles is reached without convergence, or the integration becomes exponential and

a solution cannot be found.

Solutions come in different forms with this paper discussing stable and unstable

solutions. Stable solutions have a convergence area surrounding their locations to

drive the system towards the system point and stability. So if the initial conditions

were to start within the convergence area, the system would work towards the stable

solution point and begin to repeat the pattern (the same θ̇ and l each cycle) at that

solution.

However, this system seems to correspond with solutions that are unstable mean-

ing that there is not a convergence zone surrounding the solution point and the system

tends to drive away from the solution while starting slow and slightly increasing the

speed of divergence over time. Figure 3.26 shows the pattern of divergence for initial
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Fig. 3.26: Standard simulation end wave values for θ̇ and l measured at the reel-out trigger to show
the path of transient along the single root find difference curves

conditions starting at a θ̇ of 57.3 rad/s (1 rad/s) and a l of 150m. The standard sim-

ulation shows the θ̇ and l at the end of each reel-out trigger (the location considered

the beginning and end of a cycle) lead directly into the error curves found in Fig.

3.13 and slowly move along the error path with a steady and consistent change, as

shown in Fig. 3.27, without finding a solution. Figure 3.27 is the difference between

the θ̇ and l at the end of each cycle. The rates are almost constant with very small

trends showing that θ̇ is slowly accelerating faster with each cycle and tether length

is decreasing faster with each cycle.

Figures 3.28, 3.29, and 3.30 will explain this effect in more detail. The standard

simulation began with initial conditions directly on the multidimensional root find

solution for the error curves found in Fig. 3.13. The simulation was then set to run a

minimum of 5000 cycles while sampling the θ̇ and l at the end of each cycle. Figure

3.28 shows that the system diverges away from the solution and works along the
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Fig. 3.28: The end wave values for θ̇ and l for 5000 cycles showing a divergence from the zero error
crossing solution
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Fig. 3.29: The end wave values for the l difference during 5000 cycles showing an increase in diver-
gence rate from the zero error crossing solution
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Fig. 3.30: The end wave values for the θ̇ difference during 5000 cycles showing an increase in
divergence rate from the zero error crossing solution
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Fig. 3.31: Divergence plot showing the divergence changes per cycle after 35 cycles for initial condi-
tions starting at varying values

error curves in a predictable pattern. Figures 3.29 and 3.30 show that the difference

between each θ̇ and l difference at the ends of each cycle increases with each rotation.

The θ̇ absolute difference is larger, but Fig. 3.30 shows that the θ̇ is slowing down

faster with each cycle. This is due to where the initial conditions are located in

relation to the zero difference solution provided by the multidimensional root find.

The system overall shifted from a l = 189 m to a l = 207 m and slowed down from θ̇

= 0.54 rad/s to θ̇ = 0.48 rad/s after 5000 cycles.

The multidimensional root find provides an exact location where the system will

have a zero difference between θ̇ and l at the end of each location. Figure 3.31 contains

the solution with four standard simulation initial condition parameter sets starting

in the four quadrants surrounding the solution. The four quadrants surrounding

the solution are labeled the same as a Cartesian coordinate system and signify the

patterns of: Quadrant 1) Higher θ̇ and longer l; Quadrant 2) Higher θ̇ and shorter l;
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Quadrant 3) Lower θ̇ and shorter l; and Quadrant 4) Lower θ̇ and longer l.

Each parameter set begins at the furthest point from the error curves for that set.

Each set quickly moves directly to the error curves and begin to diverge from the

solution. Quadrants 1 and 4 moves away from the solution towards the right with a

decreasing θ̇ and an increasing l. Quadrants 2 and 3 move in the opposite direction

with an increasing θ̇ and a decreasing l.

The difference in θ̇ and l for each cycle increases the same as if the parameter

set started on the solution itself but begins with a higher divergent rate depending

on the distance from the multidimensional root find solution. This is apparent from

the distance traveled by each quadrant parameter set since the minimum number

of cycles was set at 35. Each parameter set was set to the same amount of cycles,

however, quadrant 1 and 3 were diverging much faster away from the solution while

quadrant 2 and 4 were much slower.

3.7 Phase Energy Ratio

A ratio of generated and consumed power will provide a basic comparison between

the magnitudes of power during each reel-phase of periodic motion. A value of 1 will

be a parameter set with equal generation to consumption, and a percentage >1 or

<1 will be a parameter set with higher generation than consumption or vice versa,

respectively. The power ratio is the absolute value of the quotient generated power

by consumed power and is found in Eq. (3.1).

ηpower =
∣∣ Wgeneration

Wconsumption

∣∣ (3.1)

The power ratio for the asymmetric solution found in Fig. 3.8 is 2.06 with an

average cycle power = 559.6 W. This value shows there is twice as much generation

than consumption. The power ratio equal to 2.06 and average cycle power of 559.6
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W is calculated from a Wgeneration = 1088.7 W and Wconsumption = 529.1 W.

The power ratio and average cycle power pair provide a little more information

when comparing magnitudes of power generation and consumption for pumping kite

systems. A power ratio closer to 1 with a larger average cycle power shows that the

magnitudes of generation or consumption are very large compared to the magnitude

of the difference between generation and consumption. An example is a system gen-

erating a net of 550 W of power but needs to generate 1,000,500 W and consumes

1,000,000 W to produce the same difference. The ratio would be closer to 1 but

with the same average cycle power. Therefore, a power ratio much greater than one

and a larger average cycle power is desired to maintain a lower magnitude of power

generation and consumption during each phase while generating a comparable power

difference to those magnitudes.

3.8 Tether Tension Controller

3.8.1 System Behavior and Power Generation

In all the previous results shown, tether length rate was specified by the simple

controller l̇in = c1 and l̇out = c2. In this section, we examine a closely related system

where tether tension is specified instead of tether length rate. The controller for tether

tension is specified at a constant value compared to the previous method of specifying

the reel-rates. Therefore, any solution converging with the tension controller that has

a set minimum tension >0 N is a viable solution for this particular altitude wind

energy system.To achieve this type of tension control in a physical system, a closed-

loop, step controller with tension feedback could regulate tether tension during the

reel-in and reel-out regions.

The system in Fig. 3.32 begins with an initial length of 30 m, reel-out tension of

200 N, and reel-in tension of 1 N. The transient phase leads into convergence with
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Fig. 3.32: Transient of tether controller system leading into a steady, periodic motion around 30-32m
with a power generation of 365.5W

a minimum length of 32 m and a maximum length of 41 m. Most tether tension

convergence solutions, with a wind speed of 10 m/s, converged to a similar tether

length as the solution shown in Fig. 3.32. This configuration converged within a

range of reel-in tension from 0-50 N and reel-out tension from 400-1000 N.

From Fig. 3.32, the steady state convergence of this system is comparable to the

solutions in previous sections. The large maximum and minimum tether distance

is an oddity because the system has a low overall net power, discussed below. This

particular system produces 365.5W, which is comparatively low to the second solution

provided below and solutions in previous sections. A comparable power production

to other solutions for the reel-rate controller is found below in Fig. 3.36.

Tether tension as a step response results in a square wave as the input, shown in
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Fig. 3.33: Tether tension for the symmetric reel-phase, tether controller in Fig. 3.32

Fig. 3.33. The input for tension is low for the reel-in phase and high for the reel-

out phase to minimize consumption and maximize production. The axis is shown in

degrees to compare phase regions instead of timing, which corresponds with the sym-

metric solutions discussed previously in Section 3.1. The tension input is now based

on the θin = 90o and θout 270o reel-in and reel-out triggers. The tension magnitude

is also as discussed at 1 N for reel-in and 200 N for reel-out.

The curve for reel-rates is now similar to previous tension curves found in Section

3.1. The major parabola in Fig. 3.34 found in the first 2.2s of the curve is the reel-

out region. It is associated with the major portion of generated power. As the wing

rotates and is facing into the wind before the 90o mark, the reel-out rate turns negative

and begins to reel-in the system. The following reel-in has a positive reel-rate, and is

reeling-out the system to generate a small portion of energy.

The same phenomena is found at the beginning of the next phase switch at the

location of the two reel triggers. In all parameter combinations studied, the phe-

nomenon were the same and had a greater affect in other tether tension controller
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Fig. 3.34: Reel-in and reel-out rates for the symmetric reel-phase, tether controller in Fig. 3.32

tension curves.

Finishing off the last section of the reel-rate curve, the parabola in the graph

shown during 2.3-4.3s is the reel-in rate to keep the tension at 1 N. A high reel-in

rate with low tether tension is possible due to the decreased wind resistance upwind

of the base station and provides evidence that the wind is assisting with decreasing

power consumption during reel-in.

The power curve for the symmetric tension controller found in Fig. 3.35 is similar

to the power curves found in Section 3.2. The power curve is the multiplication of the

reel-rate and the tension force. The advantage of the tension controller is shown the

massive reduction in power consumption during the reel-in phase. The power curve

is minor due to the 1N force multiplied by the reel-in rate. The curve is close to 0

W because of the difference in scale compared to the power generation section of the

curve. The power curve also has the phenomena found during phase change and is a
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Fig. 3.35: Instantaneous power for the symmetric reel-phase, tether controller in Fig. 3.32

major consumption of energy just before the reel-in phase.

The drawback of the tension system is that much higher tensions are not achieved

such as those in Section 3.1. This factor is important because it is a multiplier for

the power curve and higher tensions in reel-in would increase the reel-in rate and,

more importantly, decrease the time needed per wave. If the tensions were increased,

they would begin to consume much larger amounts of energy during the phenomena,

which lowers the overall net power generation. It is more beneficial to keep lower

tensions during reel-out due to both reasons. However, a comparable system to those

found with the reel-rate controller is found in Fig. 3.36.

The initial condition for angular velocity in this system causes a large transient

phase, but the steady, periodic motion settles along the same 30-32m tether length

range with a power output of 537.5W. As stated before, every parameter set that

converges with tensions set higher than 0N is a viable solution for this type of system.

Therefore, it is very simple to find solutions along the entire parameter spectrum.
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Fig. 3.37: Tether tension for the asymmetric, tether controller in Fig. 3.36
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Fig. 3.38: Reel-rate curve for the asymmetric, tether controller in Fig. 3.36

Varying the phase triggers and tension in each phase with a “steepest descent” optimal

pattern produced the current solution with a comparable power to other solutions

found.

The trigger locations are symmetrical with the reel-in trigger at 90o while the

reel-out trigger is at 270o. From the tension input found in Fig. 3.37, the reel-out

tension is 540N, and the reel-in tension is 35N.

The reel-rate curve, shown in Fig. 3.38, follows the same pattern as the previous

reel-rate curve with a symmetrical parameter set. The phenomenon is much more

apparent during each reel-rate change at the trigger locations.

As shown in Fig. 3.39, the power curve for the higher power system has a much

higher amount of consumption compared to the symmetrical system. The power ratio

for the system is 3.98. The cause for a higher average cycle power is due to the higher

instantaneous power achieved from a higher tension during reel-out, but also from
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Fig. 3.39: Instantaneous Power for the asymmetric, tether controller in Fig. 3.36

the decreased time needed to complete a steady, periodic cycle because of increased

tension during reel-in. The power ratio and average cycle power are consistent with

desirable values. The power ratio is much higher than 1 and the average cycle power

is large. This ratio and net cycle power pair show a large disparity between generated

and consumed power while the net power is comparable to the magnitudes of power

during each phase.

3.8.2 Stable Periodic Solutions

The tension controller is very similar to the initial reel-rate controller, but tends

to find periodic solutions that are stable. Figure 3.40 shows the initial condition

difference curves for Eq. (2.20), as discussed in Sections 2.5 and 3.6. The solution is

found at θ̇ = 2.97 rad/s and l = 30.56 m while the differences curves lie side-by-side

from l = 15 m to l = 35 m.
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Fig. 3.40: Single variable difference solution curves for specific steady state tether length domain
that shows family of solutions behavior

Figure 3.41 shows that the difference between θ̇ and l for each cycle, up to 750

cycles, is 0 m or 0 rad/s after the initial transient period and while operating in steady

state motion. The zero initial condition difference shows that the system will retain

the periodic motion while system variables are unaltered.

The system also shows stable behavior by creating an “attraction” area surround-

ing the periodic motion solution. In Fig. 3.42, the same four quadrant solution area

procedure as discussed in Section 3.6 was performed for the tether tension controller

solution in Fig. 3.36. Each quadrant shows there is a convergence area surrounding

the periodic motion solution verified by the multidimensional root find. Depending

on the initial θ̇, the system would shoot towards the tether length associated with the

θ̇ achieved after the first cycle, as seen in Fig. 3.42. Then with each passing cycle,

the transient phases converged upon the same periodic motion.

Based upon the single variable routine and verified with the standard model in
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Fig. 3.41: The end wave value differences for θ̇ and l measured at the reel-out trigger between each
successive cycle showing that the system maintains constant behavior for up to 750 cycles
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Fig. 3.43: Parameter variation of tether controller system showing tether length while varying reel-
out tether tension

Fig. 3.43, the single parameter family of solutions behavior is similar with the tether

tension controller. For each reel-out tension, there is a specific steady state length

for periodic motion and there is a family of solutions with varying initial conditions.

However, usually within two cycles the system θ̇ and l lie on the single parameter curve

to converge towards the stable periodic motion. The periodic motion relationship

between θ̇ and l is the same (i.e. θ̇ increases as the l decreases).

Minimum tension is specified as an initial condition and, therefore, any solution

found with a minimum tension >0 N is a viable solution for the system. Figure 3.44

shows that net average cycle power has a parabolic relationship when varying reel-out

tension. T maximum for net average cycle power can then be used to determine the

best combinations for power generation. Other parameter sensitivity graphs for the

tether tension controller can be found in Appendix B.
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Fig. 3.44: Parameter variation of tether controller system showing net average cycle power while
varying reel-out tether tension

3.9 Conclusions

The 2D simulation reel-rate controller and line tension controllers are capable of

providing periodic and, in some cases, stable, periodic motion while generating a net

positive average cycle power. Stable and unstable convergence solutions are located

throughout the parameter space where, at those initial condition locations, changes

are non-existent in the initial conditions of angular velocity (θ̇) and tether length (l),

or there is very little change over time. It is also shown that it is possible to easily

achieve periodic motion at system initialization or if the system motions were to be

interrupted. Several parameters are available to manipulate the system to behave in

manners desired by designers, and vary in magnitude with their affect on the system

behavior. The results are promising and suggest that further research is warranted

to provide a conclusion for system feasibility.
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Chapter 4

Altitude Inclusion

The results from the 2D model are promising and provides the opportunity to observe

the dynamic behavior of the system with regard to basic operation during crosswind

motion upwind of the base station, tether reel-in and reel-out phases for energy gen-

eration, basic knowledge of possible periodic motions through use of different control

methods, and possible forces applied to the tether from the kite during flight.

However, the 2D model does not portray the system while in flight above ground

and the possibility of the kite to lose altitude from lack of lift. Therefore, this 3D

model is pursued to provide an understanding of the basic operation of flight. The

3D model resembles many aspects of the 2D model and, in most aspects, it is the

2D model directly propped up from the ground (i.e. the tether dynamics are not

considered, tether twist is neglected, the kite is fixed with the same angles from the

tether throughout simulation, and tether can support non-zero compression forces.

In other aspects, the models are much different. Altitude is controlled by a sepa-

ration of the lift vector, which is now broken into two components to create vertical

and horizontal directional forces, and a new angle between the kite span line and

tether will allow a rotation of the kite to experience greater vertical lift.
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4.1 Model Description

4.1.1 Flight Dynamics

With many factors from the 2D model considered the same for the 3D model, the

derivations for coefficients of lift and drag and the finite wing correction factor from

Section 2 are valid, reel-rates are set to invoke crosswind motion, and phase regions

are regulated by tether angular position θ in the îĵ-directions. All other derivations

that differ are found below with assumptions listed in Table 4.1.

The system schematic is found in Fig. 4.1 and shows the tether angular velocity

(θ), the altitude angle (φ), and the rotational coordinate system of the kite (ê). The

system will rotate about the origin in the same positive θ direction measured from

the X-axis. The system will rotate about a the XY-plane with an altitude angle (φ).

Figure 4.2 shows the back edge of the kite with the leading edge hidden from view.

As the kite span line is rotated clockwise about êθ, the angle ζ between the span line

and êφ grows larger to bank the plane. The tether vector is aligned with êr and is

directed toward the origin. The forward direction of the kite, ûθ, will align with êθ in

this model due to the axis locking and neglecting the angle between the tether and

the chordline (β).

The apparent wind velocity vector (
⇀

V A) is shown in Fig. 4.3 with the chord wise

flow velocity vector (
⇀

V Aaero). The vector is the apparent wind velocity parallel with

the chord line of the kite. Span wise flow disrupts the chord wise air flow over the

kite, affects the assumed established flow over the airfoil, and changes the Reynold’s

Table 4.1: Assumptions to simplify model to determine system feasibility and simplify areas to
reduce numerical computation

3D Simulation Assumptions

1 Assumptions from Table 2.1 except #12
2 Angle between tether and spanwise line (ûs in Fig. 4.2) is constant
3 Spanwise flow is neglected (Lift and Drag Components calculated by chordwise flow)
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Fig. 4.1: System schematic for a 3D model
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ζ
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êr ûr

ûs

êφ
êθ,ûθ

Fig. 4.2: Back view of the kite designating difference between ê coordinate system and û

numbers from our assumed values from [20].

The Equation of Motion for the 3D system is shown in Fig. (4.1). The forces,

shown in Fig. 4.4, consist of an optional propulsion force in the direction of the rota-

tional coordinate system vector (êθ), the tether tension (T ) in the negative rotational

coordinate system vector (êr), lift (L) and drag (D) forces in their respective unit

vector directions (λ̂L and λ̂D), and the gravity (g) force applied to the mass (m) of

the kite. These forces are summed to the mass and acceleration of the kite (
⇀
akite).

Fpêθ − T êr +Dλ̂D + Lλ̂L −mgk̂ = mkite
⇀
akite (4.1)

The tether position or kite position vector, Eq. (4.2) is the same for the 2D model

which is the tether length (l) multiplied by the tether vector (êr).

⇀
r P/O = lêr (4.2)

The rotational component for the kite velocity vector, Eq. (4.3) now contains the

cross product between rotational velocity and the tether vector (
⇀
ωxêr).

⇀
v kite = l̇êr + l(

⇀
ω × êr) (4.3)
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-êr

T D

L

λ̂D

λ̂L

Fp

êθ
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Fig. 4.4: Free body diagram of the kite and associated unit vectors



93

The cross product is the derivative of êr, found in Eq. (4.4).

∂

∂t
(êr) =

⇀
ω × êr (4.4)

The rotational velocity is the multiplication of the XY-plane tether angular veloc-

ity θ̇ and the k̂-coordinate direction subtracted by the multiplication of tether altitude

angular velocity (φ̇) and eθ rotational coordinate system unit vector, as shown in Eq.

(4.5).

⇀
ω = θ̇k̂ − φ̇êθ (4.5)

Kite velocity, Eq. (4.3), and kite acceleration, Eq. (4.6), include l as tether length;

l̇ as reel-rate; l̈ as reel-rate rate of change; and
⇀
α as tether angular acceleration in

Eq. (4.7).

⇀
akite = l̈êr + 2l̇(

⇀
ω × êr) + l(

⇀
α × êr) + l(

⇀
ω × (

⇀
ω × êr)) (4.6)

The tether angular acceleration in Eq. (4.7) includes θ̈ as tether îĵ-direction angu-

lar acceleration; φ̇ as altitude angular velocity; and φ̈ as altitude angular acceleration.

⇀
α = θ̈k̂ − φ̈êθ − φ̇(

⇀
ω × êθ) (4.7)

The cross product between
⇀
ωxêr is derived from the derivative of eθ in Eq. (4.8).

∂

∂t
(êθ) =

⇀
ω × êθ (4.8)

The simulation neglects span wise flow, as shown in Eq. (4.9), by subtracting the

value of the span wise flow apparent wind velocity (
⇀

V A · ûs) from the apparent wind

velocity vector (
⇀

V A) in Eq. (1.2) to isolate the chord wise flow apparent wind velocity

(
⇀

V Aaero). ûs is the wingspan direction vector as shown in Fig. 4.5.
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⇀

V Aaero =
⇀

V A −
⇀

V A · ûs (4.9)

Leading Edge

Trailing Edge

êθ

êφ

êr,ûθ
~VA · ûs

~VA

~VAaero

Fig. 4.5: Top view of the kite showing velocity vectors

Equation (4.10) is the unit vector for both the chord wise airflow and kite drag.

λ̂aero = λ̂D =

⇀

V aaero

|
⇀

V aaero |
(4.10)

The cross product of ûs and
⇀

V aaero provides the unit vector for the kite lift, as

shown in Eq. (4.11).

λ̂L = ûs ×
⇀

V aaero (4.11)

The angle of attack is calculated using the vector notation for law of cosines with

ûθ as the chord line vector that is analogous to the rotational coordinate vector (êθ).
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α = arccos(

⇀

V Aaero × ûθ
VAaero · ûθ

) (4.12)

The lift and drag equations are considered after the Anderson Method transfor-

mation for coefficients of lift and drag. The resultants are the equations in Eq. (4.13).

L =
1

2
SρV 2

AaeroCL D =
1

2
SρV 2

AaeroCD (4.13)

Equation (4.14) contains the transformation matrices to change vectors from the

î, ĵ, and k̂ coordinate system into the rotational coordinate system êr, êθ, and êφ.


êr

êθ

êφ

 =


cosφ 0 sinφ

0 1 0

− sinφ 0 cosφ




cos θ sin θ 0

− sin θ cos θ 0

0 0 1



î

ĵ

k̂

 (4.14)

The transformation matrix to transform the rotational coordinate system to the

kite body coordinate system ûr, ûθ, and ûs is found in Eq. (4.15).


ûr

ûθ

ûs

 =


cos ζ 0 − sin ζ

0 1 0

sin ζ 0 cos ζ



êr

êθ

êφ

 (4.15)

4.1.2 Integration Tolerance Convergence

The convergence plot in Fig. 4.6 shows that the system will approach the acceptable

value of θ = 1.84259 rad with a tolerance level of 10−5 or below. The 3D simulations

were set at a tolerance level of 10−8 to maintain accurate results.
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Fig. 4.6: Convergence plot relating to accurate approximation value of theta with increasing numer-
ical accuracy

4.1.3 3D Simulation Verification

Test cases to perform reality checks were used to determine the validity of the sim-

ulation similar to the methods provided in Section 2.6. The following verifications

were analyzed along with several others found in Appendix C.

TEST CASE 1: The system was setup to allow behavior similar to a pendulum.

The wind velocity was set = 0 m/s, lift and drag forces were set = 0 N, and gravity

was set = 9.81 m/s2. As shown in Fig. 4.7, the system falls and creates a pendulum

while maintaining system height due to the zero loss of height reached on the upswing,

as shown in Fig. C.1 in Appendix C.

TEST CASE 2: This test mimics the condition from the previous test case but

returns lift and drag forces to their calculated values, as shown in Fig. 4.8. The lift

and drag forces cause the airfoil to send the system into an almost erratic behavior.
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Fig. 4.7: Test case showing pendulum behavior of the model with wind velocity = 0 m/s, lift and
drag forces = 0 N, and gravity = 9.81 m/s2
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Fig. 4.8: Test case showing pendulum behavior of the model with wind velocity = 0 m/s, allowing
lift and drag forces, and gravity = 9.81 m/s2
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Fig. 4.9: Test case showing event detection of the simulation with wind velocity = 0 m/s, lift and
drag forces = 0 N, gravity = 9.81 m/s2, and the event set at φ = 0o (i.e. ground level) ending
numerical integration due to a crash

However, the radial distance from the center point is maintained and each pass is

kept along the spherical boundary of the radial arm. From the initial point at the

top of the image, the arm swings down continues to lose movement until spiraling to

a stop towards the base of the sphere.

TEST CASE 3: The test case is to show that the system has predictable motion

of a point mass on the end of a thin rod to end the simulation with an event trigger

once the altitude angle (φ) is = 0 rad. The model is capable of ending the simulation

after the kite is at ground-level, as shown in Fig. 4.9.

4.1.4 Steady State Convergence

Just as before with the 2D simulation, periodic motion is assumed when the system

error satisfies the steady state (SS) criteria. The SSerror is now the absolute percent
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difference between the tether length of the current and previous wave summed with

the percent difference between θ̇ of the current and previous wave summed with the

percent difference between φ̇ of the current and previous wave. Convergence occurs

when the summation value is less than the convergence criteria (ε). ε is a predefined

percent difference < (10−5).

SSerror =

∣∣∣∣∣ lcurrent − lpreviouslprevious

∣∣∣∣∣+
∣∣∣∣∣ θ̇current − θ̇previousθ̇previous

∣∣∣∣∣+
∣∣∣∣∣ φ̇current − φ̇previousφ̇previous

∣∣∣∣∣ ≤ ε (4.16)

4.2 System Behavior

The tethered kite behavior of the system is unable to generate enough lift to keep the

system in flight for the limited simulation parameter sets analyzed. Figure 4.10 shows

the system starting at θ = -90o with an incoming wind of 10 m/s from the î direction.

The view is upwind of the base station with the tether starting at the red dot located

at the origin and extending toward the pink asterisk. The kite begins at the asterisk

point and continues to fall in a zig-zag fashion but begins with a counter-clockwise

rotation about the base station typically found in the 2D simulations. Once reaching

a tether angular position (θ in the îĵ-plane) = to 45o, the kite begins a free-fall and

rotates the opposite direction. Once establishing higher lift before returning to the

original θ, it once again begins to rotate in the counter-clockwise direction to end

with a final descent around θ = 40o.

4.3 Conclusions

The system is performing within expectation for the reality checks and fundamental

derivations are proving correct. The model, however, is exaggerating the apparent

wind velocity vector. A verification of the values entering and calculated from the
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Fig. 4.10: Tethered kite without enough lift to maintain altitude and resulting in a crash

first step of the 3D dynamic equation numerical integration in comparison to the 2D

value integration is necessary to determine if there is input error or the problem lies

in the derivation of the 3D dynamic equations.
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Chapter 5

Final Conclusions

5.1 Overall Conclusions

The model and simulation were designed to discover if periodic motions existed to

generate a net positive average cycle power with the tethered kite. Results show that

it is capable of producing net positive average cycle power with two different types of

control systems, and that the net average cycle power is 500+ W with a kite design

similar to an R/C plane. However, more research is needed to simulate the dynamics

of a system comparable to a real life system.

Stable and unstable periodic motions were abundant and found for multiple pa-

rameters sets. The periodic motions are easily attainable but the observed regions

with highest and most consistent power production came from reducing differences

between successive cycle tether angular velocities and tether lengths.

Net positive cycle power is achieved by locating periodic motions that are consis-

tent or are predictably deviating from the previous cycles at a relatively small rate

for a large amount of cycles. The stable periodic solutions found with the tension

controller are capable of converging from a broad range of initial conditions to set the

dynamic motions of the system into a periodic pattern. The reel-rate controller dy-

namics will converge upon a predictable pattern of instability with very small changes

in tether length and angular velocity of the kite for each cycle.
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Once periodic motion is attained, the net average cycle power is calculated from

the system behavior with most periodic solutions producing an average net 500-600

W per cycle.

Even though the model is lacking from certain parameters necessary to predict

real-world dynamic behavior (i.e. the model is 2D, does not analyze moment forces

on the kite, tether drag and weight are neglected, and the wind is stable/consistent at

elevations known for variability in wind speed and direction) it still provides feasibility

for wind assisted tether retraction, periodic behavior, stable periodic solutions, and a

possibility for the system to consume less energy than it generates. The model must

account for these conditions before real world system viability can be established, but

it warrants more research into the development of a real world system or for a more

advanced model.

5.2 Recommendation for Future Work

Several recommendations have been discussed in detail to improve the model. The

next step is to analyze a 3D model to search for periodic motions, search if 2D model

concepts of stable and unstable solutions carried over to the altitude model, and, if

possible, determine if a net average cycle power is possible. If the system is proven

to find periodic motions within the 3D model, a working prototype with controller

systems to verify simulations should be constructed. The system is also designed to

reach altitudes of 6000 ft (2000 m) so scaling issues will have large implications. The

periodic motions found are occurring at tether lengths <35 m with the parameter

variation showing the affect on minimum tension from certain variables. This might

show great constraint on the system and should determined if these periodic solutions

are subject to short tether lengths or if it is possible to extend to longer tether lengths

and higher locations.
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Appendix A

Simulation Code

A.1 Kite Dynamic Functions

A.1.1 Numerical Integrating Solver

1 %-------------------------------------------------------%

2 %*MainFile*.m %

3 % %

4 %Kite Simulation of a horizontal path, microns off the %

5 %ground. The simulation solves for theta, theta d, l, %

6 %l d, and tension. The simulation involves lift and drag%

7 %forces and has one animation for the top view of a %

8 %flight path with a simple FBD. %

9 %-------------------------------------------------------%

10

11 clear all;

12 close all;

13 clc;

14

15 global D L l dd Vinfin m Fp C LiftDragFile B density Vinf mag S AR u;

16 global arccomp k wave count T SYS time SYS theta SYS theta d SYS l SYS l d;

17 global LiftVect DragVect Vrel magg Vkite VkiteVect theta in theta out;

18

19 %-----------------------------ODE Solution--------------------------------

20

21 i = [1,0,0]; %Basic Vector assignment for unit

22 j = [0,1,0]; %vectors i,j,k

23 k = [0,0,1];

24

25 %Excel Document that contains the lift and drag

26 %coefficients at 5degree intervals

27 C LiftDragFile = xlsread('NACA0015.xlsx');
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28

29

30 t scale = 0:0.01:1000; %ODE TimeScale

31 n waves = 100;

32

33 %System Variables

34 m = 1.2; %kg : Mass of the "Kite" (Point Particle).

35 B = pi()/2; %deg : Angle of Chord Vector w/ Tether Vector.

36 density = 1.225; %kg/mˆ3 : Wind Power Data Standard [15C @ 1atm].

37 b = 1.2; %m : Wing Span (Based on SenDesign AirFoil)

38 c = 0.2; %m : Chord Length (Based on SenDesign AirFoil)

39 S = b*c; %mˆ2 : Effective Area of Wing

40 AR = bˆ2/S; % : Aspect Ratio (dimensionless)

41 u = 1.7976*10ˆ(-5); %kg/(m*s) : Dynamic Viscosity

42 Fp = 0; %N : A perendicular force to the kite

43

44

45 %Defined Parameters

46 Vinfin = 10*i; %m/s : Wind Velocity.

47 Vinf mag = norm(Vinfin); % : Magnitude of the wind velocity

48 l d out = 2.07; %m/s : Length Velocity of Tether during Reel-Out

49 l d in = -3.75; %m/s : Length Velocity of Tether during Reel-In

50 theta in = 130*pi/180; %rad : Theta-In Trigger Location

51 theta out = 260*pi/180; %rad : Theta-Out Trigger Location

52

53 %Initial Conditions

54 theta = theta out - 2*pi;%rad : Angle Position at t=0

55 theta d = 0.8761; %rad/s: Angle Velocity at t=0

56 l = 118.07; %m : Length of Tether at t=0

57 l d = l d out; %m/s : Length Velocity of Tether at t=0

58 l dd = 0; %m/sˆ2: Acceleration of Tether Release at t=0

59 D = 0; %N : Drag Force Initial Definition

60 L = 0; %N : Lift Forces Initial Definition

61

62 %System Arrays for Entire Simulation Period

63 SYS time = 0;

64 SYS theta = theta;

65 SYS theta d = theta d;

66 SYS l = l;

67 SYS l d = l d;

68 [~,sizeSYS] = size(SYS theta);

69

70 %Relative and Absolute Tolerances for ODE45 and Event Function Call

71 my RelTol = 1e-10;

72 my AbsTol = 1e-10;

73
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74 %SS Tolerance Criteria

75 ODE kill = 0;

76 ODE kill end = 2;

77 SS tol = 1e-6;

78

79 fprintf('theta d init: %g l init: %d \r WaveCount: ', theta d, l)

80

81 %Initial Definition for End Wave Transient Response

82 End Wave l Trans = l;

83 End Wave theta d Trans = theta d;

84

85

86 %ODE45 Solution Iterations for Theta and L using Event Detection

87 % ODE45 Solver with Time and 4 Arc Components: theta, theta dot,

88 % length, and length dot. The function calls KITE SS where states

89 % are used to incrementally iterate the listed Arc Components

90

91 for wave count = 1:n waves

92

93

94 fprintf('%d ', wave count);

95

96

97

98 %1st Event ODE45 Solver

99 options = odeset('RelTol',my RelTol,'AbsTol',my AbsTol,'Events',@PI 2);

100 [t1,arccomp] = ode45(@KITE SS,t scale,[SYS theta(sizeSYS),SYS theta d(

sizeSYS),SYS l(sizeSYS),SYS l d(sizeSYS)],options);

101

102 %Partial Wave Fragments from 1st Event Solver

103 t2 = t1(:) + SYS time(sizeSYS);

104 time = transpose(t2);theta = transpose(arccomp(:,1));theta d = transpose

(arccomp(:,2));l wave = transpose(arccomp(:,3));l d = transpose(

arccomp(:,4));

105

106 %Last Wave (Pass) Array for State Components

107 if ODE kill > (ODE kill end-1)

108 LAST WAVE time = transpose(t1);

109 LAST WAVE theta = theta;

110 LAST WAVE theta d = theta d;

111 LAST WAVE l = l wave;

112 LAST WAVE l d = l d;

113 end

114

115 %Total System Arrays addition of Partial Wave Fragment

116 SYS time = [SYS time time];
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117 SYS theta = [SYS theta theta];

118 SYS theta d = [SYS theta d theta d];

119 SYS l = [SYS l l wave];

120 SYS l d = [SYS l d l d];

121

122 [~,sizeSYS] = size(SYS theta);

123 [~,sizeL D] = size(l d);

124

125 %New Controller Input - Change Length Velocity for Reel-In

126 SYS l d(sizeSYS) = l d in;

127

128 %Steady State Tolerance Error Definition for Start Wave

129 Start Wave l(wave count) = l wave(1);

130 Start Wave theta d(wave count) = theta d(1);

131

132

133 %2nd Event ODE45 Solver

134 options = odeset('RelTol',my RelTol,'AbsTol',my AbsTol,'Events',@PI3 2);

135 [t1,arccomp] = ode45(@KITE SS,t scale,[SYS theta(sizeSYS),SYS theta d(

sizeSYS),SYS l(sizeSYS),SYS l d(sizeSYS)],options);

136

137 %Partial Wave Fragments from 2nd Event Solver

138 t2 = t1(:) + SYS time(sizeSYS);

139 time = transpose(t2);theta = transpose(arccomp(:,1));theta d = transpose

(arccomp(:,2));l wave = transpose(arccomp(:,3));l d = transpose(

arccomp(:,4));

140

141 %Last Wave (Pass) Array for State Components

142 if ODE kill > (ODE kill end-1)

143 [~,sizeLAST WAVE] = size(LAST WAVE time);

144 t3 = t1(:) + LAST WAVE time(sizeLAST WAVE);

145 LAST WAVE time = [LAST WAVE time transpose(t3)];

146 LAST WAVE theta = [LAST WAVE theta theta];

147 LAST WAVE theta d = [LAST WAVE theta d theta d];

148 LAST WAVE l = [LAST WAVE l l wave];

149 LAST WAVE l d = [LAST WAVE l d l d];

150 end

151

152 %Total System Arrays addition of Partial Wave Fragment

153 SYS time = [SYS time time];

154 SYS theta = [SYS theta theta];

155 SYS theta d = [SYS theta d theta d];

156 SYS l = [SYS l l wave];

157 SYS l d = [SYS l d l d];

158

159 [~,sizeSYS] = size(SYS theta);
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160 [~,sizeL D] = size(l d);

161

162 %New Controller Input - Change Length Velocity for Reel-Out

163 SYS l d(sizeSYS) = l d out;

164

165 %End Wave Transient Response

166 End Wave l Trans = [End Wave l Trans l wave(sizeL D)];

167 End Wave theta d Trans = [End Wave theta d Trans theta d(sizeL D)];

168

169 %Steady State Tolerance Error Calculation and End Wave Definition

170 End Wave l(wave count) = SYS l(sizeSYS);

171 End Wave theta d(wave count) = SYS theta d(sizeSYS);

172

173 SS error l(wave count) = abs((End Wave l(wave count) - Start Wave l(

wave count)) / Start Wave l(wave count));

174 SS error theta d(wave count) = abs((End Wave theta d(wave count) -

Start Wave theta d(wave count)) / Start Wave theta d(wave count));

175 Total error(wave count) = SS error l(wave count) + SS error theta d(

wave count);

176

177 %Steady State Convergence Function Kill Adder

178 if Total error(wave count) <= SS tol

179 ODE kill = ODE kill+1;

180 elseif ODE kill == 1

181 ODE kill = 0;

182 end

183

184 %Steady State Convergence Function Kill

185 if ODE kill > ODE kill end

186 break

187 elseif ODE kill > 1

188 ODE kill = ODE kill+1;

189 end

190

191 end

192

193 %Determine Minimum Tension of the System

194 Min Tension = Tension(1);

195

196 %Net Average Cycle Power

197 LAST WAVE Power avg = Power(1);

198

199 %Animation

200 b = aniMATION(1);
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A.1.2 State Space

1 %-------------------------------------------------------%

2 %KITE SS.m %

3 % %

4 %This file takes an input from *MainFile*.m to %

5 %produce a numerical solution for four variables: theta,%

6 %theta d, length, and length d through the use of a %

7 %State Space Model. %

8 %-------------------------------------------------------%

9

10

11

12 function [myoutput,T] = KITE SS(t,state)

13

14 global D L l dd Vinfin m Fp ang attack B density Vinf mag S;

15

16

17

18 %Initial State Declarations

19 theta = state(1);

20 theta d = state(2);

21 l = state(3);

22 l d = state(4);

23

24 % The angle of attack function is called sending the state-variables to

25 % find the angle of attack in the current state. Angle must also be

26 % sent in radians.

27

28 %Read the Excel Sheet for Coeff of Lift and Drag

29 output = angleOfAttack(theta,theta d,l,l d);

30 ang attack = output(1);

31 [c DL] = CoeffLiftDrag(ang attack);

32

33 L = 0.5*S*density*(theta d*l)ˆ2*c DL(2);

34 D = 0.5*S*density*(theta d*l)ˆ2*c DL(1);

35

36 % State Variables that depend on derivatives. These are taken from the

37 % KiteSimul file as initial conditions and then incrementally found by

38 % plugging the initials values into the equations for derivatives and

39 % original with respect to the ODE45 solver. This solver will find the

40 % value evaluated at variable stepsizes depending on activity of the

41 % function.

42

43 %State Changes Based on EOM
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44 state dot(1) = theta d;

45 state dot(2) = -((D*Vinf mag*sin(theta))/((l d*sin(theta) + l*theta d*cos(

theta))ˆ2 + (Vinf mag - l d*cos(theta) + l*theta d*sin(theta))ˆ2)ˆ(1/2)

- Fp*sin(theta)ˆ2 - (L*Vinf mag*cos(theta))/((l d*sin(theta) + l*theta d

*cos(theta))ˆ2 + (Vinf mag - l d*cos(theta) + l*theta d*sin(theta))ˆ2)

ˆ(1/2) - Fp*cos(theta)ˆ2 + (L*l d*cos(theta)ˆ2)/((l d*sin(theta) + l*
theta d*cos(theta))ˆ2 + (Vinf mag - l d*cos(theta) + l*theta d*sin(theta

))ˆ2)ˆ(1/2) + (L*l d*sin(theta)ˆ2)/((l d*sin(theta) + l*theta d*cos(

theta))ˆ2 + (Vinf mag - l d*cos(theta) + l*theta d*sin(theta))ˆ2)ˆ(1/2)

+ 2*l d*m*theta d*cos(theta)ˆ2 + 2*l d*m*theta d*sin(theta)ˆ2 + (D*l*
theta d*cos(theta)ˆ2)/((l d*sin(theta) + l*theta d*cos(theta))ˆ2 + (

Vinf mag - l d*cos(theta) + l*theta d*sin(theta))ˆ2)ˆ(1/2) + (D*l*
theta d*sin(theta)ˆ2)/((l d*sin(theta) + l*theta d*cos(theta))ˆ2 + (

Vinf mag - l d*cos(theta) + l*theta d*sin(theta))ˆ2)ˆ(1/2))/(l*m*(cos(

theta)ˆ2 + sin(theta)ˆ2));

46 state dot(3) = l d;

47 state dot(4) = 0;

48

49 myoutput = [state dot(1);state dot(2);state dot(3);state dot(4)];

A.1.3 Angle of Attack Calculation

1 %-------------------------------------------------------%

2 %angleOfAttack.m %

3 % %

4 %An input is taken from either *MainFile.m* or Kite SS.m%

5 %to find the angle of attack based on theta, theta d, l,%

6 %and l d. The angle is calculated by subtracting gamma %

7 %from our angle Beta the kite makes with the tether. %

8 %-------------------------------------------------------%

9

10 function [output] = angleOfAttack(theta,theta d,l,l d)

11

12 global Vinfin B k;

13

14 %Er and Etheta components in terms of i,j,k

15 e r = [cos(theta),sin(theta),0];

16 e theta = [-sin(theta),cos(theta),0];

17

18 %Velocity and Acceleration Components

19 Vi = Vinfin;

20 Vkite = theta d*l*e theta+l d*e r;

21 Vrel = Vi-Vkite;

22
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23 %Solving for Angle of Attack

24 k vrelteth = (-Vrel(1))*(-e r(2)) - (-Vrel(2))*(-e r(1));

25 Vrel unit = norm(-Vrel);

26 Teth unit = norm(-e r);

27 gamma = acos(dot(-Vrel,-e r)/(Vrel unit*Teth unit));

28

29 %Unit Vectors of Lift and Drag

30 lambda D = Vrel/Vrel unit;

31 lambda L = cross(k,lambda D);

32

33 %Gamma Correction

34 if k vrelteth < 0

35 gamma = -gamma;

36 end

37

38 %Solver for Gamma

39 ang attack = B - gamma;

40 ang attack = wrapTo2Pi(ang attack);

41

42 if ang attack > pi

43 ang attack = ang attack - 2*pi;

44 end

45

46 output = [ang attack,Vrel(1),Vrel(2),lambda D(1),lambda D(2),lambda L(1),

lambda L(2),Vkite(1),Vkite(2),Vkite(3)];

A.1.4 Lift and Drag Coefficient Interpolation

1 %-------------------------------------------------------%

2 %CoeffLiftDrag.m %

3 % %

4 %An input for angle of attack is used to interpolate the%

5 %excel sheet opened in *MainFile*.m to find the %

6 %coefficients of lift and drag. The excel sheet has %

7 %corrected lift and drag coefficients based on the %

8 %airfoil NACA0015. %

9 %-------------------------------------------------------%

10

11

12 function [myoutput] = CoeffLiftDrag(ang attck)

13 %Accept Angle of Attack in Radians

14

15 global C LiftDragFile

16
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17 %Interpolation for Coefficient of Drag and Lift

18 c drag = interp1q(C LiftDragFile(:,2),C LiftDragFile(:,6),ang attck);

19 c lift = interp1q(C LiftDragFile(:,2),C LiftDragFile(:,5),ang attck);

20

21 myoutput = [c drag,c lift];

A.1.5 Tension Calculation

1 %------------------------------------------------------%

2 % Tension.m %

3 % %

4 % For-Loop desinged to calculate tension corresponding %

5 % to values from the ODE45 found in the Arc Components %

6 % array. Tension isn't calculated in the state function%

7 % because it isn't based on a derivative of itself and %

8 % is only dependent upon the Arc Components. %

9 %------------------------------------------------------%

10

11 function [ output ] = Tension( input )

12

13 global SYS time SYS theta SYS theta d SYS l SYS l d T S density Vinf mag;

14 global l dd m c u Re LAST WAVE T;

15

16 %Matrix Size Declarations

17 [~,t size] = size(SYS time); % : Size of Counter used in For-Loop

18 T = zeros(1,t size); % : Declare Size of Tension

19 Re = zeros(1,t size); % : Declare Size of Reynold's Number

20

21 [f,g] = size(SYS time);

22 ang attack = zeros(1,f); % : Declare Size of Angle of Attack Array

23 gamma = zeros(1,f); % : Declare Size of Gamma Array

24

25 %Determine Last Wave Dynamics if Simulation Converged

26 if ODE kill > ODE kill end

27 [~,sizeLAST WAVE] = size(LAST WAVE time);

28 LAST WAVE count = 1;

29 end

30

31 %Iterative For-Loop for Size of System Arrays to calculate Tension

32 for ind=1:t size

33

34 %Initial Conditions

35 % Define theta, theta-dot, length, length-dot in For-Loop as

36 % the respective value from ODE45 Calculations
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37 theta = SYS theta(1,ind);

38 theta d = SYS theta d(1,ind);

39 l = SYS l(1,ind);

40 l d = SYS l d(1,ind);

41

42 % Angle of Attack Calculations are performed a second time to find

43 % values that correspond with theta, theta d, length, and length d

44 % since the angle isn't stored in an array when evaluated in the

45 % variable timestep ODE45 function

46 [output] = angleOfAttack(theta,theta d,l,l d);

47

48 ang attack(ind) = output(1);

49 Vrel(1,ind) = output(2);

50 Vrel(2,ind) = output(3);

51

52 DragVect(1,ind) = output(4);

53 DragVect(2,ind) = output(5);

54 LiftVect(1,ind) = output(6);

55 LiftVect(2,ind) = output(7);

56

57 %Coefficient of Lift and Drag Calculation

58 [c DL] = CoeffLiftDrag(ang attack(ind));

59

60 L(1,ind) = 0.5*S*density*(theta d*l)ˆ2*c DL(2); %N

61 D(1,ind) = 0.5*S*density*(theta d*l)ˆ2*c DL(1); %N

62

63 %Kite Velocity Calculation - Necessary for the Animation

64 %Component Vectors of Vkite

65 magg Vkite(ind) = norm([output(8),output(9),output(10)]);

66 VkiteVect(ind,:) = [output(8),output(9),output(10)]/magg Vkite(ind);

67

68 %Tension and Reynolds Number Calculation
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69 T(1,ind) = ((L(1,ind)*Vinf mag*sin(theta))/((l d*sin(theta) + l*theta d*
cos(theta))ˆ2 + (Vinf mag - l d*cos(theta) + l*theta d*sin(theta))

ˆ2)ˆ(1/2) - l dd*m*sin(theta)ˆ2 - l dd*m*cos(theta)ˆ2 + l*m*theta d

ˆ2*cos(theta)ˆ2 + l*m*theta dˆ2*sin(theta)ˆ2 - (D(1,ind)*l d*cos(

theta)ˆ2)/((l d*sin(theta) + l*theta d*cos(theta))ˆ2 + (Vinf mag -

l d*cos(theta) + l*theta d*sin(theta))ˆ2)ˆ(1/2) - (D(1,ind)*l d*sin(

theta)ˆ2)/((l d*sin(theta) + l*theta d*cos(theta))ˆ2 + (Vinf mag -

l d*cos(theta) + l*theta d*sin(theta))ˆ2)ˆ(1/2) + (D(1,ind)*Vinf mag

*cos(theta))/((l d*sin(theta) + l*theta d*cos(theta))ˆ2 + (Vinf mag

- l d*cos(theta) + l*theta d*sin(theta))ˆ2)ˆ(1/2) + (L(1,ind)*l*
theta d*cos(theta)ˆ2)/((l d*sin(theta) + l*theta d*cos(theta))ˆ2 + (

Vinf mag - l d*cos(theta) + l*theta d*sin(theta))ˆ2)ˆ(1/2) + (L(1,

ind)*l*theta d*sin(theta)ˆ2)/((l d*sin(theta) + l*theta d*cos(theta)

)ˆ2 + (Vinf mag - l d*cos(theta) + l*theta d*sin(theta))ˆ2)ˆ(1/2))/(

cos(theta)ˆ2 + sin(theta)ˆ2);

70 Re(1,ind) = density*(theta d*l)*c/u;

71

72 %If Convergence was Reached

73 if ODE kill > ODE kill end

74 if ind >= (t size - sizeLAST WAVE + 1)

75 LAST WAVE T(LAST WAVE count) = T(1,ind);

76 LAST WAVE count = LAST WAVE count + 1;

77 end

78 end

79

80 end

81

82 %Minimum and Maximum Tensions

83 MAX Tension = max(T);

84 MIN Tension = min(T);

85

86 fprintf('\nTension - Max: %.2f N Min: %.2f N\r', MAX Tension, MIN Tension);

87

88 output = MIN Tension;

89

90 end

A.1.6 Average Net Cycle Power Calculation

1 %--------------------------------------------------%

2 % Power.m %

3 % %

4 % The net average cycle power for a single wave is %

5 % wanted to know what the system will produce once %
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6 % reaching steady state, periodic motion. This %

7 % function will run only if the system convergences%

8 %--------------------------------------------------%

9

10

11 function [ output ] = Power( input )

12

13 global LAST WAVE T LAST WAVE l d LAST WAVE time LAST WAVE P;

14

15 if ODE kill > ODE kill end

16

17 [~,sizeLAST WAVE] = size(LAST WAVE time);

18

19 LAST WAVE P = times(LAST WAVE T,LAST WAVE l d);

20 LAST WAVE Energy total = trapz(LAST WAVE time,LAST WAVE P);

21 LAST WAVE Power avg = LAST WAVE Energy total / LAST WAVE time(

sizeLAST WAVE);

22

23 fprintf('Last Wave Energy Average: %.2f W\r', LAST WAVE Power avg);

24

25 end

26

27 output = LAST WAVE Power avg;

28

29 end

A.2 Tension Controller Dynamic Functions

A.2.1 Numerical Integrating Solver

1 %-------------------------------------------------------%

2 % *MainFile*.m %

3 % %

4 %Kite Simulation of a horizontal path, microns off the %

5 %ground. The simulation solves for theta, theta d, l, %

6 %l d, and tension. The simulation involves lift and drag%

7 %forces and has one animation for the top view of a %

8 %flight path with a simple FBD. %

9 %-------------------------------------------------------%

10

11 clear all;

12 close all;

13 clc;
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14

15 global D L l dd Vinfin m Fp C LiftDragFile B density Vinf mag S AR u k;

16 global SYS time SYS theta SYS theta d SYS l SYS l d LiftVect DragVect Vrel;

17 global theta in theta out arccomp wave count Tension magg Vkite VkiteVect;

18 global SYS l dd;

19

20 %-----------------------------ODE Solution--------------------------------

21

22 i = [1,0,0]; %Basic Vector assignment for unit

23 j = [0,1,0]; %vectors i,j,k

24 k = [0,0,1];

25

26 %Excel Document that contains the lift and drag

27 %coefficients at 5degree intervals

28 C LiftDragFile = xlsread('NACA0015.xlsx');

29

30

31 t scale = 0:0.01:1000; %ODE TimeScale

32 n waves = 50; %Maximum Number of Passes for AWE

33

34 %System Variables

35 m = 1.5; %kg : Mass of the "Kite" (Point Particle)

36 B = pi()/2; %deg : Angle of Chord Vector w/ Tether Vector.

37 BIN = pi/2; %deg : Angle of Chord and Tether for Reel-In

38 BOUT = pi/2; %deg : Angle of Chord and Tether for Reel-Out

39 density = 1.225; %kg/mˆ3 : Wind Power Data Standard [15C @ 1atm].

40 b = 1.2; %m : Wing Span (Based on SenDesign AirFoil)

41 c = 0.2; %m : Chord Length (Based on SenDesign AirFoil)

42 S = b*c; %mˆ2 : Effective Area of Wing

43 AR = bˆ2/S; % : Aspect Ratio (dimensionless)

44 u = 1.7976*10ˆ(-5); %kg/(m*s) : Dynamic Viscosity

45 Fp = 0; %N : A perendicular force to the kite

46

47 %Defined Parameters

48 Vinfin = 10*i; %m/s : Wind Velocity.

49 Vinf mag = norm(Vinfin); %m/s : Magnitude of the wind velocity.

50 l d out = 0; %m/s : Length Velocity of Tether during Reel-Out

51 %l d in = -1; %m/s : Length Velocity of Tether during Reel-In

52 theta in = 80*pi/180; %rad : Theta-In Trigger Location

53 theta out = 270*pi/180; %rad : Theta-Out Trigger Location

54 TensionOUT = 540; %N : Set Force in Tether during Reel-Out

55 TensionIN = 35; %N : Set Force in Tether during Reel-In

56

57 %Initial Conditions

58 theta = theta out - 2*pi; %rad : Angle Position at t=0

59 theta d = 1; %rad/s : Angle Velocity at t=0
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60 l = 50; %m : Length of Tether at t=0

61 l d = l d out; %m/s : Length Velocity of Tether at t=0

62 l dd = 0; %m/sˆ2 : Acceleration of Tether Release at t=0

63 D = 0; %N : Drag Force Initial Definition

64 L = 0; %N : Lift Force Initial Definition

65

66 %System Arrays for Entire Simulation Period

%

components.

67 SYS time = 0;

68 SYS theta = theta;

69 SYS theta d = theta d;

70 SYS l = l;

71 SYS l d = l d;

72 SYS Tension = Tension;

73 [~,sizeSYS] = size(SYS theta);

74

75 %Relative and Absolute Tolerances for ODE45 and Event Function Call

76 my RelTol = 1e-10;

77 my AbsTol = 1e-10;

78

79 %SS Tolerance Criteria

80 ODE kill = 0;

81 ODE kill end = 2;

82 SS tol = 1e-3;

83

84 %Initial Condition Figure Title Creation

85 figThIN = num2str(theta in*180/pi);

86 figThOUT = num2str(theta out*180/pi);

87 figThD = num2str(theta d);

88 figL = num2str(l);

89 figBIN = num2str(BIN*180/pi);

90 figBOUT = num2str(BOUT*180/pi);

91

92 SSFigure TITLE = strcat({'SteadyState ThIN '},figThIN,{' ThOUT '},figThOUT,{'
ThD '},figThD,{' L '},figL,{' BIN '},figBIN,{' BOUT '},figBOUT);

93 SSFigure TITLE = char(SSFigure TITLE(1));

94 fprintf('%s \r WaveCount: ',SSFigure TITLE)

95

96

97 %ODE45 Solution Iterations for Theta and L using Event Detection

98 % ODE45 Solver with Time and 4 Arc Components: theta, theta dot,

99 % length, and length dot. The function calls KITE SS where states

100 % are used to incrementally iterate the listed Arc Components

101

102 for wave count = 1:n waves
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103

104

105 fprintf('%d ', wave count);

106

107 Tension = TensionOUT;

108

109 %1st Event ODE45 Solver

110 options = odeset('RelTol',my RelTol,'AbsTol',my AbsTol,'Events',@PI 2);

111 [t1,arccomp] = ode45(@KITE SS,t scale,[SYS theta(sizeSYS),SYS theta d(

sizeSYS),SYS l(sizeSYS),SYS l d(sizeSYS)],options);

112

113 %Partial Wave Fragments from 1st Event Solver

114 t2 = t1(:) + SYS time(sizeSYS);

115 time = transpose(t2);theta = transpose(arccomp(:,1));theta d = transpose

(arccomp(:,2));l = transpose(arccomp(:,3));l d = transpose(arccomp

(:,4));

116 [~,sizeWAVE] = size(time);

117

118 %Last Wave (Pass) Array for State Components

119 if ODE kill > (ODE kill end-1)

120 LAST WAVE time = transpose(t1);

121 LAST WAVE theta = theta;

122 LAST WAVE theta d = theta d;

123 LAST WAVE l = l;

124 LAST WAVE l d = l d;

125

126 LAST WAVE Tension = ones(1,sizeWAVE)*Tension;

127 end

128

129 %Total System Arrays addition of Partial Wave Fragment

130 if wave count == 1

131 SYS time = time;

132 SYS theta = theta;

133 SYS theta d = theta d;

134 SYS l = l;

135 SYS l d = l d;

136

137 [~,sizeSYS] = size(SYS theta);

138

139 SYS Tension = ones(1,sizeWAVE)*Tension;

140 end

141

142 if wave count > 1

143 SYS time = [SYS time time];

144 SYS theta = [SYS theta theta];

145 SYS theta d = [SYS theta d theta d];
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146 SYS l = [SYS l l];

147 SYS l d = [SYS l d l d];

148

149 [~,sizeSYS] = size(SYS theta);

150

151

152 Wave Tension = ones(1,sizeWAVE)*Tension;

153 SYS Tension = [SYS Tension Wave Tension];

154 end

155

156

157 %Steady State Tolerance Error Definition for Start Wave

158 Start Wave l(wave count) = l(1);

159 Start Wave theta d(wave count) = theta d(1);

160

161 %Tension Switch for New Controller Input

162 Tension = TensionIN;

163

164 %2nd Event ODE45 Solver

165 options = odeset('RelTol',my RelTol,'AbsTol',my AbsTol,'Events',@PI3 2);

166 [t1,arccomp] = ode45(@KITE SS,t scale,[SYS theta(sizeSYS),SYS theta d(

sizeSYS),SYS l(sizeSYS),SYS l d(sizeSYS)],options);

167

168 %Partial Wave Fragments from 2nd Event Solver

169 t2 = t1(:) + SYS time(sizeSYS);

170 time = transpose(t2);theta = transpose(arccomp(:,1));theta d = transpose

(arccomp(:,2));l = transpose(arccomp(:,3));l d = transpose(arccomp

(:,4));

171 [~,sizeWAVE] = size(time);

172

173 %Last Wave (Pass) Array for State Components

174 if ODE kill > (ODE kill end-1)

175 [~,sizeLAST WAVE] = size(LAST WAVE time);

176 t3 = t1(:) + LAST WAVE time(sizeLAST WAVE);

177 LAST WAVE time = [LAST WAVE time transpose(t3)];

178 LAST WAVE theta = [LAST WAVE theta theta];

179 LAST WAVE theta d = [LAST WAVE theta d theta d];

180 LAST WAVE l = [LAST WAVE l l];

181 LAST WAVE l d = [LAST WAVE l d l d];

182

183 Tension WAVE2 = ones(1,sizeWAVE)*Tension;

184 LAST WAVE Tension = [LAST WAVE Tension Tension WAVE2];

185 end

186

187 %Total System Arrays addition of Partial Wave Fragment

188 SYS time = [SYS time time];
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189 SYS theta = [SYS theta theta];

190 SYS theta d = [SYS theta d theta d];

191 SYS l = [SYS l l];

192 SYS l d = [SYS l d l d];

193

194 [~,sizeSYS] = size(SYS theta);

195

196 Wave Tension = ones(1,sizeWAVE)*Tension;

197 SYS Tension = [SYS Tension Wave Tension];

198

199 %Steady State Tolerance Error Calculation and End Wave Definition

200 End Wave l(wave count) = SYS l(sizeSYS);

201 End Wave theta d(wave count) = SYS theta d(sizeSYS);

202

203 SS error l(wave count) = abs((End Wave l(wave count) - Start Wave l(

wave count)) / Start Wave l(wave count));

204 SS error theta d(wave count) = abs((End Wave theta d(wave count) -

Start Wave theta d(wave count)) / Start Wave theta d(wave count));

205 Total error(wave count) = SS error l(wave count) + SS error theta d(

wave count);

206

207 %Steady State Convergence Function Kill Adder

208 if Total error(wave count) <= SS tol

209 ODE kill = ODE kill+1;

210 elseif ODE kill == 1

211 ODE kill = 0;

212 end

213

214 %Steady State Convergence Function Kill

215 if ODE kill > ODE kill end

216 break

217 elseif ODE kill > 1

218 ODE kill = ODE kill+1;

219 end

220

221 end

222

223 Min Tension = AngularAccel(1);

224

225 LAST WAVE Power avg = Power(1);

A.2.2 State Space

1 %-------------------------------------------------------%
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2 %KITE SS.m %

3 % %

4 %This file takes an input from KiteSimul 0216.m to %

5 %produce a numerical solution for four variables: theta,%

6 %theta d, length, and length d through the use of a %

7 %State Space Model. %

8 %-------------------------------------------------------%

9

10

11

12 function [myoutput,T] = KITE SS(t,state)

13

14 global D L l dd Vinfin m Fp ang attack B density Vinf mag S Tension;

15

16 %Initial State Declarations

17 theta = state(1);

18 theta d = state(2);

19 l = state(3);

20 l d = state(4);

21

22 % The angle of attack function is called sending the state-variables to

23 % find the angle of attack in the current state. Angle must also be

24 % sent in radians.

25 output = angleOfAttack(theta,theta d,l,l d);

26 ang attack = output(1);

27

28 %Read the Excel Sheet for Coeff of Lift and Drag

29 [c DL] = CoeffLiftDrag(ang attack);

30

31 L = 0.5*S*density*(theta d*l)ˆ2*c DL(2);

32 D = 0.5*S*density*(theta d*l)ˆ2*c DL(1);

33

34 % State Variables that depend on derivatives. These are taken from the

35 % KiteSimul file as initial conditions and then incrementally found by

36 % plugging the initials values into the equations for derivatives and

37 % original with respect to the ODE45 solver. This solver will find the

38 % value evaluated at variable stepsizes depending on activity of the

39 % function. The main difference is that Angular Acceleration is no

40 % longer zero and is a calculable number.

41

42 %State Changes Based on EOM

43 state dot(1) = theta d;
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44 state dot(2) = -((L*l d*cos(theta)ˆ2)/(abs(l d*sin(theta) + l*theta d*cos(

theta))ˆ2 + abs(Vinf mag - l d*cos(theta) + l*theta d*sin(theta))ˆ2)

ˆ(1/2) - Fp*sin(theta)ˆ2 - Fp*cos(theta)ˆ2 + (L*l d*sin(theta)ˆ2)/(abs(

l d*sin(theta) + l*theta d*cos(theta))ˆ2 + abs(Vinf mag - l d*cos(theta)

+ l*theta d*sin(theta))ˆ2)ˆ(1/2) - (L*Vinf mag*cos(theta))/(abs(l d*sin

(theta) + l*theta d*cos(theta))ˆ2 + abs(Vinf mag - l d*cos(theta) + l*
theta d*sin(theta))ˆ2)ˆ(1/2) + (D*Vinf mag*sin(theta))/(abs(l d*sin(

theta) + l*theta d*cos(theta))ˆ2 + abs(Vinf mag - l d*cos(theta) + l*
theta d*sin(theta))ˆ2)ˆ(1/2) + 2*l d*m*theta d*cos(theta)ˆ2 + 2*l d*m*
theta d*sin(theta)ˆ2 + (D*l*theta d*cos(theta)ˆ2)/(abs(l d*sin(theta) +

l*theta d*cos(theta))ˆ2 + abs(Vinf mag - l d*cos(theta) + l*theta d*sin(

theta))ˆ2)ˆ(1/2) + (D*l*theta d*sin(theta)ˆ2)/(abs(l d*sin(theta) + l*
theta d*cos(theta))ˆ2 + abs(Vinf mag - l d*cos(theta) + l*theta d*sin(

theta))ˆ2)ˆ(1/2))/(l*m*(cos(theta)ˆ2 + sin(theta)ˆ2));

45 state dot(3) = l d;

46 state dot(4) = (l*m*theta dˆ2*cos(theta)ˆ2 - Tension*sin(theta)ˆ2 - (D*l d*
cos(theta)ˆ2)/(abs(l d*sin(theta) + l*theta d*cos(theta))ˆ2 + abs(

Vinf mag - l d*cos(theta) + l*theta d*sin(theta))ˆ2)ˆ(1/2) - Tension*cos

(theta)ˆ2 - (D*l d*sin(theta)ˆ2)/(abs(l d*sin(theta) + l*theta d*cos(

theta))ˆ2 + abs(Vinf mag - l d*cos(theta) + l*theta d*sin(theta))ˆ2)

ˆ(1/2) + l*m*theta dˆ2*sin(theta)ˆ2 + (D*Vinf mag*cos(theta))/(abs(l d*
sin(theta) + l*theta d*cos(theta))ˆ2 + abs(Vinf mag - l d*cos(theta) + l

*theta d*sin(theta))ˆ2)ˆ(1/2) + (L*Vinf mag*sin(theta))/(abs(l d*sin(

theta) + l*theta d*cos(theta))ˆ2 + abs(Vinf mag - l d*cos(theta) + l*
theta d*sin(theta))ˆ2)ˆ(1/2) + (L*l*theta d*cos(theta)ˆ2)/(abs(l d*sin(

theta) + l*theta d*cos(theta))ˆ2 + abs(Vinf mag - l d*cos(theta) + l*
theta d*sin(theta))ˆ2)ˆ(1/2) + (L*l*theta d*sin(theta)ˆ2)/(abs(l d*sin(

theta) + l*theta d*cos(theta))ˆ2 + abs(Vinf mag - l d*cos(theta) + l*
theta d*sin(theta))ˆ2)ˆ(1/2))/(m*(cos(theta)ˆ2 + sin(theta)ˆ2));

47

48 myoutput = [state dot(1);state dot(2);state dot(3);state dot(4)];

A.2.3 Angular Acceleration

1 %------------------------------------------------------%

2 % AngularAccel.m %

3 % %

4 % For-Loop desinged to calculate tension and angular %

5 % corresponding to values from the ODE45 found in the %

6 % Arc Components array. Tension isn't calculated in the%

7 % state function because it isn't based on a derivative%

8 % of itself and is only dependent upon the Arc %

9 % Components. Angular Acceleration is not saved during %

10 % the ODE solver and is therefore recalculated for %
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11 % incremental time-steps in this function. %

12 %------------------------------------------------------%

13

14 function [ output ] = AngularAccel( input )

15

16 global SYS time SYS theta SYS theta d SYS l SYS l d T S density Vinf mag;

17 global l dd m c u Re LAST WAVE T SYS l dd;

18

19 %Matrix Size Declarations

20 [~,t size] = size(SYS time);% : Size of Counter used in For-Loop

21 T = zeros(1,t size); % : Declare Size of Tension Array

22 SYS l dd = zeros(1,t size); % : Declare Size of AngAccel Array

23 Re = zeros(1,t size); % : Declare Size of Reynold's # Array

24

25 [f,g] = size(SYS time);

26 ang attack = zeros(1,f); % : Declare Size of Angle of Attack Array

27 gamma = zeros(1,f); % : Declare Size of Gamma Array

28

29 %Determine Last Wave Dynamics if Simulation Converged

30 if ODE kill > ODE kill end

31 [~,sizeLAST WAVE] = size(LAST WAVE time);

32 LAST WAVE count = 1;

33 end

34

35 %Iterative For-Loop for Size of System Arrays to calculate Tension

36 %and Angular Acceleration

37 for ind=1:t size

38

39 %Initial Conditions

40 % Define theta, theta-dot, length, length-dot in For-Loop as

41 % the respective value from ODE45 Calculations

42 theta = SYS theta(1,ind);

43 theta d = SYS theta d(1,ind);

44 l = SYS l(1,ind);

45 l d = SYS l d(1,ind);

46

47 %Initial Conditions

48 % Define theta, theta-dot, length, length-dot in For-Loop as

49 % the respective value from ODE45 Calculations

50 [output] = angleOfAttack(theta,theta d,l,l d);

51

52 % Angle of Attack Calculations are performed a second time to find

53 % values that correspond with theta, theta d, length, and length d

54 % since the angle isn't stored in an array when evaluated in the

55 % variable timestep ODE45 function

56 ang attack(ind) = output(1);
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57 Vrel(1,ind) = output(2);

58 Vrel(2,ind) = output(3);

59

60 DragVect(1,ind) = output(4);

61 DragVect(2,ind) = output(5);

62 LiftVect(1,ind) = output(6);

63 LiftVect(2,ind) = output(7);

64

65 %Coefficient of Lift and Drag Calculation

66 [c DL] = CoeffLiftDrag(ang attack(ind));

67

68 L(1,ind) = 0.5*S*density*(theta d*l)ˆ2*c DL(2); %N

69 D(1,ind) = 0.5*S*density*(theta d*l)ˆ2*c DL(1); %N

70

71 %Kite Velocity Calculation - Necessary for the Animation

72 magg Vkite(ind) = norm([output(8),output(9),output(10)]); %Component

Vectors of Vkite

73 VkiteVect(ind,:) = [output(8),output(9),output(10)]/magg Vkite(ind);

74

75 %Angular Acceleration System Array

76 SYS l dd(1,ind) = (l*m*theta d.ˆ2*cos(theta).ˆ2 - SYS Tension(ind)*sin(

theta).ˆ2 - (D(1,ind)*l d*cos(theta).ˆ2)./(abs(l d*sin(theta) + l*
theta d*cos(theta)).ˆ2 + abs(Vinf mag - l d*cos(theta) + l*theta d*
sin(theta)).ˆ2).ˆ(1./2) - SYS Tension(ind)*cos(theta).ˆ2 - (D(1,ind)

*l d*sin(theta).ˆ2)./(abs(l d*sin(theta) + l*theta d*cos(theta)).ˆ2

+ abs(Vinf mag - l d*cos(theta) + l*theta d*sin(theta)).ˆ2).ˆ(1./2)

+ l*m*theta d.ˆ2*sin(theta).ˆ2 + (D(1,ind)*Vinf mag*cos(theta))./(

abs(l d*sin(theta) + l*theta d*cos(theta)).ˆ2 + abs(Vinf mag - l d*
cos(theta) + l*theta d*sin(theta)).ˆ2).ˆ(1./2) + (L(1,ind)*Vinf mag*
sin(theta))./(abs(l d*sin(theta) + l*theta d*cos(theta)).ˆ2 + abs(

Vinf mag - l d*cos(theta) + l*theta d*sin(theta)).ˆ2).ˆ(1./2) + (L

(1,ind)*l*theta d*cos(theta).ˆ2)./(abs(l d*sin(theta) + l*theta d*
cos(theta)).ˆ2 + abs(Vinf mag - l d*cos(theta) + l*theta d*sin(theta

)).ˆ2).ˆ(1./2) + (L(1,ind)*l*theta d*sin(theta).ˆ2)./(abs(l d*sin(

theta) + l*theta d*cos(theta)).ˆ2 + abs(Vinf mag - l d*cos(theta) +

l*theta d*sin(theta)).ˆ2).ˆ(1./2))./(m*(cos(theta).ˆ2 + sin(theta)

.ˆ2));

77 l dd = SYS l dd(1,ind);

78

79 %Tension and Reynolds Number Calculation
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80 T(1,ind) = (l*m*theta dˆ2*cos(theta)ˆ2 - l dd*m*sin(theta)ˆ2 - (D(1,ind)

*l d*cos(theta)ˆ2)/(abs(l d*sin(theta) + l*theta d*cos(theta))ˆ2 +

abs(Vinf mag - l d*cos(theta) + l*theta d*sin(theta))ˆ2)ˆ(1/2) -

l dd*m*cos(theta)ˆ2 - (D(1,ind)*l d*sin(theta)ˆ2)/(abs(l d*sin(theta

) + l*theta d*cos(theta))ˆ2 + abs(Vinf mag - l d*cos(theta) + l*
theta d*sin(theta))ˆ2)ˆ(1/2) + l*m*theta dˆ2*sin(theta)ˆ2 + (D(1,ind

)*Vinf mag*cos(theta))/(abs(l d*sin(theta) + l*theta d*cos(theta))ˆ2

+ abs(Vinf mag - l d*cos(theta) + l*theta d*sin(theta))ˆ2)ˆ(1/2) +

(L(1,ind)*Vinf mag*sin(theta))/(abs(l d*sin(theta) + l*theta d*cos(

theta))ˆ2 + abs(Vinf mag - l d*cos(theta) + l*theta d*sin(theta))ˆ2)

ˆ(1/2) + (L(1,ind)*l*theta d*cos(theta)ˆ2)/(abs(l d*sin(theta) + l*
theta d*cos(theta))ˆ2 + abs(Vinf mag - l d*cos(theta) + l*theta d*
sin(theta))ˆ2)ˆ(1/2) + (L(1,ind)*l*theta d*sin(theta)ˆ2)/(abs(l d*
sin(theta) + l*theta d*cos(theta))ˆ2 + abs(Vinf mag - l d*cos(theta)

+ l*theta d*sin(theta))ˆ2)ˆ(1/2))/(cos(theta)ˆ2 + sin(theta)ˆ2);

81 Re(1,ind) = density*(theta d*l)*c/u;

82

83 %If Convergence was Reached

84 if ODE kill > ODE kill end

85 if ind >= (t size - sizeLAST WAVE + 1)

86 LAST WAVE T(LAST WAVE count) = T(1,ind);

87 LAST WAVE count = LAST WAVE count + 1;

88 end

89 end

90

91 end

92

93 %Minimum and Maximum Tensions

94 MAX Tension = max(T);

95 MIN Tension = min(T);

96

97 fprintf('\nTension - Max: %.2f N Min: %.2f N\r', MAX Tension, MIN Tension);

98

99 output = MIN Tension;

100

101 end

A.3 Control Functions

A.3.1 Calculate State Vector Derivative

1 %-------------------------------------------------------%

2 %KITE ThetaSol.m %
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3 % %

4 %This funciton provides function solutions for angular %

5 %acceleration and tension. This version has a constant %

6 %force applied. %

7 %-------------------------------------------------------%

8

9 i = [1,0,0];

10 j = [0,1,0];

11 k = [0,0,1];

12

13 %Symbolic Variables

14 syms T Vinfin D L m Fp B ang attck

15 syms l l d l dd

16 syms theta theta d theta dd

17

18 %Er and Etheta components in terms of i,j,k

19 e r = [cos(theta),sin(theta),0];

20 e theta = [-sin(theta),cos(theta),0];

21

22 %Velocity and Acceleration Components

23 Vi = Vinfin*i;

24 Vkite = theta d*l*e theta+l d*e r;

25 Vrel = Vi-Vkite;

26

27 Akite = (theta dd*l+2*theta d*l d)*e theta+(l dd-theta dˆ2*l)*e r;

28

29 %Solving for Angle of Attack

30 k vrelteth = cross(Vrel,-e r);

31 Vrel unit = norm(Vrel);

32 Teth unit = norm(-e r);

33 gamma = asin(norm(k vrelteth)/(Vrel unit*Teth unit));

34

35 %Unit Vectors of Lift and Drag

36 lambda D = Vrel/Vrel unit;

37 lambda L = cross(k,lambda D);

38

39 %Solver for Tension and Theta dd

40 eq1 = Fp*e theta-T*e r+D*lambda D+L*lambda L-m*Akite;

41 [T,theta dd] = solve(eq1(1),eq1(2),'T','theta dd');

42

43 %Solver for Gamma

44 eq2 = B - gamma - ang attck;

45 [ang attck] = solve(eq2(1),'ang attck');

A.3.2 Single Variable Root Finding
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1 %-------------------------------------------------------%

2 %Kite Simul 0216.m %

3 % %

4 %Kite Simulation of a horizontal path, microns off the %

5 %ground. The simulation solves for theta, theta d, l, %

6 %l d, and tension. The simulation involves lift and drag%

7 %forces and has one animation for the top view of a %

8 %flight path. %

9 %-------------------------------------------------------%

10

11 %***------------------------------------------------------------------***%

12 %***------------Insert Initial Conditions and Parameters--------------***%

13 %***------------------------------------------------------------------***%

14

15 x star = l init;

16

17 SS tol = 1e-7; %Tolerance level set for finding a Zero Crossing

18 del = 0.0001; %Delta Change for Equation Slope

19

20 x star count = 0; %Completed Passes of Root Find

21 End Wave l = 100000; %Initital Difference between Beginning and End of Wave

22 Start Wave l = 0; %Initial guess for the Root Find

23 Total error = 10; %Error Initial Value

24

25 %Iterative Process Based on the Difference between the beginning of the

26 %wave and the end of the wave for Angular Velocity or Tether Length are

27 %both less than the SteadyState Tolerance Level

28 while abs(End Wave l - Start Wave l) > SS tol

29 x star count = x star count+1;

30

31 %Root Find Initial Conditions

32 SYS time = 0;

33 SYS theta = theta;

34 SYS theta d = theta d init;

35 SYS l = x star(x star count,1);

36 SYS l d = l d;

37

38 %Initial Solver for Baseline of Root Find

39 baseODE = ODEventFuncDIFF();

40 Start Wave l = baseODE(1); Start Wave theta d = baseODE(2); l d out base =

baseODE(3);

41 End Wave l = baseODE(4); End Wave theta d = baseODE(5); l d in base =

baseODE(6);

42 Total error = baseODE(7); theta in base = theta in; theta out base =

theta out;

43
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44 if abs(End Wave l - Start Wave l) > SS tol

45

46 %Define Upper Bound

47 del l = Start Wave l*del;

48 Start Wave l upper = Start Wave l + del l;

49

50 %Del L Integration to determine slope from Baseline and Upper Bound

51 SYS time = 0;

52 SYS theta = theta;

53 SYS theta d = Start Wave theta d;

54 SYS l = Start Wave l upper;

55 SYS l d = l d;

56

57 del l ODE = ODEventFuncDIFF();

58 Start Wave l del l = del l ODE(1); Start Wave theta d del l = del l ODE

(2); l d out del l = del l ODE(3);

59 End Wave l del l = del l ODE(4); End Wave theta d del l = del l ODE(5);

l d in del l = del l ODE(6);

60 Total error del l = del l ODE(7); theta in del l = theta in;

theta out del l = theta out;

61

62 %Differences between Baseline and Upper Bound start and end lengths

63 Func l = (End Wave l - Start Wave l);

64 Func l del l = (End Wave l del l - Start Wave l del l);

65

66 %Alpha Coefficient used to calculate the size of the step

67 l der = (Func l del l - Func l)/del l;

68

69 %Stepped Value location fed to next loop iteration

70 stepped value = (1/l der)*-(End Wave l-Start Wave l) + Start Wave l;

71 x star(x star count+1,1) = stepped value(1);

72

73 end

74

75 end

A.3.3 Multi-Dimensional Root Finding

1 %------------------------------------------------------------%

2 % 2DRootFind theta d l.m %

3 % %

4 % Newtonian-Rhapsonian Multi-Dimensional Root Finding Method %

5 % used to find the error plane crossing for the variables %

6 % angular velocity and tether length at the end of a cycle. %
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7 %------------------------------------------------------------%

8

9 %***------------------------------------------------------------------***%

10 %***------------Insert Initial Conditions and Parameters--------------***%

11 %***------------------------------------------------------------------***%

12

13 %Initital Difference between Beginning and End of Wave

14 Func theta d = 100000;

15 Func l = 100000;

16

17 SS tol = 1e-5; %Tolerance level set for finding a Zero Crossing

18 del = 0.0001; %Delta Change for Equation Slope

19 x star = [theta d, l]; %Initial guess for the Root Find

20 x star count = 0; %Completed Passes of Root Find

21

22 %Iterative Process Based on the Difference between the beginning of the

23 %wave and the end of the wave for Angular Velocity and Tether Length are

24 %both less than the SteadyState Tolerance Level

25 while abs(Func theta d) > SS tol | | abs(Func l) > SS tol

26 x star count = x star count+1;

27

28 %Root Find Initial Conditions

29 SYS time = 0;

30 SYS theta = theta;

31 SYS theta d = x star(x star count,1);

32 SYS l = x star(x star count,2);

33 SYS l d = l d;

34

35 %Initial Solver for Baseline of Root Find

36 baseODE = ODEventFuncDIFF();

37 Start Wave l = baseODE(1); Start Wave theta d = baseODE(2); l d out base =

baseODE(3);

38 End Wave l = baseODE(4); End Wave theta d = baseODE(5); l d in base =

baseODE(6);

39 Total error = baseODE(7); theta in base = theta in; theta out base =

theta out;

40

41 %Will enter RF if error between variables do not satisfy SS tolerance

42 if abs(Func theta d) > SS tol | | abs(Func l) > SS tol

43

44 %Define Upper Bound for Angular Velocity and Tether Length

45 del l = Start Wave l*del;

46 del theta d = Start Wave theta d*del;

47

48 Start Wave l upper = Start Wave l + del l;

49 Start Wave theta d upper = Start Wave theta d + del theta d;
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50

51 %Del Theta d Integration

52 %Initial Conditions for Del Theta D

53 SYS time = 0;

54 SYS theta = theta;

55 SYS theta d = Start Wave theta d upper;

56 SYS l = Start Wave l;

57 SYS l d = l d;

58

59 %Theta D ODE Solver

60 del theta d ODE = ODEventFuncDIFF();

61 Start Wave l del t = del theta d ODE(1); Start Wave theta d del t =

del theta d ODE(2); l d out del t = del theta d ODE(3);

62 End Wave l del t = del theta d ODE(4); End Wave theta d del t =

del theta d ODE(5); l d in del t = del theta d ODE(6);

63 Total error del t = del theta d ODE(7); theta in del t = theta in;

theta out del t = theta out;

64

65 %Del L Integration

66 %Initial Conditions for Del L

67 SYS time = 0;

68 SYS theta = theta;

69 SYS theta d = Start Wave theta d;

70 SYS l = Start Wave l upper;

71 SYS l d = l d;

72

73 %L ODE Solver

74 del l ODE = ODEventFuncDIFF();

75 Start Wave l del l = del l ODE(1); Start Wave theta d del l =

del l ODE(2); l d out del l = del l ODE(3);

76 End Wave l del l = del l ODE(4); End Wave theta d del l = del l ODE

(5); l d in del l = del l ODE(6);

77 Total error del l = del l ODE(7); theta in del l = theta in;

theta out del l = theta out;

78

79

80 %Jacobian, StepSize, and Updated Root

81 %Function Calculations for Differences between Begin and End

82 Func theta d = (End Wave theta d - Start Wave theta d);

83 Func l = (End Wave l - Start Wave l);

84 Func theta d del t = (End Wave theta d del t -

Start Wave theta d del t);

85 Func theta d del l = (End Wave theta d del l -

Start Wave theta d del l);

86 Func l del t = (End Wave l del t - Start Wave l del t);

87 Func l del l = (End Wave l del l - Start Wave l del l);
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88

89 %Newton-Rhapson Method Jacobian

90 Jacobian = [(Func theta d del t - Func theta d)/del theta d, (

Func theta d del l - Func theta d)/del l;

91 (Func l del t - Func l)/del theta d, (Func l del l -

Func l)/del l];

92

93 %New Root Step for the Next Iteration

94 stepped value = inv(Jacobian)*[-(End Wave theta d-Start Wave theta d

);-(End Wave l-Start Wave l)] + [Start Wave theta d;Start Wave l

];

95 x star(x star count+1,1) = stepped value(1); x star(x star count

+1,2) = stepped value(2);

96

97 end

98

99 end

A.3.4 Animation of System Position and Orientation

1 %---------------------------------------------------------%

2 % aniMATION.m %

3 % %

4 % Provides a visual representation of the flightpath and %

5 % and orientation of the airfoil while in flight. This %

6 % version depicts if the tether is in positive or %

7 % negative tension by the color of the thin rod. It will %

8 % also provide a FBD with force vectors in ratio to their %

9 % maximum values. %

10 %---------------------------------------------------------%

11

12 function b = aniMATION(b)

13

14 global SYS time SYS theta SYS theta d SYS l SYS l d L D LiftVect DragVect;

15 global Vrel T magg Vkite VkiteVect;

16

17 [~,sizeSYS] = size(SYS time);

18

19 %Initital Defining of Lines

20

21 %Open a Figure Window to place initial construct of animation

22 verticalFig = figure('Name','2D Tether Animation');

23 %Line for initial tether length and initial theta
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24 tether line = line('xdata',[0 SYS l(1,1)*cos(SYS theta(1,1))],'ydata',[0

SYS l(1,1)*sin(SYS theta(1,1))]);

25 max l = max(SYS l);

26 %Tether Figure Margin

27 xlim([-max l-max l*.2,max l+max l*.2]);

28 ylim([-max l-max l*.2,max l+max l*.2]);

29 axis equal

30 axis manual

31

32 %Unitization of Lift, Drag, and Velocity Lines

33 M1 = max(D);

34 M2 = max(L);

35

36 if M1 < M2

37 maxLD = M2;

38 else

39 maxLD = M1;

40 end

41

42 maxVEL = max(magg Vkite);

43

44 %Kite Figure

45 kiteFig = figure('Name','Kite FBD');

46 magg vrel = norm(Vrel(1,:));

47 lift line = line('xdata',[0 L(1,1)*LiftVect(1,1)/maxLD],'ydata',[0 L

(1,1)*LiftVect(1,1)/maxLD]);

48 drag line = line('xdata',[0,D(1,1)*DragVect(1,1)/maxLD],'ydata',[0,D

(1,1)*DragVect(1,1)/maxLD]);

49 vrel line = line('xdata',[0,Vrel(1,1)/magg vrel],'ydata',[0,Vrel(1,2)/

magg vrel]);

50 vkite line = line('xdata',[0,VkiteVect(1,1)/maxVEL],'ydata',[0,VkiteVect

(1,2)/maxVEL]);

51

52 %XY-axis limits for Airfoil Figure Window

53 xlim([-1.1,1.1]);

54 ylim([-1.1,1.1]);

55 axis equal

56 axis manual

57

58 %Airfoil Outline Points

59 x foil = [0.00158000000000000;0.0100800000000000;0.0181000000000000;...

60 0.0327900000000000;0.0458000000000000;0.0570400000000000;...

61 0.0661700000000000;0.0725400000000000;0.0750200000000000;...

62 0.0742700000000000;0.0717200000000000;0.0668200000000000;...

63 0.0585300000000000;0.0525000000000000;0.0444300000000000;...

64 0.0326800000000000;0.0236700000000000;0.00100000000000000;...
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65 -0.0236700000000000;-0.0326800000000000;-0.0444300000000000;...

66 -0.0525000000000000;-0.0585300000000000;-0.0668200000000000;...

67 -0.0717200000000000;-0.0742700000000000;-0.0750200000000000;...

68 -0.0725400000000000;-0.0661700000000000;-0.0570400000000000;...

69 -0.0458000000000000;-0.0327900000000000;-0.0181000000000000;...

70 -0.0100800000000000;-0.00158000000000000];

71 y foil = [-0.750000000000000;-0.700000000000000;-0.650000000000000;...

72 -0.550000000000000;-0.450000000000000;-0.350000000000000;...

73 -0.251000000000000;-0.150000000000000;-0.0500000000000000;...

74 0;0.0500000000000000;0.100000000000000;0.150000000000000;...

75 0.175000000000000;0.200000000000000;0.225000000000000;...

76 0.237500000000000;0.250000000000000;0.237500000000000;...

77 0.225000000000000;0.200000000000000;0.175000000000000;...

78 0.150000000000000;0.100000000000000;0.0500000000000000;0;...

79 -0.0500000000000000;-0.150000000000000;-0.251000000000000;...

80 -0.350000000000000;-0.450000000000000;-0.550000000000000;...

81 -0.650000000000000;-0.700000000000000;-0.750000000000000];

82

83 [q,r] = size(x foil);

84

85 %Airfoil Shape Array

86 for ind = 1:q-1

87 airfoil parts(ind) = line('xdata',[0,0],'ydata',[0,0]);

88 end

89

90 %Draw Dynamics and FBD for the entire simulation

91 for ind=1:sizeSYS

92

93 %Initial Parameters

94 force scale = 50;

95 theta = SYS theta(1,ind);

96 theta d = SYS theta d(1,ind);

97 l = SYS l(1,ind);

98 l d = SYS l d(1,ind);

99 Lift = L(1,ind)/maxLD;

100 Drag = D(1,ind)/maxLD;

101 Vel = magg Vkite(ind)/maxVEL;

102

103 %Rotate and Draw Airfoil for each iteration

104 for indd = 1:q

105 [foilCoord1(:,indd)] = [cos(theta),-sin(theta);sin(theta),cos(

theta)]*[x foil(indd,1);y foil(indd,1)];

106 end

107

108 foilCoord = foilCoord1';

109
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110 for indd = 1:q-1

111 set(airfoil parts(indd),'xdata',[foilCoord(indd,1),foilCoord(

indd+1,1)],'ydata',[foilCoord(indd,2),foilCoord(indd+1,2)]);

112 end

113

114 % 2-D Line Drawing for the Simulation

115 %Tether Figure (verticalFig)

116 if T(1,ind)>0

117 set(tether line,'xdata',[0,l*cos(theta)],'ydata', [0,l*sin(

theta)]);

118 else

119 set(tether line,'xdata',[0,l*cos(theta)],'ydata', [0,l*sin(

theta)],'Color','red');

120 end

121

122 %Airfoil Lift and Drag Components Animation (kiteFig)

123 mag vrel = norm(Vrel(:,ind));

124 set(vrel line,'xdata',[0,Vrel(1,ind)/mag vrel],'ydata',[0,Vrel

(2,ind)/mag vrel],'Color','yellow');

125 set(lift line,'xdata',[0,Lift*LiftVect(1,ind)],'ydata',[0,Lift*
LiftVect(2,ind)],'Color','green');

126 set(drag line,'xdata',[0,Drag*DragVect(1,ind)],'ydata',[0,Drag*
DragVect(2,ind)],'Color','red');

127 set(vkite line,'xdata',[0,Vel*VkiteVect(ind,1)],'ydata',[0,Vel*
VkiteVect(ind,2)],'Color','blue');

128

129 drawnow

130 grid on

131

132 end
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Appendix B

Tension Controller Parameter Variation
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Fig. B.1: Parameter variation of the tether tension controller in Fig. 3.36 to show net average cycle
power while varying reel-in tension
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Fig. B.2: Parameter variation of the tether tension controller in Fig. 3.36 to show net average cycle
power while varying the angle between the tether and the chord line of the kite
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Appendix C

3D Simulation Verification
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Fig. C.1: Test case showing pendulum behavior of the model as altitude angle oscillates with wind
velocity = 0 m/s, lift and drag forces = 0 N, gravity = 9.81 m/s2 to verify periodic cycle behavior
from Fig. 4.7
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Fig. C.2: Test case showing the eventual dampening of the system with altitude angular velocity
reducing to 0 m/s with wind velocity = 0 m/s and lift and drag forces allowed. Associated with Fig.
4.8
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Fig. C.3: Simple animation to verify vector directions of tether (black), lift (green), wing span line
(light blue), and apparent wind velocity (magenta)
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Fig. C.4: Simple animation to verify tether orientation during animation for vector directions in Fig.
C.3
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Fig. C.5: Test case to verify ball on a string for horizontal axis (wind speed = 0 m/s, lift and drag
forces set to 0N, gravity = 0 m/s2, and altitude angular velocity/acceleration set to rad/s and 0
rad/s2)
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Fig. C.6: Test case to verify ball on a string for vertical axis (wind speed = 0 m/s, lift and drag forces
set to 0N, gravity = 0 m/s2, and tether angular velocity/acceleration set to rad/s and 0 rad/s2)
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Fig. C.7: Reel-rate for horizontal ball and string to verify reel-in and reel-out adjustments and tether
angular position triggers
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