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Abstract

In this work, we consider stochastic variational inequalities arising from a

certain class of equilibrium problems with uncertainties. Uncertainties in

the models are introduced through data that are known through their prob-

abilistic distributions. We consider several extragradient methods for the

solutions of the variational inequalities and compare their relative efficiency

and effectiveness through thorough numerical comparisons. Several appli-

cations such as traffic equilibrium, environmental games, and oligopolistic

market equilibrium are considered.

Keywords: stochastic linear complementarity problem, stochastic variation-

al inequalities, traffic equilibrium, oligopolistic market equilibrium, environ-

mental games, Cournot oligopology.
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Chapter 1

Introduction

In this chapter, we will introduce linear complementarity problems(LCP).

We will give some application examples, and also briefly discuss determinis-

tic and stochastic variational inequalities related to linear complementarity

problems.

1.1 Linear Complementarity Problem

The linear complementarity problem is to find a vector in a finite-dimensional

real vector space in which the vector needs to satisfy a certain system of

inequalities.

Given a pair (q,M) of a vector q ∈ IRn and a matrix M ∈ IRn×n, the Linear

Complementarity Problem (LCP), is to find a vector p ∈ IRn such that

p ≥ 0 (1.1)

q +Mp ≥ 0 (1.2)

p>(q +Mp) = 0 (1.3)

or to show that no such p exists.
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1.2 Problems equivalent to LCP

In this section, we will introduce several LCP application problems whose

formulations are used to develop computational methods.

1.2.1 Quadratic Programming

Consider the quadratic program (QP)

minimize f(x) = c>x+
1

2
x>Qx

subject to Ax ≥ b (1.4)

x ≥ 0

where Q ∈ IRn×n is symmetric, c ∈ IRn, A ∈ IRm×n, and b ∈ IRm. Note

that Q = 0 gives a linear program. It is known that if x is a locally optimal

solution of (1.4), then there exists a vector y ∈ IRm such that the pair (x, y)

satisfies the so-called Karush-Kuhn-Tucker (KKT) conditions

u = c+Qx− A>y ≥ 0, x ≥ 0, x>u = 0 (1.5)

v = −b+ Ax ≥ 0, y ≥ 0, y>v = 0. (1.6)

Furthermore, if Q is positive semi-definite (i.e. the objective function f(x)

is convex), the the conditions (1.5) and (1.6) are sufficient for the vector x

to be globally optimal solution of the quadratic program (1.4).

The conditions is (1.5) and (1.6) define the LCP(q,M) where

q =

[
c

−b

]
and M =

[
Q −A>

A 0

]
. (1.7)

Notice that M is not symmetric. Also, if Q is positive semi-definite, then so

is M .

A special case of (1.4) is

minimize f(x) = c>x+
1

2
x>Qx (1.8)

subject to x ≥ 0. (1.9)
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IfQ is positive semi-definite, them the program (1.9) is equivalent to LCP(c,Q)

(with symmetric Q).

1.2.2 Market Equilibrium

A market equilibrium is the state of an economy in which demands of con-

sumers and the supplies of producers are balanced at the prevailing price

level. Consider a market equilibrium problem where supply side is described

by a linear programming model to capture the details of the production activ-

ities. The market demand function is generated by models with commodity

prices as the primary independent variables. The mathematical problem is to

find vectors p∗ and r∗ such that the constraints stated in (i)- (iii)are satisfied.

(i) supply side

minimize f(x) = c>x

subject to Ax ≥ b (1.10)

Bx ≥ r∗ (1.11)

x ≥ 0

where c is the cost vector for supply activities, x is the vector of production

activity levels. Condition (1.10) represents the technological constraints on

production, and the condition (1.11) is the demand requirement constraints.

(i) demand side

minimize r∗ = Q(p∗) = Dp∗ + d (1.12)

where Q is the market demand function with p∗ and r∗ representing the

vectors of demand prices and quantities respectively.

(iii) equilibrium conditions

p∗ = π∗ (1.13)

where π∗ denotes the vector of shadow prices (i.e. the market supply prices)

corresponding to the constraint (1.11).
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1.2.3 Nonlinear Complementarity and Variational In-

equality Problems

The LCP is a special case of nonlinear complementarity problem (NCP) the

goal of which is to find a vector p such that

p ≥ 0, f(p) ≥ 0, and p>f(p) = 0 (1.14)

where f is a given mapping from IRn into itself. LCP is a particular case of

NCP where f(p) = q + Mp (a linear function). The nonlinear complemen-

tarity problem provides a unified formulation to nonlinear programming and

many equilibrium problems such as traffic equilibrium problem and the n-

person Nash-Cournot equilibrium problem. One of the solution methods for

the nonlinear complementarity problem are linear approximation methods

where you solve a sequence of linear complementarity problems of form

vif irstp ≥ 0, w = f(p(k)) + A(p(k))(p− p(k)) ≥ 0, p>w = 0 (1.15)

where p(k) is the current iterate and A(p(k)) is some suitable approximation

of the Jacobian matrix ∇f(p(k)). For example, when A(p(k)) is the Jacobian

matrix, then we have Newton’s method for NCP.

Another generalization of the nonlinear complementarity problem is varia-

tional inequality problem: Given a nonempty subset K of IRn and a mapping

f from IRn to itself, find a vector x∗ such that

(y − x∗)>f(x∗) ≥ 0, for all y ∈ K.

The problem is denoted by VI(K, f).

1.3 Stochastic Linear Complementarity Prob-

lem

In applications of LCP there is almost always certain types of uncertainties

such as weather, material, load, supply demand are involved. Let (Ω,F ,P)
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be a probability space with Ω ⊆ IRm where probability distribution P is

known. For ω ∈ Ω, we consider random quantities M(ω) ∈ IRn×n and

q(ω) ∈ IRn.

The Stochastic Linear Complementarity Problem (SLCP) is to find a vector

x ∈ IRn such that

M(ω)x+ q(ω) ≥ 0, x ≥ 0, x>(M(ω)x+ q(ω)) = 0, ω ∈ Ω. (1.16)

1.4 Stochastic Variational Inequality

In this section, we introduce the particular form of stochastic variational

inequality that we will consider in the following chapters. Let (Ω,F ,P) be

a probability space. We define a random set

M(ω) := {x ∈ IRk : Ax ≤ D(ω)} (1.17)

for ω ∈ Ω by using a given matrix A ∈ IRm×k and random vector D in IRm.

Consider the following Stochastic Variational Inequality (SVI): For ω ∈ Ω,

find x := x(ω) ∈M(ω) such that

〈S(ω)G(x) +H(x), z − x〉 ≥ 〈R(ω) c+ b, z − x〉

for every z ∈M(ω).

Here, G,H : IRk → IRk are two given maps. Real valued random variables

R and S are defined on Ω, and b, c are fixed vectors in IRk.



Chapter 2

Stochastic Variational

Inequalities

We will study stochastic variational inequalities in this chapter. Theory of

variational inequalities provides an efficient mathematical apparatus for s-

tudying a wide range of problems arising in diverse fields such as structural

mechanics, elasticity, economics, optimization, financial mathematics, and

others. Variational inequalities have been used extensively for various net-

work equilibrium problems and in particular for transportation science mod-

els (see, for instance, the book [34] and the cited references therein). Many of

the research on the applications of variational inequalities to various aspects

of transportation science and others so far have been in connection with de-

terministic models. However, since the data for the most problems are often

affected by uncertainty or randomness in real-world applications, their vari-

ational inequality formulations must take into account for this stochasticity.

This is a well justified need, and in recent years scientific community have

witnessed an acute increase in research where the authors have incorporated

stochasticity in the models.

We will first talk about the so-called elliptic regularization technique in the

context of stochastic variational inequalities introduced in [23]. The regular-



8

ization methods have been studied extensively for deterministic variational

inequalities and the motivation to study regularization stems from the fact

that network problems lead naturally to monotone variational inequalities.

In order to use effective numerical techniques designed for strongly monotone

variational inequalities, the authors in [23] resorted to regularization strate-

gies. Theoretical results that allow a satisfactory treatment of monotone

variational inequalities are provided. The authors performed a comparison of

a rigorous Lp approach they considered with a popular sample-path approach

for stochastic variational inequalities proposed by Agdeppa, Yamashita, and

Fukushima [1] and Chen, Zhang, and Fukushima [6] by using a suite of test

problems.

2.0.1 Lp approach

The methodology adopted there is the Lp-approach pioneered by Gwin-

ner [16] in the context of variational inequalities with linear random op-

erators. He gave new existence theorems and discretization schemes and

also presented an interesting application of the proposed theory to unilateral

boundary value problems. The functional setting introduced in [16] was lat-

er strengthened in [18] to include randomness in the underlying constraints

set (see also [17]). More recently, in [19] and [20], the authors investigated

stochastic variational inequalities with nonlinear monotone maps. Besides p-

resenting a generalization of the existing theory, the nonlinear extension was

motivated by the need to cope with the nonlinearity in many equilibrium

problems arising in operations research such as the random traffic equilib-

rium problems which is studied in detail in this article. In these studies,

the focus was on functional analytic methods to obtain approximations of

the solution (a random vector) together with approximations of statistical

quantities such as the mean and variance of the (random) solution.

In contrast to the aforementioned Lp approach, the so-called sample-path

approach (SPA), commonly studied in connection to stochastic variational

inequalities, aims to associate to the original (stochastic) problem to a de-
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terministic problem which is obtained by sampling/averaging the data of the

original problem. Many techniques have been used for the purpose of aver-

aging/sampling. For instance, a Monte Carlo sampling method is available

in Patriksson [35], Shapiro [40], Shapiro, Dentcheva, and Ruszczyński [41],

and Shapiro and Xu [42], among others. Gürken, Özge, and Robinson [15]

initiated the use of sample-path methods for variational inequalities (see also

[14]). In these works, the authors focused on stochastic variational inequali-

ties involving a Fréchet differentiable maps defined on polyhedral sets in finite

dimensional setting. Since then this methodology has been extensively used

by M. Fukushima and his co-workers (see [5], [1], [6]). In these works, the

authors proposed an expected residual minimization method for stochastic

linear complementarity problems and variational inequalities and gave vari-

ous applications to equilibrium problems. Recently, many researchers applied

the sample-path approach to Stackelberg and Nash games (see De Miguel and

Xu [10], and Ravat and Shanbhag [37] and [38]). We would like to also point

out an interesting work by Dentcheva and Ruszcynsky [11] where the authors

investigated optimization problems with the so-called stochastic dominance

constraints.

2.0.2 Existing Methods

In the following, we briefly discuss some of the existing methodologies avail-

able in the literature. We begin with a discussion of the expected residual

minimization method. The method described in Chen and Fukushima [5] is

in the context of the following variational inequality: find x ∈ S ⊆ Rn such

that

F (x, ω)T (y − x) ≥ 0, ∀ y ∈ S,

where the set S is closed and convex, (Ω,A, P ) is the probability space, and

F : Rn × Ω→ Rn.

In fact, the authors focused on the case when S is the positive orthant. For

this particular case, the above variational inequality reduces to the following
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complementarity problem: Find x ∈ Rn such that

F (x, ω) ≥ 0, x ≥ 0, F (x, ω, x)Tx = 0.

The main issue here is how to construct an averaged problem that can re-

place the stochastic one and how to devise a variant of the approach proposed

in [15] and [14]. We recall that the strategy of [15] consists of solving the

deterministic complementarity problem that results from replacing the map

F (x, ω) with its expectation F∞ = E[F (x, ω)]. In general, this problem is

different from the one that is obtained by replacing the random variable ω

with its expectation. To approximate F∞ in an efficient way, a sequence of

approximate problems can be considered in which F∞ is approximated by

functions Fk(x) by employing discrete distributions and Monte-Carlo meth-

ods. Once the stochastic complementarity has been converted into a deter-

ministic one, the latter can be solved by some suitable method. The authors

in the aforementioned studies used the so-called nonlinear complementary

functions to solve the deterministic complementarity problem. Recall that a

function ϕ : R2 → R is called a nonlinear complementary function if an only

if

ϕ(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = 0.

The averaged problem associated to the stochastic complementarity problem

is:

min
x∈Rn

+

E‖Φ(x, ω‖2 (2.1)

where

Φ(x, ω) = (ϕ(F1(x, ω), x1), . . . , ϕ(Fn(x, ω), xn))T .

This approach can be interpreted as an average least-squares approach. To

compute the expectations, the authors generated observation by using quasi-

Monte-Carlo methods. Moreover, they proved that every accumulation point

of sample approximation problems is a minimizer for (2.1). We remark that

when for every ω, the stochastic problem has the unique solution x(ω), no re-

lation between the accumulation point of the approximation and of E[(x(ω)]
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has been established. This approach is further developed in [6] where the

authors discussed the robustness of their method, gave new error bounds,

and proposed a procedure to generate a class of stochastic complementarity

problem to which their method can be applied. They also gave a concrete

application to stochastic traffic equilibrium problems. In [1], the authors

studied a stochastic affine variational inequality by the same approach and

proposed a convex expected residual model. They also applied their results

to traffic equilibrium problems. The above mentioned papers contain a deep

analysis of the structure of the deterministic problem which emerges from

the stochastic one. In [1, p.2], the authors state that their approach leads

to a reasonable solution of the stochastic variational inequality. Clearly, a

reasonable solution should be close to the exact mean value solution.

A thorough comparison between the Lp approach and the sample-path ap-

proach was done in [23]. The authors introduced randomness into the traffic

equilibrium models first used in [1] and [6] and solved them by applying the

Lp-approach. The Lp approach allows to compute approximations to the ex-

act mean value of the random solution vector, and the authors were also able

to compute the exact mean values. Through the examples, they attempt-

ed to validate the approximation procedure and compare with the expected

residual method.

2.1 Stochastic Variational Inequalities

In this section, we recall some recent results from Jadamba, Khan, and Raciti

[23]. Let (Ω,A, P ) be a probability space. Let G,H : Rk → Rk be two given

maps, let b, c ∈ Rk be fixed vectors, and let R and S be two real-valued

random variables defined on Ω. Let λ be a random vector in Rk, let D be

random vector in Rm, and let A ∈ Rm×k be a given matrix. For ω ∈ Ω, we

define a random set

M(ω) := {x ∈ Rk : Ax ≤ D(ω)}.
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Consider the following stochastic variational inequality: For almost all ω ∈ Ω,

find x̂ := x̂(ω) ∈M(ω) such that

〈S(ω)G(x̂) +H(x̂), z − x̂〉 ≥ 〈R(ω) c+ b, z − x̂〉 (2.2)

for every z ∈M(ω). Variational inequality (2.2) holds pointwise on Ω, except

a fixed null set depending on the solution x̂.

Now set

F (ω, x) := S(ω)G(x) +H(x).

The assumption here is that S,G and H are such that the map F : Ω×Rk 7→
Rk is a Carathéodory function. That is, for each fixed x ∈ Rk, the function

F (·, x) is measurable with respect to A whereas for each ω ∈ Ω the function

F (ω, ·) is continuous. We also assume that F (ω, ·) is monotone for every

ω ∈ Ω.

Let Σ : Ω ↪→ Rk be the set-valued map that associates to each ω ∈ Ω,

the set of all solutions Σ(ω) of (2.2). Gwinner and Raciti [18] proved the

measurability of the set-valued map Σ for variational inequalities defined via

bilinear forms. However, the proof given there can readily be extended to

the general case of nonlinear operators. If (2.2) is uniquely solvable, then

suitable conditions ensure that the solution belongs to an Lp space for some

p ≥ 2. This observation allows us to compute statistical quantities such as

the mean values and the variances of the solution.

2.1.1 Integral Formulation

Now, we proceed to derive the integral formulation of the variational inequal-

ity (2.2). For a fixed p ≥ 2, we define the reflexive Banach space Lp(Ω, P,Rk)

of random vectors V from Ω to Rk such that the expectation (p-moment) is

given by:

EP‖V ‖p =

∫
Ω

‖V (ω)‖pdP (ω) <∞.

For the subsequent development, the following growth condition is needed:

‖F (ω, z)‖ ≤ α(ω) + β(ω)‖z‖p−1, ∀z ∈ Rk, for some p ≥ 2, (2.3)
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where α ∈ Lp(Ω, P ) and β ∈ L∞(Ω, P ).

Due to the above growth condition, the Nemitsky operator F̂ associated to

F , acts from Lp(Ω, P,Rk) to Lq(Ω, P,Rk), where p−1 +q−1 = 1. Furthermore,

we have

F̂ (V )(ω) := F (ω, V (ω)), ω ∈ Ω.

Assuming D ∈ Lpm(Ω) := Lp(Ω, P,Rm), we introduce the following nonempty,

closed and convex subset of Lpk(Ω)

MP := {V ∈ Lpk(Ω) : AV (ω) ≤ D(ω), P − a.s.},

which is the Lp analogue of M(ω) defined above.

Let S(ω) ∈ L∞, 0 < s < S(ω) < s, and R(ω) ∈ Lq. Equipped with these

notations, we consider the following Lp formulation of (2.2). Find Û ∈ MP

such that for every V ∈MP , we have∫
Ω

〈S(ω)G(Û(ω)) +H(Û(ω)), V (ω)− Û(ω)〉 dP (ω) ≥∫
Ω

〈b+R(ω) c, V (ω)− Û(ω)〉dP (ω). (2.4)

If problems (2.2) and (2.4) are uniquely solvable then they are equivalent

provided that the solution of (2.2) defines an Lp function. The relation

between the two formulations in the general case has been analyzed in [20,

Proposition 1].

To get rid of the abstract sample space Ω, we consider the joint distribution

P of the random vector (R, S,D) and work with the special probability space

(Rd,B(Rd),P), where the dimension d := 2 + m. For simplicity, we assume

that R, S and D are independent random vectors. We set

r = R(ω),

s = S(ω),

t = D(ω),

y = (r, s, t).
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For each y ∈ Rd, we define the set

M(y) := {x ∈ Rk : Ax ≤ t}.

The pointwise formulation of the variational inequality reads: Find x̂ such

that x̂(y) ∈M(y), P - a.s., and the following inequality holds for P - almost

every y ∈ Rd and for every x ∈M(y), we have

〈sG(x̂(y)) +H(x̂(y)), x− x̂(y)〉 ≥ 〈rc+ b, x− x̂(y)〉 . (2.5)

In order to obtain the integral formulation of (2.5), consider the space Lp(Rd,P,Rk)

and introduce the closed and convex set

MP := {v ∈ Lp(Rd,P,Rk) : Av(r, s, t) ≤ t, P− a.s.}.

With this terminology, we consider the variational inequality of finding û ∈
MP such that for every v ∈MP we have∫ ∞

0

∫ s

s

∫
Rd

〈sG(û(y)) +H(û(y)), v(y)− û(y)〉 dP(y) ≥∫ ∞
0

∫ s

s

∫
Rd

〈b+ r c, v(y)− û(y)〉 dP(y). (2.6)

The equivalence of (2.5) and (2.6) can easily be proven.

It is also observed that this approach and analysis extends readily to more

general finite Karhunen-Loève expansions:

λ(ω) = b+
L∑
l=1

Rl(ω) cl F (ω, x) = H(x) +

LF∑
l=1

Sl(ω)Gl(x).

We recall the following general result useful to ensure solvability of an infinite

dimensional variational inequality like (2.4), (see [29] for a recent survey on

existence results for variational inequalities).

Theorem 2.1.1 Let E be a reflexive Banach space and let K be a nonempty,

closed, and convex subset of E Let A : K −→ E∗ be monotone and continuous
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on finite dimensional subspaces of K. Consider the variational inequality

problem of finding u ∈ K such that

〈Au, v − u〉E,E∗ ≥ 0, for every v ∈ K.

Then a necessary and sufficient condition for the above problem to be solvable

is the existence of δ > 0 such that at least a solution of the variational

inequality:

uδ ∈ Kδ, 〈Auδ, v − uδ〉E,E∗ ≥ 0,∀v ∈ Kδ

satisfies ‖uδ‖ < δ, where

Kδ = {v ∈ K : ‖v‖ ≤ δ}.

2.2 Approximation by Discretization of Dis-

tributions

This section contains an introduction to an approximate solution of stochastic

variational inequalities by discretization of distributions. The approach was

first introduced by Gwinner [16]. Assume, without any loss of generality,

that R ∈ Lq(Ω, P ) and D ∈ Lpm(Ω, P ) are nonnegative (otherwise we can

use the standard decomposition in the positive part and the negative part).

Moreover, we assume that the support (the set of possible outcomes) of

S ∈ L∞(Ω, P ) is the interval [s, s) ⊂ (0,∞). Furthermore, we assume that

the probability measures PR, PS, and PD are continuous with respect to the

Lebesgue measure, so that according to the theorem of Radon-Nikodym, they

have the probability densities ϕR, ϕS, and ϕDi
, i = 1, . . . ,m, respectively.

Therefore, for i = 1, . . . ,m, we have

P = PR ⊗ PS ⊗ PD,

dPR(r) = ϕR(r) dr,

dPS(s) = ϕS(s) ds

dPDi
(ti) = ϕDi

(ti) dti.
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Notice that v ∈ Lp(Rd,P,Rk) means that (r, s, t) 7→ ϕR(r)ϕS(s)ϕD(t)v(r, s, t)

belongs to the Lebesgue space Lp(Rd,Rk) with respect to the Lebesgue mea-

sure where

ϕD(t) :=
∏
i

ϕDi
(ti).

Therefore, we can define the probabilistic integral variational inequality:

Find û := û(y) ∈MP such that for every v ∈MP, we have∫ ∞
0

∫ s

s

∫
Rm
+

〈sG(û) +H(û), v − û〉ϕR(r)ϕS(s)ϕD(t) dy ≥∫ ∞
0

∫ s

s

∫
Rm
+

〈b+ r c, v − û〉ϕR(r)ϕS(s)ϕD(t) dy .

For numerical approximation of the solution û, we begin with a discretization

of the space X := Lp(Rd,P,Rk). For this, we introduce a sequence {πn}n of

partitions of the support

Υ := [0,∞)× [s, s)× Rm
+

of the probability measure P induced by the random elements R, S, and D.

For this, we set

πn = (πRn , π
S
n , π

D
n ),

where

πRn := (r0
n, . . . , r

NR
n

n ),

πSn := (s0
n, . . . , s

NS
n

n ),

πDi
n := (t0n,i, . . . , t

N
Di
n

n,i )

0 = r0
n < r1

n < . . . rN
R
n

n = n

s = s0
n < s1

n < . . . sN
S
n

n = s

0 = t0n,i < t1n,i < . . . tN
Di
n

n,i = n (i = 1, . . . ,m)

|πRn | := max{rjn − rj−1
n : j = 1, . . . , NR

n } → 0 (n→∞)

|πSn | := max{skn − sk−1
n : k = 1, . . . , NS

n } → 0 (n→∞)

|πDi
n | := max{thin,i − t

hi−1
n,i : hi = 1, . . . , NDi

n } → 0 (i = 1, . . . ,m; n→∞) .
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These partitions give rise to the exhausting sequence {Υn} of subsets of Υ,

where each Υn is given by the finite disjoint union of the intervals:

Injkh := [rj−1
n , rjn)× [sk−1

n , skn)× Inh ,

where we use the multi-index h = (h1, · · · , hm) and

Inh := Πm
i=1 [thi−1

n,i , thin,i).

For each n ∈ N, we consider the space of the Rl-valued step functions (l ∈ N)

on Υn, extended by 0 outside of Υn:

X l
n := {vn : vn(r, s, t) =

∑
j

∑
k

∑
h

vnjkh1Injkh(r, s, t) , vnjkh ∈ Rl}

where 1I denotes the {0, 1}-valued characteristic function of a subset I.

To approximate an arbitrary function w ∈ Lp(Rd,P,R), we employ the mean

value truncation operator µn0 associated to the partition πn given by

µn0w :=

NR
n∑

j=1

NS
n∑

k=1

∑
h

(µnjkhw) 1Injkh , (2.7)

where

µnjkhw :=


1

P(Ijkh)

∫
Injkh

w(y) dP(y) if P(Injkh) > 0 ;

0 otherwise.

Analogously, for a Lp vector function v = (v1, . . . , vl), we define

µn0v := (µn0v1, . . . , µ
n
0vl).

From [16, Lemma 2.5], and the remarks therein, we obtain the following

result.

Lemma 2.2.1 For any fixed l ∈ N, the linear operator µn0 : Lp(Rd,P,Rl)→
Lp(Rd,P,Rl) is bounded with ‖µn0‖ = 1 and for n→∞, µn0 converges point-

wise in Lp(Rd,P,Rl) to the identity.
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To construct approximations for

MP = {v ∈ Lp(Rd,P,Rk) : Av(r, s, t) ≤ t , P− a.s.},

we introduce the orthogonal projector q : (r, s, t) ∈ Rd 7→ t ∈ Rm and define

for each elementary cell Injkh,

qnjkh = (µnjkhq) ∈ Rm,

(µn0q) =
∑
jkh

qnjkh 1Injkh ∈ X
m
n .

This leads to the following sequence of convex and closed sets of the polyhe-

dral type:

Mn
P := {v ∈ Xk

n : Avnjkh ≤ qnjkh , ∀j, k, h}.

It is known (see [19]) that the sequence {Mn
P } approximate the set MP in the

sense of Mosco (see [31]). That is, we have

weak-limsupn→∞M
n
P ⊂MP ⊂ strong-liminfn→∞M

n
P . (2.8)

Since our objective is to approximate the random variables R and S, we

introduce

ρn =

NR
n∑

j=1

rj−1
n 1[rj−1

n ,rjn) ∈ Xn

σn =

NS
n∑

k=1

sk−1
n 1[sk−1

n ,skn) ∈ Xn.

Notice that

σn(r, s, t) → σ(r, s, t) = s, in L∞(Rd,P)

ρn(r, s, t) → ρ(r, s, t) = r, in Lp(Rd,P),

where the second convergence is a consequence of the Chebyshev inequality.
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Combining the above ingredients, for n ∈ N, we consider the following dis-

cretized variational inequality: Find ûn := ûn(y) ∈ Mn
P such that for every

vn ∈Mn
P , we have∫ ∞

0

∫ s

s

∫
Rd

〈σn(y)G(ûn) +H(ûn), vn − ûn〉 dP(y) ≥∫ ∞
0

∫ s

s

∫
Rd

〈b+ ρn(y) c, vn − ûn〉 dP(y) . (2.9)

It turns out that (2.9) can be split in a finite number of finite dimensional

variational inequalities: For every n ∈ N, and for every j, k, h, find ûnjkh ∈
Mn

jkh such that

〈F̃ n
k (ûnjkh), v

n
jkh − ûnjkh〉 ≥ 〈c̃nj , vnjkh − ûnjkh〉, for every vnjkh ∈Mn

jkh, (2.10)

where

Mn
jkh := {vnjkh ∈ Rk : Avnjkh ≤ qnjkh} ,

F̃ n
k := sk−1

n G+H

c̃nj := b+ rj−1
n c.

Clearly, we have

ûn =
∑
j

∑
k

∑
h

ûnjkh 1Injkh ∈ X
k
n.

We recall the following convergence result from [19].

Theorem 2.2.2 Assume that F (ω, ·) is strongly monotone, uniformly with

respect to ω ∈ Ω, that is

〈F (ω, x)− F (ω, y), x− y〉 ≥ α‖x− y‖2 ∀x, y, a.e. ω ∈ Ω,

where α > 0 and that the growth condition (2.3) holds. Then the sequence

(ûn), where ûn is the unique solution of (2.9), converges strongly in Lp(Rd,P,Rk)

to the unique solution û of (2.6).
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2.3 Regularization

In this section, we detail a regularization approach for stochastic variational

inequalities introduced in [23]. Recall that the probabilistic integral formu-

lation seeks û ∈MP such that for every v ∈MP, we have∫ ∞
0

∫ s

s

∫
Rm
+

〈sG(û) +H(û), v − û〉ϕR(r)ϕS(s)ϕD(t) dy ≥∫ ∞
0

∫ s

s

∫
Rm
+

〈b+ r c, v − û〉ϕR(r)ϕS(s)ϕD(t) dy . (2.11)

Furthermore, the discretized analogue of the above variational inequality

reads: For n ∈ N, find ûn = ûn(y) ∈ Mn
P such that for every vn ∈ Mn

P , we

have ∫ ∞
0

∫ s

s

∫
Rm
+

〈σn(y)G(ûn) +H(ûn), vn − ûn〉 dP(y) ≥∫ ∞
0

∫ s

s

∫
Rm
+

〈b+ ρn(y) c, vn − ûn〉 dP(y) . (2.12)

The above discrete variational inequality will be regularized and it is shown

that its continuous analogue is recovered by the limiting process. First,

a sequence {εn} of regularization parameters is chosen. Also, choose the

regularization map to be the duality map J : Lp(Rd,P,Rk)→ Lq(Rd,P,Rk).

Assume that εn > 0 for every n ∈ N and that εn ↓ 0 as n→∞.
Consider the following regularized stochastic variational inequality: For n ∈
N, find wn = wεnn (y) ∈Mn

P such that for every vn ∈Mn
P , we have∫ ∞

0

∫ s

s

∫
Rm
+

〈σn(y)G(wn) +H(wn) + εnJ(wn), vn − wn〉 dP(y) ≥∫ ∞
0

∫ s

s

∫
Rm
+

〈b+ ρn(y) c, vn − wn〉 dP(y). (2.13)

The solution wn will be referred to as the regularized solution. The following

theorem highlights some of the features of the regularized solutions:
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Theorem 2.3.1 For every n ∈ N, the regularized stochastic variational in-

equality (2.13) has the unique solution wn. Any weak limit of the sequence

{wn} of the regularized solutions is a solution of (2.11). Furthermore, the

sequence of the regularized solutions {wn} is bounded provided that the fol-

lowing coercivity condition holds: There exists a bounded sequence {δn} with

δn ∈Mn
P such that∫∞

0

∫ s
s

∫
Rm
+
〈σn(y)G(un) +H(un), un(y)− δn〉 dP(y)

‖un‖
→ ∞ as ‖un‖ → ∞.

(2.14)

For the sake of completion, we recall the proof presented in [23].

Proof. Notice that the map σn(y)G(wn) + H(wn) + εnJ(wn) is strongly

monotone and consequently the regularized problem in uniquely solvable.

We begin by the assumption that the sequence of the regularized solutions

{wn} is bounded. By employing the reflexivity of the space, we can extract

a weakly convergent subsequence. Using the same notation for the subse-

quences as well, let {wn} be the subsequence that converges weakly to some

ū. We claim that ū solves the original problem. In view of the Mosco conver-

gence, the weak convergence ensures that ū ∈MP (see (2.8)). Let z ∈MP be

arbitrary. By employing the Mosco convergence once again, we ensure that

there exists a sequence {zn} such that zn ∈Mn
P and zn → z. By substituting

this zn = vn in (2.13), we obtain∫ ∞
0

∫ s

s

∫
Rm
+

〈σn(y)G(wn) +H(wn) + εnJ(wn), zn − wn〉 dP(y) ≥∫ ∞
0

∫ s

s

∫
Rm
+

〈b+ ρn(y) c, zn − wn〉 dP(y) .

The Minty formulation of the above variational inequality reads:∫ ∞
0

∫ s

s

∫
Rm
+

〈σn(y)G(zn) +H(zn) + εnJ(zn), zn − wn〉 dP(y) ≥∫ ∞
0

∫ s

s

∫
Rm
+

〈b+ ρn(y) c, zn − wn〉 dP(y) .
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Since σn → σ in L∞(Rd,P), we obtain that σn → σ in Lp(Rd,P). Further-

more, since zn → z in Lp(Rd,P,Rk), by passing to limit and using εn → 0,

from the above inequality, we obtain∫ ∞
0

∫ s

s

∫
Rm
+

〈σ(y)G(z) +H(z), z − ū(y)〉 dP(y) ≥∫ ∞
0

∫ s

s

∫
Rm
+

〈b+ ρ(y) c, z − ū(y)〉 dP(y).

Using the Minty formulation once again, we obtain∫ ∞
0

∫ s

s

∫
Rm
+

〈σ(y)G(ū(y)) +H(ū(y)), z − ū(y)〉 dP(y) ≥∫ ∞
0

∫ s

s

∫
Rm
+

〈b+ ρ(y) c, z − ū(y)〉 dP(y).

Since z ∈ MP is any arbitrary element, we obtain that ū(y) solves the vari-

ational inequality. It remains to show that the sequence of regularized solu-

tions {wn} remains bounded.

We now assume that the coercivity condition (2.14) holds. By substituting

vn = δn, we obtain∫ ∞
0

∫ s

s

∫
Rm
+

〈σn(y)G(wn) +H(wn) + εnJ(wn), δn − wn〉 dP(y) ≥∫ ∞
0

∫ s

s

∫
Rm
+

〈b+ ρn(y) c, δn − wn〉 dP(y). (2.15)

After a rearrangement of terms, we obtain∫ ∞
0

∫ s

s

∫
Rm
+

〈σn(y)G(wn) +H(wn), wn − δn〉 dP(y)

≤
∫ ∞

0

∫ s

s

∫
Rm
+

〈εnJ(wn)− b− ρn(y) c, δn − wn〉 dP(y)

≤ εn‖wn‖‖δn‖+ ‖b+ ρn(y) c‖‖wn − δn‖

≤ εn‖wn‖‖δn‖+ ‖wn‖‖b+ ρn(y) c‖
[
1 +
‖δn‖
‖wn‖

]
.
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Therefore,∫∞
0

∫ s
s

∫
Rm
+
〈σn(y)G(wn) +H(wn), wn − δn〉 dP(y)

‖wn‖
≤ εn‖δn‖+‖b+ρn(y) c‖

[
1 +
‖δn‖
‖wn‖

]
.

By passing to the limit ‖wn‖ → ∞, we obtain a contradiction to (2.14).

Therefore {wn} must be bounded. This completes the proof.



Chapter 3

Iterative Methods for

Stochastic Variational

Inequalities

In this chapter, we describe several variants of extragradient methods for

solving the stochastic variational inequality problem

(y − x∗)>f(x∗) ≥ 0, for all y ∈ K. (3.1)

Among many methods for the problem, the simplest one is a projection

method which iteratively updates the solution as

xk+1 = PK(xk − αf(xk))x

where α is a steplength and PK is the orthogonal projection map onto K.

Projection PK(x(k)−αf(x(k))) is the solution of the quadratic programming

problem

min
x∈K

1

2
x>x− (xk − αf(xk))>x.

Observe that x∗ is the solution of (3.1) if and only if x∗ = PK(x∗−αf(x∗)). It

is known that convergence of the method depends on the contractive proper-

ties of the operator x→ x−αf(x). Strong monotonicity, Lipschitz continuity
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of f , and suitable choice of α depending on the monotonicity and Lipschitz

constants guarantee convergence of the method.

3.1 Extragradient Methods

Extragradient methods which require double projections were proposed to

relax the strong hypotheses of the projection method. Korpelevich [26] in-

troduced the extragradient method in the context of saddle point problem

studied through a variational inequality formulation. The methods require

two projections per iteration and takes the following form:

x̄k = PK(xk − αf(xk))

xk+1 = PK(xk − αf(x̄k)).

Convergence can be proven under the conditions that the solution set is

nonempty, f is monotone and Lipschitz (with constant L) and α ∈ (0, 1/L).

In the context of variational inequalities, these methods do not require the

strong monotonicity of the map f . Extragradient methods are quite attrac-

tive for variational inequalities where strong monotonicity is attained through

regularization, and these methods demand relaxed conditions on the regular-

ization parameters. In cases of some application problems that we consider

in this work, computing the projection is quite inexpensive due to simple

constraints as these constraints do not add much additional computational

cost.

Clearly, when the constant L is unknown, we may have difficulties choosing an

appropriate steplength α. If α is too small, then the algorithm will converge

slowly and if α is too big, then it may not converge at all.

3.2 Khobotov Extragradient Method

We will now consider extragradient methods where the steplength α is chosen

adaptively. The adaptive steplength was first introduced in [25] to remove



26 3.2. Khobotov Extragradient Method

the constraint that f must be Lipschitz continuous. The adaptive algorithm

is of the form:

x̄k = PK(xk − αkf(xk))

xk+1 = PK(xk − αkf(x̄k)).

Better (speedier) convergence is usually achieved when α gets smaller be-

tween iterations, however, it is clear that we need to also control how the

sequence of {αk} shrinks.

We use the following reduction rule for αk given in [25]:

αk > β
xk − x̄k

f(xk)− f(x̄k)
,

where β ∈ (0, 1). Results from [47] and [25] show that the choice of β as 0.8

or 0.9 performs best, an observation that is also supported by the results we

obtained.

The Khobotov extragradient method has the following general form:

Algorithm: Khobotov Extragradient

Choose α0, x0, and β ∈ (0, 1)

While ‖xk+1 − xk‖ > TOL

Step 1: Compute f(xk)

Step 2: Compute x̄k = PK(xk − αkf(xk))

Step 3: Compute f(x̄k)

If f(x̄k) = 0, Stop

Step 4: If αk > β ‖xk−x̄k‖
‖f(xk)−f(x̄k)‖

then reduce αk by a certain rule and go to Step 5

Step 5: Compute xk+1 = PK(xk − αkf(x̄k))

End.

3.2.1 Marcotte Choices for Steplength

Marcotte developed a new rule for reducing αk along with closely related

variants [28, 47]. The first Marcotte rule is based on the sequence ak =
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1
2
ak−1 and forces αk to satisfy Step 5 of Khobotov’s algorithm by additionally

taking:

αk = min

{
αk−1

2
,

‖xk − x̄k‖√
2‖f(xk)− f(x̄k)‖

}
.

Marcotte reduction rule still has the risk of choosing an initial α small enough

so that αk is never reduced, resulting in slow convergence. Ideally, αk should

then have the ability to increase if αk−1 is smaller than some optimal value.

This leads to a modified version of Marcotte’s rule where an initial α is

selected using the rule

α = αk−1 + γ

(
β

‖xk−1 − x̄k−1‖
‖f(xk−1)− f(x̄k−1)‖

− αk−1

)
where γ ∈ (0, 1).

The reduction rule in Step 5 of Khobotov’s algorithm is then replaced with

αk = max

{
α̂,min

{
ξ · α, β ‖xk−1 − x̄k−1‖

‖f(xk−1)− f(x̄k−1)‖

}}
where ξ ∈ (0, 1), and α̂ is some lower limit for αk (generally taken as no less

than 10−4).

3.3 Scaled Extragradient Method

We now consider a projection-contraction type extragradient method where

the second projection is a more general operator. It was presented by Solodov

and Tseng [45] and involves a symmetric positive definite scaling matrix M

to accelerate convergence. The main steps read:

x̄k = PK(xk − αkf(xk))

xk+1 = xk − γM−1(Tα(xk)− Tα(PK(x̄k))

where γ ∈ R+ and Tα = (I − αf). Here, I is the identity matrix, and α is

chosen such that Tα is strongly monotone.



28 3.3. Scaled Extragradient Method

Additional discussion of the scaling matrix is given in [47], however, in both

[47] and [45], test problems take M equal to the identity matrix. In our nu-

merical experiments, we consider the scaling matrix as the identity matrix.

Algorithm: Solodov-Tseng

Choose x0, α−1, θ ∈ (0, 2), ρ ∈ (0, 1), β ∈ (0, 1),M ∈ Rm×m

Initialize: x̄0 = 0, k = 0, rx = ones(m, 1)

While ‖rx‖ > TOL

Step 1: if ‖rx‖ < TOL then Stop

else α = αk−1, f lag = 0

Step 2: if f(xk) = 0 then Stop

Step 3: While α(xk − x̄k)T (f(xk)− f(x̄k)) > (1− ρ)‖xk − x̄k‖2 or flag = 0

If flag 6= 0 Then α = αk−1β endif

update x̄k = PK(xk − αf(xk)), compute f(x̄k)

flag = flag + 1

endwhile

Step 4: update αk = α

Step 5: compute γ = θρ‖xk − x̄k‖2/‖M1/2(xk − x̄k − αkf(xk) + αkf(x̄k))‖2

Step 6: compute xk+1 = xk − γM−1(xk − x̄k − αkf(xk) + αkf(x̄k))

Step 7: rx = xk+1 − Ak, k = k + 1 go to Step 3

End

The Solodov-Tseng method suggests a more general form for the advanced

extragradient methods:

x̄k = Px(x
k − αkf(xk))

xk+1 = Px(x
k − ηkf(x̄k)),

where αk and ηk are chosen using different rules.
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3.4 Solodov-Svaiter Method

This algorithm was proposed by Solodov and Svaiter in [44]. The idea is

to compute the point PK(xk − µkf(xk)) and then search the line segment

between xk and PK(xk − µkf(xk)) for a poitn zk such that the hyperplane

{x ∈ IRn|〈f(zk), x− zk〉 = 0}

strictly separates xk from the solution of the VI x∗. We will use a slightly

modified version of this method (see Section 3.7 for the algorithm).

3.5 Goldstein-Type Methods

The classical Goldstein projection method presented in [27] is of the form:

xk+1 = PK(xk − βkf(xk))

The He-Goldstein method, an extragradient method that requires Lipschitz

continuity and strong monotonicity of f is of the form:

x̄k = PK(f(xk)− βkxk)

xk+1 = xk − 1

βk
{f(xk)− x̄k}.

It can also be expressed:

r(xk, βk) =
1

βk
{f(xk)− PK [f(xk)− βkxk]}

xk+1 = xk − r(xk, βk).

A more general version of the above algorithm presented in [27], and it allows

to control the second projection (i.e. choosing ηk).
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Algorithm: Improved He-Goldstein

Initialize: choose βU > βL >
1

(4τ)
, γ ∈ (0, 2), ε > 0, x0, β0 ∈ [βL, βU ], k = 0

Step 1: Compute:

r(xk, βk) = 1
βk
{f(xk)− PK [f(xk)− βkxk]}

If ‖r(xk, βk)‖ ≤ ε then Stop

Step 2: xk+1 = xk − γαkr(xk, βk) where αk := 1− 1
4βkτ

Step 3: Update βk

ωk = ‖f(xk+1−f(xk)‖
βk‖xk+1−xk‖

If ωk <
1
2

Then βk+1 = max{βL, 1
2
βk}

Else if ωk >
3
2

Then βk+1 = min{βU , 6
5
βk}

Step 4: k = k + 1, go to Step 1

3.6 Two-step Extragradient Method

Zykina and Melenchuk in [48] consider a three step projection method which

they called a two-step extragradient method and investigated its various as-

pects in [49]. Numerical experiments with mixed variational problem for

bilinear function given in [48] shows that the convergent of this method is

faster compared to the standard extragradient method. The adaptive algo-

rithm is of the form:

x̄k = PK(xk − αkf(xk)),

x̃k = PK(x̄k − ηkf(x̄k)),

xk+1 = PK(xk − ξkf(x̃k)).

3.7 Hyperplane Extragradient Method

In this method , ηk is chosen using the following rule from [47]:

ηk =
〈f(x̄k), xk − x̄k〉
‖f(x̄k)‖2



31 3.7. Hyperplane Extragradient Method

The idea here is that the hyperplane of all solutions x such that

〈f(x̄k), x̄k − x〉 = 0,

separates all the solutions onto one side of the hyperplane. Looking at the

variational inequality, we know which side the solutions fall onto:

〈f(x), x̄k − x〉 ≥ 0.

Consequently, if f is monotone, then we also have

〈f(x̄k), x̄k − x〉 ≥ 0.

Thus if

〈f(x̄k), x̄k − xk〉 < 0,

then we know that we have to look for the solution on the other side of the

hyperplane.

This method, presented by Iusem, requires three constants, ε ∈ (0, 1) and

α̃ ≥ α̂ > 0 such that the sequence αk is computed such that

〈f(x̄k), x̄k − xk〉 ≤ 0,

when αk ∈ [α̂, α̃].
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Algorithm: Hyperplane (Iusem)

Choose: x0, ε, α̂, α̃

Initialize: k = 0, rx = ones(m, 1)

While ‖rx‖ > TOL

Step 1: Choose α̃k using a finite bracketing procedure

Step 2: Compute Kk = PK(xk − α̃kf(xk)) and f(Kk)

Step 3: If f(Kk) = 0 then Stop

Step 4: If ‖f(x̃k)− f(xk)‖ ≤ ‖Kk−xk‖2
2α̃2

k‖f(xk)‖

Then x̄k = Kk

Else find αk ∈ (0, α̃k) such that

ε ‖K
k−xk‖2

2α̃2
k‖f(xk)‖ ≤ ‖f(PK(xk − αkf(xk)))− f(xk)‖ ≤ ‖Kk−xk‖2

2α̃2
k‖f(xk)‖

Step 5: Compute x̄k = PK(xk − αkf(xk))

Step 6: If f(x̄k) = 0 then Stop

Step 7: Compute ηk

Step 8: Compute xk+1 = PK(xk − ηkf(x̄k))

Step 9: rx = xk+1 − fk, k = k + 1; go to Step 3;

End



Chapter 4

Applications and Test Problems

In this chapter, we consider several applications of stochastic variational in-

equalities. We describe models of traffic equilibrium, market equilibrium, and

environmental games. In each case we choose a test problem. The problems

are discretized, and the regularization is incorporated whenever necessary.

We compare the accuracy and efficiency of the extragradient methods de-

scribed in Chapter 3 for all test problems.

4.1 Stochastic Traffic Equilibrium Problem

In this section, we apply the general theory of stochastic variational inequal-

ities to network equilibrium problems. For the considered problem, we first

present the exact solution. This procedure leads to an approximate solu-

tion that is very close to the exact one. The test problem chosen for the

comparison of extragradient methods is taken from Chen et al. [6].

A common characteristic of many network problems is that they admit t-

wo different formulations based either on link variables or on path variables.

These two formulations are related to each other through a linear transfor-

mation. In general, in the path variables approach, the strong monotonicity

assumption is not reasonable. In order to overcome this problem, in [4] a
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Mosco convergence result for the transformed sequence of sets was present-

ed. This allows to work in the space of variables where strong monotonicity

framework is natural. We circumvent the last of strong monotonicity by

means of regularization in this work.

4.1.1 Introduction to Traffic Equilibrium Problem

A traffic network consists of a triple (N,A,W ) where N = {N1, . . . , Np} with

p ∈ N, is the set of nodes, A = (A1, . . . , An), n ∈ N, represents the set of the

directed arcs connecting pairs of nodes and W = {W1, . . . ,Wm} ⊂ N ×N,
m ∈ N is the set of the origin– destination (O,D) pairs. The flow on the arc

Ai is denoted by fi, f = (f1, . . . , fn). For simplicity, we consider arcs with

infinite capacity. A set of consecutive arcs is called a path and assume that

each (Oj, Dj) pair Wj is connected by rj, rj ∈ N, paths whose set is denoted

by Pj, j = 1, . . . ,m. All the paths in the network are grouped in a vector

(R1, . . . , Rk), k ∈ N. The arc structure of the paths is described by using the

arc–path incidence matrix ∆ =
(
δir
)
i=1,...,n
r=1,...,k

, whose entries take the value

δir =

1 if Ai ∈ Rr

0 if Ai /∈ Rr.
(4.1)

To each path Rr, there corresponds a flow Fr. The path flows are grouped

in a vector (F1, . . . , Fk) which is called the path (network) flow. The flow fi

on the arc Ai is equal to the sum of the flows on the paths which contain

Ai, so that f = ∆F. Let us now introduce the unit cost of going through

Ai as a real function ti(f) ≥ 0 of the flows on the network, so that t(f) =

(t1(f), . . . , tn(f)) denotes the arc cost vector on the network. The meaning

of the cost is usually that of travel time. Analogously, one can define a cost

on the paths as C(F ) = (C1(F ), . . . , Ck(F )). Usually Cr(F ) is just the sum

of the costs on the arcs which build that path:

Cr(F ) =
n∑
i=1

δirti(f)
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or in compact form,

C(F ) = ∆T t(∆F ) . (4.2)

For each pair Wj there is a given traffic demand Dj ≥ 0, so that (D1, . . . , Dm)

is the demand vector. Feasible flows are nonnegative flows which satisfy the

demands, that is, which belong to the set

K =
{
F ∈ Rk : Fr ≥ 0 for any r = 1, . . . , k and ΦF = D

}
,

where Φ is the pair–path incidence matrix whose elements, say ϕjr, j =

1, . . . ,m, r = 1, . . . , k, are

ϕjr =

1 if the path Rr connects the pair Wj

0 elsewhere.

A path flow H is called an equilibrium flow or Wardrop Equilibrium, if and

only if H ∈ K and for any Wj ∈ W and any Rq, Rs ∈ Pj there holds

Cq(H) < Cs(H) =⇒ Hs = 0. (4.3)

This statement is equivalent (see [9] and [43]) to finding H ∈ K such that

〈C(H), F −H〉 ≥ 0, ∀F ∈ K. (4.4)

Roughly speaking, the meaning of Wardrop Equilibrium is that the road

users choose minimum cost paths. Let us note that condition (4.3) implies

that all the used paths of a given O-D pair have the same cost.

Although the Wardrop equilibrium principle is expressed in the path vari-

ables, it is clear that the “physical” (and measured) quantities are expressed

in the link variables. Moreover, the strong monotonicity hypothesis on c(f)

is quite common, but as noticed, for instance, in [2] this does not imply the

strong monotonicity of C(F ) in (4.2), unless the matrix ∆T∆ is nonsingu-

lar. Although one can give a procedure for buildings networks preserving

the strong monotonicity property (see for instance [36]), the condition fails

for a generic network, even for a very simple one as we shall illustrate in
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the sequel. Thus, it is useful to consider the following variational inequality

problem:

h ∈ ∆K and 〈t(h), f − h〉 ≥ 0 ∀f ∈ ∆K. (4.5)

If t is strongly monotone, one can prove that for each solution H of (4.4),

C(H) is constant. In other words, all possibly nonunique solutions of (4.4)

share the same cost. From an algorithmic point of view it is worth noting

that one advantage in working in the path variables is the simplicity of the

corresponding convex set but the price to be paid is that the number of paths

grows exponentially with the size of the network.

The random version of (4.4) and (4.5) reads: Find H(ω) ∈ K(ω) such that

〈C(ω,H(ω)), F (ω)−H(ω)〉 ≥ 0, ∀F (ω) ∈ K(ω), (4.6)

where, for any ω ∈ Ω,

K(ω) =
{
F (ω) ∈ Rk : Fr ≥ 0 for any r = 1, . . . , k and ΦF = D(ω)

}
,

Moreover, the random variational inequality in the link-flow variables reads:

Find h(ω) ∈ ∆K(ω) such that

〈t(ω, h(ω)), f(ω)− h(ω)〉 ≥ 0, ∀f(ω) ∈ ∆K(ω). (4.7)

Furthermore, (4.6) is equivalent to the random Wardrop principle: for any

ω ∈ Ω for any H(ω) ∈ K(ω), and for any Wj ∈ W, Rq, Rs ∈ Pj, we have

Cq(ω,H(ω)) < Cs(ω,H(ω)) =⇒ Hs(ω) = 0.

In order to use our approximation scheme, we require the assumption that the

deterministic and random variables are separated. However this assumption

is very natural in many applications where the random perturbation is treat-

ed as a modulation of a deterministic process. Under the above mentioned

assumptions, (4.6) assumes the particular form:

S(ω)〈A(H(ω)), F −H(ω)〉 ≥ R(ω)〈b, F −H(ω)〉, ∀F ∈ K(ω) (4.8)
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In equation (4.8), both the left hand side and the right hand side be replaced

with any (finite) linear combination of monotone and separable terms with

each term satisfying the hypothesis of the previous sections:∑
i

Si(ω)〈ATi (H(ω)), F −H(ω)〉 ≥
∑
j

Rj(ω)〈bj, F −H(ω), ∀F ∈ K(ω)

(4.9)

Therefore, in (4.8) R(ω), S(ω) can be replaced by a random vector and a

random matrix, respectively. As a consequence, in the traffic network, we

could consider the case where the random perturbation has a different weight

for each path.

4.1.2 Numerical Results

In this test problem, we consider the so-called Dafermos’ network consisting

of one O −D pair and 5 links (see Figure 4.1).

4

1

2

arc 1 2

5

3

Figure 4.1: Dafermos’ network
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The travel cost function in this case is given by t = Af + b where

A =


10 0 0 5 0

0 15 0 0 5

0 0 20 0 0

2 0 0 20 0

0 1 0 0 25

 , b =


1000

950

3000

1000

1300

 .

Here the traffic demand vector is (210, 120) which means

f1 + f2 + f3 = 210

f4 + f5 = 120.

The above deterministic problem has a unique solution f = (120, 90, 0, 70, 50)T .

We consider the stochastic version of this problem considered in [6]. For this,

we introduce two random variables ω1 and ω2 given by

ω1 ∼ 80 ≤ N(210, 1200) ≤ 340

ω2 ∼ U(60, 180).

This is, ω1 and ω2 follow truncated normal and uniform distributions, re-

spectively. Travel demands are given by

f1 + f2 + f3 = ω1

f4 + f5 = ω2.

We define two cost coefficients (related to the fluctuation of travel demand)

by

c1(ω) =
ω1 + ω2

330
− 1

c2(ω) =
ω1

210
− 1.
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Define a new cost function A(ω)f + b with A(ω) = A+ Ã(ω) where

Ã(ω) =


3c1(ω) 0 0 0.5c1(ω)

0 4c1(ω) 0 0 c1(ω)

0 0 0.5c2(ω) 0 0

0.2c1(ω) 0 0 c1(ω) 0

0 0.1c1(ω) 0 0 c1(ω)

 .

We discretize the domain [80, 340]× [60, 180] using N1 subintervals for ω1, N2

for ω2. For each pair (ω1,i, ω2,j) a deterministic variational inequality is solved

by using extragradient methods we consider. We evaluate the mean value

of route flow using probability distribution functions of random variables ω1

and ω2. Table 4.3 shows the mean values of the route flows for four of the

methods. As we see that all methods result very close results, and with

Methods h1 h2 h3 h4 h5

Marcotte 109.5881 82.38575 0.2099183 64.41517 45.78488

Marcotte1 109.5881 82.38577 0.20992 64.41524 45.78481

Marcotte2 109.5881 82.38575 0.2099193 64.41528 45.78477

Solodov-Tseng 109.5926 82.38117 0.210024 64.41455 45.78551

Table 4.1: Route flow solutions for N1 = 30, N2 = 30

Methods V ar(h1) V ar(h2) V ar(h3) V ar(h4) V ar(h5)

Marcotte 1250.983 642.5301 1.7209138 636.23205 369.58061

Marcotte1 1250.9848 642.52891 1.7209352 636.22985 369.58247

Marcotte2 1250.9852 642.52868 1.7209265 636.22847 369.58361

Solodov-Tseng 1250.994 642.5123 1.7218559 636.22748 369.58339

Table 4.2: Variances for route flow for N1 = 30, N2 = 30

more discretization points (larger N1 and N2) the solutions get closer to the

exact solution of the problem (119.835, 89.869, 0.212, 69.992.50.008) given by
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Methods h1 h2 h3 h4 h5

Marcotte 113.6137 85.32718 0.2459893 66.62013 47.45188

Marcotte 1 113.6137 85.3272 0.2459913 66.62019 47.45182

Marcotte 2 113.6137 85.32718 0.2459903 66.62024 47.45177

Solodov-Tseng 113.6181 85.3226 0.2461074 66.6195 47.45253

Table 4.3: Route flow solutions for N1 = 50, N2 = 50

Methods V ar(h1) V ar(h2) V ar(h3) V ar(h4) V ar(h5)

Marcotte 949.2067 470.1265 2.041574 537.9744 321.7377

Marcotte1 949.2089 470.1251 2.041597 537.9718 321.7398

Marcotte2 949.2093 470.1249 2.041588 537.9702 321.7411

Solodov-Tseng 949.1832 470.1341 2.042672 537.9719 321.7389

Table 4.4: Variances for route flow for N1 = 50, N2 = 50

Methods h1 h2 h3 h4 h5

Marcotte 116.694 87.57599 0.2768794 68.29677 48.72123

Marcotte 1 116.694 87.576 0.2768815 68.29684 48.72116

Marcotte 2 116.694 87.57599 0.2768803 68.29688 48.72112

Solodov-Tseng 116.6984 87.57137 0.2770134 68.29614 48.72188

Table 4.5: Route flow solutions for N1 = 100, N2 = 100

Jadamba et al. in [23] (see Table 4.5). Table 4.6 shows variances for route

flows. Comparing the CPU times, we find that for this particular example

Solodov-Tseng method performs fastest given the same stopping criteria.
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Methods V ar(h1) V ar(h2) V ar(h3) V ar(h4) V ar(h5)

Marcotte 700.225 328.4678 2.320375 457.0569 281.8727

Marcotte 1 700.2273 328.4663 2.320401 457.0541 281.875

Marcotte 2 700.2276 328.4661 2.32039 457.0522 281.8764

Solodov-Tseng 700.1743 328.4948 2.321614 457.0557 281.8729

Table 4.6: Variances for route flow for N1 = 100, N2 = 100

4.2 Oligopolistic Market Equilibrium

We consider here the model in which m players are the producers of the

same commodity. The quantity produced by firm i is denoted by qi so that

q ∈ Rm denotes the global production vector. Let (Ω, P ) be a probability

space and for every i ∈ {1, . . .m, } consider functions fi : Ω × R → R and

p : Ω× Rm → R.

More precisely, for almost every ω ∈ Ω, (i.e. P-almost surely), fi(ω, qi)

represents the cost of producing the commodity by firm i, and is assumed

to be nonnegative, increasing, concave and C1, while p(ω, q1 + . . . + qm)

represents the demand price associated with the commodity. For almost

every ω ∈ Ω, p is assumed nonnegative, increasing, convex w.r.t. qi and C1.

We also assume that all these functions are random variables w.r.t. ω, i.e.

they are measurable with respect to the probability measure P on Ω. In this

way, we have introduced the possibility that both the production cost and the

demand price are affected by a certain degree of uncertainty, or randomness.

Thus, the welfare (or utility) function of player i is given by:

wi(ω, q1, . . . , qm) = p(ω, q1 + . . .+ qn)qi − fi(ω, qi). (4.10)

Although many authors assume no bounds on the production, in a more

realistic model the production capability is bounded from above and we allow

also for the upper bound being a random variable: 0 ≤ qi ≤ qi(ω),

Thus, the specific Nash equilibrium problem associated with this model takes
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the following form. For a.e. ω ∈ Ω, find q∗(ω) = (q∗1(ω), . . . , q∗m(ω)):

wi(ω, q
∗) = max

0≤qi≤qi(ω)
−fi(ω, qi) + p(ω, qi +

∑
j 6=i

q∗j )qi, ∀i ∈ {1, . . . ,m}. (4.11)

In order to write the equivalent variational inequality, consider the closed

and convex subset of Rm:

K(ω) = {(q1, . . . , qm) : 0 ≤ qi ≤ qi(ω), ∀i}

for each ω and define the functions

Fi(ω, q) :=
∂fi(ω, qi)

∂qi
−
∂p(ω,

∑m
j=1 qj)

∂qi
qi − p(ω,

m∑
j=1

qj). (4.12)

The Nash problem is then equivalent to the following variational inequality:

for a.e. ω ∈ Ω, find q∗(ω) ∈ K(ω) such that

m∑
j=1

Fj[ω, q
∗(ω)](qj − q∗j (ω)) ≥ 0, ∀q ∈ K(ω). (4.13)

Since F (ω, ·) is continuous, and K(ω) is convex and compact, problem (4.13)

is solvable for almost every ω ∈ Ω, due to the Stampacchia’s theorem. More-

over, we assume that F (ω, ·) is monotone, i.e.:

m∑
i=1

(Fi(ω, q)− Fi(ω, q′))(qi − q′i) ≥ 0 ∀ω ∈ Ω,∀q, q′ ∈ Rm.

F is said to be strictly monotone if the equality holds only for q = q′ and in

this case (4.13) has a unique solution. In the sequel the following uniform

strong monotonicity property will be useful:

∃α > 0 :
m∑
i=1

(Fi(ω, q)− Fi(ω, q′))(qi − q′i) ≥ α‖q − q′‖2 ∀ω ∈ Ω,∀q, q′ ∈ Rm.

(4.14)

Although the uniform strong monotonicity property is quite demanding,

nonetheless it is verified by some classes of utility functions frequently used

in the literature (see e.g. sect. 4.2.2).
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4.2.1 The Lebesgue space formulation

Since we are interested in computing statistical quantities associated with

the solution q∗(ω), in particular its mean value, we introduce a Lebesgue

space formulation of problems (4.11) and (4.13). In view of the numerical

approximation of the solution, we also assume that the random and the

deterministic part of the operator are separated. Thus, let:

wi(ω, q) = p(
m∑
j=1

qj) + β(ω)− α(ω)fi(qi)− gi(qi)

where α, β are real random variables, with 0 < α ≤ α(ω) ≤ α , and the

part of the cost which is affected by uncertainty is denoted now by fi. As a

consequence, the operator F takes the form:

Fi(ω, q) = α(ω)
∂fi(qi)

∂qi
+
∂gi(qi)

∂qi
− p(

m∑
j=1

qj)− β(ω)−
∂p(
∑m

j=1 qj)

∂qi
qi.

The separation of variables allows us to use the approximation procedure

developed in [17]. Furthermore, we assume that F is uniformly strongly

monotone according to (4.14) and satisfies the following growth condition:

|Fi(ω, q)| ≤ c(1 + |q|),∀q ∈ Rm,∀ω ∈ Ω, ∀i (4.15)

and wi(ω, 0) ∈ L1(Ω). Moreover, we shall assume that α ∈ L∞(Ω), while

β, qi ∈ L2(Ω). Under these assumptions the following Nash equilibrium prob-

lem can be derived (see [22] or [13] for a similar derivation which can be easily

extended to our functional setting):

Find u∗ ∈ L2(Ω, P,Rm) such that, ∀i∫
Ω

wi(ω, u
∗(ω))dPω = max

0≤ui≤qi

∫
Ω

wi(ω, (ui(ω), u∗−i(ω))dPω, (4.16)

where we used the notation: (ui, u
∗
−i) := (u∗1, . . . , u

∗
i−1, ui, u

∗
i+1, . . . , u

∗
m).

Then, we define a closed and convex set KP by

KP = {u ∈ L2(Ω, P,Rm) : 0 ≤ ui(ω) ≤ qi(ω), P − a.s.,∀i}
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and consider the variational inequality formulation of (4.16): Find u∗ ∈ KP

such that ∫
Ω

m∑
j=1

Fj(ω, u
∗(ω))(uj(ω)− u∗(ω)) ≥ 0,∀u ∈ KP . (4.17)

4.2.2 A class of utility functions

In this subsection, we consider a random version of a class of utility functions

widely used in the literature (see e.g. [34], chap. 6) and show that these

functions satisfy the theoretical requirements stated previously.

Thus, let

fi(ω, qi) = a(ω) aiq
2
i + biqi + ci

p(ω,
m∑
i=1

qi) = −d
m∑
i=1

qi + e(ω)

where 0 < a ≤ a(ω) ≤ a, a ∈ L∞(Ω), e ∈ L2(Ω), and ai, bi, d, ci are positive

real numbers. Thus, wi(ω, q) = −[a(ω) aiq
2
i + biqi + ci] − d

∑m
i=1 qi + e(ω) ,

and

Fi(ω, q) = 2a(ω) aiqi+bi+d
m∑
i=1

qi−e(ω) = [2a(ω) ai+2d]qi+d
∑
j 6=i

qj+bi−e(ω)

(4.18)

For each ω the operator F consists of a linear part and a constant vector.

4.2.3 Numerical Results

As an examplem we take the random version of a classical oligopoly problem

presented in [34] where 3 producers are involved in the production of a ho-

mogeneous commodity. In the nonrandom version of the problem, the cost fi

of producing the commodity by firm i, and the demand function p are given
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by

f1(q1) = q2
1 + q1 + 1

f2(q2) = 0.5q2
2 + 4q2 + 2

f3(q3) = q2
3 + 0.5q3 + 5

p

(
3∑
i=1

)
= −

3∑
i=1

qi + 5.

Solution of the above problem (q1, q2, q3) = (23/30, 0, 14/15) is given in [34].

We consider a random version of the above problem where the cost fi and

demand p are given by

f1(ω, q1) = a(ω)q2
1 + q1 + 1

f2(ω, q2) = 0.5a(ω)q2
2 + 4q2 + 2

f3(ω, q3) = a(ω)q2
3 + 0.5q3 + 5

p

(
ω,

3∑
i=1

)
= −

3∑
i=1

qi + e(ω)

where a(ω) and e(ω) are random parameters that follow truncated normal

distributions:

a ∼ 0.5 ≤ N(1, 0.25) ≤ 1.5

e ∼ 4.5 ≤ N(5, 0.25) ≤ 5.5.

We use the approximation procedure described in Chapter 2 to evaluate

mean value of q. First, we choose a discretization of the parameter domain

[0.5, 1.5]× [4.5, 5.5] using N1×N2 points and solve the problem for each pair

(a(i), e(j)) using the extragradient methods described in Section 3. Then,

we evaluate the mean value of q by using appropriate probability distribu-

tion functions. Approximate mean values of q1, q2 and q3 are shown in the

Tables 4.9 and 4.11.

Variances are summarized in Table 4.12, and a comparison of the CPU times

is presented in Figure 4.2.
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Methods q1 q2 q3

Marcotte 0.75843 5.8345e− 08 0.92822

Marcotte1 0.75843 2.8107e− 08 0.92822

Marcotte2 0.75837 3.0205e− 08 0.92816

Solodov-Svaiter 0.75731 3.2252e− 08 0.92711

Solodov-Tseng 0.75808 −3.6382e− 05 0.92787

Table 4.7: Mean values of the production vector for N1 = 30, N2 = 30

Methods V ar(q1) V ar(q2) V ar(q3)

Marcotte 0.021754 3.3229e− 14 0.03428

Marcotte1 0.021754 7.9103e− 15 0.03428

Marcotte2 0.021751 9.5282e− 15 0.034276

Solodov-Svaiter 0.021764 1.9773e− 15 0.034297

Solodov-Tseng 0.021843 6.2711e− 10 0.034405

Table 4.8: Variances of the production vector for N1 = 30, N2 = 30

Methods q1 q2 q3

Marcotte 0.7648 5.5928e−08 0.93569

Marcotte 1 0.76479 2.8404e−08 0.93569

Marcotte 2 0.76473 2.8992e−08 0.93563

Solodov-Svaiter 0.76273 3.6563e−08 0.93363

Solodov-Tseng 0.76441 3.131e−05 0.93531

Table 4.9: Mean values of the production vector for N1 = 50, N2 = 50
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Methods V ar(q1) V ar(q2) V ar(q3)

Marcotte 0.01656 3.1049e− 14 0.026447

Marcotte1 0.01656 7.0627e− 15 0.026447

Marcotte2 0.016558 7.241e− 15 0.026445

Solodov-Svaiter 0.016546 1.2571e− 14 0.026435

Solodov-Tseng 0.016642 3.4075e− 10 0.026561

Table 4.10: Variances of the production vector for N1 = 50, N2 = 50

Methods q1 q2 q3

Marcotte 0.76935 5.8068e−08 0.94103

Marcotte 1 0.76935 2.7505e−08 0.94103

Marcotte 2 0.76928 2.9036e−08 0.94096

Solodov-Svaiter 0.76791 4.5022e−08 0.93959

Solodov-Tseng 0.76902 2.8959e−05 0.9407

Table 4.11: Mean values of the production vector for N1 = 100, N2 = 100

Methods V ar(q1) V ar(q2) V ar(q3)

Marcotte 0.012786 3.4821e−14 0.020762

Marcotte 1 0.012787 6.0461e−15 0.020762

Marcotte 2 0.012787 7.1256e−15 0.020763

Solodov-Svaiter 0.012769 4.0207e−15 0.020738

Solodov-Tseng 0.012869 3.7517e−09 0.020876

Table 4.12: Variances of the production vector for N1 = 100, N2 = 100
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Figure 4.2: Comparison of CPU times for the market equilibrium problem
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4.3 Environmental Games

In this section, we will introduce an application known as environmental

games. In the fundamental paper [3], Breton et al. formulated a two players

game to describe the joint implementation mechanism of the Kyoto Protocol,

while in [46], Tidbal and Zaccour compared various models of an environmen-

tal problem using a large class of revenue and damage cost functions. The

models proposed in [46] have been reformulated and extended in the paper

[22] by using the variational inequalities theory. We will discuss stochastic

noncooperative scenario where each player optimizes his/her welfare (defined

as the difference between the revenue resulting form the production and the

damage cost due to the corresponding pollution) under their individual en-

vironmental constraints. In this case, the players interact only through the

damage cost which is a function of the total polluting emission and this s-

cenario leads to a (stochastic) Nash equilibrium problem which, in turn, is

formulated as a stochastic variational inequality in Lebesgue space. We will

also describe the stochastic variational inequality that describes the coopera-

tive scenario where the players agree to optimize the sum of their individual

welfares under a joint environmental constraint. Next, we discuss the so-

called umbrella scenario where the players act in a selfish manner but under

a common environmental constraint; this scenario leads to a (stochastic)

generalized Nash equilibrium problem (GNEP).

4.3.1 The stochastic noncooperative scenario

In this scenario, each player is a subject who produces, pollutes, and aims

to maximize his/her welfare function under some environmental constraints.

The welfare function is defined as the difference between the revenue resulting

from the production and the damage cost due to pollution. In the model we

consider the welfare function is not deterministic but can be affected by some

random variables. We assume that pollution is proportional to the industrial

output so that the revenue of player i, i ∈ {1, . . . , n}, can be expressed as a



50 4.3. Environmental Games

function of its polluting emission ei. Let (Ω, P ) be a probability space and

for every i ∈ {1 . . . n} consider functions fi : Ω×R→ R and di : Ω×Rn → R.

More precisely, for almost every ω ∈ Ω, (i.e. P-almost surely ) fi(ω, ei) rep-

resents the revenue function of player i, which is assumed to be nonnegative,

increasing, concave and C1 while the cost of the environmental damage de-

pends on the total emission and is denoted by di(ω, e1 + . . .+en). For almost

every ω ∈ Ω, di are assumed to be nonnegative, increasing, convex w.r.t. ei

and C1. We assume also that all these functions are random variables w.r.t.

ω, i.e. they are measurable with respect to the probability measure P on Ω.

Thus, the welfare function of player i is given by:

wi(ω, e1, . . . , en) = fi(ω, ei)− di(ω, e1 + . . .+ en). (4.19)

In the noncooperative scenario, each player has to satisfy the random en-

vironmental constraint: 0 ≤ ei ≤ ei(ω), while maximizing his/her welfare

for every action of the other players. This situation naturally leads to the

following Nash equilibrium problem:

For a.e. ω ∈ Ω, find eN(ω) =
(
eN1 (ω), . . . , eNn (ω)

)
:

wi(ω, e
N) = max

0≤ei≤ei(ω)
fi(ω, ei)− di(ω, ei +

∑
j 6=i

eNj ), ∀i ∈ {1, . . . , n}. (4.20)

This problem is equivalent to a variational inequality. Thus, for each ω

consider the closed and convex subset of Rn: KN(ω) = {(e1, . . . , en) : 0 ≤
ei ≤ ei(ω), ∀i} and define the functions

Fi(ω, e) := −∂fi(ω, ei)
∂ei

+
∂di(ω,

∑n
j=1 ej)

∂ei
≡ −f ′(ω, ei)+d′i(ω,

n∑
j=1

ej). (4.21)

The Nash problem is then equivalent to the following variational inequality:

for a.e. ω ∈ Ω, find eN(ω) ∈ KN(ω) such that

n∑
j=1

Fj[ω, e
N(ω)](ej − eNj (ω)) ≥ 0, ∀e ∈ KN(ω). (4.22)
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Since F (ω, ·) is continuous, and KN(ω) is convex and compact, problem

(4.22) is solvable, for almost every ω ∈ Ω. Moreover we assume that F (ω, ·)
is monotone, i.e.:

∑n
i=1(Fi(ω, e)−Fi(ω, e′))(ei− e′i) ≥ 0 ∀ω ∈ Ω,∀e, e′ ∈ Rn.

F is said to be strictly monotone if the equality holds only for e = e′ and

in this case (4.22) has a unique solution. We mention here following useful

uniform strong monotonicity property:

∃α > 0 :
n∑
i=1

(Fi(ω, e)− Fi(ω, e′))(ei − e′i) ≥ α‖e− e′‖2 ∀ω ∈ Ω,∀e, e′ ∈ Rn.

(4.23)

As it was the case for earlier problems, we assume that the random and the

deterministic part of the operator can be separated: wi(ω, e) = ai(ω)f(ei)−
bi(ω)di(e1 + . . . en), where ai, bi are real valued random variables such that

0 < Ai ≤ ai(ω) ≤ Ai, 0 < Bi ≤ bi(ω) ≤ Bi. The separation of variables now

allows us to use the approximation procedure developed in [17]. We are inter-

ested in computing statistical quantities associated with the solution eN(ω),

in particular its mean value. For this purpose, we introduce a Lebesgue space

formulation of problems (4.20) and (4.22). We assume that F is uniformly

strongly monotone according to (4.23) and satisfies the following condition:

|Fi(ω, e)| ≤ c(1 + |e|),∀e ∈ Rn,∀ω ∈ Ω, ∀i (4.24)

and that wi(ω, 0) ∈ L1(Ω). Moreover, we shall assume that ai, bi ∈ L∞(Ω),

while ei ∈ L2(Ω). Under these assumptions the following Nash equilibrium

problem can be derived (see [22] for a similar derivation which can be easily

extended to this functional setting):

Find uN ∈ L2(Ω, P,Rn) such that, ∀i∫
Ω

wi(ω, u
N(ω))dPω = max

0≤ui≤ei

∫
Ω

wi(ω, (ui(ω), uN−i(ω))dPω, (4.25)

where we used the notation: (ui, u
N
−i) := (uN1 , . . . , u

N
i−1, ui, u

N
i+1, . . . , u

N
n ).

Then, we define the closed and convex set: KN
P = {u ∈ L2(Ω, P,Rn) : 0 ≤

ui(ω) ≤ ei(ω), P − a.s.,∀i} and consider the variational inequality formula-
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tion of (4.25): Find uN ∈ KN
P such that:∫

Ω

n∑
j=1

Fj(ω, u
N(ω))(uj(ω)− uN(ω)) ≥ 0,∀u ∈ KN

P . (4.26)

Random noncooperative scenario will be studied through (4.26)

4.3.2 The stochastic cooperative scenario

In the cooperative scenario, all players agree to optimize the sum of their

individual welfares under a joint environmental constraint. Thus, for each

ω ∈ Ω, we need to solve the optimization problem

max
e∈KC(ω)

n∑
i=1

ai(ω)f(ei)− bi(ω)di(e1 + . . .+ en) (4.27)

where KC(ω) = {e ∈ Rn : ei ≥ 0,
∑n

i=1 ei ≤
∑n

i=1 ei(ω) = e(ω)}.
Under the strict convexity hypothesis, the problem has a unique solution

eC(ω) for each ω ∈ Ω. Moreover, (4.27) is equivalent to the variational in-

equality associated to the convex set KC and to the operator FC : Ω×Rn →
Rn defined by

FC
i (ω, e) = −ai(ω)

∂fi
∂ei

+
∂
∑

i bi(ω)di(e1 + . . .+ en)

∂ei
.

Find eC(ω) ∈ KC(ω):
∑n

j=1 F
C
j [ω, eC(ω)](ej − eCj (ω)) ≥ 0 for all e ∈ KC(ω).

Analogously to the previous case, we can define the closed and convex set

KC
P by

KC
P = {u ∈ L2(Ω, P,Rn) : 0 ≤ ui(ω),

∑n
i=1 ui(ω) ≤

∑n
i=1 ei(ω) = e(ω), P−a.s.}

and derive the Lebesgue space optimization formulation for the cooperative

scenario:∫
Ω

n∑
i=1

wi(ω, (u
C(ω)))dPω = max

u∈KC
P

∫
Ω

n∑
i=1

wi(ω, (u(ω)))dPω. (4.28)
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The equivalent variational inequality in this case is to find uN ∈ KC
P such

that ∫
Ω

n∑
j=1

FC
j (ω, uC(ω))(vj(ω)− uCj (ω)) ≥ 0,∀v ∈ KC

P . (4.29)

4.3.3 The stochastic umbrella scenario

In the umbrella scenario, each player acts in a selfish manner and aims to

optimize his/her individual welfare, for every choice of the rival’s strategies.

However, all the players agree to satisfy a common environmental constraint.

Hence, in this model we are looking for a generalized Nash equilibrium, i.e.

for a vector eR(ω) =
(
eR1 (ω), . . . , eRn (ω)

)
:

wi(ω, e
R) = max

ei
ai(ω)fi(ei)− bi(ω)di(ei +

∑
j 6=i

eRj ), ∀ω ∈ Ω (4.30)

subject to ei +
∑
j 6=i

eRj ≤ e(ω), ei(ω) ≥ 0, for all i, where we are using the su-

perscript R to recall that equilibria of this kind were introduced for the first

time by Rosen [39]. Let us note that a generalized Nash equilibrium problem

(GNEP) has in general infinite solutions and it is equivalent to a quasivari-

ational inequality as pointed out by Harker in a finite-dimensional setting

[21]. However, as already noted by Rosen, among all possible solutions of

a GNEP it is possible to select some equilibria with interesting properties.

Quite recently, Facchinei et al. [12] reformulated the result of Rosen in the

framework of variational inequalities (see also [33]). More precisely, they

proved that one can associate a GNEP with common constraints to a vari-

ational inequality whose solutions also solve the original GNEP. Moreover,

the solutions found in this way have the special property that all the players

share a common vector of Lagrange multipliers. These solutions are consid-

ered to be ”socially stable” due to the economic meaning usually given to

Lagrange multipliers. We note that the result in [12] has been extended very

recently to infinite dimensional spaces (see [13]).
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Thus, we associate the following variational inequality to problem (4.30): For

a.e. ω ∈ Ω, find eR(ω) ∈ KR(ω) with

n∑
i=1

Fi[ω, e
R(ω)](ei − eRi (ω)) ≥ 0, ∀e ∈ KR(ω), (4.31)

where KR(ω) = KC(ω). We can derive the Lebesgue formulation of the

umbrella scenario analogously to the previous cases: Find uR ∈ L2(Ω, P,Rn)

such that ∫
Ω

wi[ω, u
R(ω)]dPω = max

ui

∫
Ω

wi[ω, (ui, u
N
−i)]dPω, (4.32)

where ui ≥ 0, ∀i, and ui(ω) +
∑

j 6=i u
R
j (ω) ≤ e(ω). The Lebesgue formulation

of (4.31) is:

Find uR ∈ KR
P such that∫

Ω

n∑
j=1

Fj[ω, u
R(ω)](uj(ω)− uRj (ω))dPω ≥ 0, ∀u ∈ KR

P , (4.33)

where KR
P = KC

P .

4.3.4 Numerical Results

In this section, we illustrate the three stochastic models through a two-player

example. We consider a simple case of a two-player game where welfare

functions are given by

wi = Ai log(1 + ei)−Bi
(e1 + e2)2

2
.

Consider two random parameters A1 and A2 which follow uniform and trun-

cated normal distributions, respectively,

A1 ∼ U(0.6, 2)

A2 ∼ 2 ≤ N(3, 0.25) ≤ 4
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in all three scenarios. The following parameters are held fixed: E1 = 5.5,

E2 = 3, B1 = 1/30, B2 = 1/30. We choose a discretization of the interval

[0.6, 2] with N1 points and a discretization of the interval [2, 4] with N2 points

and solve the problem for each pair (A1(i), A2(j)) using extragradient meth-

ods introduced in Chapter 3. Comparisons of approximate mean values of

the variables u1 and u2 are shown in the tables below. Table 4.17 shows the

results for the noncooperative scenario, and tables 4.23 and 4.29 show the

results for cooperative and umbrella scenarios respectively. A comparison of

the CPU times is shown in Figure 4.3 (similar behavior is observed during

comparisons for the noncooperative and cooperative scenarios).

Methods uN1 uN2

Marcotte 5.8663 4.1712

Marcotte1 5.8667 4.1712

Marcotte2 5.8663 4.1712

Solodov-Tseng 5.8585 4.1712

Table 4.13: Noncooperative scenario: Mean values of uN1 and uN2 for N1 =

30, N2 = 30

Methods V ar(uN1 ) V ar(uN2 )

Marcotte 5.746 2.0013

Marcotte1 5.7447 2.0013

Marcotte2 5.7459 2.0013

Solodov-Tseng 5.7731 2.0014

Table 4.14: Noncooperative scenario: Variances of uN1 and uN2 for N1 =

30, N2 = 30
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Methods uN1 uN2

Marcotte 5.9383 4.2179

Marcotte1 5.9385 4.2179

Marcotte2 5.9381 4.2179

Solodov-Tseng 5.9339 4.2179

Table 4.15: Noncooperative scenario: Mean values of uN1 and uN2 for N1 =

50, N2 = 50

Methods V ar(uN1 ) V ar(uN2 )

Marcotte 5.77 2.0243

Marcotte1 5.7692 2.0243

Marcotte2 5.7707 2.0243

Solodov-Tseng 5.7855 2.0243

Table 4.16: Noncooperative scenario: Variances of uN1 and uN2 for N1 =

50, N2 = 50

Methods uN1 uN2

Marcotte 5.9912 4.2522

Marcotte 1 5.9913 4.2522

Marcotte 2 5.9908 4.2522

Solodov-Tseng 5.9897 4.2522

Table 4.17: Noncooperative scenario: Mean values of uN1 and uN2 for N1 =

100, N2 = 100
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Methods V ar(uN1 ) V ar(uN2 )

Marcotte 5.7802 2.0383

Marcotte1 5.78 2.0383

Marcotte2 5.7817 2.0383

Solodov-Tsengt 5.7859 2.0383

Table 4.18: Noncooperative scenario: Variances of uN1 and uN2 for N1 =

100, N2 = 100

Methods uC1 uC2

Marcotte 2.4128 7.3865

Marcotte1 2.4122 7.3871

Marcotte2 2.4123 7.3869

Solodov-Svaiter 2.4589 7.2804

Solodov-Tseng 2.4193 7.3731

Table 4.19: Cooperative scenario: Mean values of uC1 and uC2 for N1 =

30, N2 = 30

Methods V ar(uC1 ) V ar(uC2 )

Marcotte 1.6081 7.2765

Marcotte1 1.6087 7.2741

Marcotte2 1.6086 7.2745

Solodov-Svaiter 1.5588 7.7037

Solodov-Tseng 1.6016 7.3315

Table 4.20: Cooperative scenario: Variances of uC1 and uC2 for N1 = 30, N2 =

30
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Methods uC1 uC2

Marcotte 2.4355 7.4882

Marcotte1 2.4349 7.4888

Marcotte2 2.435 7.4887

Solodov-Svaiter 2.4355 7.4883

Solodov-Tseng 2.4419 7.4749

Table 4.21: Cooperative scenario: Mean values of uC1 and uC2 for N1 =

50, N2 = 50

Methods V ar(uC1 ) V ar(uC2 )

Marcotte 1.6134 7.2759

Marcotte1 1.6141 7.2733

Marcotte2 1.6139 7.2738

Solodov-Svaiter 1.5616 7.7337

Solodov-Tseng 1.6066 7.3333

Table 4.22: Cooperative scenario: Variances of uC1 and uC2 for N1 = 50, N2 =

50

Methods uC1 uC2

Marcotte 2.4522 7.5631

Marcotte 1 2.4516 7.5638

Marcotte 2 2.4517 7.5636

Solodov-Svaiter 2.5037 7.419

Solodov-Tseng 2.4419 7.4749

Table 4.23: Cooperative scenario: Mean values of uC1 and uC2 for N1 =

100, N2 = 100
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Methods V ar(uC1 ) V ar(uC2 )

Marcotte 1.6165 7.2612

Marcotte1 1.6172 7.2585

Marcotte2 1.617 7.259

Solodov-Svaiter 1.5636 7.7384

Solodov-Tseng 1.6098 7.3181

Table 4.24: Cooperative scenario: Variances of uC1 and uC2 for N1 = 100, N2 =

100

Methods uU1 uU2

Marcotte 2.9997 8.815

Marcotte1 2.999 8.8157

Marcotte2 2.9991 8.8156

Solodov-Svaiter 3.0947 8.7185

Solodov-Tseng 3.85009 10.4462

Table 4.25: Umbrella scenario: Mean values of uU1 and uU2 for N1 = 30, N2 =

30

Methods V ar(uU1 ) V ar(uU2 )

Marcotte 1.88806 10.7016

Marcotte1 1.88914 10.6979

Marcotte2 1.88898 10.6984

Solodov-Svaiter 1.73548 11.1843

Solodov-Tseng 0.86584 2.1317

Table 4.26: Umbrella scenario: Variances of uU1 and uU2 for N1 = 30, N2 = 30
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Methods uU1 uU2

Marcotte 3.0244 8.9233

Marcotte1 3.0236 8.924

Marcotte2 3.0237 8.9239

Solodov-Svaiter 3.1209 8.8254

Solodov-Tseng 3.8805 10.6036

Table 4.27: Umbrella scenario: Mean values of uU1 and uU2 for N1 = 50, N2 =

50

Methods V ar(uU1 ) V ar(uU2 )

Marcotte 1.89772 10.7739

Marcotte1 1.89885 10.77

Marcotte2 1.89868 10.7705

Solodov-Svaiter 1.73793 11.2852

Solodov-Tseng 0.7924 1.5658

Table 4.28: Umbrella scenario: Variances of uU1 and uU2 for N1 = 50, N2 = 50

Methods uU1 uU2

Marcotte 3.0423 9.0028

Marcotte 1 3.0415 9.0036

Marcotte 2 3.0416 9.0035

Solodov-Tseng 3.0420 9.0037

Table 4.29: Umbrella scenario: Mean values of uU1 and uU2 for N1 = 100, N2 =

100



61 4.3. Environmental Games

Methods V ar(uU1 ) V ar(uU2 )

Marcotte 1.90412 10.8113

Marcotte1 1.90529 10.8072

Marcotte2 1.90512 10.8077

Solodov-Tseng 0.74137 1.0924

Table 4.30: Umbrella scenario: Variances of uU1 and uU2 for N1 = 100, N2 =

100
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Figure 4.3: Comparison of CPU times for the environmental game (umbrella

scenario)

4.4 Stochastic Nonlinear Oligopoly Model

In this section, we introduce a model of oligopolistic market with uncertain

data and show that the theoretical and numerical tools can be successfully

applied to the model. The classical oligopolistic market equilibrium problem

is a Nash game with a special structure and it was first introduced by A.

Cournot a long time ago. Recent years have witnessed a renewed interest in

oligopoly theory, and many specific cases of oligopolistic markets have been

studied in detail, for instance the electricity market (see, e.g., [7, 8]).

We consider here the case in which m players are the producers of the same

commodity. The quantity produced by firm i is denoted by qi so that q ∈
Rm denotes the global production vector. Let (Ω,A, P ) be a probability

space and for every i ∈ {1, . . .m} consider functions fi : Ω × R → R and

p : Ω × Rm → R. More precisely, fi(ω, qi) represents the cost of producing

the commodity for firm i, and is assumed to be, P − a.s., nonnegative,
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increasing and C1, while p(ω, q1 + . . . + qm) represents the demand price

associated with the commodity. For P−almost every ω ∈ Ω, p is assumed

nonnegative, increasing and C1. The resulting welfare function wi is assumed

to be concave with respect to qi. We also assume that all these functions are

random variables w.r.t. ω, i.e. they are measurable with respect to the

probability measure P on Ω. In this way, we cover the possibility that both

the production cost and the demand price are affected by a certain degree of

uncertainty, or randomness. Thus, the welfare (or utility) function of player

i, representing the net revenue, is given by:

wi(ω, q1, . . . , qm) = p(ω, q1 + . . .+ qm)qi − fi(ω, qi). (4.34)

Although many models assume no bounds on the production, in a more

realistic model the production capability is bounded from above and we also

allow these upper bounds to be random variables: 0 ≤ qi ≤ qi(ω). Thus,

the specific Nash equilibrium problem associated with this model takes the

following form:

For P − a.e. ω ∈ Ω, find q∗(ω) = (q∗1(ω), . . . , q∗m(ω)):

wi(ω, q
∗(ω)) = max

0≤qi≤qi(ω)
{p(ω, qi +

∑
j 6=i

q∗j (ω) )qi, −fi(ω, qi)}, ∀i ∈ {1, . . . ,m}.

(4.35)

In order to write the equivalent variational inequality, consider,∀ω, a closed

and convex subset of Rm:

K(ω) = {(q1, . . . , qm) : 0 ≤ qi ≤ qi(ω), ∀i}

and define the functions

Fi(ω, q) :=
∂fi(ω, qi)

∂qi
−
∂p(ω,

∑m
j=1 qj)

∂qi
qi − p(ω,

m∑
j=1

qj) (4.36)

= f ′i(ω, qi)− p′(ω,Q)qi − p(ω,Q), (Q =
m∑
j=1

qj).
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The Nash problem is then equivalent to the following variational inequality:

for P−a.e. ω ∈ Ω, find q∗(ω) ∈ K(ω) such that

m∑
i=1

[
∂fi(ω, q

∗
i (ω))

∂qi
−
∂p(ω,

∑m
j=1 q

∗
j (ω))

∂qi
qi − p(ω,

m∑
j=1

q∗j (ω))

]
(qi− q∗i (ω)) ≥ 0

(4.37)

∀q ∈ K(ω).

Now we are interested in computing statistical quantities associated with

the solution q∗(ω), in particular its mean value. For this purpose, in accor-

dance with the general scheme, we consider a Lebesgue space formulation of

problems (4.37): Find u∗ ∈ K such that∫
Ω

m∑
i=1

[
∂fi(ω, u

∗
i (ω))

∂qi
−
∂p(ω,

∑m
j=1 u

∗
j(ω))

∂qi
ui − p(ω,

m∑
j=1

u∗j(ω))

]
×

(ui(ω)− u∗i (ω) )dPω ≥ 0 , (4.38)

where

K = {u ∈ Lp(Ω, P,Rm) : 0 ≤ ui(ω) ≤ qi(ω)}, qi ∈ Lp(ω, P ).

Since the stochastic oligopolistic market problem will be studied through

(4.38).

4.4.1 Numerical Results

In this subsection, we consider a modified and random version of a class

of utility functions introduced by Murphy, Sheraly and Soyster in [32] and

successively used by other scholars. These functions generate a nonlinear

monotone variational inequality on a certain Lp space, where p is determined

by the power law of the cost functions. The cost and demand price functions

for the five-firm case in [32] are given by:

fi(qi) = ciqi +
bi

bi + 1
k
−1/bi
i q

bi+1

bi
i , i = 1, . . . , 5

p(Q) = 50001/1.1Q−1/1.1, Q =
5∑
i=1

qi.
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The values of the parameters ci, ki, bi in [32] alongwith our upper bounds for

the qi are given Table 4.31.

An approximate solution of the problem obtained by a projection method

is given in [34] as (q1, q2, q3, q4, q5) = (36.937, 41.817, 43.706, 42.659, 39.179).

Before introducing random parameters in the above functions, we note that

Table 4.31: Parameter values for the nonlinear problem

i 1 2 3 4 5

ci 10 8 6 4 2

ki 5 5 5 5 5

bi 1.2 1.1 1.0 0.9 0.8

qi 100 100 100 100 100

the demand price becomes unbounded when the total quantity Q approaches

0 (commodity is scarce). Although the solution Q∗ = 0 is never met in

most examples, in order to deal with a well behaved function we consider the

functional form:

p(Q) = 50001/1.1(Q+ e)−1/1.1,

where e is a small positive parameter which determines the maximum price

the consumer can pay when the commodity is very scarce. We add a random

perturbation r(ω) to ci in the model, and also modulate the price function

by a random function S(ω).

Thus, for the general case of m firms, we introduce cost functions given by:

fi(ω, qi) = [ci + r(ω)]qi +
bi

bi + 1
k
−1/bi
i q

bi+1

bi
i , (4.39)

where bi, ci, ki are positive parameters, and demand price functions:

p(ω,Q) = [S(ω)]a
1

(Q+ e)a
, (4.40)

where 0 < s < S(ω) < s, and a is a parameter such that 0 < a < 1 (

a = 1/1.1 in [32]).
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With these functions we can build the Carathéodory function F which defines

the variational inequality through:

Fi(ω, q) = ci + r(ω) + k
−1/bi
i q

1/bi
i + a[S(ω)]a

qi

(Q+ e)a+1 −
[S(ω)]a

(Q+ e)a
, (4.41)

i = 1 . . .m.

We also use the notation Fi(ω, q) = Gi(ω, q) +Hi(ω, q), where Gi represents

the sum of the first three terms in (4.41), while Hi is the rest of the sum,

which contains the price function.

Now, let us consider the case m = 5 with the data as in Table 4.31. The

function F , defines a Nemitsky operator between Lebesgue spaces, as ex-

plained in the previous sections. To be precise, since the exponents bi in

the cost functions vary from 0.8 to 1.2, we select p = 1 + 1/0.8 so that the

Nemitsky operator associated to F maps functions u ∈ L9/4 into u ∈ L9/5.

Moreover, we let random parameters r(ω) and S(ω) to have truncated normal

distributions as follows:

r ∼ −0.5 ≤ N(0, 0.25) ≤ 0.5

s ∼ 4950 ≤ N(5000, 10) ≤ 5050

while fixing parameter e at 0.0001. Mean valuesE(u) of u(r, s) = (u1, u2, u3, u4, u5)

obtained by numerical approximations are presented in Table ?? where nr

and ns stand for number of discretization points for intervals [−0.5, 0.5] and

[4950, 5050] respectively. Comparisons of variances are shown in Tables below

and CPU times are shown in Figure 4.4.
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Methods u1 u2 u3 u4 u5

Marcotte 35.3355 40.0073 41.8117 40.8079 37.4774

Marcotte1 35.3356 40.0073 41.8116 40.8079 37.4774

Marcotte2 35.3355 40.0073 41.8116 40.8078 37.4773

Solodov 35.3356 40.0074 41.8117 40.8079 37.4775

Solodov-Tseng 35.3284 40.0028 41.81 40.8083 37.4788

Table 4.32: Mean values of ui, i = 1, . . . , 5 for nr = 30, ns = 30

Methods V ar(u1) V ar(u2) V ar(u3) V ar(u4) V ar(u5)

Marcotte 57.2018 73.1324 79.7252 75.8389 63.9054

Marcotte1 57.2019 73.1324 79.7251 75.8388 63.9052

Marcotte2 57.2018 73.1323 79.725 75.8386 63.9048

Solodov-Svaiter 57.2021 73.1327 79.7254 75.839 63.9055

Solodov-Tseng 57.1786 73.1159 79.7188 75.8404 63.9101

Table 4.33: Variances of ui, i = 1, . . . , 5 for nr = 30, ns = 30

Methods u1 u2 u3 u4 u5

Marcotte 35.9807 40.7377 42, 5752 41.5533 38.1622

Marcotte1 35.9807 40.7377 42, 5751 41.5533 38.1621

Marcotte2 35.9807 40.7377 42, 5751 41.5532 38.162

Solodov-Svaiter 35.9808 40.7378 42, 5752 41.5533 38.1622

Solodov-Tseng 35.9749 40.7379 42, 5736 41.5534 38.1632

Table 4.34: Mean values of ui, i = 1, . . . , 5 for nr = 50, ns = 50
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Methods V ar(u1) V ar(u2) V ar(u3) V ar(u4) V ar(u5)

Marcotte 34.9946 44.6658 48.6341 46.2236 38.9276

Marcotte1 34.9947 44.6659 48.6341 46.2236 38.9275

Marcotte2 34.9947 44.6658 48.634 46.2234 38.9273

Solodov-Svaiter 34.9948 44.666 48.6342 46.2237 38.9277

Solodov-Tseng 34.9831 44.6574 48.6304 46.2239 38.9296

Table 4.35: Variances of ui, i = 1, . . . , 5 for nr = 50, ns = 50

Methods u1 u2 u3 u4 u5

Marcotte 36.4616 41.2822 43.1442 42.1088 38.6725

Marcotte 1 36.4617 41.2822 43.1442 42.1088 38.6725

Marcotte 2 36.4616 41.2821 43.1442 42.1088 38.6724

Solodov-Svaiter 36.4529 41.2755 43.1398 42.1059 38.6697

Solodov-Tseng 36.4566 41.2788 43.1426 42.1086 38.6731

Table 4.36: Mean values of ui, i = 1, . . . , 5 for nr = 100, ns = 100

Methods V ar(u1) V ar(u2) V ar(u3) V ar(u4) V ar(u5)

Marcotte 17.9041 22.7581 24.7062 23.4311 19.7038

Marcotte 1 17.9041 22.7581 24.7061 23.4311 19.7037

Marcotte 2 17.904 22.758 24.7009 23.4278 19.7009

Solodov-Tseng 17.8989 22.7542 24.7042 23.4308 19.7044

Table 4.37: Variances of ui, i = 1, . . . , 5 for nr = 100, ns = 100
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Figure 4.4: Comparison of CPU times for the nonlinear problem
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