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Abstract

The accuracy of Global Positioning algorithms can be improved by incorporating observations from

the satellites of multiple Global Navigation Satellite Systems (GNSS). To best utilize these observations,

inter-system biases must be modeled. A unified observational model is proposed which accounts for

these factors for an arbitrary number of GNSS. The Bayesian Information Criterion (BIC) may be

imposed upon the unified model to balance data-fitting degree with model complexity among candidate

models for a given satellite configuration scenario. A simple formulation is derived for the change to

the Weighted Sum Squared Residuals (WSSR) outcome caused by modifying the least-squares design

matrix to accomodate additional ISB parameters. The process of updating WSSR is shown to be O(n2),

allowing a low-cost determination of the information entropy between any two candidate models. With

this computationally cheap parameter selection process and a set of GNSS-heterogeneous observations,

the form of the unified model with the highest expected accuracy may be efficiently selected, at a stage

before matrix inversion is performed.
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1 Introduction

Three independent GNSS are in deployment today— the GPS System based in the United States, Russian-

based GLONASS, and European-based Galileo. A fourth GNSS, COMPASS, is planned to expand out of

the existing regional Chinese BeiDou navigation system. Several further GNSS and regional systems are

in development. For the private user, each of these enterprises contributes to improving the accuracy of

positioning algorithms— greater numbers of satellite observations become available, frequently providing

more optimal combinations of observations for positioning algorithms[1].

Under some conditions, single-GNSS coverage does not provide sufficient accuracy or convergence speed

for positioning purposes, particularly within natural ravines and in urban areas. The development of accu-

rate multi-GNSS algorithms is expected to contribute to positioning accuracy for these situations. This

improvement, however, requires a model to compensate for the inter-system biases (ISB) that exist due to

differences among GNSS designs[2]. These biases produce data correlation and thus cannot be absorbed into

another factor of the stochastic model[3].

For instance, consider the processing delay of a signal in the receiver’s circuitry– the time elapsed from

the start of an electromagnetic signal’s absorption by the antenna to the time-stamping of the data. Signals

of the same frequency coming from satellites of the same GNSS will experience this delay each time with the

same outcome distribution. If this effect were fully compensated for by the receiver clock error parameter

during least squares reduction, this delay would be effectively absorbed into the parameter. However, signals

from different GNSS, which are not standardized, will undergo different mechanisms in the receiver circuitry

before the data is time-stamped. This is just one factor of ISB. If the impact of all systematic influences on

the final measurement is unaccounted for in the model, the overall differences in measurement outcomes will

bias the time parameter, negatively affecting its accuracy. In stochastic terms, this means off-diagonal terms

are occurring in the covariance matrix of the model. Such an unaccounted correlation between parameters

will affect the convergence rate and accuracy of positioning algorithms[4].

The data encoded within each signal is the ephemeris— containing the precise position and velocity of the

transmitting satellite. These orbits are known with very high accuracy, though the standard also varies for

different GNSS. Positioning algorithms rely on measuring the exact difference between the timestamp in the

ephemeris and the time it is received by the user. Using the best estimate for the time-of-flight from satellite

to receiver, the light-time equation will determine the distance from receiver to satellite, as the signals travel

at the speed of light. With a set of known satellite positions and estimated distances from these positions,

it is possible to determine the receiver’s position. Precise point positioning (PPP) algorithms utilize a set of

measurements and, starting with a loose estimate of the receiver position, compute a least-squares regression
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to produce an accurate solution vector. The application to PPP will be the primary concern here, although

double-differencing (DD) positioning techniques, which measure baselines from other ground stations, may

also benefit from the same principles.

In the process of measuring the time-of-flight, there are an array of physical effects which influence the

delay. As the raw measurement data is a composite of physical effects, the measurements are referred to

as pseudo-observables— pseudo-ranges in time units. The pseudo-range is defined as the difference of the

timestamp of transmission (in satellite timescale) and the timestamp of reception (in receiver timescale).

From there, corrections from the model will be applied to determine the actual time-of-flight. The observation

equation for a pseudo-observable, relating all the delays involved, defines a functional model. The right-hand

side of the observation equation is the sum of all effects, including the actual topocentric range. This model is

defined in the next section. A set of observation equations from different frequencies and satellites forms one

matrix equation. This system of equations leads to a design matrix familiar to the least-squares regression

process.

The variance matrix of the individual pseudo-observables defines the corresponding stochastic model,

which is designed to give greater weight to pseudo-observables of lower variance; this is defined in section 3.

Off-diagonal terms in the variance matrix represent covariance between a given pair of pseudo-observables.

These terms are increasingly prevalent for DD techniques such as real-time kinematic (RTK) positioning,

which use data from additional ground stations in order to cancel atmospheric effects held in common. PPP

techniques implicitly avoid this source of correlation, but ISB is another source of covariance among the

pseudo-observables that will affect either method if unmodelled.

Methods for modeling other atmospheric effects will follow in the model definition of section 2, which are

usually handled independently through external models. One delay effect that cannot be modeled this way

is the clock error, which is the offset of the receiver’s clock from the GNSS timescale on which the satellite

clocks operate. The ground clock will not be synchronized with the GNSS clocks in any way and the offset

must be parameterized in the design matrix as the fourth coordinate of the solution vector.

In the same manner, further parameters beyond this may be used to estimate inter-system biases, which

are multi-faceted and more difficult to model[2]. In practice, it may be the case that the use of daily constants

for ISB, determined empirically from an observatory, is sufficient[5] [6]. Such a substitution would allow the

ISB parameter to be omitted from the constraint equation. The selection of the most appropriate model in

this regard is the subject of section 4.

With regards to the ISB, different GNSS operate under different timescales and GNSS transmissions are

not all operating within the same frequencies. The latter introduces a delay term to the ISB which is both

satellite-dependent and receiver-dependent; as mentioned before, different frequencies have non-identical

3



processing times within the circuitry of a receiver, while various receivers (antenna type, firmware version)

will introduce further frequency-dependent variability in processing times[6]. The effects of varying signal

frequencies are particularly pronounced in the GLONASS system, as in that system there exist frequency

differences between each satellite. This is because GLONASS uses Frequency Division Multiple Access

(FDMA), requiring better-equipped hardware to receive all the frequencies used. This latter component of

ISB is designated as Inter-Frequency Bias (IFB). The net ISB for a given GNSS and receiver hardware

pair is typically defined to stem from these three phenomena, as reflected in (3) of section 2. While the

receiver-dependence status of some terms is not a concern for PPP, which uses only one receiver at a time, DD

techniques will experience further data correlation from these non-uniformities unless specifically modeled.

Central to the problem of positioning are the two measurements known as code observable and phase

observable. The code observable provides a reliably accurate but noisy pseudorange. The phase observable

gives a very precise track record of the change in distance since the first signal received, but with lower

accuracy— the functional model for the phase observable contains an offset of an unknown integer number of

wavelengths. Once an algorithm determines the correct ambiguity value, through a filtering process involving

the code observable[7], the phase observable will be able to track the satellite distance very accurately in

units of radians.

2 Observation Model

The unified observation model is composed of observation equations:

P rsi,sys(t) = ρrs(t) + c · dtr(t) + Ψs(ZTDr, θrs) + µiI
s(t) + ISBrsi,sys(t) + ersi (t) (1)

Lrsi,sys(t) = ρrs(t) + c · dtr(t) + Ψs(ZTDr, θrs)− µiIs(t) + λiN
s
i + ISBrsi,sys(t) + εrsi (t) (2)

Where
i represents a given frequency, with i = 1, ..., f
r represents a given receiver.
s represents a given satellite.
sys represents a given GNSS.
P rsi,sys(t) is the code observation.
Lrsi,sys(t) is the phase observation.
ρrs(t) is the topocentric range from satellite s to receiver r.
c is the speed of light.
dtr(t) is the clock error of receiver r.
ZTDr is the zenith tropospheric delay.
θrs is the elevation angle of satellite s.
Ψs(τ, θ) is the mapping function.
λi is the carrier wavelength at frequency i.
µi = λi/λ1.
Is(t) is the ionospheric delay.
Ns
i ∈ Z is the carrier phase ambiguity.

ISBrsi,sys(t) is the intersystem bias.
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ersi (t), εrsi (t) are the unmodeled error terms.

The ISB term is further decomposed as follows:

ISBrsi,sys = TOsys +DCBrsys + IFBri (3)

Where
TOsys is the system time difference.
DCBrsys is the bias due to systematic processing differences.
IFBri is the inter-frequency bias.

As mentioned previously, the observation equation gives a functional model for understanding the

measurements. The right-hand side of each equation represents the model of contributions to the measure-

ment. The most important distinction between the two is the ambiguity value on the phase observable.

The sign difference for Is(t) in (1) and (2) is due to the ionosphere being a dispersive medium. The

phase velocity is increased above c in the medium. As the phase observable is measured in cycles, this

pushing forward of phase results in a decrease to the measured delay. Within the GNSS frequency range, the

ionospheric effect on group velocity is almost exactly opposite, down to 99.9 percent[8], for group velocity,

so the code observable delay increases by the same value.

The ionosphere-free combination, a linear combination of pseudo-observables on separate frequencies, may

be used to eliminate the Is term[9]. This is only possible with multi-frequency receivers. The tropospheric

delay may be modeled externally with the Hopfield tropospheric correction model, using the Vienna mapping

function Ψs[10][11]. These two external models account for the simplification:

P̃ rsi (t) ≡ P rsi (t)−Ψs(ZTDr, θrs)− µiIs(t) (4)

L̃rsi (t) ≡ Lrsi (t)−Ψs(ZTDr, θrs) + µiI
s(t) (5)

The two constraint equations will then take the form:

P̃ rsi (t) = ρrs(t) + c · dtr(t) + ISBrsi,sys(t) + ersi (t) (6)

L̃rsi (t) = ρrs(t) + c · dtr(t) + λiN
s
i + ISBrsi,sys(t) + εrsi (t) (7)

With GPS as the reference constellation, ISBGPS will be chosen to be zero. Thus all other ISB system

time offsets TOsys will be pegged to the GPS system time, and DCBsys likewise relative to the circuit delay

DCBGPS , the lattermost of which is absorbed by the clock error[12]. This approach is referred to as tight

combination[13].

IFBri accounts for biases arising from non-uniform frequency among signals within a FDMA GNSS;
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DCBrsys accounts for the delay biases strictly on the inter-GNSS level. For CDMA-based GNSS, which

keeps each transmission type to a fixed frequency, IFBri is always zero. For each GNSS using FDMA, a

value IFBri is assigned for each occurring frequency in the GNSS; the zero-sum condition is imposed on each

set of IFBri .

It is important to note that for DCBrsys and IFBri , modeling must be done separately for code and phase

observations. In particular, phase IFB terms are known to vary linearly with frequency[14], but the code

IFB terms generally do not, although this is beyond the scope here. The treatment of ISB given in section

4 will not break down the components individually, but will treat each full ISBrsi,sys as a parameter in its

own right for the minimization process.

To fit the pseudo-observations to a least-squares criteron, it is necessary to include an extra residual

term in the functional model. The typical least-squares process is used to minimize the set of residuals; most

generally:

Zj = fj(u1, u2, ..., uk) + rj (8)

Where
Zj is pseudo-observation/data point j.
fj is the functional model [(6) or (7)] for observation j.
ui is parameter i.
rj is residual j.

Further define û as the vector of parameters such that J =
k∑
j=1

(rj)
2 is minimized. Then let û ≡ u0 + ∆u.

With approximate values u0 for all parameters, it is possible to linearize the observation equations. To
reduce clutter, the r superscript is omitted.

∆bsi = −(~v)T∆w + (~v)T∆W + c∆dt+ ∆ISBsi,sys (9)

∆φsi = −(~v)T∆w + (~v)T∆W + c∆dt+ λiN
s
i + ∆ISBsi,sys (10)

Where
~v is the line-of-sight (LOS) vector from receiver to satellite.
∆w = (∆x,∆y,∆z) is the incremental receiver position.
∆W = (∆X,∆Y,∆Z) is the incremental satellite position.

These equations are used to construct the matrix of partials, A. The breakdown of ∆x gives the partial

terms of the first three columns.

Let there be mp pseudo-observables from GNSS p, p = 1, ..., κ. Let K be the total number of pseudo-

observables: K =
κ∑
p=1

mp. Let the reference GNSS be p = 1. With (9), the design matrix for code

observations takes the following form:
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Ac =



x0 −X1

ρ10

y0 − Y 1

ρ10

z0 − Z1

ρ10
1 0 . . . 0

x0 −X2

ρ20

y0 − Y 2

ρ20

z0 − Z2

ρ20
1 0 . . . 0

...
...

...
...

...
. . .

...

x0 −Xm1

ρm1
0

y0 − Y m1

ρm1
0

z0 − Zm1

ρm1
0

1 0 . . . 0

x0 −Xm1+1

ρm1+1
0

y0 − Y m1+1

ρm1+1
0

z0 − Zm1+1

ρm1+1
0

1 1 . . . 0

x0 −Xm1+2

ρm1+2
0

y0 − Y m1+2

ρm1+2
0

z0 − Zm1+2

ρm1+2
0

1 1 . . . 0

...
...

...
...

...
. . .

...

x0 −XK

ρK0

y0 − Y K

ρK0

z0 − ZK

ρK0
1 0 . . . 1



∆u =



∆x

∆y

∆z

∆dt

∆ISB2

...

∆ISBK



Matrix Ac is K × (κ+ 3); K code observations by 4 coordinate parameters plus κ− 1 ISB parameters.

ρn0 is the approximate (pre-fit) topocentric range from satellite n to receiver.

(x0, y0, z0) is the pre-fit position of the receiver.

(Xn, Y n, Zn) is the pre-fit position of satellite n.

∆u is the vector of corrections to the pre-fit receiver coordinates.

∆dt is the correction to the receiver clock error.

∆ISBn is Eq. (3) for observable n.

Including the phase observations will expand A into the following block matrix, to include K additional
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observations (rows) and K additional parameters— the ambiguities Ns
i .

A =


Ac 0

Ac IK

 ∆u =



∆x

∆y

∆z

∆dt

∆ISB2

...

∆ISBK

∆N1

...

∆NK


The normal equations become

AT r̂ = 0 (11)

Where r̂ is the minimized residual vector. For a solution to exist, K ≥ κ + 3. Otherwise, the matrix is

rank-deficient. The fitted receiver position û = u0 + ∆u. Of course, û contains the solution for the receiver

coordinates in the first three parameters.

∆u = (ATA)−1AT r0 (12)

û = u0 + ∆u (13)

This is the most extensive form of the observation model to be considered here. See Appendix A for a

simplified example of the fitting process. The general functional model can be made to exclude any ISB

term from this process. This would mean the deletion of the corresponding column from Ac and removal of

that parameter from the vector ∆u. Defining which ISB terms should be included is the subject of Section

4. The alternative to the fitting of an ISB parameter would be the use of an external model, such as a daily

constant.

In general purpose PPP, linear regression is run iteratively with successive signals, using the previous

step’s solution vectors as pre-fit vectors. With a powerful filtering process, this allows an algorithm to

converge to superior results over time[7]. For purposes laid out in section 4, only the framework of the first

iteration will be used here.
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3 Stochastic Model

The stochastic model accounts for noise in the parameters, which are qualitatively distinct. In order to give

more weight to data which is expected to contain less noise, the stochastic model provides the weight matrix

W to the regression process.

The elevation-dependent exponential stochastic model[15] is employed to construct the covariance matrix.

σci = σzci(1 + aobsexp(−bobsθs)) (14)

Where

σci is the standard deviation of the code observable on frequency i.

σzci is the zenith standard deviation of the code observable on frequency i.

aobs, bobs are observable-specific constants.

θs is the elevation angle.

This form contains empirical amplification constants in addition to the zenith variance for each type

of observation and frequency. At zenith, the signals pass through the least amount of atmosphere. The

elevation-dependent term adjusts this to account for the increased amount of atmosphere traversed when

the line-of-sight makes an oblique angle to the Earth’s surface. The stochastic model for phase observables

is identical in form with the above, with symbol σpi . From these definitions follows the covariance matrix:

W =

 diag−1(σc
2) 0

0 diag−1(σp
2)



Where diag−1(σc
2) is the inverse of the diagonal matrix, in this case for variances σc

2. The LSS can be

adapted to this weighting scheme:

û = (ATWA)−1ATWr0 (15)

4 Model Selection

Some positioning models for multi-GNSS data have calibrated components of the ISB, externalizing the

TO[5], IFB[6] or DCB[16], respectively, as a daily constant. In these experiments, the accuracy of simu-
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lations running each model was compared with known positions to gain insight into the behavior of these

terms by controlling for antenna hardware, firmware and GNSS combination.

While code ISBs may reach into tens of meters and phase ISBs can approach a half cycle, the values

remained relatively constant over time, drifting just a few nanoseconds per day[5][13]. Another study,

however, which constructed a model to single out the TO component for four different GNSS, uncovered

potential improvements in accuracy when closely monitoring these parameters in time[17]. One trial ran a

model for single-frequency PPP using GPS and Galileo with fully parameterized ISB components[12], in a

similar vein to the fully parameterized form of the model defined here. When enough pseudo-observations

from a GNSS are available, it may become advantageous to model the ISBsys for that GNSS as a parameter

as opposed to using an external model to offset the bias indirectly.

The set of candidate models for a positioning scenario spans from the four-observable model— a model

which fits just three receiver coordinates and the clock delay (k=4) with external models for ISB— to the

modeling of some or all ISB errors as parameters. A candidate model will therefore be defined by a set of

parameters, B, beyond the usual four, to be modeled as additional columns. In this case, B is a subset of

all potential ISBsys parameters (except for the reference GNSS ISB, which is zero). Each candidate model

takes a unique form of the unified model as defined by the terms of A. We also define the set of observations

S— As noted in section 5, it is also possible to perform a model selection on the observation set.

The weighted sum of squared residuals (WSSR) for each candidate model is minimized by the least

squares criterion (solution to the normal equations), giving solution vector û. Let ρ(S,B) be the WSSR

obtained from the least squares solution (LSS) of the normal equations, for model (S,B). In the context of

model selection, “WSSR” will refer to ρ(S,B), the minimized LSS term for that model.

As the degrees of freedom of the model falls to zero, WSSR eventually tends to zero. Candidate models

vary along these lines, so model selection simply on a basis of optimization of ρ(S,B) can fail. The idea

for this model selection is a balance between weighing the statistical benefit of each particular additional

parameter avoiding overfitting. One strong measure for determining the most parsimonious model is the

Bayesian Information Criterion (BIC)[18].

BIC = n · log(ρ(S,B)/n) + k · log(n) (16)

Where k = |B| + 4 is the number of parameters and n = |S| is the number of observations. The BIC

balances the complexity of a model with its goodness-of-fit. For a given scenario, the model with the lowest

BIC value is favorable. The ∆BIC for an alternative candidate model thus provides a measure of utility for

a proposed alteration to design matrix A. In the context of (16), the model selection process will hinge upon
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how to obtain ρ(S,B) for each candidate model. Once a model is selected as optimal, the full solution vector

under that model may be computed. This process avoids the costly computation of an entire solution vector

for each candidate model.

The WSSR may be computed partway through the process of solving the normal equations for LSS.

ρ(S,B) = min
u

[(r0 −Au)TW (r0 −Au)] (17)

Where
ρ(S,B) is the WSSR.
u is a vector of parameters.
r0 is the vector of pre-fit residuals.
A is the design matrix.
W is the weight matrix.

In contrast, computing the full solution vector requires the following:

û = u0 + (ATWA)−1ATWr0 (18)

It is desirable to avoid computing a large matrix inversion for every candidate model being proposed.

The four-observable model may be chosen to start the model selection process and a recursive method

subsequently used to obtain ∆BIC for adjacent candidate models. Any modifications to A which produce

a negative ∆BIC should be incorporated. The forthcoming method involves decomposing the system of

equations to an upper triangular matrix with history information, allowing further changes to A and WSSR

values to be examined thenceforth from each updated A. The process for deriving û once A is chosen will

be explained in context, once the recursive method for selecting A has been elaborated.

4.1 Parameter Update

The following procedure allows the computation of ∆BIC for a candidate model consisting of one additional

ISB parameter in the design matrix— updating from k to k + 1 total parameters, including the necessary

extra column in Ak+1 defined in section 2 and the coefficients for the extra σISB in W . Let the subscript k

refer to terms for the initial model and subscript k + 1 refer to terms for the updated model in the context

of this section. Let W , u0 and r0 correspond to A in a given equation.
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First, a few terms for the initial model will be defined. The least squares solution (LSS) for the candidate

model with design matrix Ak (n× k) is given by:

ûk = u0 + (Nk)−1qk (19)

Nk ≡ ATkWAk (20)

qk ≡ ATkWr0 (21)

By constructing an augmented matrix to perform Gaussian Elimination, the WSSR may be singled out in
the diagonal. The bottom row represents the sum of residuals, which may be minimized by likewise applying
the elimination operations[19]. Consider the (k + 1)× (k + 1) augmented cross-product matrix:

B0
k =

[
Nk qk

(qk)T (r0)TWr0

]
(22)

The LDU decomposition of the normal equations may be expressed as[19]:

B0
k ≡

[
(Rk)T 0

(sk)T ρk

][
diag−1(Rk) 0

0 ρ−1k

][
Rk sk

0 ρk

]
(23)

The first two terms in (23) combine to form L in the LU decomposition. Further define:

Bkk ≡

[
Rk sk

0 ρk

]
= Lk . . . L2L1B

0
k (24)

The decomposition components may be expressed B0
k = LU = (Lk . . . L2L1)−1Bkk . The WSSR ρk is

minimized and thus equal to ρ(S,B) when the rest of the bottom-row is zero[19], as in Bkk .

Li is defined as the transformation matrix which, for j = i + 1, i + 2, . . . k, replace row rj with rj −

ri(g
i−1
j,i /g

i−1
i,i ), where gpm,n is entry (m,n) of Bpk . For example, L1B

0
k = B1

k will appear in matrix form:

L1 ·B0
k = L1 ·



g01,1 g01,2 . . . g01,k g01,k+1

g02,1 g02,2 . . . g02,k g02,k+1

...
...

. . .
...

...

g0k,1 g0k,2 . . . g0k,k g0k,k+1

g0k+1,1 g0k+1,2 . . . g0k+1,k ρ0k


=



g01,1 g01,2 . . . g01,k g01,k+1

0 g12,2 . . . g12,k g12,k+1

...
...

. . .
...

...

0 g1k,2 . . . g1k,k g1k,k+1

0 g1k+1,2 . . . g1k+1,k ρ1k


= B1

k

(25)

It follows that Bkk is upper triangular and ρkk = ρk. Since submatrices Nk and Rk occupy the same

positions in B0
k and Bkk respectively, and row operations of the form Li have no effect on determinant; and
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since Bkk is square, placing ρk in an even parity position inside Bkk , note the following relations:

det(Nk) = det(Rk) (26)

det(B0
k) = det(Bkk ) = ρkdet(Rk) (27)

Now consider the updated candidate model whose design matrix Ak+1 has k + 1 columns— those of Ak

and one extra column, ak+1, for the fitting of an additional ISB term. The new information appears in

column k + 1 and row k + 1 of the updated LSS cross-product matrix:

B0
k+1 =

 Nk ATkWak+1 qk

aTk+1WAk aTk+1Wak+1 aTk+1Wr0

qTk rT0 Wak+1 rT0 Wr0

 =

[
Nk+1 qk+1

qTk+1 rT0 Wr0

]
(28)

Define the vector h0k+1 ≡ [ATkWak+1, r
T
0 Wak+1]T ≡ [h01, h

0
2, h

0
3, . . . , h

0
k, h

0
k+2]T . This is column k+ 1 and the

transpose of row k + 1 of B0
k+1, sans entry number k + 1. It was shown that Bkk = Lk . . . L2L1B

0
k ≡ MB0

k.

Applying the same transform matrix, M , with dimension (k+ 1)× (k+ 1) from the initial model, define the

following:

M(h0k+1) ≡ [h01, h
1
2, h

2
3, . . . , h

k−1
k , hMk+2]T (29)

Let entries inherited from Bkk still appear in the form gpi,j . Finally, let M̃ be defined to be equivalent to M

except that whenever index j would be k + 1, let it be k + 2 instead. This way, instead of changing row

k+ 1, M̃ will reduce row k+ 2 without altering the former. This allows the presence of (h0k+1)T in row k+ 1

without changing any of the gpi,j values or ρk.

M̃B0
k+1 =



g01,1 g01,2 . . . g01,k h01 g01,k+1

0 g12,2 . . . g12,k h12 g12,k+1

...
...

. . .
...

...
...

0 0 . . . gk−1k,k hk−1k gk−1k,k+1

h01 h02 . . . h0k h0k+1 h0k+2

0 0 . . . 0 hMk+2 ρk



(30)

This matrix was obtained through determinant-conserving transformations of B0
k+1 while preserving

terms gi−1i,j from Bkk through application of a transform identical to M (for g entries) previously used thereto.

13



For rows i = 1, ..., k, note that Lk . . . L2L1 also yields hi−1i . However, M̃ is not identical to Lk . . . L2L1 for row

k+ 2, hence the term hMk+2 6= 0. This matrix may further be row-reduced by the transformation Lk . . . L2L1,

of dimensions (k + 2)× (k + 2) for the updated model (index j goes to k + 1 instead of k):

Lk . . . L2L1M̃B0
k+1 =



g01,1 g01,2 . . . g01,k h01 g01,k+1

0 g12,2 . . . g12,k h12 g12,k+1

...
...

. . .
...

...
...

0 0 . . . gk−1k,k hk−1k gk−1k,k+1

0 0 . . . 0 hkk+1 hkk+2

0 0 . . . 0 hMk+2 ρk



= B̃kk+1 (31)

From here the solution vector may be obtained by back-substitution, starting with value ûk+1 = hkk+2/h
k
k+1

in the second-bottom row. At this point, however, ρk+1 may be derived without the need for this back-
substitution. Recall (26), (27):

ρk = det(B0
k)/det(Nk) (32)

det(B0
k+1) = det(B̃kk+1) (33)

det(B̃kk+1) = ρkC − hMk+2D (34)

where C ≡ det



g01,1 g01,2 . . . g01,k h01
0 g12,2 . . . g12,k h12
...

...
. . .

...
...

0 0 . . . gk−1k,k hk−1k

0 0 . . . 0 hkk+1


, D ≡ det



g01,1 g01,2 . . . g01,k g01,k+1

0 g12,2 . . . g12,k g12,k+1
...

...
. . .

...
...

0 0 . . . gk−1k,k gk−1k,k+1

0 0 . . . 0 hkk+2


(35)

From Cramer’s rule,

ûk+1 = det(D)/det(C) (36)

And from the general case of (32),

ρk+1 = det(B0
k+1)/det(Nk+1) (37)

ρk+1 = [ρkC − hMk+2D]/C (38)

⇒ ρk+1 = ρk − hMk+2ûk+1 (39)

Substituting for WSSR, and mindful that ∆k = 1 and ∆n = 0,

∆BIC = n · log(−hMk+2ûk+1/n) + log(n) (40)

When solving all the normal equations by finding (ATWA)−1, the computational cost is on the order of

O(k3) multiplications plus divisions. This process, however, has a complexity of 3k(k+ 1)/2: (30), (31), and
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the back-substitutions each take k(k + 1)/2 operations.

When full back-substitutions are performed only for the optimal candidate model, the order of a recursive

algorithm to select a candidate model within a given S observation set is
κ∑
k=4

(k2 + k) operations.

The recursive method will compute the WSSR for the four-observable model, then update the set B

to include any ISB parameters which reduce the BIC, and when this selection process for B is complete,

obtain the solution vector by carrying out the back-substitutions from B̃
|B|+3
|B|+4 to actually solve for û|B|+4.

See Appendix B for a simplified example detailing the model selection process.

5 Conclusion

For a modern PPP algorithm, the added benefit of increased model adaptability without increasing the

computational order means that such a powerful improvement is available with very little concomitant

downside. The simplicity through which the terms hkk+1, hkk+2 and hMk+2, ∆ρ and ∆ BIC are obtained allows

an algorithm to converge on the estimated best model as a matter of vector operations. How this would

be implemented together with the Kalman filtering mechanism is another matter of substance for general

modeling purposes. When the full unified model would best be employed and how variable the outcome of

this model selection is remains open to investigation through performance analyses. Regardless of the result

or of specifics such as the form of information criterion used to perform the balancing, the principles used

here fundamentally show that this functionality can come at a low cost.

An overlying possibility beyond the parameter analysis here lies in the observation update process. The

motivation for such a process would include replacing the elevation mask with a more adaptable model selec-

tion dynamic by allowing added observations to be filtered through the BIC— Signals traveling through the

atmosphere at lower elevations are subject to much higher variance. To address this, positioning algorithms

can set a threshold (elevation mask) below which available satellite data will not be included. While this

cuts out noise, it has the downside of weakening the geometry of the observations to some extent. A noisy

but particularly well-positioned observation for the current overall geometry of observations may be blocked.

This leaves some flexibility to be desired; the alternative would be a model selection process to determine

which pseudo-observations to include on the basis of how much their inclusion affects the expected accuracy.

This type of model selection would require a recursive algorithm for updates to the set of observations

|S|. The BIC would then be balancing the information entropy to weigh the benefits of improved linear

independence of measurements while avoiding excess noise. Combined with the parameter update, an even

greater amount of adaptibility becomes possible. Other parameters such as Ionospheric delay should also

be possible to model similarly under the parameter update regime when under the restrictions of a single-
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frequency receiver. Whether this would be necessitated and external models eschewed is one avenue of

investigation, as unlike ISB, the Ionospheric delay is much easier to model directly (such as in[12]) without

resorting to an empirical approach. This would only require another term in the linearized equation be

determined for the model definition; otherwise the parameter update method is the same.

A Appendix A

The following is an example PPP determination using eight code observations and no phase observations.

The initial approximation of the parameters:

u0 =



−2296700.000

−4472150.000

3915300.000

0


The satellite positions (ECEF) at time of signal reception:



19262441.610 −15434806.301 9733716.410

−19490694.737 7415047.465 16248527.367

−21033023.123 −7470505.178 14254393.975

7330621.079 −23150466.670 10802063.143

−16802097.343 −2521269.811 20401432.453

−17025373.271 −2502338.714 20341182.610

−25104512.100 −8135496.048 −4487195.511

1240026.190 −14854274.683 22164534.763


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The satellite velocities (ECEF) at time of signal reception:



−525.646 1147.819 2857.291

959.956 −1890.220 2001.685

−915.741 −1684.591 −2144.544

1084.705 −881.603 −2679.434

−975.461 −2405.9228 −1098.457

1580.145 −2001.787 1134.642

596.609 −134.198 −3082.001

2726.169 462.537 145.213


The pseudorange data:



24867111.479

24252348.847

21675579.500

22070388.190

21991390.108

22267845.875

24648421.852

21234700.060


Using the approximate time of flight given by the pseudorange, and assuming constant velocity of the

satellite over that time, it is possible to determine the position of the satellite at time of transmission. This

must also be translated into a non-inertial frame of reference to obtain the line-of-sight vector.
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Range vectors; satellite positions (ECI) at time of transmission, and their magnitudes:



19262391.833 −15435018.100 9733479.317

−19490728.677 7415315.555 16248365.317

−21032996.382 −7470273.204 14254548.551

7330416.548 −23150441.071 10802260.782

−16802039.130 −2521002.791 200401513.229

−17025503.500 −2502099.084 20341098.778

−25104609.660 −8135334.944 −4486942.809

1239755.645 −14854313.954 22164524.450


Range vector magnitudes:



24866980.420

24252361.051

21675567.837

22070272.419

21991360.775

22267811.087

24642478.479

21234574.647


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Residuals for initial approximation:

r0 =



131.059

−12.204

11.663

115.771

29.333

34.788

−65.624

125.413


Matrix of partials:

A =



−0.867 0.441 −0.234 1

0.708 −0.490 −0.508 1

0.867 0.139 −0.478 1

−0.435 0.845 −0.311 1

0.658 −0.089 −0.748 1

0.665 −0.089 −0.742 1

0.928 0.149 0.342 1

−0.166 0.488 −0.857 1



r̂ = r0 −A(û− u0)

û = u0 + (ATA)−1AT r0 =



−2296771.950

−4472101.663

3915219.941

23.978


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B Appendix B

The following is a simplified example PPP determination using model selection on the basis of ISB parama-

terization.

Take the above data and suppose the observations 5-7 originate from GNSS 2 and observation 8 originates

from GNSS 3.

For the four-observable model, ρ̂ is obtained by finding the upper trianglar matrix B4
4 as defined in

Section (4.1).

ρ̂ = 115.24838

BIC = 8log(ρ̂/8) + 4log(8) = 29.65895

Now derive the WSSR for a five-observable model which includes a column in A for parameter ISB2.

Going through the process described in Section (4.1):

∆ρ̂ = −7.51058

ρ̂ = 107.7378

BIC = 31.19928

The BIC value increased, therefore the parameter ISB2 should be modelled externally. Now repeat the

process for ISB3:

∆ρ̂ = −14.29296

ρ̂ = 100.9554

BIC = 30.67911

The BIC value increased with this candidate model as well. The algorithm concludes by performing the

back-substitution for the 4-observable model, giving the same solution as in Appendix A (in this instance).

Note that the external modelling assumption that ISB2 and ISB3 are zero is implicit to this simplified

example. Using constant values closer to the ISB as external factors, as the suggested external models do,

will also affect r0 (and thus the BIC values) because r0 depends on the range vectors.
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