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Abstract

Medical image registration has received considerable attention in the medical imaging

and computer vision communities because of the variety of ways in which it can poten-

tially improve patient care. This application of image registration aligns images of regions

of the human body for comparing images of the same patient at different times, for ex-

ample, when assessing differences in a disease over time; comparing images of the same

anatomical structure across different patients, for example, to understand patient vari-

ability; and comparing images of the same patient from different modalities that provide

complementary information, for example, CT and PET to assess cancer.

The two primary types of registration make use of rigid and nonrigid transformations.

Medical images typically contain some regions of bone, which behave rigidly, and some

regions of soft tissue, which are able to deform. While a strictly rigid transformation

would not account for soft tissue deformations, a strictly nonrigid transformation would

not abide by the physical properties of the bone regions. Over the years, many image

registration techniques have been developed and refined for particular applications but

none of them compute a continuous transformation simultaneously containing both rigid

and nonrigid regions.

This thesis focuses on using a sophisticated segmentation algorithm to identify and

preserve bone structure in medical image registration while allowing the rest of the image

to deform. The registration is performed by minimizing an objective function over a

set of transformations that are defined in a piecewise manner: rigid over a portion of

the domain, nonrigid over the remainder of the domain, and continuous everywhere. The

objective function is minimized via steepest gradient descent, yielding an initial boundary

value problem that is discretized in both time and space and solved numerically using

multigrid. The registration results are compared to results of strictly rigid and nonrigid

registrations.
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Chapter 1

Introduction

Image registration is the process of aligning multiple images into the same coordinate

system. In medical imaging applications, the images are typically captured at different

times or from different viewpoints. The process involves aligning a floating image with a

reference image by computing the transformation that maps points in the floating image

to relative points in the reference image.

Medical images can be produced from numerous modalities (e.g. computed tomogra-

phy, magnetic resonance, ultrasound) and registration can be performed to align images

within the same modality or from different modalities, and the images can be from the

same or different patients. In this thesis, we will focus on registering magnetic resonance

(MR) images from the same patient. The images in question will be three-dimensional

images of a brain; hence, we can denote mathematically the floating image as F : ΩF → R

and the reference image as R : ΩR → R where ΩF ,ΩR ⊆ R3.

Image registration is comprised of three main components: a geometric transforma-

tion, a similarity measure, and an optimization process. The geometric transformation,

Φ : ΩF → R3, is the mapping of all points in the floating image to the three-dimensional

space that contains the reference image in an attempt to align like regions. The similarity

measure is a function, J (R,F (Φ)), that quantifies how well the reference and deformed
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(a) (b) 

Figure 1.1: Mapping from floating image to reference image

floating images are aligned. The optimization process defines how to determine the ge-

ometric transformation that optimizes the similarity measure between the transformed

floating image and the reference image.

Two different types of transformations will be considered on in this thesis: rigid trans-

formations and deformable, or non-rigid, transformations. As the name suggests, a rigid

transformation consists of rotations and translations that rigidly move the image. A non-

rigid transformation allows for local deformations often viewed as a warping of the original

image.

1.1 Motivation

As mentioned previously, the desired registration in this case will be between two different

3-D brain images of the same subject at different times. Using a rigid registration would

roughly align the two images, but the entire head is not a rigid body, so this would not be
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ideal for an accurate solution. The soft tissue almost certainly requires non-rigid trans-

formations to accurately register, but the skull obeys a rigid transformation. Therefore,

a strictly non-rigid registration would also be insufficient, leaving the skull susceptible to

deformations. Clearly, neither strictly rigid nor strictly nonrigid transformations would

accurately register 3-D brain MR images in all areas of the head. When constructing a

registration transformation, there are numerous factors that need to be considered: the

rigid anatomical structures, the ability for soft tissue/organs to deform, the necessity for

a transformation to be physically possible (no points crossing each other), and the lack of

interest in the region of the image that does not depict the subject. Next, we will discuss

what others have previously done to address these issues.

1.2 Literature Review

Image registration has been used in many medical applications such as tracking the growth

of a tumor and comparing brain activity from numerous subjects. For examples of general

forms of registration paired with medical imaging applications, see [24, 19, 21]. There

are numerous methods for performing registration that range from fully rigid to nonrigid

transformations, but they do not adequately or easily depict accurate anatomical behavior.

Therefore, a large amount of work has been performed to create more sophisticated types

of transformations. Characteristics of an ideal registration are generally specific to the

desired application. For example, an image of a heart is entirely depicting soft tissue

which is subject to deformations so a rigid transformation would not be desired when

registering two cardiac images.

One particular area of interest that is very common in medical imaging is the regis-

tration of images containing both rigid bone regions and soft tissue regions. This is most

easily seen in torso images, capturing the ribcage as well as internal organs, and also skull

images which are surrounding soft-tissue brains. When registering two torso CT images,

3



it is clear that a rigid transformation would not accurately represent the behavior of the

soft tissue organs, yet a non-rigid transformation would not preserve the rigid nature of

the ribs.

Nonrigid registration algorithms typically capture only very small deformations but

torso images could potentially exhibit rather large deformations. In order to capture large

deformations, a fluid model could be used to measure small velocity of change which can

then be integrated to result in larger deformations [9, 6]. Woods et al. [23] recommend

using an affine transformation when handling mixed regions between images from different

subjects; however, for intrasubject registration, the affine transformation results contained

more inconsistencies than those obtained with a strictly rigid model. Arsigny et al. [1]

developed new types of transformations, known as polyrigid and polyaffine, in order to find

a middle ground between the small number of degrees of freedom in a rigid transformation

versus the large number of degrees of freedom in a fully nonrigid transformation. A group

of anchor points are defined, where rigid or affine transformations are computed, and

the transformation at all other points is equal to some interpolated combination of the

transformation from all nearby anchor points.

Similar to this type of transformation is a proposed registration method that identifies

rigid bodies in an image, solves for the ideal transformation for each rigid body in the

image, then transforms all remaining points using a weighted linear combination of the

pre-defined linear transformations of the rigid regions [16]. Not too different from this

method, Edwards et al. [11] suggests observing a brain MRI as nonrigid as a result

of surgery or radiotherapy. The procedure is to identify the rigid regions, use feature

matching with 6 points from each image, transform the rigid region and nonrigid region

separately, and then combine the results. The nonrigid regions are mapped using three

feature points which determine how to interpolate the rest of the nonrigid region.

While these are all worthwhile techniques and substantial improvements from strictly
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rigid or nonrigid registration, none of these methods quite solve for both rigid and non-

rigid transformations simultaneously. Rather than use landmarks or individually run the

rigid and nonrigid transformations, it would be beneficial to view the registration as one

continuous transformation since that is what it represents physically.

1.3 Problem to solve

This thesis proposes a method that enables non-parametric registration of soft tissue re-

gions while simultaneously allowing rigid registration of bony regions. In Chapter 2, we

discuss the main concepts necessary to construct and propose the desired registration

method. Chapter 3 describes the proposed method using the discussed background com-

ponents. Chapter 4 discretizes the continuous quantities in the proposed method in order

to show how it can be implemented practically. In Chapter 5, we discuss experimentation

from the proposed registration algorithm along with results.
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Chapter 2

Background

In order to propose a new method of nonrigid registration that respects the rigid regions,

we will present some preliminary concepts in this chapter. We will assume that the rigid

regions of our images are exclusive to the points representing bone regions. In this chapter,

we describe how image segmentation can be used to extract these regions in order to assist

with the registration process. In addition, we describe both rigid and nonrigid registration

separately.

2.1 Identifying bones

Many image segmentation algorithms could potentially find a high-quality segmentation

of bone regions, but most of these methods are either user-intensive or particularly chal-

lenging to set up. Examples of algorithms with these two weaknesses utilize the methods

of random walks [14], which requires the user to identify numerous seed points inside and

outside the region of interest, and active contours [8], which requires the user to define an

initial contour. Since segmentation is only a portion of this registration process, it would

be ideal to use a segmentation algorithm that is fully automatic without compromising

any of the segmentation quality. For this reason, an algorithm based on the theory of
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graph cuts [5] has been chosen.

Consider image segmentation to map every pixel in the image p ∈ P to a finite set of

values or labels, L, which represent the various classes of objects found in the image. The

goal of the segmentation is to find a labeling f : P 7→ L that maps each pixel p ∈ P to

a label fp ∈ L where f is both piecewise smooth and consistent with the observed image

data. This problem can be imagined in terms of energy minimization as an attempt to

find the labeling f that minimizes the energy function

min
f

E(f) = Esmooth(f) + Edata(f). (2.1)

where Esmooth measures the extent to which f is not piecewise smooth and Edata measures

the dissimilarity between f and the image data. Consider Edata to be of the form

Edata(f) =
∑
p∈P

Dp(fp) =
∑
p∈P

(fp − Ip)2 , (2.2)

where Dp measures how well the label fp fits point p and Ip is the image value at point

p. Consider Esmooth to be of the form

Esmooth(f) =
∑
{p,q}∈N

Vp,q(fp, fq) =
∑
{p,q}∈N

min (K, |fp − fq|) (2.3)

where Vp,q measures the pair-wise difference in label values of points p and q, N is the set

of all neighboring pixels, and K is a constant representing the maximum value of the pair-

wise difference. Boykov et al. [5] describes a way to compute this energy minimization

by finding a minimum weight cut set of a graph representing the image.
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Edge Weight For
tᾱp ∞ p ∈ Pα
tᾱp Dp (fp) p /∈ Pα
tαp Dp (α) p ∈ P

e{p,a} V (fp, α)
{p, q} ∈ N , fp 6= fqe{a,q} V (α, fq)

tᾱa V (fp, fq)
e{p,q} V (fp, α) {p, q} ∈ N , fp = fq

Table 2.1: Edge weights associated with an α expansion [5]

2.1.1 Graph cut expansion algorithm

The graph cuts expansion algorithm considers an expansion on the label α ∈ L to be the

process of switching current non-α pixels to α by finding the smallest weighted cut set

to disconnect α from non-α labels in a graph with weighted edges corresponding to (2.2)

and (2.3). The process of sequentially performing an expansion on every label in L will

be referred to as a cycle. The algorithm continuously performs expansion cycles and then

stops once an entire cycle finishes with zero label changes. Each expansion will have its

own associated graph.

The graph Gα = 〈Vα, Eα〉 associated with an α-expansion is defined in the following

way. The set of nodes Vα consists of a node for every pixel in the image, one for the

label α, one to represent all non-α labels, and one in between each set of neighboring

pixels that are currently mapped to different labels (known as auxiliary nodes). The set

of edges Eα consists of an edge from each pixel node to both of the label nodes (t-links),

an edge between all neighboring pixels of the same label (n-links), two edges between all

neighboring pixels of different labels (one from p to the auxiliary node and one from the

auxiliary node to q), one edge from each auxiliary node to the non-α label node. A 1-D

representation of this can be seen in Figure 2.1. The weights associated with each edge

in Figure 2.1 can be found in Table 2.1.

Given the current segmentation f , the ideal expansion on α is computed by finding
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e{p,a}

P1 Pα

tp tq tr

e{a,q} e{q,r}

tp trtqta

Figure 2.1: 1D example of Gα from Boykov et al. [5]
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a minimum weight cut set of edges C ⊂ Eα that will disconnect α and ᾱ in the graph

GCα = 〈Vα, Eα−C〉. If C disconnects p from α then the resulting label of p is α. Otherwise, p

keeps its previous label. A cut set will always contain one t-link adjacent to each pixel and

one edge adjacent to each auxiliary node. The cut options for a single set of neighboring

pixels are shown in Figure 2.2. The optimization process can be read about in detail in

e{p,a}

tp tq

e{a,q}

tp tqta

cut

e{p,a}

tp tq

e{a,q}

tp tqta
cut

tp tq

e{a,q}

tp tqta

cut

Figure 2.2: Possible cut sets between neighboring pixels as illustrated in Boykov et al.
[5]. (a) labels both pixels as α, (b) leaves both pixels with their previous non-α label, (c)
labels p as α and q with its previous label.

[5]. The result of the expansion algorithm is then used as the input when expanding upon

the next label in L.

2.1.2 Defining inputs

In order to define the data cost and smoothness, a value must be associated with each

label. To obtain these label values, the k-means algorithm is used to partition the image

data into k clusters and compute their means [17]. As seen in Figure 2.3, setting k = 6

appears to best capture the bones in their own cluster when viewing chest CT images.

This method of segmentation is not as sophisticated as the graph cuts method, therefore,

it is only used to capture the estimated mean values.
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(a) (b) 

(d) (c) 

Figure 2.3: Clustering results using the k-means algorithm. (a) raw image, (b) k=5, (c)
k=6, (d) k=7.
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The publicly available code [22, 4, 15, 3] that implements the graph cuts expansion

algorithm in [5] requires only three inputs: the data cost, smoothness, and the neighbor-

hood, N . With the label values output by the k-means algorithm, the data cost can be

computed using formula (2.2) and stored in a |P| × |L| matrix containing the values for

Dp(fp) for all p ∈ P and all possible labels fp ∈ L. Together, the smoothness and the

neighborhood create (2.3). The smoothness is stored in a |L| × |L| matrix of all possible

values of Vp,q created using the recently found label values. The neighborhood, which

determines the sets {p, q} where Vp,q is defined, is encoded in a |P| × |P| matrix where

point (i, j) determines the weight of the connection between points i and j. In our case,

we will not be uniquely weighting any neighboring pixel connections, so all neighboring

pixel relations are set to a value of 1. Therefore, the smoothness will be the same for any

pair of pixels mapped to the same labels. Neighbors are only defined in one direction so

if {i, j} is a set of neighbors, it is not appropriate to populate both (i, j) and (j, i) in the

neighborhood matrix.

The result of the segmentation is a labeled volume that is the size of the initial image.

For our application, we only really care about segmenting bone from other structures,

so we will create a binary mask based solely on this cluster that can be fed into the

rigid registration. A 3-D rendering of an example mask extracted from a brain MRI can

be found in Figure 2.4. A segmentation of the image used for the k-means example is

segmented using the graph cuts expansion algorithm in Figure 2.5.

2.2 Rigid Registration

Rigid transformations consist of translations and rotations. This means that the spatial

relationship of all points in the image is preserved when transformed. Such a transfor-

mation can be described by the matrix equation Φ(x) = Rx + t, where R is an n × n

rotation matrix and t is an n× 1 vector that denotes the translation. In our case, n = 3.

12



(b) 

(d) 

(c) 

(e) 

(f) (g) 
(a) 

Figure 2.4: (a) Rendering of bone mask as output by graph cut segmentation algorithm.
(b) Sagittal slice with segmentation (c). (d) Coronal slice with segmentation (e). (f)
Axial slice with segmentation (g).

Figure 2.5: Bone mask output by graph cuts segmentation of image previously used to
observe various k-means algorithm outputs.
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Given point x ∈ ΩF , the transformation Φ(x) can be represented by:


Φ1(x)

Φ2(x)

Φ3(x)

 = R ·


x1

x2

x3

+


t1

t2

t3

 , (2.4)

where the rotation matrix R = R1R2R3 is a product of the following Givens rotation

matrices [13]:

R1 =


1 0 0

0 cos(θ1) − sin(θ1)

0 sin(θ1) cos(θ1)



R2 =


cos(θ2) 0 sin(θ2)

0 1 0

− sin(θ2) 0 cos(θ2)



R3 =


cos(θ3) − sin(θ3) 0

sin(θ3) cos(θ3) 0

0 0 1

 ,

where matrix Ri rotates the point x around the ith-axis by angle θi. Therefore, one way

to parameterize rigid transformations can be expressed using three rotation parameters

and three translation parameters. Let us refer to this set of parameters as

Θ = [θ1, θ2, θ3, t1, t2, t3] (2.5)

14



and subsequently let us rewrite our transformation as Φ(x) = RΘx + tΘ where RΘ and

tΘ are the rotation and translation according to the set of rigid parameters Θ.

These rigid transformation parameters are manipulated to optimize an energy function

that observes the relationship between the reference image and the transformed floating

image to determine the best possible registration transformation. The main component of

the energy function is the dissimilarity measure, which computes the dissimilarity between

the transformed floating image and the reference image. Common dissimilarity measures

include the sum of squared differences, mean of squared differences, squared correlation

coefficient, mutual information, as well as many others [19]. The energy function takes

the following form:

min
Θ

E(R,F,Θ) := J (R,F (Φ(x))) = J (R,F (RΘx + tΘ)) , (2.6)

where J is the dissimilarity measure that quantifies the dissimilarity between the refer-

ence image R and the deformed floating image F (Φ). Several examples of dissimilarity

measures can be found in Table 2.2 and many other examples can be found in [7].

A variety of optimization procedures can be used to find the set of rigid parameters that

best minimize the energy in (2.6). Some methods, like the simplex method [10], require

evaluating only the similarity measure; others, like steepest descent, Newton’s method,

or conjugate gradient, require evaluating both the similarity measure and its gradient

with respect to the rigid transformation parameters. Figure 2.6 displays example rigid

registration results. In this example, the squares in (a) and (b) are the same size but

the circle in (a) is slightly larger than the one in (b). Rigid registration creates a better

alignment between the two images but its limitations are evident in its inability to fully

align the circles as seen in (c). Similarly, in a torso or brain image, this limitation could

result in a lack of alignment for all deformed soft-tissue regions.
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(a) (b) (c) 

(e) (d) 

Figure 2.6: Sample rigid registration results: (a) reference image, (b) floating image
containing a shifted square and a slightly smaller circle, (c) transformed floating image,
(d) difference between floating and reference, (e) difference between transformed floating
and reference.
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Measure type Formula

Sum of squared differences (SSD)
∫

Ω
(R(x)− F (Φ(x))2dx

Mean of squared differences (MSD) 1
|Ω|

∫
Ω

(R(x)− F (Φ(x))2dx

Squared correlation coefficient (SCC)

(
Cov(R,FΦ)√
Var(R)Var(FΦ)

)2

, where

Var (I) =
1

|Ω|

∫
Ω

(
I(x)− Ī

)2
dx,

Cov (I1, I2) =
1

|Ω|

∫
Ω

(
I1(x)− Ī1

)(
I2(x)− Ī2

)
dx,

Ī =
1

|Ω|

∫
Ω

I(x) dx

.

Mutual information (MI) H(F ) +H(F (Φ))−H(R,F (Φ))
where H(F ) = −

∫∞
−∞ pF (a) log pF (a) da

and pF (a) is the value of the probability
density function of F at a [7]

Table 2.2: Common registration similarity measures: SSD, MSD, SCC, MI

2.3 Non-Rigid Registration

Non-rigid transformations consist of locally changing deformations that warp the floating

image, stretching and compressing different regions to best align with the reference image.

A sample nonrigid transformation is provided in Figure 2.7.

T  

Figure 2.7: Deformable transformation
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A non-rigid transformation can be written in the form Φ(x) = x − u(x), where u is

known as the displacement. The displacement can be written as u(x) = [u1(x), ...um(x)]T

where m is the number of dimensions in the original image, and where ui provides the

displacement at each point in the dimension i. Note that rigid transformations can be

expressed using u(x) = (I−R)x− t.

The optimality of the transformation is measured by an energy function composed

of the similarity measure as well as an additional term known as the regularizer. The

regularizer is in place to ensure that there is a smooth transformation and that the

resulting minimization problem is well-posed. Like the similarity measure, there are many

different common regularizers that can be used. Along with more complex constructed

regularizers, the diffusion, elastic, and curvature regularizers are presented in [18] and

compared in [7]. The energy function associated with a nonrigid transformation takes the

following form:

min
u

E(R,F,u) := E1(R,F (Φ)) + λE2(u) (2.7)

where E1 is the similarity measure that quantifies the dissimilarity between the reference

image R and the deformed floating image F (Φ), E2 is the regularizer that ensures the

minimization solution is smooth, and λ is a weighting parameter that controls the influence

of the regularizer.

At a minimum of E(R,F,u), the derivative of the energy should be zero in any direc-

tion. Therefore, the following Euler-Lagrange equations are a necessary condition:

A(u(x)) = αf(x;R,F(Φ)) (2.8)

where A is a partial differential operator and f is a force vector. These terms can be

derived from the Gâteaux derivatives [12] of the similarity measure and the regularizer,
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respectively. We will only be observing the diffusion regularizer, given by:

E2(u) =

∫
Ω

(
3∑
i=1

‖∇ui (x)‖2

)
dx, (2.9)

because its Gâteaux derivative yields the negative Laplacian operator which produces the

partial differential equation −∆u(x) = αf(x;R,F(Φ)).

Just as the case was for rigid registration, there are numerous optimization procedures

that can be used to find the deformation that best minimizes the energy term. In theory,

non-rigid registration algorithms are usually only intended to solve for displacements of

up to one or two pixels; however, in practice this is usually pushed in hopes that it will

also sufficiently solve for larger displacements. If pushed too far, a fold can be created

in the displacement field. One method of avoiding this is to deform as much as possible

without creating a fold, then resample the transformed image and start over as proposed

in [9].

(a) (b) (d) (c) 

(g) (f) (e) (h) 

Figure 2.8: Sample non-rigid registration results over 5 iterations. (a) reference image,
R; (b) floating image, F; (c) initial difference between R and F; (d) difference after 1st

iteration; (e) difference after 3rd iteration; (f) difference after 5th iteration; (g) deformation
after 5th iteration; (h) 5th iteration transformed F.
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Figure 2.8 displays example non-rigid registration results for the toy example from

Figure 2.6. In this example, the circle in (a) is larger than the one found in (b). Non-rigid

registration stretches the smaller circle to map to the larger one but it also lessens the

integrity of the center square. If the square is considered to be a rigid region then this

would not be an acceptable registration. Similarly, when non-rigidly registering torso CT

scans, this limitation would result in the potential manipulation of all bone structures in

the image.
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Chapter 3

Algorithm to simultaneously register

rigid and nonrigid regions

When attempting to register two 3-D images of a single subject’s torso, one could choose a

nonrigid transformation to account for any adjustment to the location and size of organs.

However, there are regions in the torso and head, such as the ribs and skull respectively,

where the spatial relationship between the points should be preserved and a rigid trans-

formation is desired. In this section, we propose a registration technique that enables a

geometric transformation that is partitioned into rigid and nonrigid regions.

3.1 Approach

Under the assumption that bone regions will deform rigidly and all other regions will

deform nonrigidly, the first step is to identify the bone regions. Bones are the most dense

part of the torso, which means they have the greatest intensity in a CT image. In order

to capture these regions, we will use the graph-cuts segmentation method discussed in [5]

and described in Section 2.1.

An initial rigid registration will be performed using all of the image data in order to
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roughly align the two images. Then, the proposed new method will be used to perform a

primarily nonrigid registration that respects the behavior of the rigid regions.

3.2 Formulation

This section will discuss how the proposed registration method is mathematically defined

in a continuous space. Following this, the next chapter will discuss discretization and

implementation details.

3.2.1 Preliminary steps

As previously mentioned, the first step required is the extraction of the bone regions in the

floating image. This is performed using the exact process described in Section 2.1. Prior to

registration, an initial coarse alignment is performed to ensure the data of interest occupy

relatively the same space in each image. The necessity and measure of this alignment is

performed purely based on manual observation of the data. Once the two images occupy

the same relative space, they are ready to be registered.

3.2.2 Registration

Consider two images in R3, a reference image R and floating image F . Define a defor-

mation Φ := R3 7→ R3 by Φ(x) = RΘx + tΘ − u(x) where RΘ is a rotation matrix

according to the set of rigid parameters Θ, tΘ is a translation according to Θ, and u is

the displacement. The general registration problem is defined as:

min
Θ,u

E(R,F,Θ,u) := E1(R,F (Φ)) + λE2(u) (3.1)

where E1 is a similarity measure that quantifies the dissimilarity between the reference

image R and the deformed floating image F (Φ), E2 is a regularizer that ensures the
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minimization solution is smooth, and λ is a weighting parameter.

The similarity measure that we will focus on is the sum of squared differences, which

is defined by

E1(R,F (Φ)) :=

∫
Ω

(R(x)− F (Φ(x))2dx . (3.2)

We also choose the diffusion regularizer defined by

E2(u) =

∫
Ω

(
3∑
i=1

‖∇ui (x)‖2

)
dx. (3.3)

Consider floating image F to be defined over a region ΩF ⊂ R3 while reference image

R is defined over ΩR ⊂ R3. The region over which the similarity measure and regularizer

are computed is the the intersection of these two regions, Ω = ΩR ∩ ΩF .

Consider ΩF to be composed of two distinct regions, one of which corresponds to the

regions that will transform rigidly under F (Φ) while the other corresponds to regions that

will deform. Let ΩF ′ represent the rigid regions and ΩF ′′ represent the non-rigid regions

such that ΩF = ΩF ′ ∪ ΩF ′′ . The overlapping region between images can then be viewed

as Ω = Ω1 ∪ Ω2 where Ω1 and Ω2 are defined as in Figure 3.1. The registration problem

can be described over this newly defined region.

ΩR 

ΩF′ 

ΩF″ 

Ω1 = ΩR ⋂ ΩF′ 
 
Ω2 = ΩR ⋂ ΩF ″ 

 

(a) (b) (c) 

ℝn ℝn ℝn 

Figure 3.1: Regions over which reference image (a) and floating image (b) are defined,
plus the intersection of these regions (c).

Given a domain Ωa, we can refer to the interior of the domain as Ωo
a and the boundary

of the domain as ∂Ωa such that Ωa = Ωo
a∪∂Ωa. Since u is a displacement, we can say that
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u(x) = 0 for x ∈ Ω1 and x ∈ ∂Ω2. Inserting this into (3.3) concludes that E2(u) = 0 on

Ω1. Forcing a homogeneous Dirichlet boundary condition on ∂Ω2 allows for a piece-wise

smooth transformation. Therefore, it can be stated such that

E2(u) =

∫
Ω

(
3∑
i=1

‖∇ui (x)‖2

)
dx =

∫
Ω2

(
3∑
i=1

‖∇ui (x)‖2

)
dx (3.4)

In order to find a minimum energy it is critical to determine its derivatives with respect

to each parameter. First, let us recall the set of rigid parameters Θ as defined in (2.5)

and the displacement u mentioned in Section 2.3. Now, we must find the gradient of the

energy E with respect to Θ and u:

∇ΘE(R,F,Φ) = ∇ΘE1(R,F (Φ)) +∇ΘE2(u) (3.5)

Since E2 does not depend on Θ, we know that ∇ΘE2(u) = 0. Then, we can write:

∇ΘE(R,F,Φ) = ∇ΘE1(R,F (Φ)) (3.6)

= ∇Θ

∫
Ω

(R(x)− F (Rx + t− u))2 dx (3.7)

=

∫
Ω

∇Θ (R(x)− F (Rx + t− u))2 dx (3.8)

= −
∫

Ω

2 (R(x)− F (Φ(x)))∇ΘF (Φ(x)) dx. (3.9)

In order to determine the value of ∇ΘF (Φ(x)), consider the partial derivative of F with

respect to one variable Θi ∈ Θ:

∂F (Φ(x))

∂Θi

=
∂F

∂Φ1

∂Φ1

∂Θi

+
∂F

∂Φ2

∂Φ2

∂Θi

+
∂F

∂Φ3

∂Φ3

∂Θi

= [∇F (Φ(x))]T
∂Φ

∂Θi

=

(
∂Φ

∂Θi

)T

∇F (Φ(x)) ,
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and so, we can write:

∇ΘF (Φ(x)) =

(
∂Φ

∂Θ

)T

∇F (Φ(x)) (3.10)

where

(
∂Φ

∂Θ

)T

= Q =



∂Φ1

∂Θ1

∂Φ2

∂Θ1

∂Φ3

∂Θ1

∂Φ1

∂Θ2

∂Φ2

∂Θ2

∂Φ3

∂Θ2

∂Φ1

∂Θ3

∂Φ2

∂Θ3

∂Φ3

∂Θ3

∂Φ1

∂Θ4

∂Φ2

∂Θ4

∂Φ3

∂Θ4

∂Φ1

∂Θ5

∂Φ2

∂Θ5

∂Φ3

∂Θ5

∂Φ1

∂Θ6

∂Φ2

∂Θ6

∂Φ3

∂Θ6


, (3.11)

and each element of Q is computed the following way:

∂Φj

∂Θk

=
∂

∂Θk

[Rx]j +
∂tj
∂Θk

(3.12)

=
∂

∂Θk

[Rj1x1 +Rj2x2 +Rj3x3] +
∂tj
∂Θk

(3.13)

=
3∑
i=1

∂

∂Θk

Rjixi +
∂tj
∂Θk

(3.14)

=


3∑
i=1

∂
∂Θk

Rjixi , k <= 3

∂tj
∂Θk

, k > 3.

(3.15)

We can conclude that

∇ΘE(R,F,Φ) = −
∫

Ω

2 (R(x)− F (Φ(x))) Q∇F (Φ(x)) dx, (3.16)

with Q given in 3.11.

In order to determine the gradient of E with respect to nonrigid displacement u,
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consider the definition of the Gâteaux derivative in the direction of w.

dE(R,F,u; w) = lim
h→0

1

h
[E(R,F,Φ(u− hw))− E(R,F,Φ(u))] (3.17)

= lim
h→0

1

h

[∫
Ω

E1(R,F,Φ(u− hw)) + λE2 (Φ(u− hw)) dx

−
∫

Ω

E1(R,F,Φ(u)) + λE2 (Φ(u)) dx

]
(3.18)

= lim
h→0

1

h

[∫
Ω

E1(R,F,Φ(u− hw))− E1(R,F,Φ(u)) dx

+ λ

∫
Ω2

E2 (Φ(u− hw))− E2 (Φ(u)) dx

]
(3.19)

=

∫
Ω

〈−2 (R(x)− F (Φ(x)))∇F (Φ(x)),w〉 dx

+ λ lim
h→0

1

h

∫
Ω2

E2 (Φ(u− hw))− E2 (Φ(u)) dx. (3.20)

To simplify the second integral, consider:

lim
h→0

1

h

∫
Ω2

E2 (Φ(u− hw))− E2 (Φ(u)) dx (3.21)

= lim
h→0

1

h

∫
Ω2

∑
i

(
‖∇(ui(x)− hwi(x))‖2 − ‖∇ui(x)‖2) dx (3.22)

= lim
h→0

1

h

∫
Ω2

∑
i

(
‖∇ui(x)− h∇wi(x))‖2 − ‖∇ui(x)‖2) dx. (3.23)

Note: ‖a− hb‖2 − ‖a‖2 = (a− hb)T (a− hb)− aTa

= −hbTa− haTb + h2bTb

= −2haTb + h2bTb,

26



and so:

lim
h→0

1

h

∫
Ω2

E2 (Φ(u− hw))− E2 (Φ(u)) dx (3.24)

= lim
h→0

1

h

∫
Ω2

∑
i

(
‖∇ui(x)− h∇wi(x))‖2 − ‖∇ui(x)‖2) dx (3.25)

= lim
h→0

1

h

∫
Ω2

∑
i

(
−2h (∇ui(x))T∇wi(x) + h2 ‖∇wi(x)‖2

)
dx. (3.26)

Distributing the outer fraction, we find one term independent of h:

= lim
h→0

∫
Ω2

∑
i

(
−2 (∇ui(x))T∇wi(x) + h ‖∇wi(x)‖2

)
dx (3.27)

=

∫
Ω2

∑
i

−2 (∇ui(x))T∇wi(x)dx (3.28)

= −2
∑
i

∫
Ω2

(∇ui(x))T∇wi(x)dx. (3.29)

Using multi-dimensional integration by parts, (3.29) reduces to:

− 2
∑
i

(∫
∂Ω2

wi(x)〈∇ui(x),n〉ds−
∫

Ω2

wi∆ui(x)dx.

)
(3.30)

By definition, wi → 0 on ∂Ω2, so (3.30) reduces to

2
∑
i

∫
Ω2

wi(x)∆ui(x)dx (3.31)

= 2

∫
Ω2

∑
i

wi(x)∆ui(x)dx (3.32)

= 2

∫
Ω2

〈w(x),∆u(x)〉 dx. (3.33)
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Substituting (3.33) back into the derivation of dE yields:

dE(R,F,u; w) (3.34)

=

∫
Ω

〈−2 (R(x)− F (Φ(x)))∇F (Φ(x)),w〉 dx + λ2

∫
Ω2

〈w(x),∆u(x)〉 dx (3.35)

=

∫
Ω

〈−2 (R(x)− F (Φ(x)))∇F (Φ(x)),w〉 dx +

∫
Ω2

〈2λ∆u(x),w(x)〉 dx. (3.36)

Since u(x) = 0 on ∂Ω2,Ω1, we can argue that the last term would not change if over all

of Ω; i.e.,

dE(R,F,u; w) (3.37)

=

∫
Ω

〈−2 (R(x)− F (Φ(x)))∇F (Φ(x)),w〉 dx +

∫
Ω

〈2λ∆u(x),w(x)〉 dx (3.38)

=

∫
Ω

〈−2 (R(x)− F (Φ(x)))∇F (Φ(x)) + 2λ∆u(x),w(x)〉 dx. (3.39)

For dE to equal zero for any w(x), the other element of the inner product must equal

zero, resulting in the following Euler-Lagrange equation:

−λ∆u(x) = − (R(x)− F (Φ(x)))∇F (Φ(x)) x ∈ Ω2,

u(x) = 0 x ∈ Ω \ Ωo
2.

(3.40)

In summary, we want to simultaneously register rigid and nonrigid regions by solving

the energy minimization problem:

min
Θ,u

E(R,F,Θ,u) :=

∫
Ω

(R(x)− F (Φ(x))2dx + λ

∫
Ω2

(
3∑
i=1

‖∇ui (x)‖2

)
dx (3.41)

over Ω = ΩR ∩ΩF where Ω2 is the intersection of ΩR with the nonrigid region of F , ΩF ′′ .

Necessary conditions for a minimum of E(R,F,Θ,u) are defined by the Euler-Lagrange

equation (3.40).
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Chapter 4

Practically Solving the

Rigid-Nonrigid Registration Problem

Suppose we want to minimize a general function f(x) : Rn → R using an initial estimate

of the location of the minimum, x(k). To find a better estimate of the minimum, we can

perform gradient descent:

dx(t)

dt
= −∇f (x(t)) (4.1)

If we discretize in time and define a sequence of time points t(k) = t(0) + kτ , then x(k) is

defined as x
(
t(k)
)
. Substituting these discretized terms yields the following equation:

x(k+1) − x(k)

τ
= −∇f

(
x(k)
)

(4.2)

which can be manipulated to create the steepest-descent equation

x(k+1) = x(k) + τ
(
−∇f

(
x(k)
))
. (4.3)
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For the problem defined in (3.41) and (3.40), the gradient descent equations are

Θ′(t) =
dΘ(t)

dt
= 2

∫
Ω

(R(x)− F (Φ(x))) Q∇F (Φ(x)) dx (4.4)

ut(x) = − (R(x)− F (Φ(x)))∇F (Φ(x)) + λ∆u(x). (4.5)

Discretizing in time, explicitly for Θ and semi-implicitly for u, yields the steepest descent

iteration:

Θ(k+1) = Θ(k) + τ

(
2

∫
Ω

(
R(x)− F

(
Φ(k)(x)

))
Q(k)∇F

(
Φ(k)(x)

)
dx

)
(4.6)

u(k+1)(x) = u(k)(x) + τ
(
−
(
R(x)− F (Φ(k)(x))

)
∇F (Φ(k)(x)) + λ∆u(k+1)(x)

)
. (4.7)

Note that (4.7) is actually a linear partial differential equation in the unknown displace-

ment field u(k+1); i.e.

[I− λ∆] u(k+1)(x) = u(k)(x)− τ
(
R(x)− F (Φ(k)(x))

)
∇F (Φ(k)(x)) (4.8)

Using these formulas, we describe in Algorithm 1 a steepest-descent iteration for solving

our proposed rigid-nonrigid registration algorithm.

The discrete updating formula for Θ(k+1) can easily be solved given the current esti-

mates of all parameters. Updating the displacement field requires solving a linear PDE

system that cannot easily be performed analytically; however, there are options for nu-

merically approximating the solution to the PDE system. By using a centered difference

approximation to the Laplacian operator, the PDE system is approximated by a linear sys-

tem of equations that can be solved by Gauss-Seidel iteration or successive over-relaxation

(SOR). Unfortunately, these methods can be extremely slow, often involving thousands

or tens of thousands of iterations simply to approximate u(k+1) given u(k). Instead, we

recommend multigrid [20], which scales linearly with the number of discrete grid points.
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Algorithm 1 Steepest Descent Iteration for Registration

Set Θ(0) = 0, u(0) = 0, k = 0; Select τ such that 0 < τ << 1.
repeat

Solve for the updated rigid step

Θ(k+1) = Θ(k) + 2τ

∫
Ω

(
R(x)− F

(
Φ
(
x |Θ(k),u(k)

)))
Q(k)∇F

(
Φ
(
x |Θ(k),u(k)

) )
dx

for Θ(k+1).

Solve the linear PDE system

[I− τλ∆] u(k+1) =u(k) − τ
(
R(x)− F

(
Φ
(
x |Θ(k+1),u(k)

)))
∇F
(

Φ
(
x |Θ(k+1),u(k)

))
for u(k+1).

Compute E (k+1) = E
(
R,F,Φ

(
x |Θ(k+1),u(k+1)

))
.

Increment k.
until |E (k) − E (k−1)| < τ .

This method solves for the updated u by constructing a sequence of grids at varying spa-

tial resolutions and carrying out V, W, or full-multigrid cycles that propagate estimates

of the solution across grid levels. [20]

It was observed that the change in displacement size could vary significantly between

gradient descent iterations. Therefore, a constant step size τ was not very effective in

regulating the additions to the displacement. Instead, a line search is performed at each

iteration to determine the value of τ that minimized the energy function. While beneficial

to the algorithm, this process is very time intensive and could definitely benefit from

improvement in the future.
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Chapter 5

Experiments and Results

While CT images of a torso were used for the majority of preliminary testing, we found

that the nonrigid deformations required to accurately align torso images are quite large,

typically beyond what might be considered to be within a realistic distance from the

true minimum. The best results were instead found on skull MRIs in which the nonrigid

components of the deformation are small.

The graph-cuts algorithm was used with six clusters to get a preliminary segmen-

tation to identify the bone regions. With CT images on a torso, this sufficiently and

automatically captures only bone regions; however, with MRIs of the skull some extra

regions are erroneously identified as bone so they need to be manually removed from the

segmentation.

In order to construct useful initial parameter estimates for registration, the two images

were manually compared and a coarse initial alignment was performed to ensure the skulls

occupied the same relative area. The pixel values of the images are also normalized to a

range of [0, 1] to ensure that our algorithm can be applied to a variety of types of medical

images that are stored with values comprising different types or ranges of units.

An initial rigid registration was then performed using multi-resolution pyramids of the

images. A pyramid is a set of images, or levels, of decreasing resolutions with the first
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level being the original image and each subsequent level being a blurred and subsampled

version of the image in the previous level. Pyramids of the same size are constructed for

both the floating and reference images. Registration is performed using the pyramids by

first registering the images on the lowest resolution level. The resulting transformation

is applied to the next level of the pyramid before that level is then registered. This

is repeated for each level until the greatest resolution level is registered. The purpose

of this method is to have an initial estimate to the registration, resulting in a smaller

computation at the highest resolution level.

Here, rigid registration was performed on multi-resolution pyramids with 3 levels and

the similarity measure between the images was minimized using the active-set method

as implemented in MATLAB’s fmincon function. Figure 5.1 displays a slice from the

reference image as well as the slice of the same index in the floating image, captured both

before and after rigid registration. After completing the initial rigid registration, it is

time to run the steepest-descent algorithm. The following results were computed using a

rigid step size of τΘ = 10−6 and a regularizer weight of λ = 10−7 which were both chosen

. The line search for the best nonrigid step size τu searched the range of [10−6, 1] using a

golden section search [2] with only two steps (for speed). In order for the rigid step size to

affect all rigid parameters at a similar scale, the rotation angles were rescaled such that

a rotation of 1 is equivalent to 0.125◦.

The algorithm’s termination criterion was initially chosen just to observe when the

difference in energy dropped below a specified threshold. After testing, this was found

not to be reliable. Now, a term is in place to measure a decaying amount of acceptable

increase to the energy function. Given an initial acceptable increase value K, where

0 < K < 1, in the energy function, the algorithm will terminate at any iteration n where

the energy function is calculated to increase by more than Kn. This initial acceptable

energy is determined manually based on preliminary tests. In our case, we chose K = 1/4.
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Figure 5.1: Sample slices from results of initial rigid registration (a) reference image, R;
(b) floating image, F; (c) transformed floating image; (d) color bar for difference images;
(e) difference between R and F; (f) difference between R and transformed F.
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Figure 5.3 displays a sample of the result of the registration algorithm on the section

of the image highlighted in Figure 5.2. It met the termination criteria and stopped after

5 iterations. Figure 5.4 compares this result to the results found when using explicitly

rigid registration or nonrigid registration.

If we look at the difference images, there does not appear to be much difference between

each method’s performance; however, looking at the mesh in Figure 5.5 we can see a clear

distortion of the rigid regions in the nonrigid registration result.

Figure 5.2: Portion of slice displayed to show algorithm results.

5.1 Limitations

While testing this algorithm, it was observed that the deformation field could easily cap-

ture small deformations (up to roughly 1.6 voxels), but when trying to deform further,

other areas of the image would fold in on themselves. Therefore, the two images must

initially be closely aligned in order to sufficiently capture the true deformation. Other-

wise, the result can be reinterpolated and run through the algorithm multiple times to
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Figure 5.3: Sample slices from results of steepest descent registration: (a) reference image,
R; (b) floating image, F; (c) transformed floating image; (d) color bar for difference images;
(e) difference between R and F; (f) difference between R and transformed F.
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Figure 5.4: Comparison of sample slices from algorithm results versus strictly rigid or
strictly nonrigid registration results: (a) difference between algorithm result and R; (b)
difference between rigid result and R; (c) difference between nonrigid result and R; (d)
color bar for difference images.

(a) (b) 

Figure 5.5: Deformation of sample slice after 1 iteration of (a) our algorithm and (b)
exclusively nonrigid registration. The rigid regions are depicted in grey. Note that the
rigid regions in (b) appear to be distorted in a nonrigid manner by the deformation field.
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capture larger deformations. The downside to this is that every reinterpolation is slightly

smoothing the floating image data, resulting in a loss of accuracy in representing the orig-

inal floating image. The process of regridding is common practice in fluid registration [9].

The user will need to keep track of the desired deformation and the mentioned trade-off

when running the algorithm.

No such limitation was found for the rigid transformation; however, a poor choice in

step size may not converge or reach a useful resulting transformation.

5.2 Computational cost

For MRIs of size 128x205x161, the full algorithm took 17 hours on an HP 64-bit laptop

with a 1.90GHz (AMD A4-3300M) processor running Matlab R2011b. This time includes

segmentation, coarse rigid registration, and nonrigid registration with rigid regions. The

majority of this time (64%) is spent on the main registration, particularly searching for

the best deformation step size for each iteration.
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Chapter 6

Conclusions and Future Work

This thesis proposed an automatic method for registering medical images that respects the

rigid properties of the anatomical regions. Current medical image registration methods

primarily use a nonrigid algorithm with application-specific customizations. The benefit

of our proposed method is that it is not specific to one particular image subject or modality

so there should be a large number of applications that could make use of its ability to

respect bone regions.

6.1 Future Work

While this algorithm does provide sufficient results, there is always room for improvement

to the existing work. To increase efficiency, the most beneficial thing to work on would be

optimizing the search for the best displacement step size. It may be beneficial to explore

more robust segmentation algorithms (for different types of images) that minimize the

amount of post-processing required. It would be beneficial to find a different strategy to

capture large deformations rather than regridding. These options are all seeds for more

extensive research; however, for now, the defined algorithm is a sufficient starting place

that offers results more respectful of anatomical regions than existing methods.
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