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Abstract

Inverse problems of parameter identification and source identification in par-
tial differential equations are highly ill-posed problems and for their satis-
factory theoretical and numerical treatment some sort of regularization is
necessary. In this thesis, we pose this inverse problem as an optimization
problem and perform the regularization in Tikhonov sense. The most cru-
cial aspect of the study of the regularized optimization problem is a proper
selection of the regularization parameter. Although the theory for one of the
most efficient methods for choosing an optimal regularization parameter, the
so-called Morozov discrepancy principle, is well-developed for linear inverse
problems, its use for nonlinear inverse problems is rather heuristic. In this
thesis, we investigate the inverse problem of parameter identification using
an equation error approach in which the coefficient appear linearly. Using
the results known for linear inverse problems, we develop a rigorous Mo-
rozov discrepancy principle for nonlinear inverse problems. We present a
detailed computational experimentation to test the feasibility of the devel-
oped approach. We also study the inverse problem of source identification in
fourth-order boundary value problem.
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Chapter 1
Introduction

The conventional way a problem in applied mathematics is presented in-
volves the presentation of a model from which a solution to the problem is
determined. In applications this is not always the case. Often a practitioner
is presented with a body of information that often incorporates inconsistent
information (noise). It can often prove valuable to use this information to
identify the parameters for a model which may be used to better understand
the phenomena producing the initial data.

A simple example of this is determining the solution to a differential equa-
tion. In this case the differential equation is referred to as a forward problem
whereas the case where the model is specified from data is the inverse prob-
lem. The importance of accurately estimating the model parameters based
on data is manifested in a wide range of fields, most notably statistics, geo-
physics, engineering, and imaging.

For further clarification, we consider the following elliptic boundary value
problem (BVP)

-V (¢Vu) = f inQ, u =0 on 012, (1.

where () is a suitable domain in R? or R? and 99 is its boundary. The above
BVP models interesting real-world problems and has been studied in great
detail. For instance, in (1.1), u = u(x) may represent the steady-state temper-
ature at a given point z of a body; then ¢ would be a variable thermal conduc-
tivity coefficient, and f the external heat source. The system (1.1) also mod-
els underground steady state aquifers in which the parameter ¢ is the aquifer
transmissivity coefficient, « is the hydraulic head, and f is the recharge. The
inverse problem in the context of the above BVP is to estimate the coefficient



q from a measurement z of the solution . This inverse problem has been the
subject of numerous papers, see [1, 5, 21]. Numerous other inverse problems
for complicated boundary value problems and diverse applications can be
foundin [3, 4, 8, 17, 18, 26, 30, 27, 31, 33].

In recent years, the field of inverse problems has emerged as among one
of the most vibrant and expanding branches of applied and industrial math-
ematics. Certainly the primary reason behind this is the ever-growing num-
ber of real-world situations that are being modeled and studied in a uni-
fied framework of inverse problems. However, the theoretical aspects of in-
verse problems are also challenging and require a fine blending of various
branches of mathematics.

A number of approaches to the aforementioned inverse problem have
been proposed in the literature; most involve either regarding (1.1) as a hy-
perbolic PDE in ¢ or posing an optimization problem whose solution is an es-
timate of ¢. The work by Richter [28], who used a finite difference scheme to
solve the PDE for ¢, is an example of the first approach. Furthermore, the ap-
proach of reformulating (1.1) as an optimization problem is divided into two
possibilities, namely either formulating the problem as an unconstrained op-
timization problem or treating it as a constrained optimization problem, in
which the PDE itself is the constraint. Among the optimization-based tech-
niques the output least-squares method is among the most widely investi-
gated methods. The output least-squares approach minimizes the functional

q — |lu(q) — =|, (1.2)

where z is the data (the measurement of «) and u(q) solves the variational
form of (1.1) given by

/un-VU:/fv, forallv € Hj(Q). (1.3)
Q Q

A known deficiency of the output least squares functional is that it often fails
to be convex.

There are other functionals that have been used for the numerical solv-
ability of the above inverse problem. For example, the equation error method
(cf. [1, 2, 19]), consists of minimizing the functional

1
q— §||V (qV2) + [l
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where H~!(Q) is the topological dual of H}(f2) and z is the data. In the same
vein, Kohn and Lowe [22] proposed a variational method that combines fea-
tures of the OLS and equation error methods. Ito and Kunisch [15] and Chen
and Zou [6] developed an augmented Lagrangian algorithm to solve the OLS
problem by treating the PDE as an explicit constraint.

In a related work, Knowles [21] proposed using a coefficient-dependent
norm in the OLS setting

¢ / 4V (ulq) - 2) - V(ulq) - 2), (1.4)

where 2 is the data (the measurement of v) and u(a) solves (1.3). Knowles [21]
established that the above functional is convex. We note that the above func-
tional, although in a discrete setting, was first proposed by Tucciarelli and
Ahlfeld [29], who also explored its convexity. In [13], a new modified out-
put least-squares (MOLS) was proposed to extend (1.4) and its convexity was
proved in an abstract setting. Studies related to MOLS functional and its ex-
tensions can be found in [10, 12, 14, 16, 34].

Nonlinear inverse problems of parameter identification and source iden-
tification in partial differential equations are highly ill-posed problems and
for their satisfactory theoretical and numerical treatment some sort of regu-
larization is necessary. For example, the regularized analogue of the output
least-squares approach results in the following optimization problem: Find ¢
by solving

min J(q) := [lu(g) — z]|* + €[lql%, (1.5)

where z is the data, ¢ > 0 is the regularization parameter, and ||¢||? is the
regularizer.

One of the crucial aspect of solving various optimization problems, emerg-
ing from different formulations, is a proper selection of the regularization
parameter. If the parameter is too small then it does not provide the much
needed stability, moreover, if it is too large then the solution of the regular-
ized problem might not offer a good approximation.

Although the theory for one of the most efficient methods for choosing an
optimal regularization parameter, the so-called Morozov discrepancy prin-
ciple, is well-developed for linear inverse problems, its use for nonlinear in-
verse problems is rather heuristic. In this thesis, we investigate the inverse
problem of parameter identification using an equation error approach in which
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the coefficient appears linearly. Using the results known for linear inverse
problems, we develop a rigorous Morozov discrepancy principle for nonlin-
ear inverse problems. We present a detailed computational experimentation
to test the feasibility of the developed approach. We also study the inverse
problem of source identification in fourth-order boundary value problem.

The contents of this thesis are organized into four sections. In Chapter 2
we consider an equation error approach for the fourth-order boundary value
problems. The objective of this chapter is show that under stronger condi-
tions on the data, weaker conditions can be imposed on the regularization
space. This chapter also shows that the equation error formulation results in
an unconstrained optimization problem where in the main term the coeffi-
cient appears linearly. This formulation is precisely what is needed to extend
the Morozov principle from linear inverse problems to the nonlinear ones.

In Chapter 3 we discuss the Morozov principle developed by Kunisch and
Zou [24]. We conduct some numerical experiments for the source identifica-
tion problem in certain boundary value problems.

Chapter 4 presents a Morozov principle for nonlinear inverse problems
through the equation error formulation. We present a rigorous treatment of
the Morozov principle. We present numerical examples to show the feasibil-
ity of the proposed framework.



Chapter 2

An Equation Error Approach with
Hi Regularization

This chapter deals with the nonlinear inverse problem of identifying a vari-
able parameter in fourth-order partial differential equations using an equa-
tion error approach. These equations arise in several important applications
such as car windscreen modeling, deformation of plates, etc. To counter the
highly ill-posed nature of the considered inverse problem, a regularization
must be performed. The main contribution of this work is to show that the
equation error approach permits the use of H' regularization whereas other
optimization-based formulations commonly use H, regularization. We give
the existence and convergence results for the equation error formulation.
An illustrative numerical example is given to show the feasibility of the ap-
proach.

2.1 Introduction

Let Q be a bounded open domain in R? with a sufficiently smooth boundary
I and let f € L?*(2) be a given function. Consider the following fourth-order
elliptic boundary value problem

A(aAu) = f in Q, (2.1
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augmented with the clamped boundary conditions,

u = 0 on T, (2.2a)
@ = 0 on TI. (2.2b)
on

In this work, our objective is to study the inverse problem of identifying
the material parameter « from a measurement z of u. Applications of this
study are in beam and plate models as well as car windshield modeling (see
[23, 31]). This nonlinear inverse problem has been explored using the output
least squares (OLS) approach in which one attempts to find a minimizer of
the functional )

J(a) =5 llua) - 22,
defined by using a suitable norm (see White [32]). Here 2 is the data (a mea-
surement of ) and u(a) is the unique solution of (2.1) that corresponds to the
material parameter a,

One of the primary obstacles in a satisfactory treatment of the OLS-based
optimization framework is due to the fact that the OLS, in general, is non-
convex. Our objective then is to investigate an equation error approach for
solving the nonlinear inverse problem of identifying the material parameter
a. In contrast to the OLS based optimization approach, the equation error ap-
proach results in solving a convex optimization problem. See also [2, 7, 9, 10,
11, 12,13, 14, 11, 17, 16] for recent developments in parameter identification
problems.

We emphasize that the equation error approach has two advantages over
the OLS approach. Firstly, it leads to a convex optimization problem and
hence it only possesses global solutions. Secondly, the equation approach is
computationally quite inexpensive as there is no underlying variational prob-
lem to be solved. On the other hand, a deficiency of the approach is that, due
to the fact that it relies on differentiating the data, it is quite sensitive to data
contamination.

The equation error approach has been studied in the context of the fol-
lowing simpler second-order elliptic boundary valued problem:

—V-(aVu) = f in Q (2.3a)
u = 0 on T. (2.3b)
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For (2.3), the equation error approach consists of finding a minimizer of
the functional .
a— 51V (@V2) + fl3-10):

where H~'(0) is the topological dual of H}(2) and z is again the measured
data.

In this chapter, we extend the equation error approach to identify the co-
efficient a in the fourth-order boundary value problem (2.1). Our strategy is
motivated by the ideas presented originally by Acar [1] and Karkkdinen [19]
for (2.3) (see also [5]). Besides giving an existence theorem and a convergence
result for the discretized problem, we also some numerical examples.

This chapter is divided into four main sections. Section 2 provides es-
sential background material for the problem and poses the solution of the
inverse problem as a solvable minimization problem. Section 3 examines the
stability of the equation error method and Section 4 provides a brief numer-
ical example to show the preliminary computational feasibility of the pro-
posed method.

2.2 Equation Error Approach

The variational formulation of (2.1) will be instrumental in formulating the
equation error approach. The space suitable for the variational formulation
is given by
Vi={ve H}Q): u= Ou =0onT}.
on
By multiplying (2.1) by a test function v € V and repeatedly using the
well-known Green’s formula we obtain the following variational formulation

of (2.1): Find v € V such that
/ alAu Av = / fv, foreveryveV. (2.4)
Q Q

For a fixed pair (a, w) € L*(2) x V, we define the maps FE(a,w) : V — V*
and m: V — Rby

E(a,w)(v) = /aAwAv,

Q
m(v) = fu.
Q
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We note that, although the functional E(a,w) was defined for fixed a €
L>(Q), w € V, it remains well-defined for a € L*(Q) and w € V N W2 :=
V. In other words, we can sacrifice some regularity in « by requiring more
regularity of u. This fact will play an important role below.

We first prove the following technical result for later use.

Lemma 2.2.1. Assume thatu € V*>°,a € L*(Q), and{a,} C L*(Q) is a sequence
such that a,, — a in L*(Q). Then E(a,,u) — E(a,u) inV*.

Proof. We begin by showing that the following inequality holds:
1E(a, u)|

v- < lallz ullv. 2.5)

In fact, using the definition of £, we have

/ alAu Av
Q

lalullz = /9“2 (Au)* < flulfflallz,

[E(a, u)(v)] < < [laAull 2| Av] 2,

where

and because |Av||z2 < ||v]|v, we at once obtain (2.5).
To prove the main argument, we note that

(E(an,u) - Bla,w) () = [

anAulAv — / aAulAv = /(an — a)AuAv,
Q Q Q

which by using (2.5) implies that
[(E(an, u) — E(a,u)) (v)] < |ullv=|la, — al[zz]v]lv,

and consequently || E(a,,u) — E(a,u)|v+ < ||u|ly=|la, — al||zz. The proof is
complete. O

Since the inverse problem at hand is ill-posed, some regularization is nec-
essary. For this, we first define A ¢ H'(2) to be the closed and convex set of
admissible coefficients. We consider the following regularized equation error
functional to estimate «* from a measurement z of «* by minimizing

J(a;2,6) = | E(a,z) = ml[2 +elalln. (2.6)

Here it is assumed that «* € A and u* € V satisfy (2.1), ¢ > 0 is a regulariz-
ing parameter, z € V is the data, and || - ||3 is the regularization term.

Assuming that the data = is sufficiently smooth, we show that J(-; z, 5) has
a unique minimizer in H'(2) for each 3 > 0.
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Theorem 2.2.2. Suppose = € W>. Then, for each > 0, there exists a unique
ag satisfying
J(ag;z,B8) < J(a;2,B), forall a € H'(Q).

Proof. Since the functional J is bounded below, there exists a minimizing se-
quence {a, } for J. We have j||a, |3, < J(an;z, () for all n which implies that
{a,} is bounded in H'(Q). Therefore, there exists ay € H'({) and a subse-
quence of {a,} (still denoted by {a,}) such that a,, — a5 weakly in H'(Q) and,
by Rellich’s theorem, strongly in L?(2). Since z € V> and a,, — ag in L*(Q),
Lemma 2.2.1 confirms that F(a,, z) — E(ag, z) and since the norm is weakly
lower semicontinuous, it follows that

" _ o .
aegll(Q)J(a,z,ﬁ) Tim J(ap; z, §)

= lim (||E(an, z) — m|

n—o0

Ve + Bllanllzn)
> || E(ag, z) = mlfy- + Bllaslin

= J(ag; 2, B),

confirming that ag is a minimizer of J(-; z, 5). The uniqueness of az follows
from the fact that the regularized equation error functional is strictly convex.
The proof is complete. O

Since J(ag; 2, ) > infepi) J(a; 2, §), thelastinequality in the above proof
must actually hold as an equality and hence lim,, , ||a.||g1 = ||ag|/z must
remain valid. This, in view of the fact a,, — az weakly in H'((2), ensures that
{a,} actually converges to az strongly in H'(Q2). Consequently any minimiz-
ing sequence of J(; z, 3) converges in H'(Q) to the unique minimizer as of

J(:5 2, B).

2.3 Stability of the Equation Error Method

Recall that «* € A and u* € V are assumed to satisfy (2.1). However, since a*
is not unique, we define the convex set S = {a € H'(Q) : E(a,u*) = m}.

We can now prove the following stability result for the equation error ap-
proach.
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Theorem 2.3.1. Assume thatu* € V> and a* € H'(Q) satisfy (2.1). Let{z,} C
V> be a sequence of observations of u* that satisfy, with the sequences {4,},
{5}, the conditions

1. 2 < B, <6, foralln e Z*;
2. 62/B, — 0asn — oo;
3. ||z — u||y= < 6, foralln € Z*;
4. 4, - 0asn — oo.
Foreachn € Z7, let a,, be the unique solution of

J ny n
oLty 715 2 )

Then, there exists a € S such that a, — a in H'(Q2). Moreover, a satisfies
llal|zr < ||al|z1, foralla € S.

Proof. Leta € S be arbitrary. Then,
Ballanllfn < I1E(a, z0) — m[- + Bullallip
= 1E(a, 20 — u")[Iv- + Ballallz:

< cllallZzllzn — wl[ie + Bullallzn,

implying that

Jaali%s < llall3 2 2 lallZ 2.7)

Bn
and, in particular,
2

Bn
where we used the assumption §2 < 3,. This proves that {a, } is bounded in
H'(Q). Hence, by Rellich’s lemma, there exists @ € H'({2) and a subsequence
{a,,} such that a,, — a weakly in A'(Q) and strongly in L*(Q2).

We claim that a € S. Indeed, for any a € S, we have

1E(any, u™) —m|

lanlzp < lla*lIz2 2 + a3 < lla*[172 + la”[7n,

2 e = | E(an, , u*) — E(an,, 2n,) + Elan,, 2n,) — m|3-
< 2| E(an,, u* — zp )13 + 20 E(@ny, 20y, ) — M

< 2)|an, 172 ll2n, — U [V + 20 E(@, 20,) — mlF + 280, ]lall 7

< 2||an, 17205, + 2[lall7205, + 2Bn,llallF:

< 2llan, |I7207, + 4llal 7o,
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where we used (5?% < B, < d,, and the following inequality which remains
true foranya € S :

1E(a, 2n,) —m|

2ot Bulaldn < 3202, + Bullall3n.

Because {||a,,||;2} is bounded and §,, — 0 as & — oo, this ensures that
|E(ay,,u*) —m||y« — 0. Since we also have E(a,,,u*) — E(a,u*) by Lemma
2.2.1, this shows that F(a, u*) = m and hence thata € S.

Using the fact that a,, — a weaklyin H*(Q2), we have ||a|| g1 < liminfy o0 [|an, || 5.
Moreover, by (2.7),

Bl [z < NallZ205, + Bo.llallan,

which implies that
2

-+ [l

lan, 172 < llall7
ng

Since 0, /By, — 0ask — oo, this shows that limsup,,_, . [|an, [z < @ a1
Therefore,

llallgr < lminf ||a,, || g < lmsup ||as|| g < ||@]|| g,
k—o0 k—oo
which shows that ||a,, |1 — ||@| 1, and hence that a,, — a strongly in H'(£2)
as k — oo.
Using (2.7),

2
ol < im o, < Jim (Yl 5 + ol ) = falf
holds for everya € S.
Finally, since the set S is a convex, there is a unique minimal H*-norm el-
ement, and we have shown that every convergent subsequence of {a, } con-
verges to this unique element a. Thus the whole sequence {a, } must con-

verge to a. This completes the proof. O

2.4 Numerical Results

To test the preliminary effectiveness of the equation error approach for this
inverse problem, we consider an example boundary value problem derived
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from (2.1):
Ala(z, y)Au(z,y)] = f(z,y) in {2
B ou B . (2.8)
u(z,y) = o 0 on

where the solution v and parameter a are defined as
u(z,y) = 162%(1 — 2)%y*(1 — y)* and a(z,y) =4+ sin(2rx)sin(37y).

For means of this numerical experiment, we take f(z,y) as subsequently de-
fined by (2.8). The domain (2 is taken as the unit square, Q = (0,1) x (0,1)
with the boundary I" as the square’s outside edges.

Discretization of the solution was performed using cubic Hermite finite
elements on a 20 x 20 mesh consisting of 882 triangles and 2,048 degrees of
freedom.

The discretized optimization problem was solved using a conjugate-gradient
trust-region method (cgtrust) with a stopping criteria on ||V.J|| of 1072, Us-
ing a value of ¢ = 107 for the regularization parameter with the H'-norm,
cgtrust converged in 38 iterations. The computed solution at several itera-
tions of the algorithm along with the output of the optimization are summa-
rized in Figure 2.1. We note that this method provides a good reconstruction
of the parameter in the interior of 2 with reconstruction error concentrated
mostly along the boundaries.
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Chapter 3
Source Term Identification

In this chapter, we conduct some numerical experiments for the theory of
the Morozov discrepancy principle developed by Ito and Kunisch [25] where
the authors focused on the linear inverse problems with an application to
source term identification in partial differential equations. This chapter is
a preparation for the next chapter where the approach will be extended to
nonlinear inverse problems using an equation error formulation developed
in the previous chapter.

This chapter will commence with a discussion of the mathematical frame-
work employed to create a root finding problem balancing regularization er-
ror against noise error. This will be followed with numerical tests on several
examples focusing on the inverse problem involving source term identifica-
tion. The root finding problem will be compared to the brute force method by
comparing the size of the L? errors as well as the speed of parameter identifi-
cation. The convergence speed of the bisection method, Newton-type meth-
ods, and cubically convergent methods discussed in [35] will be compared.

3.1 The Optimal Regularization Parameter
Consider inverse problems of the form
Tf =z,

where 7' is a bounded operator mapping from a parameter space X to the
observation space Y. Both spaces are taken to be real Hilbert spaces. We seek
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to solve for the term f by posing an optimization problem defined through
the regularized output least squares functional:

1
min (£,8) = 3|17 I + Sl lx, 6.1

where 2° is noisy data and 8 > 0 is the regularization parameter.
The derivative of the above functional at f in any direction J f is given by:

DJI(f,B)(0f) = (Tf =2, T6f), +B{f,0f)x

Therefore, the minimizer of the above optimization problem can be com-
puted by using the following variational equation:

(Tf,Tg)y +5(f,9)x = (=", Tg),  VgeX. (3.2)

In the following, we view f as a function of the regularization parameter 3
and proceed to obtain its derivative characterization. To derive an expression
for the derivative a term ¢ is added to 3 for (3.2):

(TFB+1),Tg)y + B+ (f(B+1),9)x = (=, Tg), . (3.3)
By subtracting (3.2) from (3.3), we obtain

(T(fB+1) = fB),Ta)y +B{Sf(B+1) = f(B),9)x +t{f(B+1),9)x = 0.
By dividing both sides by ¢, we get

<T<f(5+f>‘f(5)>jg> +5<f(ﬁ+t)—f(ﬁ)’g> (B4 D.g)x =0,

t t

which when passed to the limit ¢ — 0, yields

(T(f'(B), Ta)y + BLf'(8) 9)x + (f(B),9)x = 0.

Rearranging the system above produces the equivalent:

It is further shown in [25] that f([) is infinitely differentiable, and that
by proceeding as we have above f(™(3) can be determined by solving the
equation:

(Tf™(B),Tg), +B™(B).9) =—n{f"1(B),9)
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3.1.1 The Morozov Discrepancy Principle

A popular criterion to estimate the best regularization parameter is the Mo-
rozov discrepancy principle which states that § should be chosen such that
the error from regularization is equal to the error from the noise in the data.
In context to the OLS functional this is expressed as the equality between the
residual term and the noise level:

ITF(8) = 2°IF = l1z = 2°[[3-

We now define the value function F' and recall derivative formulae:
1 B
F(B) = 5|ITf = 213 + SIIfI%,

F(8) = 15O
F'(8) = (), Fo(B)x
F"(8) = (F(B), /' (B))x + U(0), (B

The Morozov equation may be rewritten in these terms to give a function
and its derivatives in terms of the regularization parameter /:

G(B) = F(8) — 6 F'(8) — 5ll= — I}
G'(B) = —BF"(B) = =B ('(B), [(B))
G”(/B) — _/BF///(/B) o F”(/B)
= —(fu(B), [a(B)) x — BUL(B), £'(B)) x + (£(B), " (B)) x)-
The details can be found in [25].

Furthermore, we also recall that the damped version of the Morozov prin-
ciple and its derivatives are given by:

G,(8) = F(8) + (5~ BF(8) — 2| — |
GL(B) =8 F'(B) + (87 = B)F"(B)
GB) = (B~ BIF"(8) + (187~ DF'(8) + (3 — 11802 F(8) + 0~ F'(5).

Here v indicates the damping parameter. The damping parameter ~ de-
creases the value of the solution (), and will be denoted separately as (3}, .
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Also note:

lim G, (8) = G(5).

Y—00

This convergence was observed to occur quickly as v increases. For the
tests in the work, v parameters ranging from one to two were tested. In all
numerical tests, 7 = 2 produced results very close to the undamped equation.

3.2 Numerical Methods

3.2.1 The Brute Force Method

The most simple method to approximate the best regularization parameter
is to calculate f(p) for alarge number of uniformly spaced regularization pa-
rameters, and then to record the L? error. One-thousand equally spaced reg-
ularization parameters were tested. The parameters near the regularization
parameter producing the lowest L? error were then tested to refine the esti-
mate of 3,,,. The best estimate is used as the benchmark to compare the ac-
curacy of the other methods and is referred to as the solution by brute force.

What solution by brute force gains in simplicity of implementation and
accuracy given enough time it loses in speed. The brute force method was
able identify a good regularization parameter for the examples in this paper,
but as the scope of the problem becomes more demanding brute force be-
comes less capable of finding a good estimate in a timely manner.

3.2.2 Newton’s Method

Since the Morozov principle is now a root finding problem, there are several
different methods which can be considered in order to identify the value of
Br. The most basic method that may be applied is the bisection method.
This paper follows the framework used by Kunisch and Zou [25] which con-
centrates on the quadratic convergence offered by Newton’s method.

G(Br)
G'(Br)

Two ways of implementing Newton’s method are considered. The first in-
volves calculating f'(3) explicitly. The calculation of the derivative of the co-

Br+1 = B —
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efficient can be approximated taking the finite difference quotient:

J(Be) — f(Br-1)
Br — Br-1

i (B Br1) =

When fk/(ﬁk, Br—1) is used the method is referred to as the quasi-Newton
method.

3.2.3 Cubically Convergent Methods

Three cubically convergent methods for the Morozov equation are consid-
ered in [35]. For the sake of brevity, the expression below is defined:

L(Br) = G(B)[G'(8r)] *G" (Br).-

The methods are as follows:

1. Chebyshev’s Method:
B = 51— (14 51000 (/8] G B0
2. Halley Method:
= ) Lrso] e a
Bi+1 = Bx — (1 t3 (Bk) [1 3 (5k)] )[ (Be)] ™ G(Br)-
3. Super Halley Method:
B = 5 — (14 5L [1 = L8] ) (680168

Zou, Wang, and Zhang [35] noted that the cubic convergence of these
methods requires the evaluation of n* + 2'n more multiplications and di-
visions than Newton’s method.

3.3 Computational Framework

A finite element framework was used to approximate the equations in the fi-
nite dimensional subspace using the GETFEM library. The continuous piece-
wise finite element space will be represented as V*. For brevity the finite di-
mensional analogue of f(() is represented as f;, while the stiffness matrix
will be represented as A.
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3.3.1 The Discrete Morozov Equation

1
J(fh?ﬁ) = 5 <U<fh> - Zé’ U(fh) - Z6> + g <fh7fh>
1
= SR~ 2V MU~ 29+ M
where U (g) solves the equation:
AU(g) = Mg VYgeVh
The discrete form of the derivatives of the OLS functional above are:

F(8) =2 (o i = 70 .

2 h
F'(8) = {fi: fn) x = fi M [,

F"(8) = (f'(B), f'(B)x + (f(B) f"(B))x = fol My, + fil" M fi.

3.3.2 The Discrete Source Term

To find the value of f(5), we substitute (3.2) into the discrete version of 3.2:
u(g)" Mu(fn) + Bg"Mfy = g"MZ°
Substituting u(g) = A~' Mg yields a system which can be used to solve for
i
GTMATMAMfy + gt Mf, = AAMA M fi, + Bfy = A'MZ° = g" M Z°.
Multiply both sides by AM ' A:
M fn+ BAMYAfy, = AZ°
(M + BAM ™A f,, = AZ°.

The discrete analogue for f,(L”) can be determined by similar operations:
(n) (n) _ (n—1)
(1", 1g) +8(f"9) =-n(f""g),
(ulf™) o)) + 81" g) =-n(f""g)
-1 (n) 4-1 (n) _ (n—1)
<A My, A Mg>y+ﬁ<(fh g>X N n<fh ’g>X
GTMATMAT M + BgTMfr = —ngTMf.
Eliminating ¢, and multiplying both sides by AM 1AM~ yields:
(M + BAM YA £\ = —nAMAFY.
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3.4 Numerical Experiments

The effectiveness of the brute force method and the Morozov principle were
compared through tests on second and fourth order partial differential equa-
tions. The brute force method should produce the most accurate estimate of
the best regularization parameter and will be relied upon as the benchmark
for numerical results. The speed of the root finding methods used to solve
the Morozov principle are also compared.

Noisy data was generated using the following method:

D(x) = z(x) + OR * maz|z(x)|,

where R is a randomly generated number between —1 and 1.

The Morozov principle was tested using the bisection, Newton-type, and
cubically convergence methods with a stopping critera of % < 1073,
The reconstructions using 3, approached the accuracy of the brute force
method generated parameters which were larger than those produced by brute
force leading to less accurate reconstructions.

3.4.1 Second Order Examples

We now focus on the following second-order boundary value problem:

where we are interested in identifying f from a measurement of w.

Example 3.4.1. In this example, we take

a(x) = exp(l + z?)

u(z) = exp(—x)sin(mz).

The aforementioned methods employing the Morozov principle were used
in order to estimate the optimal regularization parameter. Regularization pa-
rameters ranging from .01 to .1 were used to test the way that the regulariza-
tion parameters changed.
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Displayed below is a progression showing the deformation of the source
term as the noise is added. It can be observed that when no noise is present
the formula for f(g)produces very accurate estimates of the source term.
As the level of noise is increased towards 10%, a gradual deformation of the
source term occurs. Despite this, the source term recovery is recognizable.

The Morozov principle was able to identify good substitutes for 3,,. Al-
though the L? error is larger, 3,; was identified much more quickly and was
the same general size as /,,;. The time to identify /,,; took well over ten sec-
onds while the bisection method took a third of a second or less to converge.
This reduction in time is more marked for the Newton-type methods which
took fractions of a second. The cubic methods required fewer iterations to
meet the termination criteria, and were generally faster than the Newton type
methods though not dramatically so.

Using the damped Morozov principle for this example does not produce
uniformly more accurate estimations of the regularization parameters. De-
spite this, the damped Morozov principle carries the useful option in that it
has the potential of letting the practictioner make some limited adjustments
if it is determined that 3, is too large.

The smaller 3, is, the faster the damped Morozov equation converges to
the undamped version. The approximations created through damping were
smaller than the undamped approximations and would be recommended if
the undamped solutions are uniformly too large over several different noise
levels. The convergence speed for all the numerical methods was observed
to be similar to the undamped version.

Table 3.1 Brute Force Results

) Bopt L? Error
0.01 | 4.6009e-07 | 2.1433
0.025 | 1.1402e-06 | 2.5392
0.05 | 2.1804e-06 | 2.9105
0.075 | 3.1806e-06 | 3.1854
0.1 4.2408e-06 | 3.419




3.4. Numerical Experiments 22
Table 3.2 Newton-Type Results
0 B L? Error | Bis. Iter | Bis. Time | QN. Iter | QN. Time | N. Iter | N. Time
0.01 |6.3325e-07 | 5.3844 | 47 0.32769 | 15 0.041561 | 10 0.016275
0.025 | 1.7193e-06 | 7.5812 | 46 0.25906 | 14 0.029702 | 9 0.017075
0.05 |3.7747e-06 | 10.0475 | 49 0.25915 | 12 0.028729 |9 0.017581
0.075 | 6.1463e-06 | 12.2177 | 48 0.33018 | 12 0.055068 | 9 0.015245
0.1 |8.7055e-06 | 14.1111 | 45 0.2493 |12 0.033118 | 8 0.01636
Table 3.3 Cubic Method Results
) Cheb. Iter | Cheb. Time | Hal. Iter | Hal. Time | SHal. Iter | SHal, Time
0.01 |8 0.011131 8 0.016402 | 7 0.014371
0.025 | 7 0.009576 7 0.01452 7 0.014419
0.05 |7 0.012938 7 0.014206 |6 0.011959
0.075 | 7 0.011225 6 0.012141 |6 0.011855
0.1 6 0.011607 6 0.01182 6 0.015955
Table 3.4 Damped Regularization Parameters
o/v 1 1.2 1.4 1.6 1.8 2
.01 | 1.0076e-08 | 1.4732e-07 | 5.1815e-07 | 6.2486e-07 | 6.3275e-07 | 6.3322e-07
.025 | 4.4229e-08 | 4.9648e-07 | 1.4262e-06 | 1.6935e-06 | 1.7175e-06 | 1.7192e-06
.05 | 1.3078e-07 | 1.2019e-06 | 3.116e-06 | 3.7064e-06 | 3.7689e-06 | 3.7742e-06
.075 | 2.4408e-07 | 2.0159e-06 | 5.0508e-06 | 6.0221e-06 | 6.1348e-06 | 6.1453e-06
1 3.7913e-07 | 2.9284e-06 | 7.1718e-06 | 8.5221e-06 | 8.6872e-06 | 8.7037¢e-06
Table 3.5 L? Error for Damped Parameters
10/7 |1 1.2 1.4 1.6 1.8 2
.01 | 73,5511 |6.9715 |5.3299 |5.3787 |5.3841 | 5.3844
.025 | 90.4508 | 10.0929 | 7.5214 | 7.5718 | 7.5805 | 7.5811
.05 | 101.6111 | 12.2118 | 9.8147 | 10.0182 | 10.045 | 10.0473
.075 | 105.0999 | 13.5819 | 11.8375 | 12.1707 | 12.2133 | 12.2173
1 105.9693 | 14.8735 | 13.6869 | 14.0583 | 14.1058 | 14.1106
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Figure 3.1 Reconstructions by Using (3,
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Figure 3.6 Reconstructions by Using 5y,
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Example 3.4.2. In the second example was tested using the equations:

a(x) = 5eos(drx) + 1

u(z) = sin(4rx)

Using the brute force method in the same manner as the first example
produced accurate reconstructions with evident roughness for larger noise
levels. The Morozov results showed similar performance to the brute force es-
timate. In this case the Morozov principle identified a slightly under-regularized
parameter. Despite the increase in the L? error term in the case of Morozov,
the illustrations show that the estimated parameter from this method still
compensate for the added noise very well.

Since the regularization parameters were generally too small the damped
Morozov principle failed to yield improvements on the undamped results.
The scenario where 7 = 1 produced particularly innaccurate results. With
the exception of the scenario where the noise level is .1, the best results were
given using little or no damping at all.

The performance of the root finding algorithms is similar to those from
example one. The Newton method greatly outperforms the quasi-Newton
method. The cubic methods require fewer iterations than the Newton-type
methods but yielded no appreciable difference in performance time. Of the
cubic methods, Halley’s is the only one to repeatedly outperform the quadratic

methods.
Table 3.6 Brute Force Results

=

) Bopt L? Error
0 2.0004e-08 | 0.85309
0.01 1.0002e-07 | 4.8669

0.025 | 2.0004e-07 | 8.9274

0.05 | 3.2006e-07 | 13.5338
0.075 | 4.6009e-07 | 16.9697
0.1 5.6011e-07 | 19.7684
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Table 3.7 Newton-Type Results
§ B L? Error | Bis. Iter | Bis. Time | QN. Iter | QN. Time | N. Iter | N. Time
0.01 |6.3129e-08 | 28.4478 | 54 0.36534 |15 0.036433 | 10 0.017254
0.025 | 1.5164e-07 | 83.5626 | 55 0.36888 | 15 0.038394 |9 0.020121
0.05 | 2.9813e-07 | 184.4505 | 55 0.32009 | 15 0.041738 |8 0.014713
0.075 | 4.472e-07 | 287.8678 | 57 0.35604 | 15 0.030054 |8 0.013196
0.1 |[6.0026e-07 | 391.659 |57 0.39746 | 15 0.041048 |7 0.016241
Table 3.8 Cubic Method Results
o Cheb. Iter | Cheb. Time | Hal. Iter | Hal. Time | SHal. Iter | SHal, Time
0.01 |8 0.018758 7 0.016512 |7 0.015369
0.025 | 7 0.01342 7 0.014417 |6 0.012006
0.05 |6 0.011069 6 0.012281 |6 0.014298
0.075 | 6 0.016636 6 0.011909 |6 0.011853
0.1 6 0.022234 6 0.012937 |5 0.013483
Table 3.9 Damped Regularization Parameters
o)y |1 1.2 1.4 1.6 1.8 2
.01 | 9.0955e-10 | 2.2351e-08 | 5.9482e-08 | 6.2988e-08 | 6.3124e-08 | 6.3129¢-08
.025 | 4.8813e-09 | 7.7432e-08 | 1.4587e-07 | 1.5138e-07 | 1.5163e-07 | 1.5164e-07
.05 | 1.6668e-08 | 1.8377e-07 | 2.8945e-07 | 2.9769e-07 | 2.9811e-07 | 2.9813e-07
.075 | 3.3416e-08 | 2.9875e-07 | 4.358e-07 | 4.4657e-07 | 4.4717e-07 | 4.472e-07
1 5.4072e-08 | 4.1995e-07 | 5.8615e-07 | 5.9944e-07 | 6.0021e-07 | 6.0026e-07
Table 3.10 L? Error for Damped Parameters
1o/y |1 1.2 1.4 1.6 1.8 2
.01 | 1059.5511 | 70.9781 | 29.7451 | 28.4938 | 28.4495 | 28.4479
.025 | 1712.8158 | 140.8563 | 85.0657 | 83.6241 | 83.5652 | 83.5627
.05 |2310.354 | 240.1195 | 185.5074 | 184.4964 | 184.4527 | 184.4506
.075 | 2833.989 | 333.4067 | 288.1503 | 287.874 | 287.8681 | 287.8678
1 3237.6296 | 424.1377 | 390.9766 | 391.6086 | 391.656 | 391.6588
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Figure 3.11 Reconstructions by Using 3,

Figure 3.12 Noise of .025 Figure 3.13 Noise of .05

Figure 3.14 Noise of .07 Figure 3.15 Noise of .1

Figure 3.16 Reconstructions by Using ),

Figure 3.17 Noise of .025 Figure 3.18 Noise of .05

Figure 3.19 Noise of .07 Figure 3.20 Noise of .1
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Example 3.4.3. In this example we take the data:

a(x) = log(x + 2)

u(z) = —(2* — 2%)

The brute force method produces satisfactory results with the shortfall of
noticeable oscillations in the reconstructions. The Morozov principle pro-
duces results of similar accuracy to the brute foce method in terms of error.
In this case ), yielded smoother but less accurate results. Using the damped
Morozov principle with parameter v = 1.2 compensates for this overregular-
ization and was able to produce superior results to ), in some cases.

The performance of the root finding methods for the Morozov principle
was similar to the previous two examples with drastic improvements found
using the Newton-type methods, and more modest ones with the cubic meth-
ods. The cubic methods generally reduced the number of steps to conver-
gence by one or two which was enough to ensure that these methods outper-
formed the Newton-type methods

Table 3.11 Brute Force Results

) Bopt L? Error
0 1.0002e-08 | 0.088554
0.01 | 1.8004e-07 | 0.55166
0.025 | 8.4017e-07 | 0.7959
0.05 | 2.7005e-06 | 0.99174
0.075 | 5.3411e-06 | 1.1136
0.1 8.6817e-06 | 1.2037
Table 3.12 Newton-Type Results

0 B L? Error | Bis. Iter | Bis. Time | QN. Iter | QN. Time | N. Iter | N. Time
0.01 | 8.9217e-07 | 0.42687 | 43 0.3383 20 0.056131 |7 0.014417
0.025 | 3.6837e-06 | 0.78618 | 44 0.34239 39 0.10613 6 0.011469
0.05 | 1.0713e-05 | 1.1647 | 44 0.2467 13 0.032145 |5 0.008464
0.075 | 1.9921e-05 | 1.4324 | 43 0.27972 14 0.042103 | 6 0.015632
0.1 3.0548e-05 | 1.6348 | 45 0.32304 13 0.02761 6 0.011481
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Table 3.13 Cubic Method Results
0 Cheb. Iter | Cheb. Time | Hal. Iter | Hal. Time | SHal. Iter | SHal, Time
0.01 |6 0.012873 6 0.012598 |5 0.010036
0.025 | 5 0.008981 5 0.010575 |5 0.02391
0.05 |4 0.007096 4 0.007342 | 4 0.007466
0.075 | 5 0.009337 4 0.007941 | 4 0.007882
0.1 5 0.008891 5 0.009701 |5 0.013512
Table 3.14 Damped Regularization Parameters
o/v |1 1.2 1.4 1.6 1.8 2
.01 | 4.188e-08 | 4.6136e-07 | 8.4333e-07 | 8.8896e-07 | 8.9197e-07 | 8.9216e-07
.025 | 2.4703e-07 | 2.0349¢e-06 | 3.4572e-06 | 3.6639e-06 | 3.6821e-06 | 3.6836¢e-06
.05 | 9.506e-07 | 6.2076e-06 | 9.9955e-06 | 1.0635e-05 | 1.0705e-05 | 1.0713e-05
.075 | 2.0907e-06 | 1.1924e-05 | 1.855e-05 | 1.9752e-05 | 1.9901e-05 | 1.9918e-05
1 3.6489e-06 | 1.888e-05 | 2.8466e-05 | 3.0271e-05 | 3.0513e-05 | 3.0544e-05
Table 3.15 L? Error for Damped Parameters
10/7 |1 1.2 1.4 1.6 1.8 2
.01 |0.53389 | 0.35247 | 0.41935 | 0.42638 | 0.42684 | 0.42686
.025 | 0.81846 | 0.69234 | 0.7743 | 0.78515 | 0.7861 | 0.78617
.05 | 1.1487 | 1.0541 | 1.1482 | 1.1629 | 1.1645 | 1.1647
.075 | 1.3895 | 1.318 1.4141 | 1.4302 | 1.4322 | 1.4324
1 1.589 1.5266 | 1.6166 | 1.6324 | 1.6345 | 1.6348
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Figure 3.21 Reconstructions by Using [,

Figure 3.22 Noise of .025 Figure 3.23 Noise of .05

Figure 3.24 Noise of .07 Figure 3.25 Noise of .1

Figure 3.26 Reconstructions by Using ),

Figure 3.27 Noise of .025 Figure 3.28 Noise of .05

Figure 3.29 Noise of .07 Figure 3.30 Noise of .1
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3.4.2 Fourth Order Examples

In this section, we focus on the inverse problem of identifying the source
term f in the beam equation. To be specific, we focus on the following static
fourth-order boundary value problem in 2 := (0, 1) :

(a(z)u”)" = f(x), (3.4)
u(0) = 4/(0) = 0, (3.5)
uw(l)=4'(1)=0 (3.6)

where a(z) is a variable coefficient and f is the source term.

The boundary conditions (3.5)-(3.6) are the so-called clamped boundary
conditions. However, our approach can easily be carried over to other types
of boundary conditions as well.

In this case, the problems were interpolated on a grid of fifty points. Im-
plementing the fourth order problem is made more computationally com-
plex due to the necessity for cubic interpolating functions instead of the sim-
ple hat function considered in the second order examples. In this case the
ill-posed derivative operation is performed four times instead of two mak-
ing the innaccuracy introduced by noise especially egregious. For this set of
problems the damped or undamped Morozov principles were found to be
able to identify satisfactory regularization parameters when used with the
same tolerance criteria as the second order problems.

Example 3.4.4. The first fourth order example is:

a(x) = (2x — %)3 +2

u(x) = sin(4drx — g) + 1.

Selecting the regularization parameter by brute force produces results which
begin to depart from the actual source term as the noise level is increased.
Depite this, the results stay reasonably accurate as the level of noise is in-
creased to ten-percent after which significant flattening was noted for the
reconstruction.

The undamped Morozov principle repeats its excellent performance in
the estimation of the best regularization parameter discussed for the seco
nd order examples. In all cases ), is comparable to 3,,;. This follows for the
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associated L? errors. While producing results which are nearly the same as
using the brute force method, identifying ), requires fractions of a second
while finding 5, for this more difficult problem required minutes of com-
putation time. Using the damped Morozov principle gives reconstructions
which are much poorer quality than the undamped version due to underes-
timating the regularization parameter.

For this example the cubic methods performed particularly well. Con-
vergence took six iterations at most with the cubic methods while Newton’s
method and the quasi-Newton methods took twelve and fourteen iterations
respectively. Due to the larger decrease in necessary iterations for the cu-
bic methods only a fraction of the time was needed when compared to the
Newton-type methods. Newton’s method converges much more quickly than
the quasi-Newton method.

Table 3.16 Brute Force Results

) Bopt L? Error

0 le-13 24212.8767
0.01 1.1262e-12 | 27805.9067
0.025 | 1.7286e-11 | 28923.8263
0.05 | 4.7291e-11 | 29270.0184
0.075 | 7.3159e-11 | 29535.5923
0.1 9.7472e-11 | 29811.8629

Table 3.17 Newton-Type Results

1) By L? Error Bis. Iter | Bis. Time | QN. Iter | QN. Time | N. Iter | N. Time
0.01 | 5.6995e-12 | 27825.0414 | 55 1.0014 14 0.14168 12 0.08534
0.025 | 1.925e-11 | 28755.8655 | 54 0.74379 14 0.097445 | 12 0.062245
0.05 | 4.0442e-11 | 29188.2471 | 53 0.72623 14 0.1035 12 0.056391
0.075 | 6.0821e-11 | 29397.7266 | 52 0.81902 14 0.10052 12 0.069541
0.1 8.0774e-11 | 29538.6465 | 52 0.93815 14 0.13344 12 0.08215
Table 3.18 Cubic Method Results
0 Cheb. Iter | Cheb. Time | Hal. Iter | Hal. Time | SHal. Iter | SHal, Time
0.01 |6 0.037872 6 0.042068 |5 0.03531
0.025 | 5 0.021909 5 0.030133 |5 0.030193
0.05 |4 0.02176 4 0.024303 | 4 0.025639
0.075 | 4 0.021718 4 0.024334 | 4 0.024623
0.1 4 0.015978 4 0.020681 | 4 0.019554
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Table 3.19 Damped Regularization Parameters
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5/ 1 1.2 1.4 1.6 1.8 2
0.01 | 3.3824e-13 | 5.3824e-12 | 5.8616e-12 | 5.8646e-12 | 5.8646e-12 | 5.8646¢e-12
0.025 | 1.7679e-12 | 1.9502e-11 | 2.0551e-11 | 2.0559e-11 | 2.0559e-11 | 2.0559e-11
0.05 | 5.9217e-12 | 4.2436e-11 | 4.3854e-11 | 4.3867e-11 | 4.3867¢e-11 | 4.3867¢e-11
0.075 | 1.1588e-11 | 6.4188e-11 | 6.5862e-11 | 6.5878e-11 | 6.5878e-11 | 6.5878e-11
0.1 1.8191e-11 | 8.5311e-11 | 8.7205e-11 | 8.7224e-11 | 8.7224e-11 | 8.7224e-11
Table 3.20 L? Error for Damped Parameters
16/7 |1 1.2 |14 1.6 1.8 2
0.01 | 27221.9282 | 27782.7191 | 27857.8645 | 27858.3131 | 27858.3156 | 27858.3156
0.025 | 29190.2758 | 28915.8508 | 28944.8006 | 28945.0156 | 28945.0171 | 28945.0171
0.05 | 30957.3184 | 29632.2977 | 29635.5921 | 29635.6257 | 29635.6261 | 29635.6261
0.075 | 32799.478 | 30027.359 | 30022.8509 | 30022.8167 | 30022.8164 | 30022.8164
0.1 34292.116 | 30311.9284 | 30304.4664 | 30304.4023 | 30304.4015 | 30304.4015

Figure 3.31 Reconstructions by Using [3,,,

Figure 3.32 Noise of .01

Figure 3.34 Noise of .05

Figure 3.33 Noise of .025

Figure 3.35 Noise of .07
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Figure 3.36 Reconstructions by Using ),

Figure 3.37 Noise of .01 Figure 3.38 Noise of .025

Figure 3.39 Noise of .05 Figure 3.40 Noise of .07

Example 3.4.5. A second fourth order example reinforces the observations made
with the first fourth order problem:

a(z) = (1 + )
u(x) = —cos(2mx) + 1.

The reconstructions using the brute force method are recognizeable though
significant flattening is observed for the larger noise levels. The Morozov
principle begins by over-regularizing the problem but for larger noise terms
under-estimates the best parameter. The additional L? error from the Mo-
rozov equation is not significant however, and the illustration of the recon-
structions using /3,; show that they are comparable to those generated using
brute force. Using the damped Morozov principle with a parameter v = 1.2
gives minor improvements to the reconstructions in terms of the error.

Unlike example one, the cubic methods fail to converge quickly enough
to warrant their preference over Newton’s method. Chebyshev’s method was
able match or beat Newton’s method by a small margin, but not to an appre-
ciable degree. Newton’s method outperformed the quasi-Newton method to
a greater degree in this case than in the previous example.
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Table 3.21 Brute Force Results
) Bopt L? Error
0 le-13 608.7772
0.01 | 7.024e-11 | 959.2497
0.025 | 7.3019e-10 | 1116.3738
0.05 | 1.768e-09 | 1214.4901
0.075 | 3.0341e-09 | 1279.5203
0.1 4.9815e-09 | 1323.6757
Table 3.22 Newton-Type Results
5 By L? Error Bis. Iter | Bis. Time | QN. Iter | QN. Time | N. Iter | N. Time
0.01 |3.706e-10 | 1024.4985 | 66 1.0818 |17 0.12142 |5 0.020392
0.025 | 1.2823e-09 | 1129.4963 | 64 1.1428 |17 0.12151 |4 0.015404
0.05 |3.9448e-09 | 1244.9522 | 63 1.2225 |17 0.16595 |5 0.028324
0.075 | 8.7322e-09 | 1313.1052 | 61 0.87199 |17 0.12383 | 4 0.0157
0.1 | 1.4388e-08 | 1345.2415 | 61 0.86456 | 17 0.1216 |4 0.015664
Table 3.23 Cubic Method Results
5 Cheb. Iter | Cheb. Time | Hal. Iter | Hal. Time | SHal. Iter | SHal, Time
001 |4 0.015341 4 0.019397 |4 0.021323
0.025 | 4 0.015551 4 0.021344 | 4 0.019529
005 |4 0.021246 5 0.032064 |5 0.032426
0.075 | 4 0.015701 4 0.020688 | 4 0.021398
0.1 4 0.015649 4 0.019893 | 4 0.020298
Table 3.24 Damped Regularization Parameters
/v |1 1.2 |14 1.6 1.8 2
0.01 | 3.6063e-11 | 3.3642e-10 | 3.7011e-10 | 3.7059e-10 | 3.706e-10 | 3.706e-10
0.025 | 1.8434e-10 | 1.1851e-09 | 1.2806e-09 | 1.2823e-09 | 1.2823e-09 | 1.2823e-09
0.05 | 5.7337e-10 | 3.4947¢e-09 | 3.9338e-09 | 3.9446e-09 | 3.9448e-09 | 3.9448e-09
0.075 | 1.0895e-09 | 7.4124e-09 | 8.6931e-09 | 8.7311e-09 | 8.7322e-09 | 8.7322e-09
0.1 1.7176e-09 | 1.2136e-08 | 1.4315e-08 | 1.4386e-08 | 1.4388e-08 | 1.4388e-08
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Table 3.25 L? Error for Damped Parameters

1o/y |1 1.2 |14 1.6 1.8 2
0.01 | 1000.7046 | 1020.1553 | 1024.4393 | 1024.4978 | 1024.4985 | 1024.4985
0.025 | 1199.066 | 1126.1546 | 1129.4337 | 1129.4952 | 1129.4962 | 1129.4963
0.05 | 1336.4395 | 1237.7582 | 1244.7808 | 1244.9487 | 1244.952 | 1244.9522
0.075 | 1383.3637 | 1305.9523 | 1312.9082 | 1313.1 1313.105 | 1313.1052
0.1 1413.0761 | 1340.3796 | 1345.0933 | 1345.238 | 1345.2416 | 1345.2415

Figure 3.41 Reconstructions by Using 3,

Figure 3.42 Noise of .025

Figure 3.44 Noise of .07

Figure 3.43 Noise of .05

Figure 3.45 Noise of .1
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Figure 3.46 Reconstructions by Using ),

Figure 3.47 Noise of .025 Figure 3.48 Noise of .05

Figure 3.49 Noise of .07 Figure 3.50 Noise of .1

Example 3.4.6.

a(z) = (2?2 +1)

u(z) = cos(2mx) — 1.

The brute force method provides very good reconstructions of the source
term given the size of the error term introduced. This accuracy was followed
by the Morozov principle which generated reconstructions with errors only
slightly larger than those produced by the brute force method. In this case
the Morozov principle over-regularized the problem but this did not lead to
significant reductions in the accuracy of the reconstructions. Damping with
v = 1.2 produced better results than the undamped method, but this benefit
is miniscule.

The Chebyshev method is able to converge to 5, with three or four itera-
tions and has a marked improvement over Newton’s method. This superior-
ity in performance is not replicated by the other cubically convergent meth-
ods which generally took slightly more time than Newton’s method. Newton'’s
method is able to converge to the solution in about one-fifth of the time of the
quasi-Newton method .
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Table 3.26 Brute Force Results

) Bopt L? Error

0 le-13 576.6874

0.01 | 9.1689e-10 | 939.2465

0.025 | 2.3267e-09 | 954.3663

0.05 | 4.3193e-09 | 963.0226

0.075 | 6.2154e-09 | 967.9941

0.1 8.067e-09 | 972.0326
Table 3.27 Newton-Type Results
5 By L? Error Bis. Iter | Bis. Time | QN. Iter | QN. Time | N. Iter | N. Time
0.01 |1.0696e-09 | 939.737 | 38 0.65415 |6 0.052969 |3 0.015346
0.025 | 2.8667e-09 | 956.4537 | 37 0.49931 |6 0.033722 | 4 0.017222
0.05 |6.8103e-09 | 976.0295 |35 0.45531 |9 0.054012 | 4 0.014652
0.075 | 1.2456e-08 | 998.9455 | 34 0.43026 |7 0.040854 | 4 0.014924
0.1 |2.0838e-08 | 1025.8118 | 34 0.64214 |6 0.050635 | 5 0.028855
Table 3.28 Cubic Method Results
o Cheb. Iter | Cheb. Time | Hal. Iter | Hal. Time | SHal. Iter | SHal, Time
0.01 |3 0.016049 3 0.014506 | 3 0.014588
0.025 | 3 0.009632 4 0.01713 4 0.018167
0.05 |3 0.009839 3 0.010883 | 4 0.017129
0.075 | 3 0.009726 3 0.011104 |3 0.012062
0.1 4 0.021029 4 0.022653 | 5 0.030553
Table 3.29 Damped Regularization Parameters
o/ |1 1.2 1.4 1.6 1.8 2
0.01 | 1.1561e-10 | 9.7313e-10 | 1.0628e-09 | 1.0644e-09 | 1.0644e-09 | 1.0644e-09
0.025 | 4.9255e-10 | 2.6649e-09 | 2.8614e-09 | 2.8656e-09 | 2.8657¢e-09 | 2.8657e-09
0.05 | 1.3669e-09 | 6.2424e-09 | 6.7439e-09 | 6.7569e-09 | 6.7572e-09 | 6.7572e-09
0.075 | 2.5011e-09 | 1.1258e-08 | 1.2389e-08 | 1.2423e-08 | 1.2424e-08 | 1.2424e-08
0.1 3.9041e-09 | 1.8404e-08 | 2.0842e-08 | 2.0928e-08 | 2.093e-08 | 2.093e-08
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Table 3.30 L? Error for Damped Parameters
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1o/y |1 1.2 |14 1.6 1.8 2

0.01 [999.4081 [939.3201 [939.6974 |939.7065 [ 939.7067 [939.7067
0.025 | 1098.3753 | 955.265 | 956.4174 | 956.4458 | 956.4464 | 956.4464
0.05 | 1101.4939 [ 971.8765 |975.5324 | 975.6296 | 975.6318 | 975.6318
0.075 | 1077.4348 | 991.9241 | 998.5574 | 998.7535 | 998.7588 | 998.7593
0.1 |1050.2028 | 1015.8537 | 1025.8248 | 1026.1568 | 1026.1665 | 1026.1664

Figure 3.51 Reconstructions by Using 3,

Figure 3.52 Noise of .025

Figure 3.54 Noise of .07

Figure 3.53 Noise of .05

Figure 3.55 Noise of .1
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Figure 3.56 Reconstructions by Using ),

Figure 3.57 Noise of .025 Figure 3.58 Noise of .05

Figure 3.59 Noise of .07 Figure 3.60 Noise of .1

3.5 Conclusion

The use of the Morozov discrepancy principle was found to generate very
good results in terms of the error in the reconstructions when compared to
the estimate of the optimal regularization parameter /,,;. In the cases where
the Morozov principle overestimated the size of the regularization param-
eter the damped Morozov principle was able to compensate by adjusting
the estimated regularization parameter downwards. Newton’s method was
able to converge to ), much more quickly than the quasi-Newton method.
While the cubically convergent methods often converged more quickly than
Newton’s method, they did not consistently outperform Newton’s method in
terms of time.



Chapter 4

Morozov Principle for the Equation
Error Approach

The general methodology introduced by Kunsich and Zou [25], and tested
numerically in Chapter 2 for source identification problem will be extended
in this chapter for the equation error formulation for the inverse problem of
identifying variable parameters in general partial differential equations. The
Morozov principle allows us to set up a root finding problem to approximate
the regularization parameter minimizing. As before, we use finite element
framework to discretize the equations. The bisection, Newton-type, and cu-
bic methods are tested on a set of second-order elliptic problem and com-
parisons are made with the identification of the optimal parameter through
brute force.

4.1 The Equation Error Functional

Let B be a Banach space and let A be a nonempty, closed, and convex subset
of B. Let V be a Hilbert space which will be identified with its topological
dual V* in the usual manner. Let 7 : B x V x V' — R be a trilinear form with
T(a,u,v) symmetric in u, v. Let m : V' — R be a bounded linear functional.
Assume that there are constants o > 0 and S > 0 with

T(a,u,v) < Blla|gllullv||v|lyv, forallu,v €V, a € B, (4.1)
T(a,u,u) > allull}, forallu € V, a € A. (4.2)
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We consider the following variational problem: Given a € A, find v =
u(a) € V such that

T(a,u,v) =m(v), foreveryv e V. (4.3)

Due to the symmetry, continuity, and ellipticity of 7', it follows from the
Riesz representation theorem that for every a € A, the variational problem
(4.3) admits a unique solution u(a). In this work, our interest is in the inverse
problem of identifying the parameter « when a measurement z of the solu-
tion u(a) is available. This inverse problem is often posed an optimization
problem and there are many optimization formulation that have been used.
This includes, the output least-squares, the modified output least-squares,
and the equation error approach, among others. In this work, our focus is on
the equation error approach.

Given any pair (a, w) € AxV,we define e(a, w) € V through the variational
equation:

(e(a,w),v),, = T(a,w,v) —m(v), foreveryveV. (4.4)
Using the identifiability of Hilbert spaces, we have
e(a,w) =T (a,w) —m,

where the elements are the corresponding Riesz elements. Clearly, for any
direction b € H, we get
De(a,u) (b) = T(b,u).

Given ¢ > 0, we consider the optimization problem via the regularized
equation error formulation:

.. 1 €
minimize J (a,¢) := 5 le(a, zs5)|)3 + 5 a3, , (4.5)

where H is a suitable Hilbert space, ¢ > 0 is the regularization parameter, and
zs € V is the noisy data with noise level 6 > 0, that is,

|20 — zs|| <.

By assuming that H is compactly embedded into B, an existence result
can be given. This assumption hold, for example for the choices H := H,(02)
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and B = L*(Q2). However, we have seen that existence results can be ob-
tained without the compact embedding assumption. This has been shown
for the choices H = H'(Q) and a € L*(2) but at the expense of higher smooth-
ness requirement on the data. Therefore, without distinguishing between
these two case for the existence, we simply assume that (4.5) is solvable. Clearly,
due to the strongly convex regularizer, such a solution is unique.

The following result gives an optimality condition for the above problem:

Theorem 4.1.1. For everyes > 0, the solution a(c) of the optimization problem
(4.5) is unique and can be characterized as the unique solution of the following
variational equation: Find a € H such that

(e(a, z5), T (b, z5)),, +€{a,b),; =0, foreverybe H, (4.6)
or, equivalently,
(T'(a, z5),T(b, 25))y + € (a,b)y = (m,T(b,25)),,, foreverybe H. (4.7)

Proof. For any direction b € H, the solution a(¢) satisfies the following opti-
mality condition:
D,J(a,e)(b) = 0.

Since e(-, z) is affine, we have
DaJ(a> 5) (b) = <e(a7 25)7 T(b> Z5)>V te <aa b>H )
and the proof follows at once. O

The following result, where the regularized solution «a(¢) is seen as the
function of the regularization parameter ¢, embarks on the differentiability
of the regularized solutions:

Theorem 4.1.2. For everyes > 0, the map ¢ — a(e), where a(¢) solves the vari-
ational equation (4.6) (or equivalently (4.5)) is differentiable. Moreover, the
derivative o/ (¢) is characterized as the unique solution of the following varia-
tional equation: Findw € H such that

(T'(w, 25), T(b, 2z5))y, + € (w,b) ; = — (ale), by, foreverybe H. (4.8)
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Proof. Lete > 0 be fixed. Let w be the solution of variational equation (4.8).
For any b € H, we have

(elale + ), 25), T(b, )y + (£ +1) (ale +£),b) 5 = 0.
(ela(e), 25). T(b, 25))y + € {a(e). by = 0.

A simple rearrangement of the above two equations implies that

<€(a(€+t)7261_e(a(g)’z5),T(b,z5)> —|—€<a(€+ti_a(€),b> Hale +1), by =0,

H

1%
or equivalently
(T (64, 25),T(b, 25)) +€(01,0) y + (ale +t) —ale),b); =0,

where §; := t7!(a(e + t) — a(e)). By subtracting (4.8) from the above identity,
we deduce

(T'(0r —w, 25) , T'(b, z5))y + € (0 — w, b) g + (ale +1) — a(e), b}y = 0.
By setting b = §; — w, in the above, we get
16— wli? = —{ale+ ) —a(e),d — whyy — (T (6 — w,25)  T(5; — w, )y

= —(ale+1) —ale), b —w)y — | T (6 —w, 2)|>
< —Aale+1t) —ale), 6 —w)y .

By Cauchy-Schwarz inequality, we get |6, — w]|7, < ||a(e +t) — a(e)|l 4 16: — w]| ;1
and hence
10r = wlly < lale +1) — a(e)l

and by taking limits ¢ — 0%, we get ||0, — w||; — 0. This proves that a is
differentiable at ¢ and «’(¢) = w. The proof is complete. O

Let ® : R, — R be the value function defined by
1 2 € 2
O(e) = Jale),€) = 5 lle(ale), 25)lly + 5 la()l7 - (4.9)

We have the following result concerning the smoothness of the map ®:
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Theorem 4.1.3. The map ® is twice differentiable for every e > 0, with deriva-
tives given by
1
¥'(e) = 5 llae)lly (4.10)
"(e) = (a(e), d'(e)) s - (4.11)

Moreover, if T(-,zs,m) # Og~, then ®(¢) is strictly increasing and strictly
concave.

Proof. The differentiability of ¢ follows from the differentiability of a(-). More-
over, we have

') = (e(a'(¢), 25), elale), zs))y + € (d(e), ale))y + % la(e)ll7 = % la(e) 17 »

where we used (4.6) with b = a(e). The proof of (4.11) is then immediate.
Finally, taking b = o/(¢) in (4.8), for every ¢ > 0, we have

d"(e) = <a(€)>a/<€)>H

<0.

Furthermore, ®”(¢) < 0, for every ¢ > 0, on the contrary this would imply
a'(¢€) = 0 for some £ > 0. By (4.8) a(¢) = 0, and by (4.12)

(m,T(b,z5)),, =0, foreverybe H. (4.12)

equivalently 7'(b, zs, m) = 0, for every b € H, and a contradiction completes
the proof. O

4.2 Morozov Principle

The Morozov principle suggests solving the following nonlinear equation:
Given ¢ find e such that

lle(a(e), z5)||%, =62 (4.13)

Evidently, the above equation can equivalently be posed as the problem
of finding e such that

Pe) — ed'(c) = %52. (4.14)
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The Damped Morozov’s principle suggest solving the following equation:
Given ¢ find e such that

le(a(e), 28)lly, + €™ lla(e) [}y = & (4.15)

where v € [1, oo]. Equivalently, find ¢ such that
Ple) + (7 —e) P (e) = %52. (4.16)

Clearly, (4.13) corresponds to the case v = oc.
We define

. 1 S\ (12 . 1 2
®(0) := ;2}55 e(a, 2 )HV = 52}55 T (a, z5) —m|y -

We have the following result:

Theorem 4.2.1. If®(0) < 16> < ®(1), then (4.16) has a unique solution * €
(0,1].

4.3 Discretization and Implementation Details

We need to discretize variational equations (4.6) and (4.8) which give us a(¢)
and d/(¢). In this section, we describe the finite element framework that will
be used for discretization.

Let 7;, be a triangulation of the domain 2. We define .4, to be the space of
all continuous piecewise polynomials of degree d, relative to 7. Similarly, V,,
will be the space of all continuous piecewise polynomials of degree d, relative
to 75, subject to the constraint that the Dirichlet boundary conditions are
satisfied.

Bases for A; and V, will be represented by {v1, ¢, . .., ¥, } and {1, 2, .. ., on},
respectively. The space 4, is then isomorphic to R™, and for any a € A, we
define A € R™ by A; = a(x;), i = 1,2,...,m, where {¢1, s, ...,1,} is a nodal
basis corresponding to the nodes {x;, zs, ..., x,}. Conversely, each A € R™
corresponds to a € A, defined by a = ", A;4;. Similarly, u € V), will cor-
respond to U € R”, where U; = u(y;), i = 1,2,...,nand u = Y, U;p;. Here
Y1,Ye, - - -, Y, are the nodes of the mesh defining V,,. Note that although both
A, and V), are defined relative to the same triangles, the nodes are different.
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By My, Ky € R™" we denote the mass and the stiffness matrix with re-
spect to V},, that is,

(Mv)i,j:/g@i@jdxa
(Kv); :/v‘;oiv@jdx'
Q

Similarly, My, Ky € R™*™ denote the mass and the stiffness matrix with
respect to Ay, that is,

(Mp),; = /Q Yipjd,
() = [ V0T

Furthermore, for every A € R, K(A) € R"*" is the matrix defined by
K(A)i; =T(a, gi, ;)

and F' € R™ is the vector defined by
E; =m(g;).
We will also use the the adjoint matrix L(-) € R"*™ defined by
L(V)A=K(A)V, forevery A € R", V € R™.

We now proceed to discretize a(¢) and ®(¢). Foranya € A, z € Z, the
discretization of the Riesz element 7'(a, z) is given by the vector T'(A, Z) € R”"
verifying

KvT(A,Z) = K(A)Z,

and consequently
T(A, Z) = K'L(Z)A.

In the same way the discretization of e(q, z) is given by
E(A,Z) =K' (L(Z)A-F).
Applying the discretization scheme to the variational equation

(T'(a(e), 25), T(b, z5))y, +(a,b)y; = (m,T (v, 2)), foreveryb e H,
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we get
BTL(Z8)T K (Ky + My) K ' L(Z6)an[e] + e B(Ky + My )ay[e]
= BTL(Z8§)TK~" (M + K) F.

where B corresponds to the arbitrary b and by a,[¢] € R™ we denote the dis-
cretization of a(e).

This last expression is equivalent to solving the linear system: Find ay,[¢] €
R™ such that

[L(Z6)" Ky (Ky + My)Ky ' L(Z6) + e(Ky + Mpy)] ale)
= L(Z&) ' K;' (Ky + My) F. (4.17)

In the same way, the derivative d/(¢) corresponds to solving the following
variational equation

(T'(d'(€),25),T(v,25))y +e(d(€),v)y =—(a(e),v) foreveryda € V.

Following the same ideas as before, its discrete version is given by: Find
Daye] € R™ such that

[L(Z8)" K'Y (Kv + My)K; ' L(Z6) + e(Ky + My)] Dayle]

Recall that the value function ¢ : R, — R is defined by

and consequently, its discrete analogue reads:

Dy(e) = 1(L(Zd)ah(g)—F)TKvl(f(’VJrJ\4V)I(V1(L(Z(S)ah(g)—F)+%ah(g)T(KH+J\4H)ah(5).

2
(4.19)
Using (4.10), its discrete derivative is given by
1 1
Dw(e) = 5 lan(@)ls = San(e)" (Ku + Mu)an(e), (4.20)

and the second derivative by

D?*®,(¢) = {(an(€), Dan(e)) y = an(e)" (Ky + My)Day,(e). (4.21)
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Recall that the Morozov principle corresponds to solving the following
nonlinear scalar equation

Find < € (0,1) such that G7(c) := ®(e) — (7 — £)@'(c) — 0"
The natural discretization of this problem is given by
1
Find ¢ € (0,1) such that G} (¢) := ®p,(g) — (&7 — )P}, (e) — 552_

To apply the known method (Bisection, Newton, QuasiNewton) we only
need to evaluate G} (¢) and the derivative DG/ (¢) for the methods where this
derivative is used:

DG (e) = D®y(e) — (87 — &) D*®y(2). (4.22)

4.4 DataSmoothing

To improve the efficiency of the parameter identification process, it is natural
to perform some data smoothing before using the data as an input for the
optimization formulation of the inverse problem. In this chapter, we obtain
a set of smooth data z, by solving the following optimization problem

min ||zs — 2s] [ + || V2|72, (4.23)

where « is the smoothing parameter. This strategy for error smoothing was
explored in [20] where smoothing was shown to yield increased accuracy in
the coefficient reproductions.

By standard arguments, we obtain the following finite dimensional ver-
sion optimality condition for 4.23:

(K + M +aK)Z, = (K + M)Z;. (4.24)

4.5 Numerical Experiments

A series of numerical tests concentrating on second order elliptic partial dif-
ferential equations are considered. These examples were interpolated using
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one-hundred basis functions. The brute force method is used in a manner
similar to the chapter where the source term is considered. The Morozov
principle is also compared using the same tolerances previously discussed.

The problem for coefficient identification is a nonlinear problem. The
result of this is that adding noise will have more of an effect on the results for
this problem than in the source term problem. V levels of noise were used for
these problems and limit on the size of the added noise was determined by
the degree to which the reconstruction deviated from the actual solution.

Error smoothing was used on second order examples two and three to
demonstrate how the coefficient reconstruction could be improved by com-
pensating for the added noise. The best smoothing parameter «,,; was iden-
tified by succesively identifying Z, for a range of smoothing parameters while
calculating ||z — zs|| g for each. After the best version of the smoothed data
was identified, the best regularization parameter was identified for both the
smoothed and unsmoothed data. These are known as 3;, and 3}, respec-
tively. Finally, the Morozov principle was used to estimate the best regular-
ization parameter for both cases which are labeled as 33, and 33,. The L?,H'
semi-norm, and H' errors were calculated and compared to assess the per-
formance of the parameter identification. The results for the coefficient re-
construction are also compared.

In general, the Morozov principle was able to find comparable results when
compared to the brute force method. Where the undamped version of the
Morozov equation fell short, the damped version was generally able to pro-
vide a more satisfactory result. Furthermore, the Morozov principle became
very accurate when smoothing was applied to the data. Several Newton-type
and cubically convergent algorithms were implemented. In these tests it was
found that Newton’s method converged to (), in fractions of a second. The
cubic methods often shortened the time required to do this, but not in a sig-
nificant manner.

4.5.1 Second Order Examples

Example 4.5.1. Consider the second order problem in one-dimension where:
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The brute force method was employed in the same manner as the source
term section. Since this is a nonlinear problem employing the equation er-
ror functional, the regularization parameters are much larger, and the effect
adding noise has on the reproductions is much more noticeable. It can be
seen by the brute force reproductions below, the equation error functional
works well for small noise, but when 5 = .05 the noise introduces noticeable
inaccuracy into the reconstruction.

For this example, the Morozov equation produces over-regularized val-
ues. This same problem was observed in [25] where in some cases 3,; was
of a much larger magnitude than 3,,,. While the reproductions start off as
fairly accurate, largest noise parameter gives a significant deviation from the
brute force method. The damped version of the Morozov principle provides
an alternative which can reduce the estimation to a similar magnitude to the
brute force parameter. It can be seen that a damping parameter of 7 = 1
generates a set of parameters with much lower error values for all noise levels
but the smallest where damping actually under-regularizes the problem. The
larger noise levels contain noticeable levels of flattening when the Morozov
principle is used.

The cubically convergent methods took the fewest iterations and the least
amount of time to converge to a satisfactory estimation of ,,. Despite this,
the decrease in time for the cubic methods over Newton’s method was not
significant. In some cases the cubic methods either took about as long, or
slightly longer due to the larger number of necessary calculations.

Table 4.1 Brute Force Results

’ ) \ Bopt H' Error
0.0001 | 0.00020965 | 0.30564
0.001 | 0.0028665 | 0.51348
0.005 | 0.010663 0.70489
0.0075 | 0.014764 0.80309
0.01 0.019451 0.91302
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Table 4.2 Newton-Type Results

51

‘ § ‘ B ‘ H! Error ‘ Bis. Iter ‘ Bis. Time ‘ QN. Iter ‘ QN. Time ‘ N. Iter ‘ N. Time
0.0001 | 0.0006029 | 0.33704 | 32 0.11487 |39 0.054092 | 8 0.010742
0.001 |0.01319 |0.68537 |35 0.15354 | 10 0.013266 | 6 0.007805
0.005 | 0.20813 1.2514 36 0.11213 10 0.008747 | 5 0.006001
0.0075 | 0.58111 1.4835 |29 0.085677 | 11 0.01401 |7 0.006122
0.01 1.8623 1.6794 34 0.081709 | 12 0.017727 | 8 0.007819

Table 4.3 Cubic Method Results
) Cheb. Iter | Cheb. Time | Hal. Iter | Hal. Time | SHal. Iter | SHal, Time
0.0001 | 7 0.014318 7 0.014385 |7 0.013638
0.001 |5 0.009088 5 0.009986 |5 0.009116
0.005 |5 0.009274 5 0.010092 |5 0.009162
0.0075 | 5 0.006162 5 0.01036 5 0.009832
0.01 6 0.008257 6 0.012774 | 6 0.008989

16/y |1 1.2 1.4 1.6 1.8 2
.0001 | 1.9175e-05 | 0.00011024 | 0.00030784 | 0.00048997 | 0.00057152 | 0.00059532
.001 | 0.0014809 | 0.0040079 | 0.0070892 | 0.0096992 | 0.011412 0.012356
.005 | 0.05155 0.081123 0.10677 0.12787 0.14494 0.15864
.0075 | 0.16589 0.21911 0.26175 0.29671 0.32601 0.351
.01 0.46161 0.52277 0.56926 0.6063 0.63674 0.66235

Figure 4.1 H' Error for Damped Parameters
5/ 1 1.2 1.4 1.6 1.8 2
.0001 | 0.41949 | 0.31655 | 0.30983 | 0.32605 | 0.334 0.33631
.001 | 0.57325 | 0.52565 | 0.58724 | 0.63417 | 0.66074 | 0.67415
.005 | 0.94859 | 1.0443 | 1.1035 | 1.1429 | 1.1705 | 1.1906
.0075 | 1.213 1.2732 | 1.3121 | 1.3396 | 1.3602 | 1.3763
.01 1.4438 | 1.469 1.4859 | 1.4983 | 1.5078 | 1.5154
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Figure 4.2 Reconstructions Using 3,

Figure 4.3 Noise of .005 Figure 4.4 Noise of .0075

Figure 4.5 Noise of .01 Figure 4.6 Noise of .05

Figure 4.7 Reconstructions Using (3,

Figure 4.8 Noise of .001 Figure 4.9 Noise of .005

Figure 4.10 Noise of .0075 Figure 4.11 Noise of .01
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Example 4.5.2.

a(x) = beos(drx) + 1,

u(z) = sin(4nx).

This second example yields much more favorable results in terms of the
error levels. Five percent noise causes a noticeable malformation of the co-
efficient reconstruction, but a recognizable reconstruction is found for all
of the noise levels . The Morozov principle is able to identify a parameter
preserving the which produces a reconstruction which is similar to . In ex-
ample one, 3),; was on seperate orders of magnitude from f,,. In this case,
Bam was close enough to 5, that the reconstructions were nearly identical to
those produced using the brute force method. Even in the case of the largest
noise level ), is only twice as large as /3,,; which is a very small deviation
when compared to other tests in this paper and [25]. The damped results
were also comparable, but no consistent improvement over the undamped
method was produced using damping.

Newton’s method converged to /5, much more quickly than the quasi-
Newton method. The cubically convergent methods were able to outperform
the Newton type methods in several examples, but this was a marginal im-
provement in terms of convergence speed.

Table 4.4 Brute Force Results

) Bopt H' Error
0 2.0004e-08 | 0.097791
0.001 | 0.0018536 | 0.44649
0.005 | 0.012174 0.8215
0.0075 | 0.017902 0.94
0.01 0.023372 1.0373
0.05 0.1151 2.068
Table 4.5 Newton-Type Results

‘ 0 ‘ Bum ‘ H! Error ‘ Bis. Iter ‘ Bis. Time ‘ QN. Iter ‘ QN. Time ‘ N. Iter ‘ N. Time
le-14 | 3.0518e-05 | 0.11066 | 15 0.074762 | 12 0.026487 |11 0.026087
0.001 | 0.0029202 | 0.54435 |19 0.078098 | 10 0.019319 |8 0.013634
0.005 | 0.014763 0.96871 | 17 0.078988 | 9 0.01515 6 0.009948
0.0075 | 0.02214 1.1187 20 0.092362 | 9 0.013203 |6 0.008873
0.01 0.029608 1.2416 19 0.093537 | 8 0.012256 |5 0.01173
0.05 0.21437 2.4953 22 0.099909 | 12 0.022766 | 6 0.009903
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Table 4.6 Cubic Method Results
) Cheb. Iter | Cheb. Time | Hal. Iter | Hal. Time | SHal. Iter | SHal, Time
le-14 | 9 0.030169 8 0.031503 | 8 0.023043
0.001 |6 0.01433 6 0.015527 | 6 0.015517
0.005 |5 0.011845 5 0.012469 |5 0.012899
0.0075 | 5 0.010763 5 0.010421 |5 0.019068
0.01 5 0.012122 5 0.012696 |5 0.01302
0.05 4 0.009317 5 0.02096 5 0.012128
Table 4.7 Damped Regularization Parameters
16/y |1 1.2 |14 | 1.6 1.8 2
.0001 | 1.9175e-05 | 0.00011024 | 0.00030784 | 0.00048997 | 0.00057152 | 0.00059532
.001 | 0.0014809 | 0.0040079 | 0.0070892 | 0.0096992 | 0.011412 0.012356
.005 | 0.05155 0.081123 0.10677 0.12787 0.14494 0.15864
.0075 | 0.16589 0.21911 0.26175 0.29671 0.32601 0.351
.01 0.46161 0.52277 0.56926 0.6063 0.63674 0.66235
5/ 1 1.2 1.4 1.6 1.8 2
.0001 | 0.41949 | 0.31655 | 0.30983 | 0.32605 | 0.334 0.33631
.001 | 0.57325 | 0.52565 | 0.58724 | 0.63417 | 0.66074 | 0.67415
.005 | 0.94859 | 1.0443 | 1.1035 | 1.1429 | 1.1705 | 1.1906
.0075 | 1.213 1.2732 | 1.3121 | 1.3396 | 1.3602 | 1.3763
.01 1.4438 | 1.469 1.4859 | 1.4983 | 1.5078 | 1.5154
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Figure 4.12 Reconstructions Using f3,,,

Figure 4.13 Noise of .005 Figure 4.14 Noise of .0075

Figure 4.15 Noise of .01 Figure 4.16 Noise of .05

Figure 4.17 Reconstructions Using 3,

Figure 4.18 Noise of .005 Figure 4.19 Noise of .0075

Figure 4.20 Noise of .01 Figure 4.21 Noise of .05
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In this instance smoothing had a very beneficial impact on the calcula-
tion of both the optimal regularization parameter, and the Morozov param-
eter. A cursory glance on the results from the smooth and unsmoothed data
shows that smoothing produces a noticeable reduction in the H' error pro-
duced by comparing the noisy data to Z. This comes at the expense of a large
increase in the L? error. This latter impact is evident in the graphs on the
next page. The red line which represents the noisy data without smoothing
exhibits sharp gyrations. The black line denoting the smoothed data is flat-
tened by with a reduction in the sudden changes introduced by noise.

Using the brute force method shows that smoothing produces a notice-
able effect on the quality of the reconstructions of the source term. First, the
H! error is reduced. Additionally, the L? error is also reduced meaning that
not only will the reconstructions using smoothed data exhibit a smoother
general shape, but that the flattening noted for the smoothed data will not be
repeated. In the graphs of these reconstructions it can be seen that the blue
line representing a(/3;,,) resembles a (black) much more than a(f;,) (red).

In terms of the quality of the reconstructions, it can be seen that those
produced with smoothing and the Morozov principle are much higher qual-
ity. The estimates of the regularization parameter are much closer to the op-
timal parameter and the overcompensation that occurs with large amounts
of noise is also curbed. With the largest level of added noise 33, is 0.25758
which is comparable to 35, = 0.21088. On the other hand, 3}, = 0.66454
while the best parameter found with noise ( (‘fpt) is much smaller at 0.23952.
As a result, for this noise level the level of H! error for the Morozov principle
on smoothed data is about three-quarters of the result if no processing of the
data is utilized.
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Table 4.8 Error from Noisy Data

Noise | L? Error | H'S Error | H' Error
0.01 0.0045342 | 0.30283 0.30287
0.02 0.0090684 | 0.60566 0.60573
0.03 0.013603 | 0.90849 0.9086
0.04 0.018137 1.2113 1.2115
0.05 0.022671 1.5142 1.5143
0.06 0.027205 1.817 1.8172
0.07 0.031739 | 2.1198 2.1201
0.08 0.036274 | 2.4226 2.4229
0.09 0.040808 | 2.7255 2.7258
0.1 0.045342 | 3.0283 3.0287
0.11 0.049876 | 3.3311 3.3315
0.12 0.05441 3.634 3.6344

Table 4.9 Error from Smoothing Data

Noise | o L?Error | H'S Error | H! Error
0.01 0 0.0045342 | 0.30283 0.30287
0.02 0 0.0090684 | 0.60566 0.60573
0.03 0.005005 | 0.01471 0.90688 0.907
0.04 0.015015 | 0.022558 1.206 1.2062
0.05 0.02002 | 0.028613 | 1.5017 1.502
0.06 0.035035 | 0.039104 1.793 1.7934
0.07 0.05005 | 0.049748 | 2.0793 2.0799
0.08 0.065065 | 0.060294 | 2.3595 2.3603
0.09 0.085085 | 0.073101 | 2.6331 2.6341
0.1 0.10511 0.085609 | 2.8993 2.9005
0.11 0.13013 | 0.10012 3.1577 3.1593
0.12 0.15516 | 0.11414 3.4078 3.4097

S7
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Figure 4.22 Noise of .02 Figure 4.23 Noise of .04

Figure 4.24 Noise of .06 Figure 4.25 Noise of .08

Figure 4.26 Noise of .1 Figure 4.27 Noise of .12
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Table 4.10 Coefficient Reconstructions with Noisy Data

Noise | 3, L?Error | H'S Error | H' Error
0.01 0.017413 | 0.045041 | 1.1067 1.1076
0.02 0.041529 | 0.071009 | 1.4458 1.4475
0.03 | 0.063285 | 0.088959 | 1.6591 1.6615
0.04 0.083438 | 0.10357 | 1.8216 1.8245
0.05 |0.10279 | 0.11688 | 1.9566 1.9601
0.06 0.12182 | 0.12989 | 2.0744 2.0784
0.07 |0.14083 | 0.1432 2.1803 2.185
0.08 0.15999 | 0.15712 | 2.2773 2.2828
0.09 |0.1794 0.17182 | 2.3674 2.3736
0.1 0.19912 | 0.18739 | 2.4516 2.4587
0.11 0.21916 | 0.20381 | 2.5307 2.5389
0.12 0.23952 | 0.22106 | 2.6053 2.6146

Table 4.11 Coefficient Reconstructions with Smoothed Data

Noise | 3, L?Error | H'S Error | H' Error
0.01 0.017413 | 0.045041 | 1.1067 1.1076
0.02 0.041529 | 0.071009 | 1.4458 1.4475
0.03 | 0.063279 | 0.087928 | 1.6536 1.656
0.04 0.083072 | 0.10056 | 1.8055 1.8083
0.05 |0.10183 | 0.11215 | 1.9358 1.939
0.06 0.11938 | 0.12143 | 2.0397 2.0433
0.07 |0.13628 | 0.13025 | 2.1332 2.1372
0.08 0.15273 | 0.1387 2.2193 2.2236
0.09 |0.16826 | 0.14646 | 2.2956 2.3003
0.1 0.18336 | 0.15402 | 2.3676 2.3726
0.11 0.19736 | 0.16107 | 2.4324 2.4378
0.12 0.21088 | 0.16795 | 2.4944 2.5
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Figure 4.28 Noise of .02 Figure 4.29 Noise of .04

Figure 4.30 Noise of .06 Figure 4.31 Noise of .08

Figure 4.32 Noise of .1 Figure 4.33 Noise of .12



4.5. Numerical Experiments

Table 4.12 Morozov Results with Noisy Data

Noise | /33, L?Error | H'S Error | H' Error
0.01 0.022645 | 0.051818 | 1.119 1.1202
0.02 0.045969 | 0.075161 | 1.4491 1.4511
0.03 0.069723 | 0.09387 | 1.6633 1.666
0.04 0.095096 | 0.11107 | 1.831 1.8343
0.05 |0.12339 | 0.12814 | 1.9772 1.9814
0.06 0.15617 | 0.14586 | 2.1152 2.1202
0.07 |0.19547 | 0.16472 | 2.2533 2.2593
0.08 0.24413 | 0.18503 | 2.398 2.4051
0.09 |0.30631 | 0.20699 | 2.554 2.5624
0.1 0.38851 | 0.23075 | 2.7254 2.7352
0.11 0.50147 | 0.25639 | 2.9149 2.9262
0.12 0.66454 | 0.28398 | 3.1241 3.1369
Table 4.13 Morozov Results with Smoothed Data

Noise | 33, L?Error | H'S Error | H' Error
0.01 0.022645 | 0.051818 | 1.119 1.1202
0.02 0.045969 | 0.075161 | 1.4491 1.4511
0.03 0.068583 | 0.092021 | 1.6565 1.6591
0.04 0.090581 | 0.10556 | 1.8096 1.8127
0.05 |[0.11388 | 0.11914 | 1.9437 1.9473
0.06 0.13545 | 0.12973 | 2.0508 2.0549
0.07 | 0.15734 | 0.13998 | 2.1487 2.1532
0.08 0.17951 | 0.14982 | 2.2397 2.2447
0.09 | 0.20027 | 0.15853 | 2.3201 2.3255
0.1 0.22096 | 0.16693 | 2.3962 2.402
0.11 0.23951 | 0.17437 | 2.4637 2.4699
0.12 0.25758 | 0.18154 | 2.5281 2.5346
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Figure 4.34 Noise of .02 Figure 4.35 Noise of .04

//’ V /
Figure 4.36 Noise of .06 Figure 4.37 Noise of .08
Figure 4.38 Noise of .1 Figure 4.39 Noise of .12

Example 4.5.3. A third second order example reinforces the first two:

a(x) = log(z + 2),

u(r) = (2" — %),

In the case of the brute force method, notable flattening of the coefficient
reconstructions was evident for noise levels above 1% and 5%. The Morozov
principle was able to identify ), which was about one order of magnitude
larger than f3,,,. As aresult a noticeably larger error is evident for larger levels
of noise. The damped version of the Morozov equation performs better for
the larger noise levels, but did not offer any consistent improvements.

Of the numerical methods, Newton’s method performs the best of the in this
example. The cubic methods require fewer iterations but the extra computa-
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tion time makes them fall short in most cases. The cubic methods were able
to outperform Newton’s method for 1% noise The quasi-Newton method per-
forms better in this problem in context to other methods, but still takes two
or three more times to converge than Newton’s method.

Table 4.14 Brute Force Results

) Bopt H' Error
0 1.0802e-06 | 0.1623
0.001 0.00013611 | 0.19698
0.005 | 0.0010952 | 0.20865
0.0075 | 0.0020953 | 0.21455
0.01 0.003388 0.2239
0.05 0.025674 0.48028

Table 4.15 Newton-Type Results

‘ 5 ‘ By ‘ H' Error ‘ Bis. Iter ‘ Bis. Time ‘ QN. Iter ‘ QN. Time ‘ N. Iter ‘ N. Time
0.001 0.0029202 | 0.54435 | 19 0.078098 | 10 0.019319 | 8 0.013634
0.005 |0.014763 | 0.96871 | 17 0.078988 | 9 0.01515 6 0.009948
0.0075 | 0.02214 1.1187 20 0.092362 | 9 0.013203 | 6 0.008873
0.01 0.029608 | 1.2416 19 0.093537 | 8 0.012256 | 5 0.01173
0.05 0.21437 2.4953 22 0.099909 | 12 0.022766 | 6 0.009903

Table 4.16 Cubic Method Results
1) Cheb. Iter | Cheb. Time | Hal. Iter | Hal. Time | SHal. Iter | SHal, Time
0.001 6 0.015026 7 0.01846 5 0.012832
0.005 |5 0.011954 6 0.015487 | 4 0.009434
0.0075 | 4 0.009135 6 0.015982 | 4 0.009549
0.01 4 0.010284 4 0.009561 |4 0.009804
0.05 5 0.011862 4 0.020215 |4 0.010956

Table 4.17 Damped Regularization Parameters
oy |1 1.2 1.4 1.6 1.8 2
.001 6.6757e-06 | 4.5776e-05 | 0.00015259 | 0.00030518 | 0.00048828 | 0.00048828
.005 | 0.0001297 | 0.00052643 | 0.001297 0.0021667 | 0.0027161 | 0.0029602
.0075 | 0.00030327 | 0.0010681 | 0.0023499 | 0.0036316 | 0.0044098 | 0.004776
.01 0.00057411 | 0.0018196 | 0.0036697 | 0.0053406 | 0.0063477 | 0.0068359
.05 0.059181 0.088432 0.1097 0.12498 0.13603 0.14406
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5/ 1 1.2 1.4 1.6 1.8 2
.001 | 0.44009 | 0.21206 | 0.19707 | 0.20016 | 0.20355 | 0.20355
.005 | 0.3558 | 0.21758 | 0.20895 | 0.21254 | 0.21496 | 0.21599
.0075 | 0.35067 | 0.22461 | 0.21475 | 0.2185 | 0.22141 | 0.22281
.01 0.35096 | 0.23445 | 0.22404 | 0.22796 | 0.23144 | 0.23326
.05 0.53775 | 0.59392 | 0.62792 | 0.64923 | 0.66322 | 0.67272

Figure 4.40 Reconstructions Using [,

Figure 4.41 Noise of .001 Figure 4.42 Noise of .005

Figure 4.43 Noise of .0075 Figure 4.44 Noise of .01
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Figure 4.45 Reconstructions Using [y,

Figure 4.46 Noise of .001 Figure 4.47 Noise of .005

Figure 4.48 Noise of .0075 Figure 4.49 Noise of .01

Noticeable improvements in the reconstruction of the coefficient term are
observable with the use of data smoothing. In the instance of 8% noise be-
ing added to the data, smoothing reduces ||Z — Z||3;, to roughly 72% of
|Z — Zs||3;,. Once again, part of the disadvantage of this reduction is that
|Z — Z||3. is made significantly larger than ||Z — Z;||3,. This is evident in the
graphs for this example as flattening similar to that observed in example two
is evident.

The use of the smoothed data in the identification of the regularization pa-
rameter by brute force shows a drastic improvement in the errors for the re-
constructions. In the case where 8% noise is added smoothing gives a repro-
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duction of the coefficient term which a H' error that is 73.8% of that obtained
without smoothing. The L? error is also experiences a significant decrease in
the coefficient reconstructions. When the reconstructions below are viewed
as a survey of the reproductions shows that the coefficient reproductions de-
rived from smoothed data maintains a fidelity to the noiseless data which is
far less impacted by noise than the unprocessed noisy data.

The Morozov principle when utilized on the unsmoothed data gives param-
eters which show the familiar overdamping observed in earlier examples. In
this case, the root finding algorithm identifies the regularization parameter
as thirty for the three largest noise levels. This number was picked as an
upper limit for the parameter. At this level of regularization the coefficient
which is recovered (red) is not recognizeable when shown in context to the
actual term (black). However, the Morozov principle along with smoothing
allows for the identification of a regularization parameter which is not only
much smaller, but which also carries with it a much smaller error level. The
result is that the blue line representing the reconstruction using the Morozov
principle with smoothed data retains much more of the actual shape for the
coefficient term.
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Table 4.18 Error from Noisy Data

Noise | L? Error H'S Error | H! Error
0.01 0.00049329 | 0.034377 0.03438
0.02 0.00098658 | 0.068753 0.068761
0.03 0.0014799 | 0.10313 0.10314
0.04 0.0019732 | 0.13751 0.13752
0.05 0.0024665 | 0.17188 0.1719
0.06 0.0029598 | 0.20626 0.20628
0.07 0.003453 0.24064 0.24066
0.08 0.0039463 | 0.27501 0.27504

Table 4.19 Error from Smoothed Data
Noise | o L?Error | H'S Error | H' Error
0.01 0.015015 | 0.0010059 | 0.03404 0.034055
0.02 0.06006 | 0.0034846 | 0.066476 0.066567
0.03 0.13514 | 0.007188 | 0.096218 0.096486
0.04 0.23023 | 0.011268 | 0.12269 0.12321
0.05 0.35536 | 0.015801 0.1457 0.14655
0.06 0.50551 | 0.020291 | 0.16541 0.16665
0.07 0.67568 | 0.024448 | 0.18215 0.18378
0.08 0.87087 | 0.028319 | 0.1963 0.19833
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Figure 4.50 Noisy Data With and Without Smoothing

Figure 4.51 Noise of .02 Figure 4.52 Noise of .04

Figure 4.53 Noise of .06 Figure 4.54 Noise of .08
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Table 4.20 Coefficient Reconstructions with Noisy Data

Noise | 37, L?Error | H'S Error | H' Error
0.01 0.00091724 | 0.027478 | 0.19345 0.19539
0.02 | 0.0028052 | 0.069267 | 0.20318 0.21466
0.03 0.0064047 | 0.12404 | 0.21303 0.24651
0.04 | 0.0098348 | 0.17761 | 0.21895 0.28193
0.05 0.013038 0.22819 | 0.22358 0.31946
0.06 | 0.016095 0.27558 | 0.22738 0.35728
0.07 0.019038 0.3197 0.23051 0.39414
0.08 | 0.021883 0.36056 | 0.23311 0.42936
Table 4.21 Coefficient Reconstructions with Smoothed Data

Noise | 35, L?Error | H'S Error | H' Error
0.01 0.00091798 | 0.023649 | 0.1933 0.19474
0.02 | 0.0029805 | 0.048083 | 0.20488 0.21044
0.03 0.0069582 | 0.085604 | 0.21473 0.23117
0.04 | 0.010322 0.11833 | 0.22089 0.25059
0.05 | 0.013068 0.14813 | 0.22618 0.27038
0.06 | 0.015319 0.17065 | 0.23107 0.28725
0.07 | 0.017072 0.1893 0.23556 0.3022
0.08 0.01839 0.20659 | 0.23967 0.31641
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/

Figure 4.55 Noise of .02

A

1

Figure 4.57 Noise of .06

Figure 4.56 Noise of .04

Figure 4.58 Noise of .08

Table 4.22 Morozov Results with Noisy Data

Noise | (35 L? Error | H'S Error | H' Error
0.01 0.0047141 | 0.064324 | 0.19955 0.20966
0.02 0.01217 0.1565 0.20128 0.25497
0.03 0.023983 | 0.26309 | 0.2085 0.33569
0.04 0.043624 | 0.37761 | 0.22792 0.44107
0.05 0.078721 | 0.49645 | 0.26153 0.56113
0.06 0.14871 0.61627 | 0.30378 0.68708
0.07 0.32026 0.73391 | 0.34716 0.81187
0.08 1.0649 0.84653 | 0.38623 0.93047

Table 4.23 Morozov Results with Smoothed Data
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Noise | 3, L? Error | H'S Error | H' Error
0.01 0.0043401 | 0.05153 | 0.19792 0.20452
0.02 0.0093036 | 0.10325 | 0.19804 0.22335
0.03 0.01388 0.14781 | 0.1999 0.24861
0.04 0.017708 | 0.1883 0.20118 0.27556
0.05 0.020334 | 0.21895 | 0.20217 0.29801
0.06 0.021905 | 0.24386 | 0.2028 0.31717
0.07 0.022714 | 0.26595 | 0.20303 0.33459
0.08 0.022822 | 0.28384 | 0.20321 0.34909

Figure 4.59 Noise of .02 Figure 4.60 Noise of .04

Figure 4.61 Noise of .06 Figure 4.62 Noise of .08

4.6 Conclusion

This chapter showed how a mathematical framework analogous to that used
for the source term identification problem in chapter two could be used ap-
plied to the classical inverse problem by using the equation error functional.
A computational framework was given and shown to be effective on a wide
range of examples involving the elliptic partial differential equation in one
and two dimensions.

The Morozov principle was shown to be able to identify satisfactory substi-
tutes for f,,.. The time it took to identify ,, was a fraction of the time that it
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took to employ the brute force method for these simple examples and would
presumably hold for larger scale or more complex problems. Where the un-
damped Morozov principle fell short the damped version was sometimes
able to produce more accurate results. This strategy for estimating the regu-
larization parameter was shown to be further improved using error smooth-
ing which also allowed for much larger levels of noise to be considered.

The Morozov principle was a reliable alternative to the trial and error method
of estimating the regularization parameter for most cases. The equation er-
ror approach’s reliance on the data introduces susceptibility to noise, which
limited the size of the noise being introduced to the data. To counteract this,
error smoothing was implemented on several examples to demonstrate the
improvement of the results. Error smoothing not only greatly increased the
amount of noise it was possible to generate a reconstruction from, but also
improved the quality of the result of the Morozov principle when compared
to the optimal regularization parameter. In general, Newton’s method was
found to be the most effective algorithm for solving the root finding problem.
While slight improvements in convergence time were gained with the cubic
methods, the improvement was not enough to justify a clear preference for
the cubic methods over the quadratic methods.



Bibliography

[1]

(2]

R. Acar. Identification of the coefficient in elliptic equations. SIAM J.
Control Optim., 31(5):1221-1244, 1993.

M. E Al-Jamal and M. S. Gockenbach. Stability and error estimates
for an equation error method for elliptic equations. Inverse Problems,
28(9):095006, 15, 2012.

G. Alessandrini. An identification problem for an elliptic equation in two
variables. Ann. Mat. Pura Appl. (4), 145:265-295, 1986.

H. Ammari, P Garapon, and E Jouve. Separation of scales in elasticity
imaging: a numerical study. J. Comput. Math., 28(3):354-370, 2010.

H. T. Banks and K. Kunisch. Estimation techniques for distributed pa-
rameter systems, volume 1 of Systems & Control: Foundations & Applica-
tions. Birkhduser Boston, Inc., Boston, MA, 1989.

Z. Chen and J. Zou. An augmented Lagrangian method for identifying
discontinuous parameters in elliptic systems. SIAM J. Control Optim.,
37(3):892-910, 1999.

E. Crossen, M. S. Gockenbach, B. Jadamba, A. A. Khan, and B. Win-
kler. An equation error approach for the elasticity imaging inverse prob-
lem for predicting tumor location. Comput. Math. Appl., 67(1):122-135,
2014.

H. W. Engl and P. Kiigler. The influence of the equation type on itera-
tive parameter identification problems which are elliptic or hyperbolic
in the parameter. European J. Appl. Math., 14(2):129-163, 2003.



BIBLIOGRAPHY 74

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

M. S. Gockenbach. The output least-squares approach to estimating
Lamé moduli. Inverse Problems, 23(6):2437-2455, 2007.

M. S. Gockenbach, B. Jadamba, and A. A. Khan. Numerical estimation of
discontinuous coefficients by the method of equation error. Int. J. Math.
Comput. Sci., 1(3):343-359, 2006.

M. S. Gockenbach, B. Jadamba, and A. A. Khan. Equation error approach
for elliptic inverse problems with an application to the identification of
Lamé parameters. Inverse Probl. Sci. Eng., 16(3):349-367, 2008.

M. S. Gockenbach and A. A. Khan. Identification of Lamé parameters in
linear elasticity: a fixed point approach. J. Ind. Manag. Optim., 1(4):487-
497, 2005.

M. S. Gockenbach and A. A. Khan. An abstract framework for elliptic
inverse problems. I. An output least-squares approach. Math. Mech.
Solids, 12(3):259-276, 2007.

M. S. Gockenbach and A. A. Khan. An abstract framework for elliptic
inverse problems. II. An augmented Lagrangian approach. Math. Mech.
Solids, 14(6):517-539, 2009.

K. Ito and K. Kunisch. The augmented Lagrangian method for parameter
estimation in elliptic systems. SIAM J. Control Optim., 28(1):113-136,
1990.

B. Jadamba, A. A. Khan, G. Rus, M. Sama, and B. Winkler. A new convex
inversion framework for parameter identification in saddle point prob-
lems with an application to the elasticity imaging inverse problem of
predicting tumor location. SIAM J. Appl. Math., 74(5):1486-1510, 2014.

B. Jadamba, A. A. Khan, and M. Sama. Inverse problems of parameter
identification in partial differential equations. In Mathematics in science
and technology, pages 228-258. World Sci. Publ., Hackensack, NJ, 2011.

B. Jin and P. Maass. Sparsity regularization for parameter identification
problems. Inverse Problems, 28(12):123001, 70, 2012.

T. Kdrkkdinen. An equation error method to recover diffusion from the
distributed observation. Inverse Problems, 13(4):1033-1051, 1997.



BIBLIOGRAPHY 75

(20]

(21]

(22]

(23]

(24]

(25]

(26]

(27]

(28]

(29]

(30]

(31]

J. B. Khan, Akhtar. Numerical estimation of discontinuous coefficients
by the method of equation error. International Journal of Mathematics
and Computer Science, pages 343-359, 2006.

I. Knowles. Parameter identification for elliptic problems. J. Comput.
Appl. Math., 131(1-2):175-194, 2001.

R. V. Kohn and B. D. Lowe. A variational method for parameter identifi-
cation. RAIRO Modél. Math. Anal. Numér., 22(1):119-158, 1988.

P. Kiigler. A parameter identification problem of mixed type related to
the manufacture of car windshields. SIAM J. Appl. Math., 64(3):858-877
(electronic), 2004.

K. Kunisch and J. Zou. Iterative choices of regularization parameters in
linear inverse problems. Inverse Problems, 14(5):1247-1264, 1998.

K. Kunisch and J. Zou. Iterative choices of regularization parameters in
linear inverse problems. Inverse Problems, 14(5):1247, 1998.

J. Li and J. Zou. A multilevel model correction method for parameter
identification. Inverse Problems, 23(5):1759-1786, 2007.

S. Manservisi and M. Gunzburger. A variational inequality formulation
of an inverse elasticity problem. Appl. Numer. Math., 34(1):99-126, 2000.

G. R. Richter. An inverse problem for the steady state diffusion equation.
SIAM J. Appl. Math., 41(2):210-221, 1981.

T. Tucciarelli and D. P. Ahlfeld. A new formulation for transmissivity es-
timation with improved global convergence properties. Water Resources
Research, 27(2):243-251, 1991.

K. van den Doel and U. M. Ascher. Dynamic level set regularization
for large distributed parameter estimation problems. Inverse Problems,
23(3):1271-1288, 2007.

L. W. White. Estimation of elastic parameters in beams and certain
plates: H' regularization. J. Optim. Theory Appl., 60(2):305-326, 1989.



BIBLIOGRAPHY 76

[32] L. W. White. Estimation of elastic parameters in a nonlinear elliptic
model of a plate. Appl. Math. Comput., 42(2, part 11):139-187, 1991.

[33] G.Yuan and M. Yamamoto. Lipschitz stability in inverse problems for a
Kirchhoff plate equation. Asymptot. Anal., 53(1-2):29-60, 2007.

[34] J. Zou. Numerical methods for elliptic inverse problems. Int. J. Comput.
Math., 70(2):211-232, 1998.

[35] Y. Zou, L. Wang, and R. Zhang. Cubically convergent methods for select-
ing the regularization parameters in linear inverse problems. Journal of
Mathematical Analysis and Applications, 356(1):355-362, 2009.



	The Morozov Discrepancy Principle for the Elliptic Inverse Problem
	Recommended Citation

	tmp.1453475126.pdf.juUIs

