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Abstract

Inverse problems of parameter identification and source identification in par-
tial differential equations are highly ill-posed problems and for their satis-
factory theoretical and numerical treatment some sort of regularization is
necessary. In this thesis, we pose this inverse problem as an optimization
problem and perform the regularization in Tikhonov sense. The most cru-
cial aspect of the study of the regularized optimization problem is a proper
selection of the regularization parameter. Although the theory for one of the
most efficient methods for choosing an optimal regularization parameter, the
so-called Morozov discrepancy principle, is well-developed for linear inverse
problems, its use for nonlinear inverse problems is rather heuristic. In this
thesis, we investigate the inverse problem of parameter identification using
an equation error approach in which the coefficient appear linearly. Using
the results known for linear inverse problems, we develop a rigorous Mo-
rozov discrepancy principle for nonlinear inverse problems. We present a
detailed computational experimentation to test the feasibility of the devel-
oped approach. We also study the inverse problem of source identification in
fourth-order boundary value problem.
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Chapter 1

Introduction

The conventional way a problem in applied mathematics is presented in-
volves the presentation of a model from which a solution to the problem is
determined. In applications this is not always the case. Often a practitioner
is presented with a body of information that often incorporates inconsistent
information (noise). It can often prove valuable to use this information to
identify the parameters for a model which may be used to better understand
the phenomena producing the initial data.

A simple example of this is determining the solution to a differential equa-
tion. In this case the differential equation is referred to as a forward problem
whereas the case where the model is specified from data is the inverse prob-
lem. The importance of accurately estimating the model parameters based
on data is manifested in a wide range of fields, most notably statistics, geo-
physics, engineering, and imaging.

For further clarification, we consider the following elliptic boundary value
problem (BVP)

−∇ · (q∇u) = f in Ω, u = 0 on ∂Ω, (1.1)

where Ω is a suitable domain in R2 or R3 and ∂Ω is its boundary. The above
BVP models interesting real-world problems and has been studied in great
detail. For instance, in (1.1), u = u(x) may represent the steady-state temper-
ature at a given point x of a body; then q would be a variable thermal conduc-
tivity coefficient, and f the external heat source. The system (1.1) also mod-
els underground steady state aquifers in which the parameter q is the aquifer
transmissivity coefficient, u is the hydraulic head, and f is the recharge. The
inverse problem in the context of the above BVP is to estimate the coefficient
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q from a measurement z of the solution u. This inverse problem has been the
subject of numerous papers, see [1, 5, 21]. Numerous other inverse problems
for complicated boundary value problems and diverse applications can be
found in [3, 4, 8, 17, 18, 26, 30, 27, 31, 33].

In recent years, the field of inverse problems has emerged as among one
of the most vibrant and expanding branches of applied and industrial math-
ematics. Certainly the primary reason behind this is the ever-growing num-
ber of real-world situations that are being modeled and studied in a uni-
fied framework of inverse problems. However, the theoretical aspects of in-
verse problems are also challenging and require a fine blending of various
branches of mathematics.

A number of approaches to the aforementioned inverse problem have
been proposed in the literature; most involve either regarding (1.1) as a hy-
perbolic PDE in q or posing an optimization problem whose solution is an es-
timate of q. The work by Richter [28], who used a finite difference scheme to
solve the PDE for q, is an example of the first approach. Furthermore, the ap-
proach of reformulating (1.1) as an optimization problem is divided into two
possibilities, namely either formulating the problem as an unconstrained op-
timization problem or treating it as a constrained optimization problem, in
which the PDE itself is the constraint. Among the optimization-based tech-
niques the output least-squares method is among the most widely investi-
gated methods. The output least-squares approach minimizes the functional

q → ‖u(q)− z‖2, (1.2)

where z is the data (the measurement of u) and u(q) solves the variational
form of (1.1) given by∫

Ω

q∇u · ∇v =

∫
Ω

fv, for all v ∈ H1
0 (Ω). (1.3)

A known deficiency of the output least squares functional is that it often fails
to be convex.

There are other functionals that have been used for the numerical solv-
ability of the above inverse problem. For example, the equation error method
(cf. [1, 2, 19]), consists of minimizing the functional

q → 1

2
‖∇ · (q∇z) + f‖2

H−1(Ω)
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where H−1(Ω) is the topological dual of H1
0 (Ω) and z is the data. In the same

vein, Kohn and Lowe [22] proposed a variational method that combines fea-
tures of the OLS and equation error methods. Ito and Kunisch [15] and Chen
and Zou [6] developed an augmented Lagrangian algorithm to solve the OLS
problem by treating the PDE as an explicit constraint.

In a related work, Knowles [21] proposed using a coefficient-dependent
norm in the OLS setting

q →
∫
q∇(u(q)− z) · ∇(u(q)− z), (1.4)

where z is the data (the measurement of u) and u(a) solves (1.3). Knowles [21]
established that the above functional is convex. We note that the above func-
tional, although in a discrete setting, was first proposed by Tucciarelli and
Ahlfeld [29], who also explored its convexity. In [13], a new modified out-
put least-squares (MOLS) was proposed to extend (1.4) and its convexity was
proved in an abstract setting. Studies related to MOLS functional and its ex-
tensions can be found in [10, 12, 14, 16, 34].

Nonlinear inverse problems of parameter identification and source iden-
tification in partial differential equations are highly ill-posed problems and
for their satisfactory theoretical and numerical treatment some sort of regu-
larization is necessary. For example, the regularized analogue of the output
least-squares approach results in the following optimization problem: Find q
by solving

min J(q) := ‖u(q)− z‖2 + ε‖q‖2, (1.5)

where z is the data, ε > 0 is the regularization parameter, and ‖q‖2 is the
regularizer.

One of the crucial aspect of solving various optimization problems, emerg-
ing from different formulations, is a proper selection of the regularization
parameter. If the parameter is too small then it does not provide the much
needed stability, moreover, if it is too large then the solution of the regular-
ized problem might not offer a good approximation.

Although the theory for one of the most efficient methods for choosing an
optimal regularization parameter, the so-called Morozov discrepancy prin-
ciple, is well-developed for linear inverse problems, its use for nonlinear in-
verse problems is rather heuristic. In this thesis, we investigate the inverse
problem of parameter identification using an equation error approach in which
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the coefficient appears linearly. Using the results known for linear inverse
problems, we develop a rigorous Morozov discrepancy principle for nonlin-
ear inverse problems. We present a detailed computational experimentation
to test the feasibility of the developed approach. We also study the inverse
problem of source identification in fourth-order boundary value problem.

The contents of this thesis are organized into four sections. In Chapter 2
we consider an equation error approach for the fourth-order boundary value
problems. The objective of this chapter is show that under stronger condi-
tions on the data, weaker conditions can be imposed on the regularization
space. This chapter also shows that the equation error formulation results in
an unconstrained optimization problem where in the main term the coeffi-
cient appears linearly. This formulation is precisely what is needed to extend
the Morozov principle from linear inverse problems to the nonlinear ones.

In Chapter 3 we discuss the Morozov principle developed by Kunisch and
Zou [24]. We conduct some numerical experiments for the source identifica-
tion problem in certain boundary value problems.

Chapter 4 presents a Morozov principle for nonlinear inverse problems
through the equation error formulation. We present a rigorous treatment of
the Morozov principle. We present numerical examples to show the feasibil-
ity of the proposed framework.



Chapter 2

An Equation Error Approach with
H1 Regularization

This chapter deals with the nonlinear inverse problem of identifying a vari-
able parameter in fourth-order partial differential equations using an equa-
tion error approach. These equations arise in several important applications
such as car windscreen modeling, deformation of plates, etc. To counter the
highly ill-posed nature of the considered inverse problem, a regularization
must be performed. The main contribution of this work is to show that the
equation error approach permits the use of H1 regularization whereas other
optimization-based formulations commonly use H2 regularization. We give
the existence and convergence results for the equation error formulation.
An illustrative numerical example is given to show the feasibility of the ap-
proach.

2.1 Introduction

Let Ω be a bounded open domain in R2 with a sufficiently smooth boundary
Γ and let f ∈ L2(Ω) be a given function. Consider the following fourth-order
elliptic boundary value problem

∆(a∆u) = f in Ω, (2.1)
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augmented with the clamped boundary conditions,

u = 0 on Γ, (2.2a)
∂u

∂n
= 0 on Γ. (2.2b)

In this work, our objective is to study the inverse problem of identifying
the material parameter a from a measurement z of u. Applications of this
study are in beam and plate models as well as car windshield modeling (see
[23, 31]). This nonlinear inverse problem has been explored using the output
least squares (OLS) approach in which one attempts to find a minimizer of
the functional

J(a) :=
1

2
‖u(a)− z‖2,

defined by using a suitable norm (see White [32]). Here z is the data (a mea-
surement of u) and u(a) is the unique solution of (2.1) that corresponds to the
material parameter a,

One of the primary obstacles in a satisfactory treatment of the OLS-based
optimization framework is due to the fact that the OLS, in general, is non-
convex. Our objective then is to investigate an equation error approach for
solving the nonlinear inverse problem of identifying the material parameter
a. In contrast to the OLS based optimization approach, the equation error ap-
proach results in solving a convex optimization problem. See also [2, 7, 9, 10,
11, 12, 13, 14, 11, 17, 16] for recent developments in parameter identification
problems.

We emphasize that the equation error approach has two advantages over
the OLS approach. Firstly, it leads to a convex optimization problem and
hence it only possesses global solutions. Secondly, the equation approach is
computationally quite inexpensive as there is no underlying variational prob-
lem to be solved. On the other hand, a deficiency of the approach is that, due
to the fact that it relies on differentiating the data, it is quite sensitive to data
contamination.

The equation error approach has been studied in the context of the fol-
lowing simpler second-order elliptic boundary valued problem:

−∇ · (a∇u) = f in Ω, (2.3a)

u = 0 on Γ. (2.3b)
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For (2.3), the equation error approach consists of finding a minimizer of
the functional

a→ 1

2
‖∇ · (a∇z) + f‖2

H−1(Ω),

where H−1(Ω) is the topological dual of H1
0 (Ω) and z is again the measured

data.
In this chapter, we extend the equation error approach to identify the co-

efficient a in the fourth-order boundary value problem (2.1). Our strategy is
motivated by the ideas presented originally by Acar [1] and Kärkkäinen [19]
for (2.3) (see also [5]). Besides giving an existence theorem and a convergence
result for the discretized problem, we also some numerical examples.

This chapter is divided into four main sections. Section 2 provides es-
sential background material for the problem and poses the solution of the
inverse problem as a solvable minimization problem. Section 3 examines the
stability of the equation error method and Section 4 provides a brief numer-
ical example to show the preliminary computational feasibility of the pro-
posed method.

2.2 Equation Error Approach

The variational formulation of (2.1) will be instrumental in formulating the
equation error approach. The space suitable for the variational formulation
is given by

V := {v ∈ H2(Ω) : u =
∂u

∂n
= 0 on Γ}.

By multiplying (2.1) by a test function v ∈ V and repeatedly using the
well-known Green’s formula we obtain the following variational formulation
of (2.1): Find u ∈ V such that∫

Ω

a∆u∆v =

∫
Ω

fv, for every v ∈ V. (2.4)

For a fixed pair (a, w) ∈ L∞(Ω) × V, we define the maps E(a, w) : V → V ∗

and m : V → R by

E(a, w)(v) =

∫
Ω

a∆w∆v,

m(v) =

∫
Ω

fv.
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We note that, although the functional E(a, w) was defined for fixed a ∈
L∞(Ω), w ∈ V , it remains well-defined for a ∈ L2(Ω) and w ∈ V ∩W 2,∞ :=

V ∞. In other words, we can sacrifice some regularity in a by requiring more
regularity of u. This fact will play an important role below.

We first prove the following technical result for later use.

Lemma 2.2.1. Assume that u ∈ V ∞, a ∈ L2(Ω), and {an} ⊂ L2(Ω) is a sequence
such that an → a in L2(Ω). Then E(an, u)→ E(a, u) in V ∗.

Proof. We begin by showing that the following inequality holds:

‖E(a, u)‖V ∗ ≤ ‖a‖L2‖u‖V∞ . (2.5)

In fact, using the definition of E, we have

|E(a, u)(v)| ≤
∣∣∣∣∫

Ω

a∆u∆v

∣∣∣∣ ≤ ‖a∆u‖L2‖∆v‖L2 ,

where

‖a∆u‖2
L2 =

∫
Ω

a2 (∆u)2 ≤ ‖u‖2
V∞‖a‖2

L2 ,

and because ‖∆v‖L2 ≤ ‖v‖V , we at once obtain (2.5).
To prove the main argument, we note that

(E(an, u)− E(a, u)) (v) =

∫
Ω

an∆u∆v −
∫

Ω

a∆u∆v =

∫
Ω

(an − a)∆u∆v,

which by using (2.5) implies that

|(E(an, u)− E(a, u)) (v)| ≤ ‖u‖V∞‖an − a‖L2‖v‖V ,

and consequently ‖E(an, u) − E(a, u)‖V ∗ ≤ ‖u‖V∞‖an − a‖L2 . The proof is
complete.

Since the inverse problem at hand is ill-posed, some regularization is nec-
essary. For this, we first define A ⊂ H1(Ω) to be the closed and convex set of
admissible coefficients. We consider the following regularized equation error
functional to estimate a∗ from a measurement z of u∗ by minimizing

J(a; z, ε) = ‖E(a, z)−m‖2
V ∗ + ε‖a‖2

H1 . (2.6)

Here it is assumed that a∗ ∈ A and u∗ ∈ V satisfy (2.1), ε > 0 is a regulariz-
ing parameter, z ∈ V is the data, and ‖ · ‖2

2 is the regularization term.
Assuming that the data z is sufficiently smooth, we show that J(·; z, β) has

a unique minimizer in H1(Ω) for each β > 0.
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Theorem 2.2.2. Suppose z ∈ W∞. Then, for each β > 0, there exists a unique
aβ satisfying

J(aβ; z, β) ≤ J(a; z, β), for all a ∈ H1(Ω).

Proof. Since the functional J is bounded below, there exists a minimizing se-
quence {an} for J . We have β‖an‖2

H1 ≤ J(an; z, β) for all n which implies that
{an} is bounded in H1(Ω). Therefore, there exists aβ ∈ H1(Ω) and a subse-
quence of {an} (still denoted by {an}) such that an → aβ weakly inH1(Ω) and,
by Rellich’s theorem, strongly in L2(Ω). Since z ∈ V ∞ and an → aβ in L2(Ω),

Lemma 2.2.1 confirms that E(an, z) → E(aβ, z) and since the norm is weakly
lower semicontinuous, it follows that

inf
a∈H1(Ω)

J(a; z, β) = lim
n→∞

J(an; z, β)

= lim
n→∞

(
‖E(an, z)−m‖2

V ∗ + β‖an‖2
H1

)
≥ ‖E(aβ, z)−m‖2

V ∗ + β‖aβ‖2
H1

= J(aβ; z, β),

confirming that aβ is a minimizer of J(·; z, β). The uniqueness of aβ follows
from the fact that the regularized equation error functional is strictly convex.
The proof is complete.

Since J(aβ; z, β) ≥ infa∈H1(Ω) J(a; z, β), the last inequality in the above proof
must actually hold as an equality and hence limn→∞ ‖an‖H1 = ‖aβ‖H1 must
remain valid. This, in view of the fact an → aβ weakly in H1(Ω), ensures that
{an} actually converges to aβ strongly in H1(Ω). Consequently any minimiz-
ing sequence of J(·; z, β) converges in H1(Ω) to the unique minimizer aβ of
J(·; z, β).

2.3 Stability of the Equation Error Method

Recall that a∗ ∈ A and u∗ ∈ V are assumed to satisfy (2.1). However, since a∗

is not unique, we define the convex set S = {a ∈ H1(Ω) : E(a, u∗) = m}.
We can now prove the following stability result for the equation error ap-

proach.
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Theorem 2.3.1. Assume that u∗ ∈ V ∞ and a∗ ∈ H1(Ω) satisfy (2.1). Let {zn} ⊂
V ∞ be a sequence of observations of u∗ that satisfy, with the sequences {δn},
{βn}, the conditions

1. δ2
n ≤ βn ≤ δn for all n ∈ ZZ+;

2. δ2
n/βn → 0 as n→∞;

3. ‖zn − u∗‖V∞ ≤ δn for all n ∈ ZZ+;

4. δn → 0 as n→∞.

For each n ∈ ZZ+, let an be the unique solution of

min
a∈H1(Ω)

J(a; zn, βn).

Then, there exists ã ∈ S such that an → ã in H1(Ω). Moreover, a satisfies
‖ã‖H1 ≤ ‖a‖H1 , for all a ∈ S.

Proof. Let a ∈ S be arbitrary. Then,

βn‖an‖2
H1 ≤ ‖E(a, zn)−m‖2

V ∗ + βn‖a‖2
H1

= ‖E(a, zn − u∗)‖2
V ∗ + βn‖a‖2

H1

≤ c‖a‖2
L2‖zn − u∗‖2

V∞ + βn‖a‖2
H1 ,

implying that

‖an‖2
H1 ≤ ‖a‖2

L2

δ2
n

βn
+ ‖a‖2

H1 , (2.7)

and, in particular,

‖an‖2
H1 ≤ ‖a∗‖2

L2

δ2
n

βn
+ ‖a∗‖2

H1 ≤ ‖a∗‖2
L2 + ‖a∗‖2

H1 ,

where we used the assumption δ2
n ≤ βn. This proves that {an} is bounded in

H1(Ω). Hence, by Rellich’s lemma, there exists ã ∈ H1(Ω) and a subsequence
{ank
} such that ank

→ ã weakly in H1(Ω) and strongly in L2(Ω).
We claim that ã ∈ S. Indeed, for any â ∈ S, we have

‖E(ank
, u∗)−m‖2

V ∗ = ‖E(ank
, u∗)− E(ank

, znk
) + E(ank

, znk
)−m‖2

V ∗

≤ 2‖E(ank
, u∗ − znk

)‖2
V ∗ + 2‖E(ank

, znk
)−m‖2

V ∗

≤ 2‖ank
‖2
L2‖znk

− u∗‖2
V∞ + 2‖E(â, znk

)−m‖2
V ∗ + 2βnk

‖â‖2
H1

≤ 2‖ank
‖2
L2δ2

nk
+ 2‖â‖2

L2δ2
nk

+ 2βnk
‖â‖2

H1

≤ 2‖ank
‖2
L2δ2

nk
+ 4‖â‖2

H1δnk
,
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where we used δ2
nk
≤ βnk

≤ δnk
and the following inequality which remains

true for any â ∈ S :

‖E(â, znk
)−m‖2

V ∗ + βnk
‖â‖2

H1 ≤ ‖â‖2
L2δ2

nk
+ βnk

‖â‖2
H1 .

Because {‖ank
‖L2} is bounded and δnk

→ 0 as k → ∞, this ensures that
‖E(ank

, u∗) −m‖V ∗ → 0. Since we also have E(ank
, u∗) → E(ã, u∗) by Lemma

2.2.1, this shows that E(ã, u∗) = m and hence that ã ∈ S.
Using the fact that ank

→ ãweakly inH1(Ω), we have ‖ã‖H1 ≤ lim infk→∞ ‖ank
‖H1 .

Moreover, by (2.7),

βnk
‖ank
‖2
H1 ≤ ‖ã‖2

L2δ2
nk

+ βnk
‖ã‖2

H1 ,

which implies that

‖ank
‖2
H1 ≤ ‖ã‖2

L2

δ2
nk

βnk

+ ‖ã‖2
H1 .

Since δ2
nk
/βnk

→ 0 as k → ∞, this shows that lim supk→∞ ‖ank
‖H1 ≤ ‖ã‖H1 .

Therefore,

‖ã‖H1 ≤ lim inf
k→∞

‖ank
‖H1 ≤ lim sup

k→∞
‖an‖H1 ≤ ‖ã‖H1 ,

which shows that ‖ank
‖H1 → ‖ã‖H1 , and hence that ank

→ a strongly in H1(Ω)

as k →∞.
Using (2.7),

‖ã‖2
H1 ≤ lim

k→∞
‖ank
‖2
H1 ≤ lim

k→∞

(
‖a‖2

L2

δ2
nk

βnk

+ ‖a‖2
H1

)
= ‖a‖2

H1

holds for every a ∈ S.
Finally, since the set S is a convex, there is a unique minimal H1-norm el-

ement, and we have shown that every convergent subsequence of {an} con-
verges to this unique element ã. Thus the whole sequence {an} must con-
verge to ã. This completes the proof.

2.4 Numerical Results

To test the preliminary effectiveness of the equation error approach for this
inverse problem, we consider an example boundary value problem derived
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from (2.1):
∆ [a(x, y)∆u(x, y)] = f(x, y) in Ω

u(x, y) =
∂u

∂n
= 0 on Γ

(2.8)

where the solution u and parameter a are defined as

u(x, y) = 16x2(1− x)2y2(1− y)2 and a(x, y) = 4 + sin(2πx) sin(3πy).

For means of this numerical experiment, we take f(x, y) as subsequently de-
fined by (2.8). The domain Ω is taken as the unit square, Ω = (0, 1) × (0, 1)

with the boundary Γ as the square’s outside edges.
Discretization of the solution was performed using cubic Hermite finite

elements on a 20 × 20 mesh consisting of 882 triangles and 2,048 degrees of
freedom.

The discretized optimization problem was solved using a conjugate-gradient
trust-region method (cgtrust) with a stopping criteria on ‖∇J‖ of 10−12. Us-
ing a value of ε = 10−6 for the regularization parameter with the H1-norm,
cgtrust converged in 38 iterations. The computed solution at several itera-
tions of the algorithm along with the output of the optimization are summa-
rized in Figure 2.1. We note that this method provides a good reconstruction
of the parameter in the interior of Ω with reconstruction error concentrated
mostly along the boundaries.
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Figure 2.1 Parameter recovery using the EE method and cgtrust with ε =

10−6.



Chapter 3

Source Term Identification

In this chapter, we conduct some numerical experiments for the theory of
the Morozov discrepancy principle developed by Ito and Kunisch [25] where
the authors focused on the linear inverse problems with an application to
source term identification in partial differential equations. This chapter is
a preparation for the next chapter where the approach will be extended to
nonlinear inverse problems using an equation error formulation developed
in the previous chapter.

This chapter will commence with a discussion of the mathematical frame-
work employed to create a root finding problem balancing regularization er-
ror against noise error. This will be followed with numerical tests on several
examples focusing on the inverse problem involving source term identifica-
tion. The root finding problem will be compared to the brute force method by
comparing the size of the L2 errors as well as the speed of parameter identifi-
cation. The convergence speed of the bisection method, Newton-type meth-
ods, and cubically convergent methods discussed in [35] will be compared.

3.1 The Optimal Regularization Parameter

Consider inverse problems of the form

Tf = z,

where T is a bounded operator mapping from a parameter space X to the
observation space Y . Both spaces are taken to be real Hilbert spaces. We seek
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to solve for the term f by posing an optimization problem defined through
the regularized output least squares functional:

min
f∈X

J(f, β) =
1

2
||Tf − zδ||2Y +

β

2
||f ||X , (3.1)

where zδ is noisy data and β > 0 is the regularization parameter.
The derivative of the above functional at f in any direction δf is given by:

DJ(f, β)(δf) =
〈
Tf − zδ, T δf

〉
Y

+ β 〈f, δf〉X .

Therefore, the minimizer of the above optimization problem can be com-
puted by using the following variational equation:

〈Tf, Tg〉Y + β 〈f, g〉X =
〈
zδ, T g

〉
Y

∀g ∈ X. (3.2)

In the following, we view f as a function of the regularization parameter β
and proceed to obtain its derivative characterization. To derive an expression
for the derivative a term t is added to β for (3.2):

〈Tf(β + t), T g〉Y + (β + t) 〈f(β + t), g〉X =
〈
zδ, T g

〉
Y
. (3.3)

By subtracting (3.2) from (3.3), we obtain

〈T (f(β + t)− f(β)), T g〉Y + β 〈(f(β + t)− f(β)), g〉X + t 〈f(β + t), g〉X = 0.

By dividing both sides by t, we get〈
T
(f(β + t)− f(β)

t

)
, T g

〉
Y

+ β

〈
f(β + t)− f(β)

t
, g

〉
X

+ 〈f(β + t), g〉X = 0,

which when passed to the limit t→ 0, yields

〈T (f ′(β)), T g〉Y + β 〈(f ′(β)), g〉X + 〈f(β), g〉X = 0.

Rearranging the system above produces the equivalent:

〈Tf ′(β), T g〉Y + β 〈f ′(β), g〉X = −〈f(β), g〉X .

It is further shown in [25] that f(β) is infinitely differentiable, and that
by proceeding as we have above f (n)(β) can be determined by solving the
equation: 〈

Tf (n)(β), T g
〉
Y

+ β
〈
f (n)(β), g

〉
X

= −n
〈
f (n−1)(β), g

〉
X
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3.1.1 The Morozov Discrepancy Principle

A popular criterion to estimate the best regularization parameter is the Mo-
rozov discrepancy principle which states that β should be chosen such that
the error from regularization is equal to the error from the noise in the data.
In context to the OLS functional this is expressed as the equality between the
residual term and the noise level:

||Tf(β)− zδ||2Y = ||z − zδ||2Y .

We now define the value function F and recall derivative formulae:

F (β) =
1

2
||Tf − zδ||2Y +

β

2
||f ||2X ,

F ′(β) =
1

2
||f(β)||2X ,

F ′′(β) = 〈fh(β), f ′h(β)〉X ,
F ′′′(β) = 〈f ′(β), f ′(β)〉X + 〈f(β), f ′′(β)〉X .

The Morozov equation may be rewritten in these terms to give a function
and its derivatives in terms of the regularization parameter β:

G(β) = F (β)− β F ′(β)− 1

2
||z − zδ||2Y

G′(β) = −βF ′′(β) = −β 〈f ′(β), f(β)〉
G′′(β) = −βF ′′′(β)− F ′′(β)

= −〈fh(β), f ′h(β)〉X − β(〈f ′(β), f ′(β)〉X + 〈f(β), f ′′(β)〉X).

The details can be found in [25].
Furthermore, we also recall that the damped version of the Morozov prin-

ciple and its derivatives are given by:

Gγ(β) = F (β) + (βγ − β)F ′(β)− 1

2
||z − zδ||

G′γ(β) = γβγ−1F ′(β) + (βγ − β)F ′′(β)

G′′γ(β) = (βγ − β)F ′′′(β) + (γβ(γ−1) − 1)F ′′(β) + (γ − 1)γβ(γ−2)F ′(β) + γβγ−1F ′′(β).

Here γ indicates the damping parameter. The damping parameter γ de-
creases the value of the solution βM and will be denoted separately as βγM .
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Also note:
lim
γ→∞

Gγ(β) = G(β).

This convergence was observed to occur quickly as γ increases. For the
tests in the work, γ parameters ranging from one to two were tested. In all
numerical tests, γ = 2 produced results very close to the undamped equation.

3.2 Numerical Methods

3.2.1 The Brute Force Method

The most simple method to approximate the best regularization parameter
is to calculate f(β) for a large number of uniformly spaced regularization pa-
rameters, and then to record the L2 error. One-thousand equally spaced reg-
ularization parameters were tested. The parameters near the regularization
parameter producing the lowest L2 error were then tested to refine the esti-
mate of βopt. The best estimate is used as the benchmark to compare the ac-
curacy of the other methods and is referred to as the solution by brute force.

What solution by brute force gains in simplicity of implementation and
accuracy given enough time it loses in speed. The brute force method was
able identify a good regularization parameter for the examples in this paper,
but as the scope of the problem becomes more demanding brute force be-
comes less capable of finding a good estimate in a timely manner.

3.2.2 Newton’s Method

Since the Morozov principle is now a root finding problem, there are several
different methods which can be considered in order to identify the value of
βM . The most basic method that may be applied is the bisection method.
This paper follows the framework used by Kunisch and Zou [25] which con-
centrates on the quadratic convergence offered by Newton’s method.

βk+1 = βk −
G(βk)

G′(βk)
.

Two ways of implementing Newton’s method are considered. The first in-
volves calculating f ′(β) explicitly. The calculation of the derivative of the co-
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efficient can be approximated taking the finite difference quotient:

f̃k
′
(βk, βk−1) =

f(βk)− f(βk−1)

βk − βk−1

When f̃k
′
(βk, βk−1) is used the method is referred to as the quasi-Newton

method.

3.2.3 Cubically Convergent Methods

Three cubically convergent methods for the Morozov equation are consid-
ered in [35]. For the sake of brevity, the expression below is defined:

L(βk) = G(βk)[G
′(βk)]

−2G′′(βk).

The methods are as follows:

1. Chebyshev’s Method:

βk+1 = βk −
(

1 +
1

2
L(βk)

)
[G′(βk)]

−1G(βk).

2. Halley Method:

βk+1 = βk −
(

1 +
1

2
L(βk)

[
1− 1

2
L(βk)

]−1)
[G′(βk)]

−1G(βk).

3. Super Halley Method:

βk+1 = βk −
(

1 +
1

2
L(βk)

[
1− L(βk)

]−1)
[G′(βk)]

−1G(βk).

Zou, Wang, and Zhang [35] noted that the cubic convergence of these
methods requires the evaluation of 1

2
n2 + 21

6
n more multiplications and di-

visions than Newton’s method.

3.3 Computational Framework

A finite element framework was used to approximate the equations in the fi-
nite dimensional subspace using the GETFEM library. The continuous piece-
wise finite element space will be represented as V h. For brevity the finite di-
mensional analogue of f(β) is represented as fh while the stiffness matrix
will be represented as A.
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3.3.1 The Discrete Morozov Equation

J(fh, β) =
1

2

〈
U(fh)− Zδ, U(fh)− Zδ

〉
+
β

2
〈fh, fh〉

=
1

2
(U(fh)− Zδ)TM(U(fh)− Zδ) +

β

2
fThMfh,

where U(g) solves the equation:

AU(g) = Mg ∀g ∈ V h

The discrete form of the derivatives of the OLS functional above are:

F ′(β) =
β

2
〈fh, fh〉X =

β

2
fThMfh.

F ′′(β) = 〈f ′h, fh〉X = fThMf ′h.

F ′′′(β) = 〈f ′(β), f ′(β)〉X + 〈f(β), f ′′(β)〉X = f ′Th Mf ′h + f ′′Th Mfh.

3.3.2 The Discrete Source Term

To find the value of f(β), we substitute (3.2) into the discrete version of 3.2:

u(g)TMu(fh) + βgTMfh = gTMZδ

Substituting u(g) = A−1Mg yields a system which can be used to solve for
fh.

gTMA−1MA−1Mfh + βgThMfh = A−1MA−1Mfh + βfh = A−1MZδ = gTMZδ.

Multiply both sides by AM−1A:

Mfh + βAM−1Afh = AZδ

(M + βAM−1A)fh = AZδ.

The discrete analogue for f (n)
h can be determined by similar operations:〈

Tf
(n)
h , T g

〉
Y

+ β
〈
f

(n)
h , g

〉
X

= −n
〈
f

(n−1)
h , g

〉
X〈

u(f
(n)
h ), u(g)

〉
Y

+ β
〈
f

(n)
h , g

〉
X

= −n
〈
f

(n−1)
h , g

〉
X〈

A−1Mf
(n)
h , A−1Mg

〉
Y

+ β
〈

(f
(n)
h , g

〉
X

= −n
〈
f

(n−1)
h , g

〉
X

gTMA−1MA−1Mf
(n)
h + βgTMf (n)h = −ngTMf

(n)
h .

Eliminating gT , and multiplying both sides by AM−1AM−1 yields:

(M + βAM−1A)f
(n)
h = −nAMAf

(n−1)
h .
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3.4 Numerical Experiments

The effectiveness of the brute force method and the Morozov principle were
compared through tests on second and fourth order partial differential equa-
tions. The brute force method should produce the most accurate estimate of
the best regularization parameter and will be relied upon as the benchmark
for numerical results. The speed of the root finding methods used to solve
the Morozov principle are also compared.

Noisy data was generated using the following method:

zδ(x) = z(x) + δ̂R ∗max|z(x)|,

where R is a randomly generated number between−1 and 1.
The Morozov principle was tested using the bisection, Newton-type, and

cubically convergence methods with a stopping critera of |βn−βn−1|
βn−1

< 10−3.
The reconstructions using βM approached the accuracy of the brute force
method generated parameters which were larger than those produced by brute
force leading to less accurate reconstructions.

3.4.1 Second Order Examples

We now focus on the following second-order boundary value problem:

− d

dx

(
a(x)

du

dx
(x)
)

= f(x)

u(0) = u(1) = 0,

where we are interested in identifying f from a measurement of u.

Example 3.4.1. In this example, we take

a(x) = exp(1 + x2)

u(x) = exp(−x)sin(πx).

The aforementioned methods employing the Morozov principle were used
in order to estimate the optimal regularization parameter. Regularization pa-
rameters ranging from .01 to .1 were used to test the way that the regulariza-
tion parameters changed.



3.4. Numerical Experiments 21

Displayed below is a progression showing the deformation of the source
term as the noise is added. It can be observed that when no noise is present
the formula for f(β)produces very accurate estimates of the source term.
As the level of noise is increased towards 10%, a gradual deformation of the
source term occurs. Despite this, the source term recovery is recognizable.

The Morozov principle was able to identify good substitutes for βopt. Al-
though the L2 error is larger, βM was identified much more quickly and was
the same general size as βopt. The time to identify βopt took well over ten sec-
onds while the bisection method took a third of a second or less to converge.
This reduction in time is more marked for the Newton-type methods which
took fractions of a second. The cubic methods required fewer iterations to
meet the termination criteria, and were generally faster than the Newton type
methods though not dramatically so.

Using the damped Morozov principle for this example does not produce
uniformly more accurate estimations of the regularization parameters. De-
spite this, the damped Morozov principle carries the useful option in that it
has the potential of letting the practictioner make some limited adjustments
if it is determined that βopt is too large.

The smaller βopt is, the faster the damped Morozov equation converges to
the undamped version. The approximations created through damping were
smaller than the undamped approximations and would be recommended if
the undamped solutions are uniformly too large over several different noise
levels. The convergence speed for all the numerical methods was observed
to be similar to the undamped version.

Table 3.1 Brute Force Results

δ̂ βopt L2 Error
0.01 4.6009e-07 2.1433
0.025 1.1402e-06 2.5392
0.05 2.1804e-06 2.9105
0.075 3.1806e-06 3.1854
0.1 4.2408e-06 3.419
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Table 3.2 Newton-Type Results

δ̂ βM L2 Error Bis. Iter Bis. Time QN. Iter QN. Time N. Iter N. Time
0.01 6.3325e-07 5.3844 47 0.32769 15 0.041561 10 0.016275
0.025 1.7193e-06 7.5812 46 0.25906 14 0.029702 9 0.017075
0.05 3.7747e-06 10.0475 49 0.25915 12 0.028729 9 0.017581
0.075 6.1463e-06 12.2177 48 0.33018 12 0.055068 9 0.015245
0.1 8.7055e-06 14.1111 45 0.2493 12 0.033118 8 0.01636

Table 3.3 Cubic Method Results

δ̂ Cheb. Iter Cheb. Time Hal. Iter Hal. Time SHal. Iter SHal, Time
0.01 8 0.011131 8 0.016402 7 0.014371
0.025 7 0.009576 7 0.01452 7 0.014419
0.05 7 0.012938 7 0.014206 6 0.011959
0.075 7 0.011225 6 0.012141 6 0.011855
0.1 6 0.011607 6 0.01182 6 0.015955

Table 3.4 Damped Regularization Parameters

δ̂/γ 1 1.2 1.4 1.6 1.8 2
.01 1.0076e-08 1.4732e-07 5.1815e-07 6.2486e-07 6.3275e-07 6.3322e-07
.025 4.4229e-08 4.9648e-07 1.4262e-06 1.6935e-06 1.7175e-06 1.7192e-06
.05 1.3078e-07 1.2019e-06 3.116e-06 3.7064e-06 3.7689e-06 3.7742e-06
.075 2.4408e-07 2.0159e-06 5.0508e-06 6.0221e-06 6.1348e-06 6.1453e-06
.1 3.7913e-07 2.9284e-06 7.1718e-06 8.5221e-06 8.6872e-06 8.7037e-06

Table 3.5 L2 Error for Damped Parameters

δ̂/γ 1 1.2 1.4 1.6 1.8 2

.01 73.5511 6.9715 5.3299 5.3787 5.3841 5.3844

.025 90.4508 10.0929 7.5214 7.5718 7.5805 7.5811

.05 101.6111 12.2118 9.8147 10.0182 10.045 10.0473

.075 105.0999 13.5819 11.8375 12.1707 12.2133 12.2173

.1 105.9693 14.8735 13.6869 14.0583 14.1058 14.1106
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Figure 3.1 Reconstructions by Using βopt

Figure 3.2 Noise of .025 Figure 3.3 Noise of .05

Figure 3.4 Noise of .07 Figure 3.5 Noise of .1

Figure 3.6 Reconstructions by Using βM

Figure 3.7 Noise of .025 Figure 3.8 Noise of .05

Figure 3.9 Noise of .07 Figure 3.10 Noise of .1
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Example 3.4.2. In the second example was tested using the equations:

a(x) = .5cos(4πx) + 1

u(x) = sin(4πx)

Using the brute force method in the same manner as the first example
produced accurate reconstructions with evident roughness for larger noise
levels. The Morozov results showed similar performance to the brute force es-
timate. In this case the Morozov principle identified a slightly under-regularized
parameter. Despite the increase in the L2 error term in the case of Morozov,
the illustrations show that the estimated parameter from this method still
compensate for the added noise very well.

Since the regularization parameters were generally too small the damped
Morozov principle failed to yield improvements on the undamped results.
The scenario where γ = 1 produced particularly innaccurate results. With
the exception of the scenario where the noise level is .1, the best results were
given using little or no damping at all.

The performance of the root finding algorithms is similar to those from
example one. The Newton method greatly outperforms the quasi-Newton
method. The cubic methods require fewer iterations than the Newton-type
methods but yielded no appreciable difference in performance time. Of the
cubic methods, Halley’s is the only one to repeatedly outperform the quadratic
methods.

Table 3.6 Brute Force Results

δ̂ βopt L2 Error
0 2.0004e-08 0.85309
0.01 1.0002e-07 4.8669
0.025 2.0004e-07 8.9274
0.05 3.2006e-07 13.5338
0.075 4.6009e-07 16.9697
0.1 5.6011e-07 19.7684
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Table 3.7 Newton-Type Results

δ̂ βM L2 Error Bis. Iter Bis. Time QN. Iter QN. Time N. Iter N. Time
0.01 6.3129e-08 28.4478 54 0.36534 15 0.036433 10 0.017254
0.025 1.5164e-07 83.5626 55 0.36888 15 0.038394 9 0.020121
0.05 2.9813e-07 184.4505 55 0.32009 15 0.041738 8 0.014713
0.075 4.472e-07 287.8678 57 0.35604 15 0.030054 8 0.013196
0.1 6.0026e-07 391.659 57 0.39746 15 0.041048 7 0.016241

Table 3.8 Cubic Method Results

δ̂ Cheb. Iter Cheb. Time Hal. Iter Hal. Time SHal. Iter SHal, Time
0.01 8 0.018758 7 0.016512 7 0.015369
0.025 7 0.01342 7 0.014417 6 0.012006
0.05 6 0.011069 6 0.012281 6 0.014298
0.075 6 0.016636 6 0.011909 6 0.011853
0.1 6 0.022234 6 0.012937 5 0.013483

Table 3.9 Damped Regularization Parameters

δ̂/γ 1 1.2 1.4 1.6 1.8 2
.01 9.0955e-10 2.2351e-08 5.9482e-08 6.2988e-08 6.3124e-08 6.3129e-08
.025 4.8813e-09 7.7432e-08 1.4587e-07 1.5138e-07 1.5163e-07 1.5164e-07
.05 1.6668e-08 1.8377e-07 2.8945e-07 2.9769e-07 2.9811e-07 2.9813e-07
.075 3.3416e-08 2.9875e-07 4.358e-07 4.4657e-07 4.4717e-07 4.472e-07
.1 5.4072e-08 4.1995e-07 5.8615e-07 5.9944e-07 6.0021e-07 6.0026e-07

Table 3.10 L2 Error for Damped Parameters

δ̂/γ 1 1.2 1.4 1.6 1.8 2

.01 1059.5511 70.9781 29.7451 28.4938 28.4495 28.4479

.025 1712.8158 140.8563 85.0657 83.6241 83.5652 83.5627

.05 2310.354 240.1195 185.5074 184.4964 184.4527 184.4506

.075 2833.989 333.4067 288.1503 287.874 287.8681 287.8678

.1 3237.6296 424.1377 390.9766 391.6086 391.656 391.6588
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Figure 3.11 Reconstructions by Using βopt

Figure 3.12 Noise of .025 Figure 3.13 Noise of .05

Figure 3.14 Noise of .07 Figure 3.15 Noise of .1

Figure 3.16 Reconstructions by Using βM

Figure 3.17 Noise of .025 Figure 3.18 Noise of .05

Figure 3.19 Noise of .07 Figure 3.20 Noise of .1
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Example 3.4.3. In this example we take the data:

a(x) = log(x+ 2)

u(x) = −(x4 − x3)

The brute force method produces satisfactory results with the shortfall of
noticeable oscillations in the reconstructions. The Morozov principle pro-
duces results of similar accuracy to the brute foce method in terms of error.
In this case βM yielded smoother but less accurate results. Using the damped
Morozov principle with parameter γ = 1.2 compensates for this overregular-
ization and was able to produce superior results to βM in some cases.

The performance of the root finding methods for the Morozov principle
was similar to the previous two examples with drastic improvements found
using the Newton-type methods, and more modest ones with the cubic meth-
ods. The cubic methods generally reduced the number of steps to conver-
gence by one or two which was enough to ensure that these methods outper-
formed the Newton-type methods

Table 3.11 Brute Force Results

δ̂ βopt L2 Error
0 1.0002e-08 0.088554
0.01 1.8004e-07 0.55166
0.025 8.4017e-07 0.7959
0.05 2.7005e-06 0.99174
0.075 5.3411e-06 1.1136
0.1 8.6817e-06 1.2037

Table 3.12 Newton-Type Results

δ̂ βM L2 Error Bis. Iter Bis. Time QN. Iter QN. Time N. Iter N. Time
0.01 8.9217e-07 0.42687 43 0.3383 20 0.056131 7 0.014417
0.025 3.6837e-06 0.78618 44 0.34239 39 0.10613 6 0.011469
0.05 1.0713e-05 1.1647 44 0.2467 13 0.032145 5 0.008464
0.075 1.9921e-05 1.4324 43 0.27972 14 0.042103 6 0.015632
0.1 3.0548e-05 1.6348 45 0.32304 13 0.02761 6 0.011481
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Table 3.13 Cubic Method Results

δ̂ Cheb. Iter Cheb. Time Hal. Iter Hal. Time SHal. Iter SHal, Time
0.01 6 0.012873 6 0.012598 5 0.010036
0.025 5 0.008981 5 0.010575 5 0.02391
0.05 4 0.007096 4 0.007342 4 0.007466
0.075 5 0.009337 4 0.007941 4 0.007882
0.1 5 0.008891 5 0.009701 5 0.013512

Table 3.14 Damped Regularization Parameters

δ̂/γ 1 1.2 1.4 1.6 1.8 2
.01 4.188e-08 4.6136e-07 8.4333e-07 8.8896e-07 8.9197e-07 8.9216e-07
.025 2.4703e-07 2.0349e-06 3.4572e-06 3.6639e-06 3.6821e-06 3.6836e-06
.05 9.506e-07 6.2076e-06 9.9955e-06 1.0635e-05 1.0705e-05 1.0713e-05
.075 2.0907e-06 1.1924e-05 1.855e-05 1.9752e-05 1.9901e-05 1.9918e-05
.1 3.6489e-06 1.888e-05 2.8466e-05 3.0271e-05 3.0513e-05 3.0544e-05

Table 3.15 L2 Error for Damped Parameters

δ̂/γ 1 1.2 1.4 1.6 1.8 2

.01 0.53389 0.35247 0.41935 0.42638 0.42684 0.42686

.025 0.81846 0.69234 0.7743 0.78515 0.7861 0.78617

.05 1.1487 1.0541 1.1482 1.1629 1.1645 1.1647

.075 1.3895 1.318 1.4141 1.4302 1.4322 1.4324

.1 1.589 1.5266 1.6166 1.6324 1.6345 1.6348
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Figure 3.21 Reconstructions by Using βopt

Figure 3.22 Noise of .025 Figure 3.23 Noise of .05

Figure 3.24 Noise of .07 Figure 3.25 Noise of .1

Figure 3.26 Reconstructions by Using βM

Figure 3.27 Noise of .025 Figure 3.28 Noise of .05

Figure 3.29 Noise of .07 Figure 3.30 Noise of .1
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3.4.2 Fourth Order Examples

In this section, we focus on the inverse problem of identifying the source
term f in the beam equation. To be specific, we focus on the following static
fourth-order boundary value problem in Ω := (0, 1) :

(a(x)u′′)
′′

= f(x), (3.4)

u(0) = u′(0) = 0, (3.5)

u(1) = u′(1) = 0, (3.6)

where a(x) is a variable coefficient and f is the source term.
The boundary conditions (3.5)-(3.6) are the so-called clamped boundary

conditions. However, our approach can easily be carried over to other types
of boundary conditions as well.

In this case, the problems were interpolated on a grid of fifty points. Im-
plementing the fourth order problem is made more computationally com-
plex due to the necessity for cubic interpolating functions instead of the sim-
ple hat function considered in the second order examples. In this case the
ill-posed derivative operation is performed four times instead of two mak-
ing the innaccuracy introduced by noise especially egregious. For this set of
problems the damped or undamped Morozov principles were found to be
able to identify satisfactory regularization parameters when used with the
same tolerance criteria as the second order problems.

Example 3.4.4. The first fourth order example is:

a(x) = (2x− 1

2
)3 + 2

u(x) = sin(4πx− π

2
) + 1.

Selecting the regularization parameter by brute force produces results which
begin to depart from the actual source term as the noise level is increased.
Depite this, the results stay reasonably accurate as the level of noise is in-
creased to ten-percent after which significant flattening was noted for the
reconstruction.

The undamped Morozov principle repeats its excellent performance in
the estimation of the best regularization parameter discussed for the seco
nd order examples. In all cases βM is comparable to βopt. This follows for the
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associated L2 errors. While producing results which are nearly the same as
using the brute force method, identifying βM requires fractions of a second
while finding βopt for this more difficult problem required minutes of com-
putation time. Using the damped Morozov principle gives reconstructions
which are much poorer quality than the undamped version due to underes-
timating the regularization parameter.

For this example the cubic methods performed particularly well. Con-
vergence took six iterations at most with the cubic methods while Newton’s
method and the quasi-Newton methods took twelve and fourteen iterations
respectively. Due to the larger decrease in necessary iterations for the cu-
bic methods only a fraction of the time was needed when compared to the
Newton-type methods. Newton’s method converges much more quickly than
the quasi-Newton method.

Table 3.16 Brute Force Results

δ̂ βopt L2 Error
0 1e-13 24212.8767
0.01 1.1262e-12 27805.9067
0.025 1.7286e-11 28923.8263
0.05 4.7291e-11 29270.0184
0.075 7.3159e-11 29535.5923
0.1 9.7472e-11 29811.8629

Table 3.17 Newton-Type Results

δ̂ βM L2 Error Bis. Iter Bis. Time QN. Iter QN. Time N. Iter N. Time
0.01 5.6995e-12 27825.0414 55 1.0014 14 0.14168 12 0.08534
0.025 1.925e-11 28755.8655 54 0.74379 14 0.097445 12 0.062245
0.05 4.0442e-11 29188.2471 53 0.72623 14 0.1035 12 0.056391
0.075 6.0821e-11 29397.7266 52 0.81902 14 0.10052 12 0.069541
0.1 8.0774e-11 29538.6465 52 0.93815 14 0.13344 12 0.08215

Table 3.18 Cubic Method Results

δ̂ Cheb. Iter Cheb. Time Hal. Iter Hal. Time SHal. Iter SHal, Time
0.01 6 0.037872 6 0.042068 5 0.03531
0.025 5 0.021909 5 0.030133 5 0.030193
0.05 4 0.02176 4 0.024303 4 0.025639
0.075 4 0.021718 4 0.024334 4 0.024623
0.1 4 0.015978 4 0.020681 4 0.019554
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Table 3.19 Damped Regularization Parameters

δ̂/γ 1 1.2 1.4 1.6 1.8 2
0.01 3.3824e-13 5.3824e-12 5.8616e-12 5.8646e-12 5.8646e-12 5.8646e-12
0.025 1.7679e-12 1.9502e-11 2.0551e-11 2.0559e-11 2.0559e-11 2.0559e-11
0.05 5.9217e-12 4.2436e-11 4.3854e-11 4.3867e-11 4.3867e-11 4.3867e-11
0.075 1.1588e-11 6.4188e-11 6.5862e-11 6.5878e-11 6.5878e-11 6.5878e-11
0.1 1.8191e-11 8.5311e-11 8.7205e-11 8.7224e-11 8.7224e-11 8.7224e-11

Table 3.20 L2 Error for Damped Parameters

δ̂/γ 1 1.2 1.4 1.6 1.8 2

0.01 27221.9282 27782.7191 27857.8645 27858.3131 27858.3156 27858.3156
0.025 29190.2758 28915.8508 28944.8006 28945.0156 28945.0171 28945.0171
0.05 30957.3184 29632.2977 29635.5921 29635.6257 29635.6261 29635.6261
0.075 32799.478 30027.359 30022.8509 30022.8167 30022.8164 30022.8164
0.1 34292.116 30311.9284 30304.4664 30304.4023 30304.4015 30304.4015

Figure 3.31 Reconstructions by Using βopt

Figure 3.32 Noise of .01 Figure 3.33 Noise of .025

Figure 3.34 Noise of .05 Figure 3.35 Noise of .07
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Figure 3.36 Reconstructions by Using βM

Figure 3.37 Noise of .01 Figure 3.38 Noise of .025

Figure 3.39 Noise of .05 Figure 3.40 Noise of .07

Example 3.4.5. A second fourth order example reinforces the observations made
with the first fourth order problem:

a(x) = (1 + x)

u(x) = −cos(2πx) + 1.

The reconstructions using the brute force method are recognizeable though
significant flattening is observed for the larger noise levels. The Morozov
principle begins by over-regularizing the problem but for larger noise terms
under-estimates the best parameter. The additional L2 error from the Mo-
rozov equation is not significant however, and the illustration of the recon-
structions using βM show that they are comparable to those generated using
brute force. Using the damped Morozov principle with a parameter γ = 1.2

gives minor improvements to the reconstructions in terms of the error.
Unlike example one, the cubic methods fail to converge quickly enough

to warrant their preference over Newton’s method. Chebyshev’s method was
able match or beat Newton’s method by a small margin, but not to an appre-
ciable degree. Newton’s method outperformed the quasi-Newton method to
a greater degree in this case than in the previous example.
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Table 3.21 Brute Force Results

δ̂ βopt L2 Error
0 1e-13 608.7772
0.01 7.024e-11 959.2497
0.025 7.3019e-10 1116.3738
0.05 1.768e-09 1214.4901
0.075 3.0341e-09 1279.5203
0.1 4.9815e-09 1323.6757

Table 3.22 Newton-Type Results

δ̂ βM L2 Error Bis. Iter Bis. Time QN. Iter QN. Time N. Iter N. Time
0.01 3.706e-10 1024.4985 66 1.0818 17 0.12142 5 0.020392
0.025 1.2823e-09 1129.4963 64 1.1428 17 0.12151 4 0.015404
0.05 3.9448e-09 1244.9522 63 1.2225 17 0.16595 5 0.028324
0.075 8.7322e-09 1313.1052 61 0.87199 17 0.12383 4 0.0157
0.1 1.4388e-08 1345.2415 61 0.86456 17 0.1216 4 0.015664

Table 3.23 Cubic Method Results

δ̂ Cheb. Iter Cheb. Time Hal. Iter Hal. Time SHal. Iter SHal, Time
0.01 4 0.015341 4 0.019397 4 0.021323
0.025 4 0.015551 4 0.021344 4 0.019529
0.05 4 0.021246 5 0.032064 5 0.032426
0.075 4 0.015701 4 0.020688 4 0.021398
0.1 4 0.015649 4 0.019893 4 0.020298

Table 3.24 Damped Regularization Parameters

δ̂/γ 1 1.2 1.4 1.6 1.8 2

0.01 3.6063e-11 3.3642e-10 3.7011e-10 3.7059e-10 3.706e-10 3.706e-10
0.025 1.8434e-10 1.1851e-09 1.2806e-09 1.2823e-09 1.2823e-09 1.2823e-09
0.05 5.7337e-10 3.4947e-09 3.9338e-09 3.9446e-09 3.9448e-09 3.9448e-09
0.075 1.0895e-09 7.4124e-09 8.6931e-09 8.7311e-09 8.7322e-09 8.7322e-09
0.1 1.7176e-09 1.2136e-08 1.4315e-08 1.4386e-08 1.4388e-08 1.4388e-08
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Table 3.25 L2 Error for Damped Parameters

δ̂/γ 1 1.2 1.4 1.6 1.8 2

0.01 1000.7046 1020.1553 1024.4393 1024.4978 1024.4985 1024.4985
0.025 1199.066 1126.1546 1129.4337 1129.4952 1129.4962 1129.4963
0.05 1336.4395 1237.7582 1244.7808 1244.9487 1244.952 1244.9522
0.075 1383.3637 1305.9523 1312.9082 1313.1 1313.105 1313.1052
0.1 1413.0761 1340.3796 1345.0933 1345.238 1345.2416 1345.2415

Figure 3.41 Reconstructions by Using βopt

Figure 3.42 Noise of .025 Figure 3.43 Noise of .05

Figure 3.44 Noise of .07 Figure 3.45 Noise of .1
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Figure 3.46 Reconstructions by Using βM

Figure 3.47 Noise of .025 Figure 3.48 Noise of .05

Figure 3.49 Noise of .07 Figure 3.50 Noise of .1

Example 3.4.6.

a(x) = (x2 + 1)

u(x) = cos(2πx)− 1.

The brute force method provides very good reconstructions of the source
term given the size of the error term introduced. This accuracy was followed
by the Morozov principle which generated reconstructions with errors only
slightly larger than those produced by the brute force method. In this case
the Morozov principle over-regularized the problem but this did not lead to
significant reductions in the accuracy of the reconstructions. Damping with
γ = 1.2 produced better results than the undamped method, but this benefit
is miniscule.

The Chebyshev method is able to converge to βM with three or four itera-
tions and has a marked improvement over Newton’s method. This superior-
ity in performance is not replicated by the other cubically convergent meth-
ods which generally took slightly more time than Newton’s method. Newton’s
method is able to converge to the solution in about one-fifth of the time of the
quasi-Newton method .
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Table 3.26 Brute Force Results

δ̂ βopt L2 Error
0 1e-13 576.6874
0.01 9.1689e-10 939.2465
0.025 2.3267e-09 954.3663
0.05 4.3193e-09 963.0226
0.075 6.2154e-09 967.9941
0.1 8.067e-09 972.0326

Table 3.27 Newton-Type Results

δ̂ βM L2 Error Bis. Iter Bis. Time QN. Iter QN. Time N. Iter N. Time
0.01 1.0696e-09 939.737 38 0.65415 6 0.052969 3 0.015346
0.025 2.8667e-09 956.4537 37 0.49931 6 0.033722 4 0.017222
0.05 6.8103e-09 976.0295 35 0.45531 9 0.054012 4 0.014652
0.075 1.2456e-08 998.9455 34 0.43026 7 0.040854 4 0.014924
0.1 2.0838e-08 1025.8118 34 0.64214 6 0.050635 5 0.028855

Table 3.28 Cubic Method Results

δ̂ Cheb. Iter Cheb. Time Hal. Iter Hal. Time SHal. Iter SHal, Time
0.01 3 0.016049 3 0.014506 3 0.014588
0.025 3 0.009632 4 0.01713 4 0.018167
0.05 3 0.009839 3 0.010883 4 0.017129
0.075 3 0.009726 3 0.011104 3 0.012062
0.1 4 0.021029 4 0.022653 5 0.030553

Table 3.29 Damped Regularization Parameters

δ̂/γ 1 1.2 1.4 1.6 1.8 2
0.01 1.1561e-10 9.7313e-10 1.0628e-09 1.0644e-09 1.0644e-09 1.0644e-09
0.025 4.9255e-10 2.6649e-09 2.8614e-09 2.8656e-09 2.8657e-09 2.8657e-09
0.05 1.3669e-09 6.2424e-09 6.7439e-09 6.7569e-09 6.7572e-09 6.7572e-09
0.075 2.5011e-09 1.1258e-08 1.2389e-08 1.2423e-08 1.2424e-08 1.2424e-08
0.1 3.9041e-09 1.8404e-08 2.0842e-08 2.0928e-08 2.093e-08 2.093e-08
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Table 3.30 L2 Error for Damped Parameters

δ̂/γ 1 1.2 1.4 1.6 1.8 2

0.01 999.4081 939.3201 939.6974 939.7065 939.7067 939.7067
0.025 1098.3753 955.265 956.4174 956.4458 956.4464 956.4464
0.05 1101.4939 971.8765 975.5324 975.6296 975.6318 975.6318
0.075 1077.4348 991.9241 998.5574 998.7535 998.7588 998.7593
0.1 1050.2028 1015.8537 1025.8248 1026.1568 1026.1665 1026.1664

Figure 3.51 Reconstructions by Using βopt

Figure 3.52 Noise of .025 Figure 3.53 Noise of .05

Figure 3.54 Noise of .07 Figure 3.55 Noise of .1
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Figure 3.56 Reconstructions by Using βM

Figure 3.57 Noise of .025 Figure 3.58 Noise of .05

Figure 3.59 Noise of .07 Figure 3.60 Noise of .1

3.5 Conclusion

The use of the Morozov discrepancy principle was found to generate very
good results in terms of the error in the reconstructions when compared to
the estimate of the optimal regularization parameter βopt. In the cases where
the Morozov principle overestimated the size of the regularization param-
eter the damped Morozov principle was able to compensate by adjusting
the estimated regularization parameter downwards. Newton’s method was
able to converge to βM much more quickly than the quasi-Newton method.
While the cubically convergent methods often converged more quickly than
Newton’s method, they did not consistently outperform Newton’s method in
terms of time.



Chapter 4

Morozov Principle for the Equation
Error Approach

The general methodology introduced by Kunsich and Zou [25], and tested
numerically in Chapter 2 for source identification problem will be extended
in this chapter for the equation error formulation for the inverse problem of
identifying variable parameters in general partial differential equations. The
Morozov principle allows us to set up a root finding problem to approximate
the regularization parameter minimizing. As before, we use finite element
framework to discretize the equations. The bisection, Newton-type, and cu-
bic methods are tested on a set of second-order elliptic problem and com-
parisons are made with the identification of the optimal parameter through
brute force.

4.1 The Equation Error Functional

Let B be a Banach space and let A be a nonempty, closed, and convex subset
of B. Let V be a Hilbert space which will be identified with its topological
dual V ∗ in the usual manner. Let T : B × V × V → R be a trilinear form with
T (a, u, v) symmetric in u, v. Let m : V → R be a bounded linear functional.
Assume that there are constants α > 0 and β > 0 with

T (a, u, v) ≤ β‖a‖B‖u‖V ‖v‖V , for all u, v ∈ V, a ∈ B, (4.1)

T (a, u, u) ≥ α‖u‖2
V , for all u ∈ V, a ∈ A. (4.2)
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We consider the following variational problem: Given a ∈ A, find u =

u(a) ∈ V such that

T (a, u, v) = m(v), for every v ∈ V. (4.3)

Due to the symmetry, continuity, and ellipticity of T, it follows from the
Riesz representation theorem that for every a ∈ A, the variational problem
(4.3) admits a unique solution u(a). In this work, our interest is in the inverse
problem of identifying the parameter a when a measurement z of the solu-
tion u(a) is available. This inverse problem is often posed an optimization
problem and there are many optimization formulation that have been used.
This includes, the output least-squares, the modified output least-squares,
and the equation error approach, among others. In this work, our focus is on
the equation error approach.

Given any pair (a, w) ∈ A×V,we define e(a, w) ∈ V through the variational
equation:

〈e(a, w), v〉V = T (a, w, v)−m(v), for every v ∈ V. (4.4)

Using the identifiability of Hilbert spaces, we have

e(a, w) = T (a, w)−m,

where the elements are the corresponding Riesz elements. Clearly, for any
direction b ∈ H, we get

Dae(a, u) (b) = T (b, u).

Given ε > 0, we consider the optimization problem via the regularized
equation error formulation:

minimize J (a, ε) :=
1

2
‖e(a, zδ)‖2

V +
ε

2
‖a‖2

H , (4.5)

whereH is a suitable Hilbert space, ε > 0 is the regularization parameter, and
zδ ∈ V is the noisy data with noise level δ > 0, that is,

‖z0 − zδ‖ ≤ δ.

By assuming that H is compactly embedded into B, an existence result
can be given. This assumption hold, for example for the choices H := H2(Ω)
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and B = L∞(Ω). However, we have seen that existence results can be ob-
tained without the compact embedding assumption. This has been shown
for the choicesH = H1(Ω) and a ∈ L2(Ω) but at the expense of higher smooth-
ness requirement on the data. Therefore, without distinguishing between
these two case for the existence, we simply assume that (4.5) is solvable. Clearly,
due to the strongly convex regularizer, such a solution is unique.

The following result gives an optimality condition for the above problem:

Theorem 4.1.1. For every ε > 0, the solution a(ε) of the optimization problem
(4.5) is unique and can be characterized as the unique solution of the following
variational equation: Find a ∈ H such that

〈e(a, zδ), T (b, zδ)〉V + ε 〈a, b〉H = 0, for every b ∈ H, (4.6)

or, equivalently,

〈T (a, zδ), T (b, zδ)〉V + ε 〈a, b〉H = 〈m,T (b, zδ)〉V , for every b ∈ H. (4.7)

Proof. For any direction b ∈ H, the solution a(ε) satisfies the following opti-
mality condition:

DaJ(a, ε)(b) = 0.

Since e(·, z) is affine, we have

DaJ(a, ε) (b) = 〈e(a, zδ), T (b, zδ)〉V + ε 〈a, b〉H ,

and the proof follows at once.

The following result, where the regularized solution a(ε) is seen as the
function of the regularization parameter ε, embarks on the differentiability
of the regularized solutions:

Theorem 4.1.2. For every ε > 0, the map ε → a(ε), where a(ε) solves the vari-
ational equation (4.6) (or equivalently (4.5)) is differentiable. Moreover, the
derivative a′(ε) is characterized as the unique solution of the following varia-
tional equation: Find w ∈ H such that

〈T (w, zδ), T (b, zδ)〉V + ε 〈w, b〉H = −〈a(ε), b〉H for every b ∈ H. (4.8)
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Proof. Let ε > 0 be fixed. Let w be the solution of variational equation (4.8).
For any b ∈ H, we have

〈e(a(ε+ t), zδ), T (b, zδ)〉V + (ε+ t) 〈a(ε+ t), b〉H = 0,

〈e(a(ε), zδ), T (b, zδ)〉V + ε 〈a(ε), b〉H = 0.

A simple rearrangement of the above two equations implies that〈
e(a(ε+ t), zδ)− e(a(ε), zδ)

t
, T (b, zδ)

〉
V

+ε

〈
a(ε+ t)− a(ε)

t
, b

〉
H

+〈a(ε+ t), b〉H = 0,

or equivalently

〈T (δt, zδ) , T (b, zδ)〉V + ε 〈δt, b〉H + 〈a(ε+ t)− a(ε), b〉H = 0,

where δt := t−1(a(ε + t) − a(ε)). By subtracting (4.8) from the above identity,
we deduce

〈T (δt − w, zδ) , T (b, zδ)〉V + ε 〈δt − w, b〉H + 〈a(ε+ t)− a(ε), b〉H = 0.

By setting b = δt − w, in the above, we get

‖δt − w‖2
H = −〈a(ε+ t)− a(ε), δt − w〉H − 〈T (δt − w, zδ) , T (δt − w, zδ)〉V

= −〈a(ε+ t)− a(ε), δt − w〉H − ‖T (δt − w, zδ)‖2
V

≤ −〈a(ε+ t)− a(ε), δt − w〉H .

By Cauchy-Schwarz inequality, we get ‖δt − w‖2
H ≤ ‖a(ε+ t)− a(ε)‖H ‖δt − w‖H ,

and hence
‖δt − w‖H ≤ ‖a(ε+ t)− a(ε)‖H ,

and by taking limits t → 0+, we get ‖δt − w‖H → 0. This proves that a is
differentiable at ε and a′(ε) = w. The proof is complete.

Let Φ : R+ → R be the value function defined by

Φ(ε) := J (a(ε), ε) :=
1

2
‖e(a(ε), zδ)‖2

V +
ε

2
‖a(ε)‖2

H . (4.9)

We have the following result concerning the smoothness of the map Φ:
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Theorem 4.1.3. The map Φ is twice differentiable for every ε > 0, with deriva-
tives given by

Φ′(ε) =
1

2
‖a(ε)‖2

H , (4.10)

Φ′′(ε) = 〈a(ε), a′(ε)〉H . (4.11)

Moreover, if T (·, zδ,m) 6= 0H∗ , then Φ(ε) is strictly increasing and strictly
concave.

Proof. The differentiability of Φ follows from the differentiability of a(·). More-
over, we have

Φ′(ε) = 〈e(a′(ε), zδ), e(a(ε), zδ)〉V + ε 〈a′(ε), a(ε)〉H +
1

2
‖a(ε)‖2

H =
1

2
‖a(ε)‖2

H ,

where we used (4.6) with b = a(ε). The proof of (4.11) is then immediate.
Finally, taking b = a′(ε) in (4.8), for every ε > 0, we have

Φ′′(ε) = 〈a(ε), a′(ε)〉H
= −〈e(a′(ε), zδ), e(a′(ε), zδ)〉V − ε 〈a

′(ε), a′(ε)〉H
= −‖e(a′(ε), zδ)‖2

V − ε ‖a
′(ε)‖2

H

≤ 0.

Furthermore, Φ′′(ε) < 0, for every ε > 0, on the contrary this would imply
a′(ε̄) = 0 for some ε̄ > 0. By (4.8) a(ε̄) = 0, and by (4.12)

〈m,T (b, zδ)〉V = 0, for every b ∈ H. (4.12)

equivalently T (b, zδ,m) = 0, for every b ∈ H, and a contradiction completes
the proof.

4.2 Morozov Principle

The Morozov principle suggests solving the following nonlinear equation:
Given δ find ε such that

‖e(a(ε), zδ)‖2
V = δ2. (4.13)

Evidently, the above equation can equivalently be posed as the problem
of finding ε such that

Φ(ε)− εΦ′(ε) =
1

2
δ2. (4.14)
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The Damped Morozov’s principle suggest solving the following equation:
Given δ find ε such that

‖e(a(ε), zδ)‖2
V + εγ ‖a(ε)‖2

H = δ2 (4.15)

where γ ∈ [1,∞]. Equivalently, find ε such that

Φ(ε) + (εγ − ε) Φ′(ε) =
1

2
δ2. (4.16)

Clearly, (4.13) corresponds to the case γ =∞.
We define

Φ(0) := inf
a∈H

1

2

∥∥e(a, zδ)∥∥2

V
= inf

a∈H

1

2
‖T (a, zδ)−m‖2

V .

We have the following result:

Theorem 4.2.1. If Φ(0) < 1
2
δ2 < Φ(1), then (4.16) has a unique solution β∗ ∈

(0, 1].

4.3 Discretization and Implementation Details

We need to discretize variational equations (4.6) and (4.8) which give us a(ε)

and a′(ε). In this section, we describe the finite element framework that will
be used for discretization.

Let Th be a triangulation of the domain Ω. We defineAh to be the space of
all continuous piecewise polynomials of degree da relative to Th. Similarly, Vh
will be the space of all continuous piecewise polynomials of degree du relative
to Th, subject to the constraint that the Dirichlet boundary conditions are
satisfied.

Bases forAh andVh will be represented by {ψ1, ψ2, . . . , ψm} and {ϕ1, ϕ2, . . . , ϕn} ,
respectively. The space Ah is then isomorphic to Rm, and for any a ∈ Ah, we
define A ∈ Rm by Ai = a(xi), i = 1, 2, . . . ,m, where {ψ1, ψ2, . . . , ψm} is a nodal
basis corresponding to the nodes {x1, x2, . . . , xm}. Conversely, each A ∈ Rm

corresponds to a ∈ Ah defined by a =
∑m

i=1Aiψi. Similarly, u ∈ Vh will cor-
respond to U ∈ Rn, where Ui = u(yi), i = 1, 2, . . . , n and u =

∑n
i=1 Uiϕi. Here

y1, y2, . . . , yn are the nodes of the mesh defining Vh. Note that although both
Ah and Vh are defined relative to the same triangles, the nodes are different.
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By MV , KV ∈ Rn×n we denote the mass and the stiffness matrix with re-
spect to Vh, that is,

(MV )i,j =

∫
Ω

ϕiϕjdx,

(KV )i,j =

∫
Ω

∇ϕi∇ϕjdx.

Similarly, MH , KH ∈ Rm×m denote the mass and the stiffness matrix with
respect to Ah, that is,

(MH)i,j =

∫
Ω

ψiψjdx,

(KH)i,j =

∫
Ω

∇ψi∇ψjdx.

Furthermore, for every A ∈ Rm, K(A) ∈ Rn×n is the matrix defined by

K(A)i,j = T (a, ϕi, ϕj),

and F ∈ Rm is the vector defined by

Fi = m(ϕi).

We will also use the the adjoint matrix L(·) ∈ Rn×m defined by

L(V )A = K(A)V, for every A ∈ Rm, V ∈ Rm.

We now proceed to discretize a(ε) and Φ(ε). For any a ∈ A, z ∈ Z, the
discretization of the Riesz element T (a, z) is given by the vector T (A,Z) ∈ Rn

verifying
KV T (A,Z) = K(A)Z,

and consequently
T (A,Z) = K−1

V L(Z)A.

In the same way the discretization of e(a, z) is given by

E(A,Z) = K−1
V (L(Z)A− F ) .

Applying the discretization scheme to the variational equation

〈T (a(ε), zδ), T (b, zδ)〉V + ε 〈a, b〉H = 〈m,T (v, zδ)〉V for every b ∈ H,
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we get

B̂TL(Zδ)TK−1
V (KV +MV )K−1

V L(Zδ)ah[ε] + εB̂(KH +MH)ah[ε]

= B̂TL(Zδ)TK−1 (M +K)F.

where B̂ corresponds to the arbitrary b and by ah[ε] ∈ Rm we denote the dis-
cretization of a(ε).

This last expression is equivalent to solving the linear system: Find ah[ε] ∈
Rm such that[

L(Zδ)TK−1
V (KV +MV )K−1

V L(Zδ) + ε(KH +MH)
]
a(ε)

= L(Zδ)TK−1
V (KV +MV )F. (4.17)

In the same way, the derivative a′(ε) corresponds to solving the following
variational equation

〈T (a′(ε), zδ), T (v, zδ)〉V + ε 〈a′(ε), v〉H = −〈a(ε), v〉H for every δa ∈ V .

Following the same ideas as before, its discrete version is given by: Find
Dah[ε] ∈ Rm such that[

L(Zδ)TK−1
V (KV +MV )K−1

V L(Zδ) + ε(KH +MH)
]
Dah[ε]

= − (KH +MH) ah[ε]. (4.18)

Recall that the value function Φ : R+ → R is defined by

Φh(ε) := J (ah(ε), ε) =
1

2
‖e(ah(ε), Zδ)‖2

V

+
ε

2
‖ah(ε)‖2

H

and consequently, its discrete analogue reads:

Φh(ε) =
1

2
(L(Zδ)ah(ε)−F )TK−1

V (KV +MV )K−1
V (L(Zδ)ah(ε)−F )+

ε

2
ah(ε)

T (KH+MH)ah(ε).

(4.19)
Using (4.10), its discrete derivative is given by

DΦh(ε) =
1

2
‖ah(ε)‖2

H =
1

2
ah(ε)

T (KH +MH)ah(ε), (4.20)

and the second derivative by

D2Φh(ε) = 〈ah(ε), Dah(ε)〉H = ah(ε)
T (KH +MH)Dah(ε). (4.21)
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Recall that the Morozov principle corresponds to solving the following
nonlinear scalar equation

Find ε ∈ (0, 1) such that Gγ(ε) := Φ(ε)− (εγ − ε)Φ′(ε)− 1

2
δ2.

The natural discretization of this problem is given by

Find ε ∈ (0, 1) such that Gγ
h(ε) := Φh(ε)− (εγ − ε)Φ′h(ε)−

1

2
δ2.

To apply the known method (Bisection, Newton, QuasiNewton) we only
need to evaluate Gγ

h(ε) and the derivative DGγ
h(ε) for the methods where this

derivative is used:

DGγ(ε) = DΦh(ε)− (εγ − ε)D2Φh(ε). (4.22)

4.4 Data Smoothing

To improve the efficiency of the parameter identification process, it is natural
to perform some data smoothing before using the data as an input for the
optimization formulation of the inverse problem. In this chapter, we obtain
a set of smooth data zs by solving the following optimization problem

min
zs
||zs − zδ||2H1 + α||∇zs||2L2 , (4.23)

where α is the smoothing parameter. This strategy for error smoothing was
explored in [20] where smoothing was shown to yield increased accuracy in
the coefficient reproductions.

By standard arguments, we obtain the following finite dimensional ver-
sion optimality condition for 4.23:

(K +M + αK)Zs = (K +M)Zδ. (4.24)

4.5 Numerical Experiments

A series of numerical tests concentrating on second order elliptic partial dif-
ferential equations are considered. These examples were interpolated using
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one-hundred basis functions. The brute force method is used in a manner
similar to the chapter where the source term is considered. The Morozov
principle is also compared using the same tolerances previously discussed.

The problem for coefficient identification is a nonlinear problem. The
result of this is that adding noise will have more of an effect on the results for
this problem than in the source term problem. V levels of noise were used for
these problems and limit on the size of the added noise was determined by
the degree to which the reconstruction deviated from the actual solution.

Error smoothing was used on second order examples two and three to
demonstrate how the coefficient reconstruction could be improved by com-
pensating for the added noise. The best smoothing parameter αopt was iden-
tified by succesively identifyingZs for a range of smoothing parameters while
calculating ||z − zs||H1 for each. After the best version of the smoothed data
was identified, the best regularization parameter was identified for both the
smoothed and unsmoothed data. These are known as βsopt and βδopt respec-
tively. Finally, the Morozov principle was used to estimate the best regular-
ization parameter for both cases which are labeled as βsM and βδM . The L2,H1

semi-norm, and H1 errors were calculated and compared to assess the per-
formance of the parameter identification. The results for the coefficient re-
construction are also compared.

In general, the Morozov principle was able to find comparable results when
compared to the brute force method. Where the undamped version of the
Morozov equation fell short, the damped version was generally able to pro-
vide a more satisfactory result. Furthermore, the Morozov principle became
very accurate when smoothing was applied to the data. Several Newton-type
and cubically convergent algorithms were implemented. In these tests it was
found that Newton’s method converged to βM in fractions of a second. The
cubic methods often shortened the time required to do this, but not in a sig-
nificant manner.

4.5.1 Second Order Examples

Example 4.5.1. Consider the second order problem in one-dimension where:

a(x) = exp(1 + x2)

u(x) = exp(−x)sin(πx).
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The brute force method was employed in the same manner as the source
term section. Since this is a nonlinear problem employing the equation er-
ror functional, the regularization parameters are much larger, and the effect
adding noise has on the reproductions is much more noticeable. It can be
seen by the brute force reproductions below, the equation error functional
works well for small noise, but when δ̂ = .05 the noise introduces noticeable
inaccuracy into the reconstruction.

For this example, the Morozov equation produces over-regularized val-
ues. This same problem was observed in [25] where in some cases βM was
of a much larger magnitude than βopt. While the reproductions start off as
fairly accurate, largest noise parameter gives a significant deviation from the
brute force method. The damped version of the Morozov principle provides
an alternative which can reduce the estimation to a similar magnitude to the
brute force parameter. It can be seen that a damping parameter of γ = 1

generates a set of parameters with much lower error values for all noise levels
but the smallest where damping actually under-regularizes the problem. The
larger noise levels contain noticeable levels of flattening when the Morozov
principle is used.

The cubically convergent methods took the fewest iterations and the least
amount of time to converge to a satisfactory estimation of βM . Despite this,
the decrease in time for the cubic methods over Newton’s method was not
significant. In some cases the cubic methods either took about as long, or
slightly longer due to the larger number of necessary calculations.

Table 4.1 Brute Force Results

δ̂ βopt H1 Error

0.0001 0.00020965 0.30564
0.001 0.0028665 0.51348
0.005 0.010663 0.70489
0.0075 0.014764 0.80309
0.01 0.019451 0.91302
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Table 4.2 Newton-Type Results

δ̂ βM H1 Error Bis. Iter Bis. Time QN. Iter QN. Time N. Iter N. Time

0.0001 0.0006029 0.33704 32 0.11487 39 0.054092 8 0.010742
0.001 0.01319 0.68537 35 0.15354 10 0.013266 6 0.007805
0.005 0.20813 1.2514 36 0.11213 10 0.008747 5 0.006001
0.0075 0.58111 1.4835 29 0.085677 11 0.01401 7 0.006122
0.01 1.8623 1.6794 34 0.081709 12 0.017727 8 0.007819

Table 4.3 Cubic Method Results

δ̂ Cheb. Iter Cheb. Time Hal. Iter Hal. Time SHal. Iter SHal, Time
0.0001 7 0.014318 7 0.014385 7 0.013638
0.001 5 0.009088 5 0.009986 5 0.009116
0.005 5 0.009274 5 0.010092 5 0.009162
0.0075 5 0.006162 5 0.01036 5 0.009832
0.01 6 0.008257 6 0.012774 6 0.008989

δ̂/γ 1 1.2 1.4 1.6 1.8 2

.0001 1.9175e-05 0.00011024 0.00030784 0.00048997 0.00057152 0.00059532

.001 0.0014809 0.0040079 0.0070892 0.0096992 0.011412 0.012356

.005 0.05155 0.081123 0.10677 0.12787 0.14494 0.15864

.0075 0.16589 0.21911 0.26175 0.29671 0.32601 0.351

.01 0.46161 0.52277 0.56926 0.6063 0.63674 0.66235

Figure 4.1 H1 Error for Damped Parameters

δ̂/γ 1 1.2 1.4 1.6 1.8 2
.0001 0.41949 0.31655 0.30983 0.32605 0.334 0.33631
.001 0.57325 0.52565 0.58724 0.63417 0.66074 0.67415
.005 0.94859 1.0443 1.1035 1.1429 1.1705 1.1906
.0075 1.213 1.2732 1.3121 1.3396 1.3602 1.3763
.01 1.4438 1.469 1.4859 1.4983 1.5078 1.5154
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Figure 4.2 Reconstructions Using βopt

Figure 4.3 Noise of .005 Figure 4.4 Noise of .0075

Figure 4.5 Noise of .01 Figure 4.6 Noise of .05

Figure 4.7 Reconstructions Using βM

Figure 4.8 Noise of .001 Figure 4.9 Noise of .005

Figure 4.10 Noise of .0075 Figure 4.11 Noise of .01



4.5. Numerical Experiments 53

Example 4.5.2.

a(x) = .5cos(4πx) + 1,

u(x) = sin(4πx).

This second example yields much more favorable results in terms of the
error levels. Five percent noise causes a noticeable malformation of the co-
efficient reconstruction, but a recognizable reconstruction is found for all
of the noise levels . The Morozov principle is able to identify a parameter
preserving the which produces a reconstruction which is similar to . In ex-
ample one, βM was on seperate orders of magnitude from βopt. In this case,
βM was close enough to βopt that the reconstructions were nearly identical to
those produced using the brute force method. Even in the case of the largest
noise level βM is only twice as large as βopt which is a very small deviation
when compared to other tests in this paper and [25]. The damped results
were also comparable, but no consistent improvement over the undamped
method was produced using damping.

Newton’s method converged to βM much more quickly than the quasi-
Newton method. The cubically convergent methods were able to outperform
the Newton type methods in several examples, but this was a marginal im-
provement in terms of convergence speed.

Table 4.4 Brute Force Results

δ̂ βopt H1 Error
0 2.0004e-08 0.097791
0.001 0.0018536 0.44649
0.005 0.012174 0.8215
0.0075 0.017902 0.94
0.01 0.023372 1.0373
0.05 0.1151 2.068

Table 4.5 Newton-Type Results

δ̂ βM H1 Error Bis. Iter Bis. Time QN. Iter QN. Time N. Iter N. Time

1e-14 3.0518e-05 0.11066 15 0.074762 12 0.026487 11 0.026087
0.001 0.0029202 0.54435 19 0.078098 10 0.019319 8 0.013634
0.005 0.014763 0.96871 17 0.078988 9 0.01515 6 0.009948
0.0075 0.02214 1.1187 20 0.092362 9 0.013203 6 0.008873
0.01 0.029608 1.2416 19 0.093537 8 0.012256 5 0.01173
0.05 0.21437 2.4953 22 0.099909 12 0.022766 6 0.009903



4.5. Numerical Experiments 54

Table 4.6 Cubic Method Results

δ̂ Cheb. Iter Cheb. Time Hal. Iter Hal. Time SHal. Iter SHal, Time
1e-14 9 0.030169 8 0.031503 8 0.023043
0.001 6 0.01433 6 0.015527 6 0.015517
0.005 5 0.011845 5 0.012469 5 0.012899
0.0075 5 0.010763 5 0.010421 5 0.019068
0.01 5 0.012122 5 0.012696 5 0.01302
0.05 4 0.009317 5 0.02096 5 0.012128

Table 4.7 Damped Regularization Parameters

δ̂/γ 1 1.2 1.4 1.6 1.8 2

.0001 1.9175e-05 0.00011024 0.00030784 0.00048997 0.00057152 0.00059532

.001 0.0014809 0.0040079 0.0070892 0.0096992 0.011412 0.012356

.005 0.05155 0.081123 0.10677 0.12787 0.14494 0.15864

.0075 0.16589 0.21911 0.26175 0.29671 0.32601 0.351

.01 0.46161 0.52277 0.56926 0.6063 0.63674 0.66235

δ̂/γ 1 1.2 1.4 1.6 1.8 2
.0001 0.41949 0.31655 0.30983 0.32605 0.334 0.33631
.001 0.57325 0.52565 0.58724 0.63417 0.66074 0.67415
.005 0.94859 1.0443 1.1035 1.1429 1.1705 1.1906
.0075 1.213 1.2732 1.3121 1.3396 1.3602 1.3763
.01 1.4438 1.469 1.4859 1.4983 1.5078 1.5154
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Figure 4.12 Reconstructions Using βopt

Figure 4.13 Noise of .005 Figure 4.14 Noise of .0075

Figure 4.15 Noise of .01 Figure 4.16 Noise of .05

Figure 4.17 Reconstructions Using βM

Figure 4.18 Noise of .005 Figure 4.19 Noise of .0075

Figure 4.20 Noise of .01 Figure 4.21 Noise of .05
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In this instance smoothing had a very beneficial impact on the calcula-
tion of both the optimal regularization parameter, and the Morozov param-
eter. A cursory glance on the results from the smooth and unsmoothed data
shows that smoothing produces a noticeable reduction in the H1 error pro-
duced by comparing the noisy data to Z. This comes at the expense of a large
increase in the L2 error. This latter impact is evident in the graphs on the
next page. The red line which represents the noisy data without smoothing
exhibits sharp gyrations. The black line denoting the smoothed data is flat-
tened by with a reduction in the sudden changes introduced by noise.

Using the brute force method shows that smoothing produces a notice-
able effect on the quality of the reconstructions of the source term. First, the
H1 error is reduced. Additionally, the L2 error is also reduced meaning that
not only will the reconstructions using smoothed data exhibit a smoother
general shape, but that the flattening noted for the smoothed data will not be
repeated. In the graphs of these reconstructions it can be seen that the blue
line representing a(βsopt) resembles a (black) much more than a(βsM) (red).

In terms of the quality of the reconstructions, it can be seen that those
produced with smoothing and the Morozov principle are much higher qual-
ity. The estimates of the regularization parameter are much closer to the op-
timal parameter and the overcompensation that occurs with large amounts
of noise is also curbed. With the largest level of added noise βsM is 0.25758

which is comparable to βsopt = 0.21088. On the other hand, βδM = 0.66454

while the best parameter found with noise (βδopt) is much smaller at 0.23952.
As a result, for this noise level the level of H1 error for the Morozov principle
on smoothed data is about three-quarters of the result if no processing of the
data is utilized.
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Table 4.8 Error from Noisy Data

Noise L2 Error H1S Error H1 Error
0.01 0.0045342 0.30283 0.30287
0.02 0.0090684 0.60566 0.60573
0.03 0.013603 0.90849 0.9086
0.04 0.018137 1.2113 1.2115
0.05 0.022671 1.5142 1.5143
0.06 0.027205 1.817 1.8172
0.07 0.031739 2.1198 2.1201
0.08 0.036274 2.4226 2.4229
0.09 0.040808 2.7255 2.7258
0.1 0.045342 3.0283 3.0287
0.11 0.049876 3.3311 3.3315
0.12 0.05441 3.634 3.6344

Table 4.9 Error from Smoothing Data

Noise α L2 Error H1S Error H1 Error
0.01 0 0.0045342 0.30283 0.30287
0.02 0 0.0090684 0.60566 0.60573
0.03 0.005005 0.01471 0.90688 0.907
0.04 0.015015 0.022558 1.206 1.2062
0.05 0.02002 0.028613 1.5017 1.502
0.06 0.035035 0.039104 1.793 1.7934
0.07 0.05005 0.049748 2.0793 2.0799
0.08 0.065065 0.060294 2.3595 2.3603
0.09 0.085085 0.073101 2.6331 2.6341
0.1 0.10511 0.085609 2.8993 2.9005
0.11 0.13013 0.10012 3.1577 3.1593
0.12 0.15516 0.11414 3.4078 3.4097
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Figure 4.22 Noise of .02 Figure 4.23 Noise of .04

Figure 4.24 Noise of .06 Figure 4.25 Noise of .08

Figure 4.26 Noise of .1 Figure 4.27 Noise of .12



4.5. Numerical Experiments 59

Table 4.10 Coefficient Reconstructions with Noisy Data

Noise βδopt L2 Error H1S Error H1 Error
0.01 0.017413 0.045041 1.1067 1.1076
0.02 0.041529 0.071009 1.4458 1.4475
0.03 0.063285 0.088959 1.6591 1.6615
0.04 0.083438 0.10357 1.8216 1.8245
0.05 0.10279 0.11688 1.9566 1.9601
0.06 0.12182 0.12989 2.0744 2.0784
0.07 0.14083 0.1432 2.1803 2.185
0.08 0.15999 0.15712 2.2773 2.2828
0.09 0.1794 0.17182 2.3674 2.3736
0.1 0.19912 0.18739 2.4516 2.4587
0.11 0.21916 0.20381 2.5307 2.5389
0.12 0.23952 0.22106 2.6053 2.6146

Table 4.11 Coefficient Reconstructions with Smoothed Data

Noise βsopt L2 Error H1S Error H1 Error
0.01 0.017413 0.045041 1.1067 1.1076
0.02 0.041529 0.071009 1.4458 1.4475
0.03 0.063279 0.087928 1.6536 1.656
0.04 0.083072 0.10056 1.8055 1.8083
0.05 0.10183 0.11215 1.9358 1.939
0.06 0.11938 0.12143 2.0397 2.0433
0.07 0.13628 0.13025 2.1332 2.1372
0.08 0.15273 0.1387 2.2193 2.2236
0.09 0.16826 0.14646 2.2956 2.3003
0.1 0.18336 0.15402 2.3676 2.3726
0.11 0.19736 0.16107 2.4324 2.4378
0.12 0.21088 0.16795 2.4944 2.5
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Figure 4.28 Noise of .02 Figure 4.29 Noise of .04

Figure 4.30 Noise of .06 Figure 4.31 Noise of .08

Figure 4.32 Noise of .1 Figure 4.33 Noise of .12
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Table 4.12 Morozov Results with Noisy Data

Noise βδM L2 Error H1S Error H1 Error
0.01 0.022645 0.051818 1.119 1.1202
0.02 0.045969 0.075161 1.4491 1.4511
0.03 0.069723 0.09387 1.6633 1.666
0.04 0.095096 0.11107 1.831 1.8343
0.05 0.12339 0.12814 1.9772 1.9814
0.06 0.15617 0.14586 2.1152 2.1202
0.07 0.19547 0.16472 2.2533 2.2593
0.08 0.24413 0.18503 2.398 2.4051
0.09 0.30631 0.20699 2.554 2.5624
0.1 0.38851 0.23075 2.7254 2.7352
0.11 0.50147 0.25639 2.9149 2.9262
0.12 0.66454 0.28398 3.1241 3.1369

Table 4.13 Morozov Results with Smoothed Data

Noise βsM L2 Error H1S Error H1 Error
0.01 0.022645 0.051818 1.119 1.1202
0.02 0.045969 0.075161 1.4491 1.4511
0.03 0.068583 0.092021 1.6565 1.6591
0.04 0.090581 0.10556 1.8096 1.8127
0.05 0.11388 0.11914 1.9437 1.9473
0.06 0.13545 0.12973 2.0508 2.0549
0.07 0.15734 0.13998 2.1487 2.1532
0.08 0.17951 0.14982 2.2397 2.2447
0.09 0.20027 0.15853 2.3201 2.3255
0.1 0.22096 0.16693 2.3962 2.402
0.11 0.23951 0.17437 2.4637 2.4699
0.12 0.25758 0.18154 2.5281 2.5346
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Figure 4.34 Noise of .02 Figure 4.35 Noise of .04

Figure 4.36 Noise of .06 Figure 4.37 Noise of .08

Figure 4.38 Noise of .1 Figure 4.39 Noise of .12

Example 4.5.3. A third second order example reinforces the first two:

a(x) = log(x+ 2),

u(x) = −(x4 − x3),

In the case of the brute force method, notable flattening of the coefficient
reconstructions was evident for noise levels above 1% and 5%. The Morozov
principle was able to identify βM which was about one order of magnitude
larger than βopt. As a result a noticeably larger error is evident for larger levels
of noise. The damped version of the Morozov equation performs better for
the larger noise levels, but did not offer any consistent improvements.
Of the numerical methods, Newton’s method performs the best of the in this
example. The cubic methods require fewer iterations but the extra computa-
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tion time makes them fall short in most cases. The cubic methods were able
to outperform Newton’s method for 1% noise The quasi-Newton method per-
forms better in this problem in context to other methods, but still takes two
or three more times to converge than Newton’s method.

Table 4.14 Brute Force Results

δ̂ βopt H1 Error
0 1.0802e-06 0.1623
0.001 0.00013611 0.19698
0.005 0.0010952 0.20865
0.0075 0.0020953 0.21455
0.01 0.003388 0.2239
0.05 0.025674 0.48028

Table 4.15 Newton-Type Results
δ̂ βM H1 Error Bis. Iter Bis. Time QN. Iter QN. Time N. Iter N. Time

0.001 0.0029202 0.54435 19 0.078098 10 0.019319 8 0.013634
0.005 0.014763 0.96871 17 0.078988 9 0.01515 6 0.009948
0.0075 0.02214 1.1187 20 0.092362 9 0.013203 6 0.008873
0.01 0.029608 1.2416 19 0.093537 8 0.012256 5 0.01173
0.05 0.21437 2.4953 22 0.099909 12 0.022766 6 0.009903

Table 4.16 Cubic Method Results
δ̂ Cheb. Iter Cheb. Time Hal. Iter Hal. Time SHal. Iter SHal, Time
0.001 6 0.015026 7 0.01846 5 0.012832
0.005 5 0.011954 6 0.015487 4 0.009434
0.0075 4 0.009135 6 0.015982 4 0.009549
0.01 4 0.010284 4 0.009561 4 0.009804
0.05 5 0.011862 4 0.020215 4 0.010956

Table 4.17 Damped Regularization Parameters
δ̂/γ 1 1.2 1.4 1.6 1.8 2
.001 6.6757e-06 4.5776e-05 0.00015259 0.00030518 0.00048828 0.00048828
.005 0.0001297 0.00052643 0.001297 0.0021667 0.0027161 0.0029602
.0075 0.00030327 0.0010681 0.0023499 0.0036316 0.0044098 0.004776
.01 0.00057411 0.0018196 0.0036697 0.0053406 0.0063477 0.0068359
.05 0.059181 0.088432 0.1097 0.12498 0.13603 0.14406
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δ̂/γ 1 1.2 1.4 1.6 1.8 2
.001 0.44009 0.21206 0.19707 0.20016 0.20355 0.20355
.005 0.3558 0.21758 0.20895 0.21254 0.21496 0.21599
.0075 0.35067 0.22461 0.21475 0.2185 0.22141 0.22281
.01 0.35096 0.23445 0.22404 0.22796 0.23144 0.23326
.05 0.53775 0.59392 0.62792 0.64923 0.66322 0.67272

Figure 4.40 Reconstructions Using βopt

Figure 4.41 Noise of .001 Figure 4.42 Noise of .005

Figure 4.43 Noise of .0075 Figure 4.44 Noise of .01
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Figure 4.45 Reconstructions Using βM

Figure 4.46 Noise of .001 Figure 4.47 Noise of .005

Figure 4.48 Noise of .0075 Figure 4.49 Noise of .01
Noticeable improvements in the reconstruction of the coefficient term are
observable with the use of data smoothing. In the instance of 8% noise be-
ing added to the data, smoothing reduces ||Z − Zs||2H1 to roughly 72% of
||Z − Zδ||2H1 . Once again, part of the disadvantage of this reduction is that
||Z −Zs||2L2 is made significantly larger than ||Z −Zδ||2L2 . This is evident in the
graphs for this example as flattening similar to that observed in example two
is evident.
The use of the smoothed data in the identification of the regularization pa-
rameter by brute force shows a drastic improvement in the errors for the re-
constructions. In the case where 8% noise is added smoothing gives a repro-
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duction of the coefficient term which aH1 error that is 73.8% of that obtained
without smoothing. The L2 error is also experiences a significant decrease in
the coefficient reconstructions. When the reconstructions below are viewed
as a survey of the reproductions shows that the coefficient reproductions de-
rived from smoothed data maintains a fidelity to the noiseless data which is
far less impacted by noise than the unprocessed noisy data.
The Morozov principle when utilized on the unsmoothed data gives param-
eters which show the familiar overdamping observed in earlier examples. In
this case, the root finding algorithm identifies the regularization parameter
as thirty for the three largest noise levels. This number was picked as an
upper limit for the parameter. At this level of regularization the coefficient
which is recovered (red) is not recognizeable when shown in context to the
actual term (black). However, the Morozov principle along with smoothing
allows for the identification of a regularization parameter which is not only
much smaller, but which also carries with it a much smaller error level. The
result is that the blue line representing the reconstruction using the Morozov
principle with smoothed data retains much more of the actual shape for the
coefficient term.
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Table 4.18 Error from Noisy Data

Noise L2 Error H1S Error H1 Error
0.01 0.00049329 0.034377 0.03438
0.02 0.00098658 0.068753 0.068761
0.03 0.0014799 0.10313 0.10314
0.04 0.0019732 0.13751 0.13752
0.05 0.0024665 0.17188 0.1719
0.06 0.0029598 0.20626 0.20628
0.07 0.003453 0.24064 0.24066
0.08 0.0039463 0.27501 0.27504

Table 4.19 Error from Smoothed Data

Noise α L2 Error H1S Error H1 Error
0.01 0.015015 0.0010059 0.03404 0.034055
0.02 0.06006 0.0034846 0.066476 0.066567
0.03 0.13514 0.007188 0.096218 0.096486
0.04 0.23023 0.011268 0.12269 0.12321
0.05 0.35536 0.015801 0.1457 0.14655
0.06 0.50551 0.020291 0.16541 0.16665
0.07 0.67568 0.024448 0.18215 0.18378
0.08 0.87087 0.028319 0.1963 0.19833
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Figure 4.50 Noisy Data With and Without Smoothing

Figure 4.51 Noise of .02 Figure 4.52 Noise of .04

Figure 4.53 Noise of .06 Figure 4.54 Noise of .08
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Table 4.20 Coefficient Reconstructions with Noisy Data

Noise βδopt L2 Error H1S Error H1 Error
0.01 0.00091724 0.027478 0.19345 0.19539
0.02 0.0028052 0.069267 0.20318 0.21466
0.03 0.0064047 0.12404 0.21303 0.24651
0.04 0.0098348 0.17761 0.21895 0.28193
0.05 0.013038 0.22819 0.22358 0.31946
0.06 0.016095 0.27558 0.22738 0.35728
0.07 0.019038 0.3197 0.23051 0.39414
0.08 0.021883 0.36056 0.23311 0.42936

Table 4.21 Coefficient Reconstructions with Smoothed Data

Noise βsopt L2 Error H1S Error H1 Error
0.01 0.00091798 0.023649 0.1933 0.19474
0.02 0.0029805 0.048083 0.20488 0.21044
0.03 0.0069582 0.085604 0.21473 0.23117
0.04 0.010322 0.11833 0.22089 0.25059
0.05 0.013068 0.14813 0.22618 0.27038
0.06 0.015319 0.17065 0.23107 0.28725
0.07 0.017072 0.1893 0.23556 0.3022
0.08 0.01839 0.20659 0.23967 0.31641
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Figure 4.55 Noise of .02 Figure 4.56 Noise of .04

Figure 4.57 Noise of .06 Figure 4.58 Noise of .08

Table 4.22 Morozov Results with Noisy Data

Noise βδ L2 Error H1S Error H1 Error
0.01 0.0047141 0.064324 0.19955 0.20966
0.02 0.01217 0.1565 0.20128 0.25497
0.03 0.023983 0.26309 0.2085 0.33569
0.04 0.043624 0.37761 0.22792 0.44107
0.05 0.078721 0.49645 0.26153 0.56113
0.06 0.14871 0.61627 0.30378 0.68708
0.07 0.32026 0.73391 0.34716 0.81187
0.08 1.0649 0.84653 0.38623 0.93047

Table 4.23 Morozov Results with Smoothed Data
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Noise βs L2 Error H1S Error H1 Error
0.01 0.0043401 0.05153 0.19792 0.20452
0.02 0.0093036 0.10325 0.19804 0.22335
0.03 0.01388 0.14781 0.1999 0.24861
0.04 0.017708 0.1883 0.20118 0.27556
0.05 0.020334 0.21895 0.20217 0.29801
0.06 0.021905 0.24386 0.2028 0.31717
0.07 0.022714 0.26595 0.20303 0.33459
0.08 0.022822 0.28384 0.20321 0.34909

Figure 4.59 Noise of .02 Figure 4.60 Noise of .04

Figure 4.61 Noise of .06 Figure 4.62 Noise of .08

4.6 Conclusion

This chapter showed how a mathematical framework analogous to that used
for the source term identification problem in chapter two could be used ap-
plied to the classical inverse problem by using the equation error functional.
A computational framework was given and shown to be effective on a wide
range of examples involving the elliptic partial differential equation in one
and two dimensions.
The Morozov principle was shown to be able to identify satisfactory substi-
tutes for βopt. The time it took to identify βM was a fraction of the time that it
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took to employ the brute force method for these simple examples and would
presumably hold for larger scale or more complex problems. Where the un-
damped Morozov principle fell short the damped version was sometimes
able to produce more accurate results. This strategy for estimating the regu-
larization parameter was shown to be further improved using error smooth-
ing which also allowed for much larger levels of noise to be considered.
The Morozov principle was a reliable alternative to the trial and error method
of estimating the regularization parameter for most cases. The equation er-
ror approach’s reliance on the data introduces susceptibility to noise, which
limited the size of the noise being introduced to the data. To counteract this,
error smoothing was implemented on several examples to demonstrate the
improvement of the results. Error smoothing not only greatly increased the
amount of noise it was possible to generate a reconstruction from, but also
improved the quality of the result of the Morozov principle when compared
to the optimal regularization parameter. In general, Newton’s method was
found to be the most effective algorithm for solving the root finding problem.
While slight improvements in convergence time were gained with the cubic
methods, the improvement was not enough to justify a clear preference for
the cubic methods over the quadratic methods.
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