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ABSTRACT

Kate Gleason College of Engineering
Rochester Institute of Technology

Degree: Doctorate of Philosophy Program: Microsystems Engineering
Author’s Name: Ryan M. Bowen
Advisor’s Name: Dr. Ferat Sahin
Dissertation Title: Online Novelty Detection System:
One-Class Classification of Systemic Operation

Presented is an Online Novelty Detection System (ONDS) that uses
Gaussian Mixture Models (GMMs) and one-class classification techniques
to identify novel information from multivariate times-series data. Multiple
data preprocessing methods are explored and features vectors formed from
frequency components obtained by the Fast Fourier Transform (FFT) and
Welch’s method of estimating Power Spectral Density (PSD). The number
of features are reduced by using bandpower schemes and Principal Com-
ponent Analysis (PCA). The Expectation Maximization (EM) algorithm
is used to learn parameters for GMMs on feature vectors collected from
only normal operational conditions. One-class classification is achieved by
thresholding likelihood values relative to statistical limits. The ONDS is
applied to two different applications from different application domains.
The first application uses the ONDS to evaluate systemic health of Ra-
dio Frequency (RF) power generators. Four different models of RF power
generators and over 400 unique units are tested, and the average robust
true positive rate of 94.76% is achieved and the best specificity reported
as 86.56%. The second application uses the ONDS to identify novel events
from equine motion data and assess equine distress. The ONDS correctly
identifies target behaviors as novel events with 97.5% accuracy. Algorithm
implementation for both methods is evaluated within embedded systems
and demonstrates execution times appropriate for online use.
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Chapter 1

Introduction

In recent years, there have been numerous methods proposed to achieve online health

monitoring of various industrial systems. Most of these methods have not been specif-

ically designed and/or executed on the targeted industrial system. Most industrial sys-

tems in the past have had limited processing power and memory available leading to a

sparse number of solutions to embedded health monitoring systems. Conventional health

monitoring uses rudimentary comparisons of current and nominal system characteristics.

Gradual variation in nominal characteristics often cause conventional methods to fail

and produce false indicators. Additionally, traditional methods fail when operational

conditions produce system characteristics that fall outside nominal ranges solely on the

basis that they were unanticipated/unobserved. These false indicators can cause system

downtime, unnecessary diagnostic costs, and even material waste. Recently, increases

in computational power and memory capacity for modern microprocessors has driven

the feasibility of intelligent health monitoring systems within embedded environments.

Therefore, a significant contribution to many application domains would be the real-

ization of an embedded intelligent health monitoring system that is capable of online
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classification within an embedded environment. The semiconductor industry is one such

application domain that can greatly benefit from such a monitoring system.

1.1 Fault Detection and Semiconductor Industry

The semiconductor industry’s trend toward larger wafers (300mm to 450mm) for Inte-

grated Circuit (IC) manufacturing demands reliable/available process equipment. To

minimize the cost of ownership (COO), IC Process tools must not fail during IC fabrica-

tion processes. For example, RF plasma power sources are critical components used dur-

ing etching and film deposition. Thus, the reliability/availability of these power sources is

critical to maximize up-time and minimize cost of ownership. Furthermore, the ability to

accurately determine a process tool’s operational condition in vivo has huge potential for

cost savings. Process monitoring and fault detection can help detect abnormal processes

and equipment based on variation in process variables. There are four general process

monitoring procedures: fault detection, fault identification, fault diagnosis, and process

recovery [4]. Each of the four types of procedures are briefly defined in the following list.

Fault Detection - indicates that a fault has occurred.

Fault Identification - identifies the main effects (process variables) relevant to the fault.

Fault Diagnosis - determines which fault has occurred, location, time, etc. as well as

the cause of the fault.

Process Recovery - removes the cause of the fault.

2



The focus of the proposed work is fault detection as an initial procedure in process moni-

toring and arguably the most important. Without accurate fault detection, identification

and diagnosis cannot occur.

The bulk of current fault detection and classification of semiconductor manufacturing

tools have used an Aluminum stack etch process as benchmark for their proposed methods

[5, 6, 7, 8, 9]. Various machine learning techniques have been used in the detection of

faults in semiconductor etch processes. Fault detection in processes have also been tested

against benchmark simulation problems as in [10, 11]. Mahadevan et al. tested their

one-class SVM fault detection and diagnosis on the Tennessee Eastman semiconductor

etch process [10]. Park et al. applied their multi-class Support Vector Machine (SVM)

to artificially generated fabrication data [11]. Hong et al. have used Modular Neural

Networks (MNN) composed of Local Expert Networks [6]. Ison and Ison et al. have

focused a dissertation on using a probabilistic model for fault classification of plasma

equipment using predictions from tree-based methods and a Generalized Linear Model

(GLM) for classification of different faults [12, 7]. Li et al. have used k-Nearest Neighbor

(k-NN) with diffusion maps [8] and Yu et al. have used Gaussian Mixture Models (GMM)

and bayesian inference [9]. Of these current machine learning methods, their successes

is typically contingent on the availability of amount of data samples for training the

classifiers.

With advances in metrology sensors, massive amounts of data are routinely collected

such as temperature, pressure, flow rate, and power. The data obtained from these

process variables can be monitored and control limits can be determined over time. Once

established, these control limits can be analyzed using statistical process control (SPC)
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to detect if a process is within control. Current research has extended the use of SPC for

fault classification. Goodlin et al. present a method that uses SPC charts to not only

detect a fault but to also simultaneously classify the fault [5]. Typically, SPC may be

used to identify a fault event but conventionally cannot classify the fault. Goodlin et.

al’s approach applies linear discriminant analysis to SPC charts to achieve simultaneous

fault detection and classification. However, SPC in most cases is done offline and may

cause a significant amount of scrap before control limits are established.

In recent years, the semiconductor industry has been focusing on the adaptation of

advanced process control (APC) where one component of APC is fault detection [9].

These fault detection systems collect data from the manufacturing equipment sensors

and attempt to quickly detect abnormal evolution of the process. Modern manufacturing

equipment has many sensors and are able to produce a massive amount of data. This

massive amount of data generally has many variables and causes univariate analysis such

as SPC to be inadequate. Therefore, multivariate SPC (MSPC) have been developed

and applied [13].

Many manufacturing processes have multiple steady-state conditions and operational

states. This suggests that data from many manufacturing processes follow a multimodal

model distribution and the standard application of MSPC may pose difficulties. To better

model manufacturing processes, mixture models have been used. Using mixture models

for fault detection poses a few issues; 1) how to model system characteristics that are

not available during model initialization and 2) how to compensate for gradual changes.

The work that has been reviewed thus far has been with respect to fault detection for

semiconductor manufacturing tools. There are other fields that have used fault detection
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as a component in a larger scope of system heath monitoring, such as health monitoring

of equine animals [1].

1.2 Health Monitoring

There are a number online health monitoring systems that have been recently published

that have used fault detection techniques. Of these monitoring systems it is seen that they

span a range of application domains and methodologies. Ordaz-Moreno et al. present

an automatic online diagnosis algorithm for detection of broken-rotor-bar in induction

motors [14]. Ordaz-Moreno et al.’s utilize a mean-square function on a subset of Discrete

Wavelet Transform (DWT) coefficients to determine health. Vanik et al. use a Bayesian

framework for structural health monitoring [15]. Wang et al. provide an approach to

anomoly detection in hard drives using the Mahalanobis distance [16]. Shakya et al. also

use the Mahalanobis distance in combination with Gram-Schmidt Orthogonalization to

health status for naturally progressing defects in bearings [17]. Many high-performance

novelty detection algorithms are kernel based such as SVM, Regularization Networks

(RN), Kernel Principal Component Analysis (KPCA), and Kernel Partial Least Squares

(KPLS)[18]. Due to the time and memory complexities of these methods they are rarely

used in an online manner. However, recently online formulations of Reproducing Kernel

Hilbert Spaces (RKHS) [19] have lead to a number of publications with online kernel

based model predictions [20, 21, 22, 23].

Many of the health monitoring systems reviewed utilize techniques that are highly

dependent on the availability of information with respect to faulty conditions. It is
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possible to evaluate the health of a system by using information from a single condition

assumed to be normal. The focus on learning only normal operational behavior has

consequence when a system experiences operational behavior that has not yet been seen

by the classifier. Thus, researchers are exploring ways to formulate classifiers where

boundaries of the normal operation class are learned. Anything outside the learned

boundaries is marked as non-normal or novel. These novel instances should be further

analyzed by an expert to assess the physical operation of the system. The expert should

then conclude the true operation of the system as normal, non-normal, or possibly faulty.

One-class classification is a type of classification technique that is used often in novelty

detection.

1.3 One-Class Classification

In machine learning, the basic assumption is to have a training dataset which represents

some parameter/feature space of the system, such that all the possible inputs and outputs

are independent and identically distributed (i.i.d) random variables. When there is no

practical way of obtaining faulty data from all possible fault patterns, it is common that

there is significantly more information for normal operation than faulty operation. In

most of the fault analysis work, a multi-class classifiers are used. In the multi-class cases,

the machine learning approaches such as Support Vector Machines, Neural Networks,

Radial Basis Function Networks, and Bayesian Networks are efficiently used; given there

are enough samples from the non-normal operation class. Machine learning approaches

depend on the data available for training. Henceforth, the classifiers can be only as
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successful as the samples used during training, and for multi-class classifiers, both normal

and non-normal operational data must be available. However, there is a common difficulty

in obtaining data for non-normal operation for many systems. Researchers realize the

challenges of obtaining non-normal data, and suggest a paradigm shift to learn only

the normal operation of a system rather than attempting to differentiate non-normal

operation from normal.

The one-class classification term originates from Moya et al.’s [24] classification work

with neural networks and their application to target recognition in synthetic aperture

radar. One-class classification’s primary assumption is that information is only available

for one class, the target class. The problem of one-class classification is to define a

boundary around the target class as to maximize object acceptance while minimizing

outlier acceptance [25].

Two of the most popular categorical methods to realizing a one-class classifier are

density-based and boundary-based. For density-based methods an estimate of the density

of training data is found and a threshold value is set. To estimate density many different

distributions may be used including Gaussian, Poisson, and mixture of Gaussians. For

training data with sufficiently high sample sizes and proper model assumption, density-

based one-class classification can be very effective. In the case of limited samples in the

training data, it may not be appropriate to generalize the problem as done in density-

based methods. Therefore, a better approach is to solve the problem available and use

boundary-based methods to define the target data. Some of the most common boundary-

based methods used are k-means, k nearest neighbors (k-NN), and Support Vector Data

Description (SVDD). It is noted that boundary-based methods are able to work on small
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sample sizes but are highly dependent on distance measures and thus are sensitive to

feature scaling [25].

A review of current one-class classification approaches has yielded a few prominent

terms in relation to one-class classification; anomaly detection, outlier detection, novelty

detection, and concept learning. Some of these terms are very similar in definition but

deviate with respect to their application to one-class classification. Anomaly and outlier

detection are used synonymous to novelty detection and concept learning but have slightly

different characteristics. A few definitions/descriptions from literature have been selected

for these terms to stress their subtle differences and to avoid improper use.

• anomaly/outlier detection - The most broad method in approach to one-class

classification where the problem is to find patterns in data that do not conform to

expected behavior. These nonconforming patterns may indicate noise, deviations

or exceptions [26].

• novelty detection - Smaller subset of anomaly/outlier detection where the

problem is to identify unobserved (novel) data or signal that a machine learning

system is not aware of during training [27]. Additionally, novelty detection will

typically incorporate the novel information into normal model after detection [26].

• concept-learning - Typically focuses on discriminate-based learning that relies

on both examples and counter examples of the concept. Concept learning may be

applied to one-class classification through recognition-based learning systems that

do not require the use of counter-examples [28].

Despite the closely related definitions and uses of the above terms, novelty detection
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has been chosen as the appropriate focus as a strategy for the proposed work. The de-

tection of non-normal system operation, is not necessarily considered noise nor as excep-

tion. Additionally, complex system adaptation may yield deviations that are exclusively

an effect of unobserved system normality. Therefore, novelty detection has been chosen

specifically for its capacity to detect and potential to incorporate previously unobserved

information.

Novelty detection spans many application domains including Internet Telecommunica-

tion (IT) security, healthcare informatics, medical diagnostics and monitoring, industrial

monitoring, text mining, and sensor networks. There have been a number of surveys

on novelty detection that have reviewed the various theoretical approaches and various

categorical techniques. In 2001, Tax’s Ph.D. dissertation classified novelty detection, as

it pertains to one-class classification, into three approaches: density-based, boundary-

based and reconstruction-based [25]. A review conducted by Markou and Singh focuses

on statistics-based and neural network-based approaches [27, 29]. A review by Pimentel

et al. provides a more recent and extensive review on novelty detection [30], where they

highlight novelty detection across five application domains; probabilistic, distance-based,

domain-based, reconstruction-based, and information theoretic. Ding et al. provides a

recent experimental evaluation of current novelty detection methods including SVDD

[31], k-means, k nearest neighbors (k-NN), and Gaussian mixture method (GM) [32].

Novelty detection using one-class classification is a general description of an abstract

process. The actual implementation of the one-class classification may be done using a

variety of techniques. However, a general approach to the problem has been proposed by

Filev et al. [33], where a Novelty Detection Framework (NDF) has been described as an
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application to online health monitoring of bearings.

1.4 Novelty Detection Framework

The Novelty Detection Framework is capable of updating a decision model continually

and autonomously using unsupervised learning methods. The outcome of the NDF is

a generic and effective monitoring system capable of detecting novel and/or abnormal

equipment conditions prior to the actual event. NDF has been experimentally tested as

an application to bearing monitoring with none to very few false alarms. The NDF is

discussed in more detail as it will serve as the primary basis of the proposed work and

will be used for comparison during experimental analysis. The NDF is composed of three

phases 1) Setup 2) Initialization and 3) Monitoring. The following subsections discuss

the general process of the different phases of NDF. Full explanation and implementation

details of the NDF span multiple publications. Thus, the exact specifics such as equations

and algorithmic descriptions are out of the scope of this document but may be found in

further detail in [33], [34, 35, 36].

1.4.1 Setup Phase - Feature Extraction and Selection

The setup phase of the NDF is to transform the raw signal of the system into features.

The type of features whether it be time domain, frequency domain or a mix is selected

based on the application. The end result from the setup phase is that some K dimensional

feature vector is generated. The setup phase of the NDF is the only non-generic aspect

of the framework and requires some prior knowledge of the dynamics of the system in
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order to make proper assumptions in the transformation process.

1.4.2 Initialization Phase - Dimensionality Reduction

During the initialization phase a predetermined number of feature vectors (K) are col-

lected. After the collection of the K feature vectors, the initialization data set has

dimensions (N ×K) and in most cases N can be very large. High dimensionality poses

significant computational challenges therefore the first process of the initialization phase

of NDF is dimensionality reduction. By default NDF uses Principal Component Analysis

(PCA) to realize dimensionality reduction. NDF as implemented in [33] only uses the

first two principal components (PCs) resulting in a two-dimensional (2D) PC space. The

2D PC space reduction was decided as to allow for visualization of the space. The 2D

space visualization is used as a simplified output such that a non-expert of the system

could quickly evaulate clusters within the feature vector space. Once the PCA matrix is

computed to transform the data set from (N ×K) to (N × 2), the data is clustered to

determine the number of Operational Modes (OMs) that are present in the initialization

data. NDF uses the Greedy Expectation Maximization (EM) Clustering Algorithm [36]

to identify the initial number clusters, their centers and covariances. These centers and

covarainces may be used as parameters to various distributions that in turn can define

cluster boundaries.
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1.4.3 Monitoring Phase - Detection of Faults

The NDF is capable of real-time prediction of two different faults: Incipient and drastic

faults. Incipient faults are associated with small gradual changes typically related to

wear and drift of system characteristics. Drastic faults are consequent of sudden changes

in system dynamics and often quickly lead to system failure. The detection of faults

is executed during the monitoring phase of the NDF and may be done either online or

offline.

Prior to fault detection, preprocessing and cluster updates are performed. During

preprocessing, the current feature vector is transformed into the 2D PC space using an

updated PC matrix. The updated PC matrix is calculated by performing SVD using

weighted combinations of the previous and current mean and covariances of the feature

vectors. The weighting is controlled through a learning parameter α which may be used

to quantify the influence of new data on model parameters. After transforming the new

feature vector, the clusters are updated using a modified version of the k-nearest neighbor

(k-NN) rule [34].

The ability of the NDF to detect incipient faults is based on its ability to predict

the OM clusters dynamics using the evolving Takagi-Sugeno (eTS) model [35]. The eTS

models provide predicted values of the elements of transformed feature vectors (TFVs).

From the predicted TFVs’ values, a trajectory of the TFVs are calculated and used to

determine time predictions of when a TFV will cross their OM cluster boundary. These

predictions are used to determine which OM cluster a TFV will belong. A prediction of

incipient failure is quantified by NDF using a TFV’s predicted OM cluster and its health
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factor. The health factor is a measure based on the age of the OM cluster and the TFVs

belonging to the cluster.

The detection of drastic faults by the NDF is linked to the rapid creation of new OM

clusters during monitoring. The assumption that is made with NDF is that drastic faults

are an indication of dramatic and abrupt changes in system dynamic. These abrupt

changes are assumed to be linked to the creation of new OM clusters that have limited

sets of feature vectors. To track these significant changes in OM clusters, an Exponential

Weight Moving Average (EWMA) SPC chart is used. The EWMA chart tracks mean

and variance of OM cluster count and a drastic fault is identified when the EWMA chart

is determined to be out of control.

The NDF is a general framework that can be used for online health monitoring of a

system. It has been designed such that many of the components of the framework can

be replaced by other techniques. A vital component of the NDF is the clusters that are

learned using the EM algorithm. Instead of using clusters, an extension would be to

use mixture models. With mixture models, a challenge is the process of accurately and

efficiently learning the model parameters.

1.5 Learning Model Parameters

The standard approach to learning parameters to mixture models is the EM algorithm.

However, some of the well known caveats of the EM algorithm is its sensitivity to initial-

ization and assumption that the number of components within the mixture are known.
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Numerous model selection criteria have been developed to better choose the num-

ber of components for a mixture model and have been extensively reviewed in [37]. Of

the model selection criteria, some of the most commonly used and well established are

the Minimum Description Length (MDL) [38], Akaike Information Criterion (AIC)[39],

Bayesian Information Criterion (BCI) [40], and Likelihood Ratio Test (LRT) [41]. Many

extensions to EM have been presented in literature in addition to and in lieu of well es-

tablished model selection criterion. The most common extension to EM is to incorporate

greedy search techniques as a method to determine the best number of components to

use in a mixture model. Verbeek et al. and Vlassis et al. have provided such greedy

methods to EM [36, 42].

Other approaches to improving the EM algorithm have been to integrate other heuris-

tic search algorithms such as Genetic Algorithms (GA), Particle swarm optimization, and

various others. Genetic approaches have been the most prevalent heuristic method due

to their ease of integration into the existing EM algorithm. Pernkopf et al. have used

an elitist GA with MDL as the fitness function to find parameters to Gaussian mixture

models [43]. Pernkopf et al.’s GA-EM is two-fold as it first performs a set number of

EM iterations on each member in the GA population then recombination, selection, and

mutation is performed on the EM updated members. Pernkopf et al.’s GA-EM has shown

improvement over EM on artificial datasets, but is susceptible to outliers. Some other

notable GA applications to EM may be found in [44, 45, 46, 47].

Particle swarm optimization has been used to help improve global search for EM.

Guan et al. have used a Discrete PSO (DPSO) to solve for parameter estimates in an

alternating fashion with EM [48]. The alternating DPSO and EM approach help global

14



search but also avoids lengthy convergence times that are common for PSO. Particle

swarm optimization has also been used with EM to solve difficult partials or integrals

that may arise based on model selection. Zhang et al. have used a PSO-EM where PSO

was applied to the one of the steps of EM as an assist to computing integrals of a normal

compositional model [49]. Furthermore, PSO has been used as a replacement for EM as

a density estimator. Yan and Osadciw have developed a Dimension Adaptive PSO (DA-

PSO) that does not require the calculation of parameters from likelihood but instead uses

the mixture model’s PDF directly in a fitness function [50]. The DA-PSO has advantage

over EM and other PSO methods as it does not require knowledge of dimensionality.

Review of current machine learning techniques and their applications to fault detec-

tion in various applications has outlined the demand for such methods. Furthermore, the

current status of health evaluation of systems leave potential for improvement through

online classification methods capable of execution within an embedded system. Thus,

leading to the proposed work of an online novel detection system.

1.6 Online Novelty Detection System

The proposed Online Novelty Detection System (ONDS) uses Gaussian Mixture Models

(GMMs) and one-class classification techniques to model normal systemic operation and

identify non-normal or novel operation. To test the realization of the ONDS, two different

problems from different application domains are considered. The first application of the

ONDS is to identify novel systemic operation of RF power generators and the second is

to detect novel events in equine animal behavior. Both applications assume patterns in
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time-series data provided by sensors. However, the nature of the variables themselves

differ slightly for each application. The data collection procedure for the RF power

generator application is performed by a controlled procedure and the signals themselves

are less random, whereas the equine motion data is naturally random. These two different

system signals allow actual testing of the ONDS as a generic approach and to identify

methods that require per application modifications.

In terms of originality, this work provides an extensive analysis of how processing

methods applied to raw data affect modeling and classification parameter selection. In

general, research with one class classifiers emphasizes optimization of the classifier it-

self. Instead, this work presents the one-class classifier as a generic solution and focus

is placed on parameter selection. Additionally, the proposed system is applied to two

different signals, the first being periodic and the second random. Machine learning clas-

sification techniques such as the one presented in this work are rarely implemented in an

actual embedded system. Therefore, with respect to algorithmic contribution, the work

presented realizes the entire algorithm within an actual embedded system for real-time

use.

The remainder of this work follows by generalizing the proposed method of an Online

Novelty Detection System in Chapter 2. Along with the generalization of the ONDS,

any significant theory or background is provided as it is mentioned. Chapters 3 and 4

are specific applications of the ONDS. Chapter 3 covers the use of ONDS for novelty

detection in RF power generators for fault detection. Chapter 4 is novelty detection of

equine behavior for detection of distress. Conclusion of the ONDS and its results from

the applications are summarized in Chapter 5.
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Chapter 2

Online Novelty Detection System

The proposed work is an Online Novelty Detection System (ONDS) that uses Gaussian

Mixture Models (GMMs) and one-class classification techniques as a general approach to

assessing systemic health. The ONDS is designed to be embedded and executed within

an embedded system to provide online health evaluation. From Figure 2.1, the execution

of the proposed ONDS is also paired with an offline model learning stage.

Offline Model Learning Stage: During the offline model learning stage, parameters

are learned that estimate a model that represents normal. The model is estimated using

a set of features generated from data collected during known normal operation. Addi-

tionally, the offline model learning stage learns, calculates, and/or defines other required

algorithmic parameters.

Online Classification Stage: This stage uses one-class classification techniques to

identify whether current systemic operation belongs to what has been learned to be nor-

mal. The online classification stage uses similar procedures as the offline stage. The

major difference of the online stage to the offline stage is that during the online stage

the model and other algorithmic parameters are known, since they were learned, set
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Figure 2.1: High level system architecture of the Online Novelty Detection System.

and/or calculated during the offline stage. The overall functional blocks are explained

by the following subsections: Preprocessing, Feature Vector Creation, Mixture Models,

and One-class Classification. Data collection is not included here as it is specific to each

application.

2.1 Preprocessing

Data provided by a system may not be in a form best suited for statistical analysis or

other analytical methods. Thus, various preprocessing methods may be used to scale,

translate, and/or transform the original data into a form more suitable for particular

analytical methods. Following are some of the preprocessing methods that are used in

this work. Each of the preprocessing methods are presented explaining why they are

used. The applicability of the methods is covered in Chapters 3 and 4 through empirical

data.
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Statistical information such as the mean, maximum, minimum, and variance are use-

ful during preprocessing and their values are represented in vector form as (Mean[1×M ],

Max[1×M ], Min[1×M ], and Var[1×M ]; where M is the number of variables in the data.

Often preprocessing is performed on multiple data samples, thus for computational ef-

ficiency and notation simplicity, matrix-based formulations are used. The vectors are

converted to matrix forms through replication, as represented by Equation (2.1), where

A[1×M ] is one of the mean, maximum, minimum, or variance vectors and A[N×M ] is the

resulting matrix representation with N number of samples.

A[N×M] =



A[1×M ]

A[1×M ]

...

A[1×M ]


(2.1)

2.1.1 Translation

Data translation is useful to remove bias in the data and/or unwanted trends. Many

analytical methods translate data such that the individual variables have no bias or their

mean is zero (zero-mean). Zero-mean data helps reduce large 0 Hz (DC) bias that can

occur after transforming data into the frequency domain. The mean used for translating

the data may be chosen to be some global mean of the variables or may also be the local

(current sample set) variable’s mean. Equation (2.2), represents the zero-mean method

which is applied column-wise, where Y is a data sample with N observations and M

variables ([N ×M ]). The Mean[N×M ] represents the column-wise mean of Y repeated
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for N rows such that matrix subtraction can be done efficiently/correctly.

Ỹ = Y −Mean[N×M] (2.2)

Some data series have trends that may distort relationships thus detrending operations

can help remove these trends. A simple method to detrending is to compute the linear

least-squares fit for each variable in the series and use the linear estimator to subtract

the trend. To detrend data sample Y with N observations and M variables, the domain

for each variable is fixed to be x = (1, 2, . . . , N)T . The first order coefficients of the linear

least-squares fit, β̂, may be found using Equation (2.3). Then using β̂, the detrended data

sample may be estimated as Ŷ by using Equation (2.4). Following are some normalization

methods commonly used during preprocessing.

β̂ =
(
xT x

)−1
xT Y (2.3)

Ŷ = Y − xβ̂ (2.4)

2.1.2 Normalization

Data normalization affects the range of the variables and is performed because in many

cases variables do not have the same ranges. With respect to classification and classifiers

based on distance measures, these disproportionate ranges can cause some variable to

dominate distance measures. Three normalization techniques that can help reduce this

effect are max-min, max, and the z-score. The max-min normalization method, from

Equation (2.5), re-scales a variable to the range [0, 1], where // is element-wise matrix
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division.

Ỹ =
(
Y −Min[N×M ]

)
//
(
Max[N×M ] −Min[N×M ]

)
(2.5)

The max scaling method, from Equation (2.6), re-scales the variables such that their

maximum value is 1 and their minimum is based on their original ranges. The max

scaling method is particularly attractive if the variables have original minimum values of

zero.

Ỹ = Y//
(
Max[N×M ]

)
(2.6)

Another normalization method is the z-score or standard score as calculated by Equation

(2.7). The z-score scales the variable to have unit variance and to also have zero-mean.

Ỹ =
(
Y −Mean[N×M ]

)
//
(
Var[N×M ]

) 1
2 (2.7)

After data has been preprocessed, features are extracted to generate feature vectors that

will be used during model learning.

2.2 Feature Vector Creation

The process of feature vector creation is typically driven by the application and therein its

data. The application(s) of focus in this work are those that yield time-series data. From

the time-series data, a system under normal operation is assumed to have some periodic

pattern(s) that differ from non-normal operation. Therefore, frequency components of

the time-series data are chosen as the features to extract and used to create feature
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vectors. Using frequency analysis techniques, the preprocessed time-series data can be

transformed into the frequency domain and frequency features can be extracted.

2.3 Frequency Analysis

The direct approach to obtaining frequency information from a signal is to use the Fourier

transform. However, the signals provided are almost always discrete samples, therefore

the Discrete Fourier Transform (DFT) is used. The DFT produces a finite ordered list

of complex coefficients that describe a combination of complex sinusoids [51]. These

coefficients can be found by using Equation (2.8), and may be used as the features to be

modeled. Where x [n] is a discrete signal with N samples.

F [n] =
N−1∑
n=1

x[n]e−j2π
(

kn
N

)
(2.8)

Given a two-dimensional time-series data sample, the 2D-DFT may also be used by

performing the DFT column-wise and then row-wise on its result. These two DFT

operations may be merged using by using Equation (2.9). Where x [n, m] is a discrete

with M signals and N samples.

F [u, v] = 1
MN

N−1∑
n=1

M−1∑
m=1

x[n, m]e−j2π
(

u
N

n+ v
M

m
)

(2.9)

Generally, the DFT is implemented using the Fast Fourier Transform (FFT). The FFT

is an algorithm that is capable of reducing the complexity of computing the DFT from

O
(
N2
)

to O (N log N). The Cooley-Tukey implementation of the FFT [52] is the most
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common and may be acheived using a recursive function as listed in Algorithm 1. Similar

to the 2D-DFT the 2D-FFT can be achieved by performing two FFT operations. The

power of the frequency components (power spectrum) is obtained by calculating the

absolute value of the complex DFT/FFT coefficients. However, with a signal that is more

random and less periodic, a more accurate method to describe the frequency spectrum

is to estimate the power spectral density (PSD).

Algorithm 1 Cooley-Tukey Recursive FFT Algorithm
1: function fft(&x) . reference to complex array
2: N ← length(x)
3: if N ≤ 1 then
4: return 1
5: end if
6: . Divide into even/odd
7: even← x[0, 2, . . . , N − 1]
8: odd← x[1, 3, . . . , N − 1]
9: . Conquer

10: FFT(even)
11: FFT(odd)
12: . Combine Results
13: for k = 0 to N/2 do
14: t← exp(−2πk/N) ∗ odd[k]
15: x[k]← even[k] + t
16: x[k + N/2]← even[k]− t
17: end for
18: end function

The PSD estimate can be determined using Welch’s method of periodogram averaging

[53]. Welch’s method sections the window of data, taking the periodogram of the sections

and calculating the average of the sectioned periodograms. Prior to application of Welch’s

method a Hamming window is applied to reduce the effect of spectral leakage. The

Hamming window values are calculated using Equation (2.10) where T is the number of
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samples desired for each segment [51].

w (n) = 0.54− 0.46 cos
(

2π
n

T − 1

)
, 0 ≤ n ≤ (T − 1) (2.10)

The implementation of Welch’s function uses the FFT to calculate the sectioned peri-

odograms, with an overlap of 50% and at most eight sections. The actual number of

sections may be determined by using Equation (2.11), where N is the size of original

window and NO is the number of overlap samples as calculated by Equation (2.12).

S =
⌊

N −NO

T −NO

⌋
(2.11)

NO = b%overlap ∗ T c (2.12)

The FFT used to calculate the periodograms is the N-point FFT where the number of

samples are zero-padded to equal NF F T as calculated by Equation (2.13).

NF F T = 2dlog2(NO)e (2.13)

Regardless of using the PSD or FFT directly, both provide a double-sided spectrum.

Most applications are symmetrical about 0 Hz or DC and only the positive half of the

spectrum is required. Therefore, the number of coefficients, NC , is expressed by Equation
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(2.14) where NF F T are the number coefficients used when performing the FFT.

NC = NF F T

2 + 1 (2.14)

When considering random signals with slight periodicity, the frequency components are

not deterministic and may reside in a range of frequencies or a frequency band. The

average power in a band of frequencies or bandpower may be used as features instead of

the direct FFT/DFT/PSD power coefficients.

2.3.1 Bandpower

Banding adjacent power coefficients, in this case, relates to finding the power within

frequency ranges or bands. If specific frequency bands are unknown then the number of

elements in each band is dictated by the desired number of bands and the number of

FFT power coefficients (NC). Our approach to calculating the bandpowers attempts to

evenly distribute the number of elements in each band. Uneven division is handled by

using slightly more elements within the lower frequency ranges. More elements per band

for the lower frequencies was chosen to allow for better separability of the high frequency

components. The number of elements in each band is calculated as:

∆ =
⌊

NC

β

⌋
(2.15)
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where NC is the number of FFT coefficients and β is the desired number of bands. The

number of remaining elements due to uneven band distribution is:

r = NC −∆β (2.16)

After determining ∆ and r, the actual bandpower per band is accumulated as:

yB
k [t]=



∆+1∑
j=1

yP
k [(t−1)(∆+1)+j], if t<=r

∆∑
j=1

yP
k [r(∆+1)+(t−r−1)∆+j], otherwise

(2.17)

where yP
k is the matrix of power values for the power spectrum coefficients for the kth

variable, k = 1, . . . , M , t = 1, . . . , β, ∆ is the general number of elements in each band,

and r is the number of low frequency band containing an extra element. After computing

the bandpowers, YB is reshaped into a single feature vector, because the overall goal is

to classify the signal as a whole. Thus, a single feature vector is a single row-wise vector

of size 1× β ·M , where M is the number of variables in the signal and β is the number

of bands used in the bandpower computations. Even after computing the bandpower,

the number of features can still be large and many of them potentially insignificant.

Therefore, additional feature reduction is performed using Principal Component Analysis

(PCA).
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2.3.2 Feature Reduction - PCA

Principal Component Analysis (PCA) is a statistical procedure that transforms a set

of possibly related variables into a set of linearly uncorrelated variables that are called

principal components (PCs) [54]. These PCs refer to orthonormal eigenvectors that may

be calculated using matrix factorization techniques. These eigenvectors have eigenvalues

that correspond to the amount of variance that exists in the data in the direction of their

respective eigenvectors. With respect to feature vectors, PCA is specifically used to find

a lower dimensional encoding for a feature vector by using an orthogonal projection of

the feature vector onto the column space spanned by eigenvectors, as shown in Equation

(2.18)[55].

ŷj = yjW (2.18)

The optimal solution may be obtained by Equation (2.19), where VL are the L eigenvec-

tors with largest eigenvalues of the covariance matrix.

Ŵ = VL (2.19)

To define a solution to PCA in terms of eigenvectors, the Singular Value Decomposition

(SVD) matrix factorization method is used. Using SVD, Y can decomposed by using

Equation (2.20), where the columns of U are the left singular vectors, columns of V

are the right singular vectors, and S is a matrix with the main diagonal containing the

singular values and is 0 elsewhere. With respect to feature reduction, Y is the set of
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feature vectors that are under analysis and used to determine the PCs.

Y = USVT (2.20)

Using SVD a connection between eigenvectors and singular vectors can be established,

as represented in Equation (2.21) and (2.22), where Y = USVT and D = S2.

YT Y = VST UT USVT = V
(
ST S

)
V = VDVT (2.21)

(
YT Y

)
V = VD (2.22)

The eigenvectors of YT Y are equivalent to V which are the right singular vectors of Y.

Additionally, D represents the eigenvalues of YT Y and equals to the squared singular

values. Referring to Equation (2.19), Ŵ = VL and the eigenvectors VL are selected

from a truncated SVD using a rank L approximation. The value L is minimum number

of eigenvalues whose sum is p% of the total sum of all eigenvalues as shown in Equation

(2.23).

L = argmax
l

{
l

∣∣∣∣∣
l∑

i=1
D (i, i) ≤ tr (D) · p

}
(2.23)

After learning the PCA matrix Ŵ, feature vector(s) are projected into the PC space.

These reduced feature vector(s) are used during mixture model learning and one-class

classification. Next the formulation of mixture models and learning model parameters
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are discussed.

2.4 Mixture Models

Finite mixtures of distributions are commonly used as a mathematical method to statisti-

cal modeling. Mixture models have been applied to many fields and are used as techniques

to clustering and latent class analysis. More generally mixture models are attractive due

to their ability to provide descriptive models for data distributions. A traditional mixture

model with respect to clustering assumes that a set of N , M -dimensional data vectors

y1, . . . , yK can be represented as a finite number of K components with some unknown

proportions π1, . . . , πN [37]. To understand mixture models parameters and obtain their

estimates, a formal definition of mixture models is provided.

2.4.1 Mixture Model Formulation

The general formulation of a mixture model follows similar notation as presented by

McLachlan and Peel [37]. Let y1, . . . , yN denote an observed random sample such that

yj is a random vector with probability density function f (yj) ∈ RM and j = 1, . . . , N .

Therefore, yj contains M measurements of the jth observed sample of random vari-

ables and Y =
(
yT

1 , . . . , yT
N

)T
contains all the observed random samples. Therefore, the

probability density function of an observed random vector yj, in parametric form, for a

K-component mixture model is formulated by Equation (2.24).

f (yj;Ψ) =
K∑

i=1
πifi (yj;θi) (2.24)
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Here Ψ contains all the unknown parameters belonging to the mixture model and is

written according to Equation (2.25), where ξ contains all the a priori parameters in

θ1, . . . ,θK .

Ψ =
(
π1, . . . πK , ξT

)T
(2.25)

Furthermore, let π = (π1, . . . , πK)T be the vector of mixing proportions, where
K∑

i=1
πi = 1.

Equation (2.24) is the general form of a mixture model. Actual use requires an assumption

of a distribution, where the most frequently used is the Gaussian distribution.

2.4.2 Gaussian Mixture Model

A Gaussian Mixture Model (GMM) is a mixture model where the data is assumed to

approximate a Gaussian distribution or likewise is assumed to be normally distributed.

The probability density function of an observed random vector, yj, as a Gaussian mixture

model of K normal components is formalized by Equation (2.26), where i = {1, . . . , K}

and
K∑

i=1
πi = 1.

fN (yj;Ψ) =
K∑

i=1
πiφ (yj;µi,Σi) (2.26)

Furthermore, the generalized multivariate Gaussian density function, φ, is given by Equa-

tion (2.27), where | · | is the determinant operator, M is the dimension cardinality of yj.

φ (yj;µi,Σi) = (2π)− M
2 |Σi|−

1
2 exp

(
−1

2 (yj − µi)T Σ−1
i (yj − µi)

)
(2.27)

With respect to the general finite mixture model formulation, the a priori parameters,

ξ contains the elements of the component means µi and covariance matrices Σi, shown
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by Equation 2.28.

ξ = (µ1, . . . ,µK ,Σ1, . . . ,ΣK) (2.28)

Thus, the entire unknown parameters, Ψ, belonging to a GMM is expressed by Equation

(2.29).

Ψ = (π1, . . . πK ,µ1, . . . ,µK ,Σ1, . . . ,ΣK) (2.29)

In the formation of a model, data is provided and the goal is to assume a distribution and

estimate parameters that define that distribution. For the GMM, these parameters that

require estimation are seen in Equation 2.29. The most common method to estimating

these parameters is to use the Maximum Likelihood Estimation [54].

2.5 Maximum Likelihood Estimation

Maximum Likelihood Estimation (MLE) is a parametric method often used for classifica-

tion. Since MLE is a parametric method it is assumed that samples are drawn from some

distribution that may be described by a known model. This model has parameters that

may be estimated using statistical inference, i.e. mean and variance for a Gaussian. Af-

ter estimating the parameters from samples, an estimated distribution may be described

using the estimated parameters. From the estimated distribution, likelihood values may

be determined and utilized in decisions during classification. The formulation of MLE

and its application to classification may be found in finer detail in [56, 57] which is the

basis to this section’s mathematical representation and derivations.
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2.5.1 MLE Univariate Formulation

For this section, the univariate case of MLE is derived for conceptual understanding

prior to formalizing multivariate and generalized forms. Let y = {y1, . . . , yN} be N

independent and identically distributed (iid) samples. It is assumed that the samples

are drawn from a known distribution belonging to a probability density f (y |Ψ) with

parameters Ψ:

yj ∼ f (y |Ψ) (2.30)

The goal of MLE is to find estimators of the assumed model parameters Ψ, such that the

sampling of yj from f (y |Ψ) becomes as likely as possible as shown in Equation 2.31.

Ψ̂ = argmax
Ψ

f (y |Ψ) (2.31)

Since yj are iid samples from y, the likelihood of y given Ψ may be expressed as a

product of likelihoods of the individual points as described in Equation 2.32.

l (Ψ) ≡ f (y |Ψ) =
N∏

j=1
f (yj |Ψ) (2.32)

However, the goal is to find Ψ̂ that makes y most likely to be drawn and this is denoted as

l (Ψ |y). Furthermore, the log of the likelihood is used as a computational simplification,

and is especially appealing to exponential families. The log likelihood is defined as:

L (Ψ |y) = log l (Ψ |y) = log
N∏

j=1
f (yj |Ψ) (2.33)
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Given that the log is a monotonic function, maximizing the log likelihood will also result

in maximizing the density function as seen in Equation 2.34.

Ψ̂ = argmax
Ψ
{log f (y |Ψ)} = argmax

Ψ
{f (y |Ψ)} (2.34)

The remaining process of MLE is to derive estimators for the parameters based on the

assumed model used to describe the distribution of the samples. There are many models

that may be selected but in the interest of brevity only Gaussian estimators are discussed.

2.5.2 MLE Gaussian Estimators - Univariate

Using an univariate Gaussian distribution as a model is to assume that the samples

are expected to be normally distributed with mean µ and variance σ2, also commonly

denoted as N
(
µ, σ2

)
. The univariate Gaussian density function for a sample, y, can be

evaluated by Equation (2.35).

f (y; µ, σ) = 1√
2πσ

exp
[
−(y − µ)2

2σ2

]
,−∞ < x <∞ (2.35)

Given a sample y = {y1, . . . , yN} with size N , where yj ∼ N
(
µ, σ2

)
and j = {1, . . . , N},

the log likelihood of y may be calculated using Equation (2.36).

L (µ, σ |y) = log
N∏

j=1

1√
2πσ

exp
(
−(yj − µ)2

2σ2

)
(2.36)
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With further simplification, as detailed in Appendix A.1, the log likelihood of a Gaussian

sample can be determined by Equation (2.37).

L (µ, σ |y) = −N

2 log [2π]−N log [σ]−
N∑

j=1

(yj − µ)2

2σ2 (2.37)

To find estimators µ̂ and σ̂2 that maximize the log likelihood L (µ, σ |y), we find roots

of the partial derivatives with respect to µ and σ.

∂

∂µ
L (µ, σ|y) = ∂

∂µ

−N

2 log (2π)−N log (σ)−

N∑
j=1

(yj − µ)2

2σ2

 = 0 (2.38)

∂

∂σ
L (µ, σ|y) = ∂

∂σ

−N

2 log (2π)−N log (σ)−

N∑
j=1

(yj − µ)2

2σ2

 = 0 (2.39)

Solving for µ and σ respectively will yield estimators:

µ̂ = 1
N

N∑
j=1

yj (2.40)

σ̂2 = 1
N

N∑
j=1

(yj − µ̂)2 (2.41)

Using the process outlined in this subsection, the same can be applied to estimating the

parameters of a multivariate Gaussian distribution.

2.5.3 MLE Gaussian Estimators - Multivariate

In many applications there are multiple inputs and outputs, thus requiring data to be

modeled in a multivariate form. In multivariate form, sample data Y is represented as a
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data matrix with M variables and N observations as shown by Equation 2.42.

Y =



Y1,1 Y1,2 · · ·Y1,M

Y2,1 Y2,2 · · ·Y2,M

...

YN,1 YN,2 · · ·YN,M


(2.42)

The multivariate Gaussian distribution or multivariate normal distribution (MVN) may

be uniquely defined by its mean vector µ and covariance matrix Σ. The mean vector

µ is composed of the expected values of the individual columns of Y, as explained by

Equation (2.43).

E [Y] = µ = [µ1, · · · , µM ]T (2.43)

The covariance of column-vector yj and row-vector yk is defined by Equation (2.44),

where σ2
j is the variance of yj.

Cov (yj, yk) ≡ σjk = E [(yj − µj) (yj − µk)] = E [yjyk]− µjµk (2.44)
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All of the variances and covariances are represented as the M ×M covariance matrix Σ

and can be visualized as Equation (2.45).

Σ =



σ2
1 σ1,2 · · · σ1,M

σ2,1 σ2
2 · · · σ2,M

...

σN,1 σN,2 · · · σ2
M


(2.45)

The covariance matrix is assumed to be a symmetric positive semi-definite where the

diagonals terms are the variances and the off-diagonal terms are the covariances. In

vector-matrix form the covariance matrix can be evaluated by using Equation (2.46).

Σ ≡ Cov (Y) = E
[
(Y − µ) (Y − µ)T

]
= E

[
YYT

]
− µµT (2.46)

For a MVN it is common that variables will have unequal variances and may exhibit

some correlations. Therefore, the Mahalanobis distance is used to calculate the distance

between an observation yj and the mean µ in standardized units as defined by Equation

(2.47).

d (yj,µ) = (yj − µ)T Σ−1 (yj − µ) (2.47)

This distance measure is used to define the probability density function of a MVN or as

seen in Equation (2.48), where yj ∼ NM (µ,Σ), | · | is the determinant operator and M
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is the dimension cardinality of yj.

f (yj;µ,Σ) = 1
(2π)M/2 |Σ|1/2

exp
[
−1

2 (yj − µ)T Σ−1 (yj − µ)
]

(2.48)

The log likelihood of a multivariate Gaussian distribution is shown by Equation (2.50).

L (µ,Σ |Y) = log
N∏

j=1
f (yj |µ,Σ) (2.49)

L (µ,Σ |Y) = log
N∏

j=1

1
(2π)M/2 |Σ|1/2

exp
[
−1

2 (yj − µ)T Σ−1 (yj − µ)
]

(2.50)

Using Equation (2.50), let Λ = Σ−1 be the precision matrix (inverse of the covariance

matrix) and further simplification (Appendix A.2) yields the log likelihood of the MVN

to be defined by Equation (2.51).

L (µ,Λ |Y) = −N ·M
2 log (2π) + N

2 log |Λ| − 1
2

N∑
j=1

(yj − µ)T Λ (yj − µ) (2.51)

To find estimators µ̂, Σ̂ using MLE is to solve:

∂

∂µ
log f (µ,Λ |Y) = 0 and ∂

∂Λ
log f (µ,Λ |Y) = 0 (2.52)

Solving for the roots yield the estimators µ̂ ∈ RM and Σ̂ to be found by using Equations

(2.53) and (2.54), with further derivation of these Equations be found in Appendix A.3.
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Note that µ̂ has the dimensionality of [1×M ] and Σ̂ is [M ×M ].

µ̂ = 1
N

N∑
j=1

yj (2.53)

Σ̂ = 1
N

N∑
j=1

(yj − µ̂) (yj − µ̂)T (2.54)

It has been shown that MLE may be used to estimate parameters for probability density-

based distributions; specifically univariate and multivariate Gaussians. When a mixture

of distributions (mixture model) is used often a closed form solution for the model esti-

mators is not feasible. A method to solving for estimators for a mixture model is to use

an iterative algorithm such as the EM algorithm.

2.6 Expectation-Maximization Algorithm

Expectation Maximization (EM) is a well known algorithm [58] that is an iterative pro-

cedure used to compute the Maximum Likelihood Estimation (MLE) with missing or

hidden data. The basic EM iteration involves two processes: The E(xpectation)-step

and the M(aximization)-step. In the E-step, the missing data is estimated with respect

to the observed data and current estimate of the model parameters. In the M-step, the

likelihood of the data is maximized assuming that the missing data is known. These steps

are iterated until convergence. The convergence of EM is certain because likelihood is

guaranteed to increase with each iteration. EM may be derived in a few manners. Two

of those are the direct approach and the incomplete data approach.
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2.6.1 EM - Direct Approach

A direct approach of EM, as defined in [37], is to compute the MLE by solving the

likelihood equation. The log likelihood of Ψ for a K component mixture is formed from

a observed random sample y =
(
yT

1 , . . . , yT
N

)T
is given by Equation (2.55).

L (Ψ) = log l (Ψ) =
N∑

j=1
log f (yj;Ψ)

=
N∑

j=1
log

[
K∑

i=1
πifi (yj;θi)

] (2.55)

Therefore, the computation of the MLE of Ψ requires solving the log likelihood equation

∂L (Ψ)
∂Ψ

= 0 (2.56)

After manipulation [59], the MLE of Ψ, Ψ̂, is:

π̂i =
N∑

j=1

τi

(
yj; Ψ̂

)
N

(i = 1, . . . , K) (2.57)

and
K∑

i=1

N∑
j=1

τi

(
yj; Ψ̂

) ∂

∂ξ
log fi

(
yj; θ̂i

)
= 0 (2.58)

where

τi

(
yj; Ψ̂

)
= πifi (yj;θi)

K∑
h=1

πhfh (yj;θh)
(2.59)

is the posterior probability that yj belongs to the ith component mixture and ξ contains

all the a priori parameters in θ1, . . . ,θK . The direct approach listed in this section may
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used if the data labels of the observations are known, or in other words, each to which

mixture each observation belongs is known. However, it is usually the case that the data

labels are not known and must also be estimates. Therefore, the EM algorithm may

formulated as an incomplete-data problem.

2.6.2 EM - Formulation as Incomplete-Data Problem

A typical approach to using the EM is to formulate the problem such that the observed

data vector is assumed to be incomplete. The incomplete data is assumed to be the

component-label vectors z1, . . . , zn that indicate which component yj belongs. Thus, zj

is a K-dimensional vector with zij = 1 or 0 and (i = 1, . . . , K; j = 1, . . . , N). Then the

complete data may be expressed as

yc =
(
yT , zT

)T
(2.60)

where

z =
(
zT

1 , . . . , zT
n

)T
(2.61)

The log likelihood of the complete data is given by

Lc (Ψ) =
K∑

i=1

N∑
j=1

zij [log πi + log fi (yj;θi)] (2.62)

40



E-step

The E-step requires the calculation of the conditional expectation of Lc (Ψ) for the (k)th

iteration:

Q
(
Ψ;Ψ(t)

)
= τi

(
yj;Ψ(t)

)
(2.63)

Specifically, the E-step computes the posterior probabilities that the jth member of the

sample with observed value yj belongs to the ith component. The posterior probabilities

may be calculated as

τi

(
yj;Ψ(t)

)
=

π
(t)
i fi

(
yj;θ(t)

i

)
g∑

h=1
π

(t)
h fh

(
yj;θ(t)

h

) (2.64)

M-step

The M-step is the maximization of the conditional expectation of Q
(
Ψ;Ψ(t)

)
to give

an updated estimate for Ψ(t+1). The estimates for mixing proportions π
(t+1)
i and the

unknown parameters to the component densities ξ(t+1) are done independently of each

other. The estimate of πi for the ith iteration is equivalent to the sum of the poste-

rior probabilities of membership of each observation yj belonging to the ith mixture

component, as seen as

π
(t+1)
i = 1

N

N∑
j=1

τi

(
yj;Ψ(t)

)
(2.65)

Updating ξ on the (t + 1)th iteration of the EM involves finding the root of:

K∑
i=1

N∑
j=1

τi

(
yj;Ψ(t)

) ∂

∂ξ
log fi (yj;θi) = 0 (2.66)
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For most distributions there exists a closed form of solution of Equation 2.66. The final

estimate of Ψ is found by repeating E and M steps until very little change in likelihood

values are seen.

L
(
Ψ(t+1)

)
− L

(
Ψ(t)

)
< e (2.67)

where e is arbitrarily selected based on desired convergence criteria. Additionally it has

been proven by Dempster et al. [58] that the likelihood function L (Ψ) does not decrease

with each iteration, as summarized by the following inequality

L
(
Ψ(t+1)

)
≥ L

(
Ψ(t)

)
(2.68)

In this section, EM has been explained as a general form to solving estimators of mixture

models. When applying EM to a specific mixture, the E-step and M-step need to be

derived to reflect the chosen distribution estimators. As an example of this EM process,

determining the estimators for a mixture of Gaussians is considered.

2.6.3 EM - Gaussian Mixture Models

Applying EM to a mixture of Gaussians is to use the general form discussed previously

and substituting in the density function fN as defined in Equation 2.27. For the E-step,

the posterior probabilities are calculated as:

τi

(
yj;Ψ(t)

)
=

τ
(t)
i fN

(
yj;θ(t)

i

)
K∑

h=1
π

(t)
h fN

(
yj;θ(t)

h

) (2.69)
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Then for the M-step, the mixing weights are estimated the same as the general case:

π
(t+1)
i = 1

N

N∑
j=1

τi

(
yj;Ψ(t)

)
(2.70)

Calculating the estimates of the model parameters of the Gaussians is to substitute fN

in the general formulation and find the roots of

K∑
i=1

N∑
j=1

τi

(
yj;Ψ(t)

) ∂

∂ξ
log fN (yj;θi) = 0 (2.71)

After solving the estimators µi and Σi for the (t+1)th iteration may be calculated using:

µ
(t+1)
i =

N∑
j=1

τi

(
yj;Ψ(t)

)
yj

N∑
j=1

τi (yj;Ψ(t))
(2.72)

Σ
(t+1)
i =

N∑
j=1

τi

(
yj;Ψ(t)

) (
yj − µ

(t+1)
i

) (
yj − µ

(t+1)
i

)T

N∑
j=1

τi (yj;Ψ(t))
(2.73)

Using a training set of reduced feature vectors, Y, the EM algorithm is used to estimate

parameters for a GMM. The training set only contains feature vectors from the system

during known normal operation. One-class classification techniques are then used to

define a new feature vector’s belonging to the learned GMM, because the GMM.
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2.7 One-Class Classification with GMM

One-class classification is generally formalized using distance or probability measures. An

object z is accepted to the target class if it satisfies the appropriate indicator function I.

For distance-based measures, new objects are accepted when the distance to the target

class is smaller than a threshold value θd:

f (z) = I (d (z|ωT ) < θd) (2.74)

and for probability-based measures, the object must have a probability larger than θp:

f (z) = I (p (z|ωT ) > θp) (2.75)

where ωT is set of data from the target and information from any other outlier distribu-

tions is not used [25].

In one-class classification, information from only a single class is used or also known

as the target class. A boundary is defined around the target class such that those input

vectors within the boundary are classified as the target class and others are considered

non-target [25]. The model for the target class is estimated using a GMM, which is a

probability density function and thus its output is the likelihood of the input’s belonging

to the GMM.

The Mahalanobis distance is used to quantify a feature vector’s distance from the

learned GMM. The Mahalanobis requires the inverse of the covariance matrix, where

instead the Cholesky decomposition of the covariance matrix (Σ̂) can be used [36]. The
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Cholesky decomposition factorizes the covariance matrix into an upper triangular matrix

for improved computational efficiency of the inverse calculation. Additionally, using the

Cholesky form of the covariance reduces the Mahalanobis distance to the Euclidean norm.

An individual input vector, yj, distance to each mixture of a GMM is calculated by using

Equation (2.76), where µ̂i, R̂i are the estimated mean vector and Cholesky form of the

covariance matrix for the ith mixture learned using the EM algorithm.

di,j

(
yj; µ̂i, R̂i

)
= ‖(yj − µ̂i)

(
R̂i

)−1
‖2 (2.76)

The likelihood of an input vector, yj, belonging to the ith mixture is calculated by using

Equation (2.77) and belonging to each mixture concatenated into a single vector Equation

(2.78).

li,j
(
di,j; R̂i

)
= 2πM/2

det
(
R̂i

) exp
(
−1

2di

)
(2.77)

lj = {l1,j, l2,j, . . . , lK,j} (2.78)

Using the estimated mixture proportions π̂ = {π̂1, . . . , π̂K}T and the likelihood values

(L), the log-likelihood of yj belonging to the GMM is determined using Equation (2.79).

Lj = log [ljπ̂] (2.79)

Using the log-likelihood value, Lj, a binary decision for one-class classification is achieved

via thresholding. A threshold value is determined statistically from a training set. The

threshold value is defined using Equation (2.80), where µL and σL are the mean and
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variance of the log-likelihood of the training set. The parameter λ is introduced to affect

the rate of acceptance/rejection of outliers. A feature vector yj is considered belonging

to the model (‘1’) by evaluating the indicator function in Equation (2.81).

Lτ = µL − λ
√

σL (2.80)

IL (y) :=


1 if logL < Ltτ

0 otherwise

(2.81)

Using the methods provided in this section, we next present some performance metrics

for binary decisions.

2.7.1 Binary Decision Performance Metrics

Binary decisions are commonly required for one/two class classification problems. The

accuracy of a binary decision may be quantified by various statistical measures as dis-

cussed by Metz [60] and also by Murphy [55]. Most of these measures are ratios formed

based on combinations of the number of true positive (TP), true negative (TN), false

positive (FP), and false negative (FN). Table 2.1 provides the definitions for TP, TN,

FP, and FN as well as some other intermediate metrics. From Table 2.1, many different

statistical measures may be formed, a few have been provided in Equations (2.82)-(2.86);

true positive rate (TPR) or sensitivity, specificity (SPC) or neagtive rate, positive predic-

tive value (PPV) or precision, negative predictive value (NPV), false positive rate (FPV)
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Table 2.1: Quantities that may be derived from a confusion matrix.

Truth
1 0 Σ

Estimate 1 TP FP N̂+ = TP + FP

0 FN TN N̂− = FN + TN
Σ N+ = TP + FN N− = FP + TN N = TP + FP + FN + TN

or false alarm rate, and accuracy (ACC). These statistical measures can be combined

to compute a loss function. This loss function may be used to select a threshold (τ) to

minimize the loss function.

TPR = TP

N+
= TP

TP + FN
(2.82)

SPC = TN

N−
= TP

FP + TN
(2.83)

PPV = TP

N̂+
= TP

TP + FP
(2.84)

NPV = TN

N̂−
= TN

FN + TN
(2.85)

FPR = TN

N̂−
= TN

FN + TN
(2.86)

ACC = TP + TN

N
= TP + TN

TP + FP + FN + TN
(2.87)
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The method proposed in this section defines generic approach(es) to preprocessing,

feature vector creation, learning/using GMMs, and one-class classification for time-series

data. However, actual preprocessing techniques, feature vector creation, and performance

metrics should be selected to suit the application domain and its corresponding data. The

next chapters provide two different applications and their specific processing choices that

are supported by empirical evaluation of classification performance metrics.
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Chapter 3

RF Power Generator

Presented in this chapter is an application of the proposed ONDS to radio frequency (RF)

power generators used in the semiconductor industry. A RF power generator supplies an

RF power signal that is output to a load. To achieve and maintain a desired RF power

signal or setpoint, a closed-loop control system is used. The particular RF generators

used in our experimental setup are those from MKS ENI Products’ Regulus series and

their high-level control system is depicted in Figure 3.1. From Figure 3.1, it is seen that

the RF power generator includes a variable voltage supply, pre-amplifier circuitry, RF

power amplifier (PA) module(s), RF sensor, various other sensors, and a controller. Basic

control of the RF generator power output employs negative feedback from various sensors

(such as forward power and reverse power) to achieve and sustain the external setpoint.

The controller yields a RF drive for pre-amplification and controls the rail setpoint of the

variable voltage supply. After pre-amplification, the power modules use the pre-amplified

RF drive signal and power from the variable voltage supply (PA voltage and PA current)

to generate the RF power signal [61]. The output of the RF power generator is fed

through a matching network prior to connection to the load. The matching network is
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Figure 3.1: Generalized block diagram for closed-loop system for an RF power generator
with a subset of input/output signals generated during operation.

used to match the impedance of the generator output to the impedance of the plasma

load. Impedance matching is required to provide maximum power transfer and to prevent

reflected power on the transmission lines [62]. In order to control and model the behavior

of an RF generator: understanding these variables is essential.

3.1 System Variables

An RF power generator, even from a high-level abstraction (Figure 3.1), is a complex

electrical system. There exists the potential for numerous inputs, outputs, internal, and

derived system variables. The under-lying fundamental understanding of the dynamics

of these system variables is required to properly evaluate systemic health. Expert knowl-

edge of the system variables and their expected dynamics facilitates the realization of

50



a procedure to generate a system signature. Consequently, the RF generator domain

experts generated a subset of system variables to be used to create a system signature.

Within this subset of variables are three categories consisting of vital variables, envi-

ronmental variables, and variables that indicate system life. With the exception of the

lifetime indicators, the other system variables may be seen in Figure 3.1.

The vital system variables (Table 3.1) are directly related to the RF power conversion

process and plasma load impedance. For example, a subtle decrease in the RF power

amplifier efficiency can be detected by increases in control system actuators such as the

RF Drive Setpoint or Rail Setpoint. The vital variables are also available from filtered

data at very high sampling rates (>100kHz), enabling the detection of electrical tran-

sients or instabilities. The environmental variables (Table 3.2) are indirectly related to

generator health. For example, high PA transistor flange temperature can be indicative

of an environmental problem (e.g. restricted coolant flow). Finally, the lifetime variables

(Table 3.3) can be correlated with certain wear-out mechanisms (e.g. contact wearout,

metal migration, solder fatigue, and electrolytic capacitor aging). The vital and envi-

ronmental variables specific to the MKS Regulus series RF power generator are briefly

defined in Tables 3.1 and 3.2. A few of the lifetime variable are also listed in Table 3.3,

while others have been left out for proprietary reasons.

Based on expert knowledge of the RF power generator system, there are some ex-

pected pattern dynamics among some of the variables. A system signature that does not

exhibit these expected pattern dynamics is a target for consideration of a non-normal

behavior. For example, it is expected that the Rail Setpoint will always match the PA
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Table 3.1: MKS Regulus series RF power generator vital system variables.

Variable Name Description
Setpoint RF Power Setpoint
Forward Forward power signal from RF output sensor
Reverse Reflected power signal from RF output sensor
Dissipated Power Amplifier waste heat dissipation
RF Drive Setpoint RF amplitude actuator
RF Drive Frequency Frequency actuator
Rail Setpoint PA supply voltage setpoint
Gamma Magnitude Magnitude of complex load reflection coefficient
Gamma Phase Phase of complex load reflection coefficient
PAxx Current Supply current to Power Amplifier xx
PA Voltage Measured output voltage of PA power supply
Driver Current Supply current to PA driver module

Table 3.2: MKS Regulus series RF power generator environmental system variables.

Variable Name Description
Fan Current Measured current supplied to cooling fans
Ambient Air Temp Measured Internal Ambient air temperature
PA Flange Temp Measured PA Power Transistor case temperature

Table 3.3: Subset of MKS Regulus series RF power generator lifetime (since build date)
diagnostic indicators.

Variable Name Description
AC On Time Total hours with AC power applied
AC Cycles Total AC turn-on events
Fault Clears Count of faults that were cleared
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Voltage variable in a healthy system. However, a discrepancy can indicate a faulty volt-

age sensor or power supply malfunction. Similarly, the Setpoint should always match

the Forward Power. This preexisting knowledge of variable dynamics could be used to

reduce the overall number of required variables in the fingerprint. For this work, the

lifetime variables and environmental variables are not used as it is likely that they do

not have any direction correlation to the immediate system health of the RF power gen-

erator. However all of the vital variables are left in tact to prevent erroneous elimination

of significant variables. Instead, the variable reduction is done using statistical analy-

sis techniques. Based on the provided knowledge of the targeted RF power generator

architecture, the proposed health evaluation system is discussed.

3.2 ONDS on RF Power Generator

The Online Novelty Detection System (ONDS), as proposed in Chapter 2, is designed to

be embedded and executed within the RF generator to provide online systemic health

evaluation. The proposed ONDS for an RF power generator uses the proposed one-class

classification techniques to identify if its current systemic operation belongs to what has

been learned to be normal. The process starts by the generation of the RF power gener-

ator’s system signature. This system signature for this work is referred as a fingerprint

and it contains a time-series data collection of sensor values. The fingerprint is the input

to the ONDS where its data is pre-processed and a model is learned. Using a trained

normal model, the classifier identifies a fingerprint as normal if its likelihood of belonging

to the normal model is within statistical margins. The model, classifier parameters, and
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Figure 3.2: Offline Model Learning.

other algorithmic parameters are learned and/or predefined during an offline procedure

as shown by Figure 3.2. The online classification stage uses similar procedures as the

offline stage, as seen in the flow diagram in Figure 3.3, where a fingerprint is converted

into a feature vector to be used for classification. The next section explains the data

collection process as it pertains to the RF power generator application.

3.2.1 Data Collection

In order to be able to assess systemic health, a system signature needs to be collected

in such a way that it holistically represents the current status of the system. Thus,
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Figure 3.3: Online Classification.

presented is a system signature or fingerprint, that is easily obtainable and capable of

representing an RF power generator’s system status. The fingerprint is a collection of

multivariate time-series samples of sensor values from the RF power generator under a

typical operational mode(s).

The fingerprint itself is generated by attaching the RF power generator to a desired

load and sweeping the setpoint. At each setpoint, a predetermined number of samples

are collected before moving to the next setpoint. The dynamic response of each system

variable to the setpoint sweep becomes part of the fingerprint (e.g. the characteristic

thermal response time of the PA Flange temperature when RF power is stepped). Figure

3.4 is an example of portions of two example fingerprints. In Figure 3.4, a subset of

the variables have been selected (only to reduce visual complexity) and shows the subtle

differences between a normal and non-normal or fault fingerprint.

The sampled data from each setpoint is concatenated into single data structure as

shown in Figure 3.5. The dimensionality of the fingerprint is determined by the number

of setpoints, the number of samples per setpoint and the number of system variables
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(a) Normal fingerprint. (b) Fingerprint from seeded fault.

Figure 3.4: Example raw fingerprints, showing three different variables including setpoint,
power dissipation and PA current.
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Figure 3.5: Example fingerprint.

measured. This fingperprint data collection method has been applied previously and

successfully applied to fault detection in RF power generators [63, 64].

For the offline model learning stage, a precollected set of fingerprints are obtained

from units that are considered to be operating normal. This restriction of using only

normal fingerprints during the offline learning stage is inline with one-class classification

techniques, where a model is learned for only one class. With respect to the online

classification stage, the fingerprints are unclassified since they are collected online and a

definitive normal/non-normal systemic health may not be available. Regardless of offline

or online use, a fingerprint in its raw form poses difficulties for classification methods.

Thus, some preprocessing techniques and feature extraction methods are considered.

57



3.2.2 Preprocessing

The specific techniques chosen have been selected according to prior knowledge that fre-

quency features are to be extracted from the fingperprint data. The specific preprocessing

techniques considered are zero-mean, normalization, and detrending. Data normalization

is considered, because the fingerprint variables do not have the same data range. The

inherit nature of the fingerprint, as discussed in Section 3.2.1, causes most of the variables

to trend as a staircase pattern. This staircase pattern is the consequence of providing

a set-point, collecting samples from the sensors, then stepping up the set-point, and

repeating for the full range of setpoints. Therefore, there exists a general linear trend

in the data that can have negative effects on any frequency analysis. By performing a

detrending operation, this general trend is removed and may lead to more meaningful

frequency analysis.

With respect to the online classification stage, all mean, maximum, and minimum

values are determined during the offline stage and are provided as inputs to the online

data preprocessing functional block. Once the data is preprocessed, it is ready to be

transformed to extract features to create a feature vector.

3.2.3 Feature Vector Creation

During the feature vector creation process, the preprocessed fingerprint is transformed

into a feature vector. Based on expert knowledge of the RF power generator system, there

are some expected pattern dynamics among some of the variables. A fingerprint that
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does not exhibit these expected pattern dynamics is a target for consideration of non-

normal behavior. For example, it is expected that the Rail Setpoint will always match

the PA Voltage variable in a healthy system. However, a discrepancy can indicate a

faulty voltage sensor or power supply malfunction. Similarly, the Setpoint should always

match the Forward Power. This preexisting knowledge of variable dynamics supports a

choice that frequency components are to be used as features.

The resulting feature vector is a single row vector that encapsulates the significant

frequency components of all the variables in the fingerprint. Previous work has used the

multi-dimensional Fast Fourier Transform (FFT) on each fingerprint to obtain Fourier

coefficients [63, 64]. The FFT is also used in this work, but instead a single-dimensional

FFT per fingerprint variable is used. The fingerprint collection process is done assuming

a fixed sampling frequency. With a fixed sampling frequency, the relationship of power

coefficient to frequency will be relatively consistent across fingerprints and thus the actual

frequency is not as important. However, this dictates that the number of samples must

remain the same for each fingerprint if any meaningful analysis is to be performed.

The fingerprint provided in the experimental setup has N = 220 (arbitrarily se-

lected from a legacy system) and is zero-padded to 256 coefficients, yielding NF F T = 256

and thus a power spectrum vector of size [129× 1]. Concatenating each variable’s

power spectrum vector into a single row vector would result in a vector with dimen-

sions [129 ·M × 1]. Depending on the RF power generator model, M is either 14 or 21.

Thus, the single row vector could have a size of [1× 1806] or [1× 2709] respectively.

To reduce the initial number of FFT coefficients, the bandpower of the power spectrum

(YP ) is used. The number of frequency bands used to calculate the bandpower is a
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predetermined value and is typically kept relatively high with β ∼ 80. With eighty bands

(β = 80), the fingerprint feature vector size can be reduced by ∼ 40%. However, even

after this reduction the feature vector has the potential to have β ·M = 80 · 14 = 1120

or β ·M = 80 · 21 = 1680 features.

3.3 Experimental Results and Analysis

The use of Gaussian Mixture Models (GMMs) for one-class classification of systemic

health for RF power generators is supported through a series of experimental tests with

offline data. Prior to the application of the one-class classifier and GMM, the classifier and

GMM learning procedure is validated against some standard datasets and classification

techniques. The various preprocessing methods and algorithmic parameters are explored

using RF power generator data with a methodical process to select those method/pa-

rameters that contribute to higher classification performances.

3.3.1 Validation of GMM and One-Class Classification

The implementation of one-class classification techniques using GMMs is applied to some

standard datasets, where its classification performance is compared to some state-of-the

art classifiers as well as a less complex method. Four commonly used multivariate two-

class datasets are selected including: Pima Indians Diabetes (Diabetes), Liver-Disorders

(Liver), Ionosphere, and Wisconsin Breast Cancer (Cancer). The datasets may be ob-

tained from the UCI Machine Learning Repository and more specifically Wisconsin Breast
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Table 3.4: Dataset names, corresponding sample counts, and class descriptions for the
standard datasets.

Dataset #Attributes # Target # Non-Target Target Non-Target
Diabetes 8 268 500 Negative Positive
Liver 7 200 145 Class 2 Class 1
Ionosphere 34 225 126 Good Bad
Cancer 10 444 239 Benign Malignant

Cancer dataset is provided by Wolberg and Mangasarian [65, 66]. The number of at-

tributes, sample counts, and class information for the selected datasets are summarized

in Table 3.4. The target class is chosen to be the class that most likely represents normal

conditions such as no disease or good. In the case of the Liver dataset, Class 2 is selected

as the target due to its higher sample count.

The four state-of-the-art classifiers chosen for comparison are; the Fuzzy Functions

Support Vector Classifier (FFSVC), Improved Fuzzy Functions Support Vector Classifier

(IFFSVC), a Radial Basis Function Networks (RBFN) whose centers have been chosen

using Fuzzy C-Means (FCM) (FCM-RBFN) and Particle Swarm Optimization (PSO)

(PSO-RBFN). The FFSVD and IFFSVD as proposed by Celikyilmaz et al. are chosen

based on their demonstrated improved performances over the classical Support Vector

Classifier [67, 68]. The FCM-RBFM and PSO-RBFN as proposed by Cinar and Sahin are

chosen due to similarities in implementation of radial basis functions and GMMs as well

as FCM-RBFM and PSO-RBFN demonstrated comparable performance with respect to

the FFSVD and IFFSVD classifiers [69]. Additionally the k-Nearest Neighbor (k-NN) is

selected to provide comparison to a simple machine learning algorithm [55].

For each dataset, the data is split into three subsets for training, validation and

testing with respective ratios of 50%, 25% and 25%. Training data is used to train each
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of the classifiers, the validation data is used to cross-validate to avoid overfitting, and

the test data is used to calculate performance metrics. The classification results for the

four classifiers, as provided by Cinar and Sahin, are reported as classification accuracy

(ACC) and standard deviation from 10 runs using the test data [69]. For each run, the

data is shuffled such that different samples are considered during training, validation,

and testing. The FFSVC, IFFSVC, FCM-RBFN, PSO-RBFN, and k-NN classifiers are

multi-class classifiers and thus their training data contains samples from all classes.

For comparison purposes, the datasets are preprocessed with scaling to [-1,1] and

organized using LIBSVM libraries written using the MATLAB R© computing language

[70]. For the GMM classifier, the data is further prepossessed by scaling the data such

that each attribute has unit variance. The data is reduced by using PCA. For each run,

the same PCA matrix is used to transform the training, validation and testing data into

the PC space. The unit variance scaling and PCA matrix are calculated using only the

training data. The GMM is designed to model only one class, thus samples from the

target class, as listed in Table 3.4, are used during training. However, the validation and

testing data contain samples from both the target and non-target classes.

The EM algorithm as implemented by Verbeek et al. is used to learn the GMM pa-

rameters [36]. A few algorithmic parameter selections are required including the number

of mixtures (K) and the likelihood threshold. The likelihood threshold is set to be λ stan-

dard deviations lower than the mean of the training set’s likelihood values. To determine

the best number of mixtures and likelihood threshold a grid search was performed such

that K ∈ {1, 2, . . . , 20} and λ ∈ {0.25, 0.5, 0.75, . . . , 3.0}. The grid search was performed

for each of the datasets with 10 trials and for each trial the EM algorithm was ran 25
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times to help prevent a local model solution. For each EM, the accuracy (ACC), true

positive rate (TPR) and specificity (SPC) are calculated for both the validation and test

data (as discussed in Section 2.7.1). The accuracy of the classifier is reported from the

test data considering three different EM model selection criteria. The first EM selection

criteria chooses the EM model from the subset of 25 individual runs that maximizes

the classification accuracy of the validation samples. Respectfully, the second and third

criteria maximize the true positive rate and specificity of the validation samples. The

result of each of the three EM model selection criteria are reported in Tables 3.5, 3.6 and

3.7.

For one-class classification, typically information is only available for the target class,

thus the EM learned GMM selection should be performed using the true positive rate as

it does not use any information from the non-target class. However, the other selection

criteria (ACC and SPC) are considered as to explore which number of mixtures and

threshold may allow better separability of the non-target from the target class. From

Table 3.6, where TPR is used to select the GMM, it can be seen that generally lower

number of mixtures produce higher classification accuracy. Whereas, for Tables 3.5 and

3.7 generally higher number of mixtures produce higher classification accuracy. This

trend follows conceptual intuition that a lower number mixtures yields a more general

model and accepts more samples as target. Consequently, a higher number of mixtures

indicates a more specific model and it rejects more samples from the target class.

The final parameters used for EM for the standard datasets are selected from the

grid search results that use the validation accuracy for GMM model selection as listed in

Table 3.5. Using these parameters, the experimental procedure was repeated, however
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Table 3.5: Best classification accuracy, true positive rate, and specificity from grid search
using GMM model selected based on validation accuracy.

Dataset ACC TPR SPC λ K

Diabetes 76.64 (0.30) 73.37 (0.61) 78.76 (0.90) 0.25 4
Liver 72.64 (0.22) 53.96 (0.73) 93.11 (2.52) 0.5 15
Ionosphere 91.96 (0.15) 97.22 (0.53) 86.42 (0.34) 3.0 4
Cancer 96.95 (0.52) 95.36 (1.42) 98.36 (0.90) 3.0 7

Table 3.6: Best classification accuracy, true positive rate, and specificity from grid search
using GMM model selected based solely on validation true positive rate.

Dataset ACC TPR SPC λ K

Diabetes 76.08 (0.90) 71.29 (1.29) 80.01 (0.40) 0.25 4
Liver 72.22 (0.65) 53.50 (0.90) 92.71 (1.35) 0.25 12
Ionosphere 91.89 (0.00) 97.39 (0.00) 86.15 (0.00) 0.25 1
Cancer 96.23 (0.00) 94.85 (0.00) 97.36 (0.00) 1.5 1

Table 3.7: Best classification accuracy, true positive rate, and specificity from grid search
using GMM model selected based solely on validation specificity.

Dataset ACC TPR SPC λ K

Diabetes 75.91 (0.60) 80.53 (1.42) 70.61 (1.52) 0.5 4
Liver 71.83 (0.54) 54.02 (0.63) 89.72 (2.13) 0.5 18
Ionosphere 91.89 (0.00) 97.39 (0.00) 86.15 (0.00) 0.25 1
Cancer 96.80 (0.25) 94.45 (0.89) 99.02 (0.75) 2.0 9
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Table 3.8: Number of mixtures and model threshold determined from accuracy grid
search, but GMM is selected based solely on validation true positive rate.

Dataset ACC TPR SPC λ K

Diabetes 76.08 (0.60) 71.29 (1.29) 80.01 (0.40) 0.25 4
Liver 72.00 (0.68) 52.28 (0.84) 95.68 (1.57) 0.5 15
Ionosphere 88.51 (2.59) 87.73 (6.85) 88.47 (2.77) 3.0 4
Cancer 95.57 (1.26) 91.38 (2.48) 99.82 (0.31) 3.0 7

the GMM model selection is based on maximization of the validation true positive rate

in accordance to one-class classification practice. The final parameters and classification

accuracy for the standard datasets are listed in Table 3.8. The final GMM results from

the grid search results are then compared to the other state-of-the-art classifiers results

reported by Cinar and Sahin [69] and k-NN as listed in Table 3.9. It is noted that

during the result collection process, the number of EM iterations were fixed to 40 in

order to preserve a comparable number of fitness evaluations as reported by Cinar and

Sahin. From Table 3.9, the GMM one-class classifier is comparable in performance to the

state-of-the-art classifiers with classification accuracy within 5% of all datasets except for

Ionosphere. Additionally, the GMM is at least as good as k-NN on all datasets. It is

important to re-iterate that this comparison is comparing a one-class classifier to multi-

class classifiers. Moreover, the one-class classifier model is trained using only the target

class samples whereas the multi-class classifiers use samples from both target and non-

target classes. Once the use of GMM and one-class classification has shown comparable

performance results, they may be applied to the target application of systemic health

evaluation of RF power generators.
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Table 3.9: GMM comparison with state-of-the-art classification methods.

Dataset PSO-RBFN FCM-RBFN FFSVC
Diabetes 79.27 (1.38) 79.22 (0.96) 79.30 (0.24)
Liver 70.70 (2.73) 70.12 (3.63) 76.74 (0.00)
Ionosphere 97.36 (2.03) 94.60 (0.90) 97.70 (0.00)
Cancer 99.31 (0.62) 99.81 (0.94) 98.85 (0.00)

Dataset IFFSVC k-NN GMM
Diabetes 80.83 (1.17) 76.68 (1.36) 76.08 (0.60)
Liver 76.98 (0.73) 71.39 (2.55) 72.00 (0.68)
Ionosphere 99.38 (0.00) 85.88 (3.18) 88.51 (2.59)
Cancer 99.50 (0.00) 95.86 (1.11) 95.57 (1.26)

3.3.2 ONDS Application to RF Power Generator

Time-series data or fingerprints (discussed in Section 3.2.1), provided by MKS ENI Prod-

ucts, are used to train/validate a GMM as the one-class classifier. Fingerprints are ob-

tained from MKS ENI Products’ Regulus series RF power generators, where data was

collected from two platforms and two models per platform. Fingerprints were collected

from various individual generators during normal operational conditions under three dif-

ferent load conditions. The load conditions of Fifty Ohms (FO), Short (Sh) and Open

(Op) are selected as an attempt to cover the full operational load conditions for the RF

power generators. It is noted that different models have different variable counts based

on their sensor count and architectures. Some of the variables have been removed such

as environmental sensors and lifetime variables as they are generally not significantly

related to the systemic health of the RF power generators. The break-down of the vari-

able count, file count, and number of unique units per model is listed in Table 3.10.

In addition to fingerprints during normal conditions, fingerprints from seeded fault or

non-normal conditions from two models are provided. The non-normal conditions are

66



Table 3.10: RF power generator dataset information including variable, file, and unique
unit counts.

Generator Vars. Used Vars. Normal Normal Non-Normal Non-Normal
Units Units

LVG3527A 35 21 279 31 899 3
LVG3527B 35 21 1785 182 NA NA
LVG3560A 35 21 328 35 428 2
LVG3560B 35 21 363 35 NA NA
C5002 29 14 226 23 786 3
C13002 31 14 1545 158 NA NA

conducted to closely mimic scenarios where current quality control measures have had

difficulty identifying non-normal operation. The different seeded non-normal conditions

for the LVG3527 and C5002 power generators are itemized below.

• LVG3527 - (Faulty Amplifier, Poor solder joints on resistors, and Poor solder joints

on FETs)

• C5002 - Open diodes

Similar to the application of GMM and one-class classification of the standard datasets,

the RF power generator dataset requires some algorithmic parameter selection. In the

case of the RF power generator dataset, there are parameter and methodology choices

to be made during preprocessing, feature vector creation, modeling/model learning, and

classification. There exists a significant interdependence of these parameters and method-

ologies, hence an experimental procedure is used to explore the different algorithmic

methodologies/parameter combinations. A grid search is performed spanning the vari-

ous processing methods and their required parameters, where the different combinations

tested are summarized by Table 3.11. The total number of algorithmic combinations from

Table 3.11 is 2,880. Due to the large combination count, the grid search was performed
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Table 3.11: Grid search method and parameter combinations explored.

Procedure Method Combinations
Preprocessing Zero-Mean None , Global, Local

Preprocessing Scaling
None

Local{Max, Max-Min}
Global{Max, Max-Min}

Preprocessing Detrend None, Linear
Feature Creation Band Count 10, 20, 30, 45, 60, 80

Feature Reduction Unit Variance No, Yes
Modeling Mixture Count 1,2,3,4,5,7,9,11

Classification Threshold 3.0

only for a single RF power generator model. The RF power generator model selected is

the C5002 because it is a target platform for an embedded application and has seeded

non-normal fingerprints available.

Data Partitioning

To evaluate each combination, the dataset of fingerprints from the C5002 was partitioned

into training, validation, and robust subsets. The robust dataset in this case is slightly

different from conventional robust data isolation. The robust data is selected such that

data samples from individual RF power generator units are isolated from the training

and validation. The robust dataset is constructed from data totaling 30% of the C5002

units. Furthermore, the non-normal fingerprints are available only on a limited number

of units. Therefore, the robust fingerprints are chosen from units with normal data only.

This robust data isolation method is used to simulate the performance of the classification

algorithm on a new unit not used in the model training and validation procedures. From

the remaining units, the normal fingerprints are split into 50% for training and 50%
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for validation. The non-normal fingerprints are used only for validation, because one-

class classification is to model only normal operation. Once the fingerprints are properly

partitioned, the model training, validation and robust testing may continue.

Model Training

For each combination, the training normal fingerprints goes through a specific combi-

nation’s of preprocessing, feature vector creation, and feature reduction. For feature

reduction, PCA is used to transform the reduced feature features into lower dimensional

space of statistically significant principal components. The result from PCA is a matrix

derived from the training set that is capable of transforming feature vectors into the PC

space. The reduced training set is used to train a GMM using EM, where the number

of mixtures are set based on the current combination. The GMM is used to generate

a log-likelihood value for each training sample. A threshold for binary classification of

normal is calculated as λ standard deviations from the mean of the training likelihood

value, where λ is fixed to be 3.0. Additionally, The EM algorithm is repeated 15 times

using the same reduced features as to re-seed the starting position of the EM algorithm.

The repetition is done to reduce the possibility of local solutions that can occur when

using EM. The GMM parameters and likelihood values from the 15 EM runs are used to

validate the GMM.
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Model Validation and Robust Testing

During validation, the pre-partitioned validation fingerprints undergo the same prepro-

cessing, feature vector creation and feature reduction as performed during training. The

feature reduction is achieved by directly using the PCA matrix constructed from train-

ing feature vectors. Each of the GMM parameters and thresholds from the 15 EM runs

are applied to the reduced validation features. The likelihood threshold is applied to

binary classify the validation feature vectors as normal or non-normal. For each GMM

parameters and respective threshold, the true positive rate (TPR) is calculated for the

validation set. The GMM parameters and threshold selected are those that achieve the

highest TPR, thus maximizing the model’s ability to represent normal. Since the vali-

dation set may also contain non-normal fingerprints, the specificity (SPC) and accuracy

(ACC) of the validation set are also recorded. Finally, the selected GMM parameters

and threshold are applied to the robust fingerprint set. Only the TPR is recorded for

the robust data because it only contains normal fingerprints. Each combination in the

grid search records classification performance metrics based on the above procedures of

partitioning, training, validation and testing.

Iterative Grid Search Parameter Reduction

For each combination within the search, the partitioning, training, validation, and testing

is repeated 25 times. For each of the 25 trials, the partitioning is randomized to help

avoid reporting performance metrics for over/under trained models. However, for each

different combination in the search, the same 25 data partitioning are used as to allow for
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fair comparison of performance among all the combinations. As an attempt to choose the

best set of processing methods and parameters, each combination’s classification metrics

are ranked. The sum of the validation accuracy (VACC) and robust true positive rate

(RT P R) are used as a score (CF IT ) for the ranking criteria (Equation (3.1)). It is noted

that this ranking criteria is not used for modeling or validation. The CF IT criteria is

only used to evaluate the effectiveness of processing methods to correctly identify normal

fingerprints as well as reject non-normal.

CF IT = VACC + RT P R (3.1)

After ranking all the combinations using the CF IT measure, the top 100 combinations

are used to evaluate which methods and parameters are contributing to higher fitness

scores. To better assess the contribution of a method/parameter combination, a weighted

measure is used. Each method/parameter’s percentage of occurrence is calculated and

multiplied by its average fitness to create a weighted contribution ωc, as seen in Equation

(3.2).

ωc =
(

occurance

#samples

)(
CF IT

)
(3.2)

The ωc measures of the first iteration of the grid search (Table 3.12) suggests that some

methods/parameters are not contributing to top 100 best fitness values. Whereas other

methods were closely matched in performance. Thus, the non-contributing combinations

were removed and the grid search re-performed on the now smaller subset of combina-

tions. For each iteration, a new set of randomly partitioned fingerprints are created from
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Table 3.12: Grid search results for each iteration, where the percent occurrence (%), av-
erage fitness (avg), and weight contribution (ωc) for each method/parameter is reported.
The reported “-” refer to a method/parameter that has been removed from the search in
the previous iteration.

I Zero Mean Scaling Unit Var. Detrend
N L G N ML MG MML MMG N Y N Y

1
% 0.35 0.46 0.19 0.0 0.43 0.0 0.57 0.0 0.0 1.0 0.14 0.86

avg 1.30 1.31 1.28 0.0 1.29 0.0 1.31 0.0 0.0 1.30 1.32 1.30
ωc 0.46 0.60 0.24 0.0 0.56 0.0 0.75 0.0 0.0 1.30 0.19 1.12

2
% 0.40 0.34 0.26 - 0.34 - 0.66 - - 1.0 0.1 0.9

avg 1.70 1.69 1.69 - 1.69 - 1.69 - - 1.69 1.70 1.69
ωc 0.68 0.58 0.44 - 0.57 - 1.12 - - 1.69 0.17 1.52

3
% 0.36 0.36 0.28 - - - 1.0 - - 1.0 - 1.0

avg 1.70 1.70 1.70 - - - 1.70 - - 1.70 - 1.70
ωc 0.61 0.61 0.48 - - - 1.70 - - 1.70 - 1.70

(a) Grid search results for zero mean, scaling, unit variance, and detrending methods/parame-
ters.

I Band Count Mixture Count
10 20 30 45 60 80 1 2 3 4 5 7 9 11

1
% 0.0 0.02 0.09 0.27 0.29 0.33 0.17 0.12 0.0 0.02 0.10 0.18 0.19 0.22

avg 0.0 1.45 1.27 1.31 1.29 1.30 1.31 1.32 0.0 1.38 1.30 1.27 1.33 1.28
ωc 0.0 0.03 0.11 0.35 0.37 0.43 0.22 0.16 0.0 0.03 0.13 0.23 0.25 0.28

2
% - - - 0.20 0.40 0.40 .20 0.10 0.0 0.0 0.06 0.20 0.24 0.20

avg - - - 1.69 1.69 1.70 1.69 1.69 0.0 0.0 1.69 1.69 1.69 1.69
ωc - - - 0.34 0.68 0.68 0.34 0.17 0.0 0.0 0.10 0.34 0.41 0.34

3
% - - - 0.24 0.60 0.16 .24 0.08 0.0 0.0 0.12 0.12 0.24 0.20

avg - - - 1.69 1.70 1.72 1.71 1.70 0.0 0.0 1.70 1.70 1.69 1.69
ωc - - - 0.41 1.02 0.27 0.41 0.13 0.0 0.0 0.20 0.20 0.41 0.34

(b) Grid search results for band count and mixture count parameters.

the same C5002 RF power generator dataset. After three iterations the ωc measures

were closely matched concluding the grid search. As the number of combinations become

less, the number of top combinations used for calculating contributions was reduced from

100 to 50 and finally 25 for the last iteration. It is noted that the detrend method was

kept into the second iteration to reaffirm its contribution. This extra precaution is be-

cause the detrend method is expensive and not preferred with respect to an embedded

implementation. Upon the convergence of the grid search, it is clear that max-min local

scaling, unit variance for PCA, and detrend are good choices for processing methods.
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Figure 3.6: Average selection criteria weight with respect to mixture and band count for
final grid search iteration. Algorithmic parameters fixed to use max-min local scaling,
linear detrending, unit variance with PCA, and likelihood threshold scale of λ = 3.0.

As for zero-mean, all methods were equal contributors, therefore no zero-mean was se-

lected because it has no extra computation as the detrend operation already performs a

zero-mean operation. Remaining is a significant range of band and mixture counts with

equal contributions. Thus a final exploration is conducted using a finer grid with meth-

ods set as aforementioned with bands counts {10, 15, 20, . . . , 100} and mixtures counts

{1, 2, 3, . . . , 15}. The resulting average ωc values for each band and mixture count may

be seen in Figure 3.6, where 60 bands and 8 mixtures were selected as the best parame-

ters. Despite a single mixture having the highest contribution it was not selected because

lower numbers of mixtures are known to have poor specificity (as determined from the

standard dataset exploration). Also a lower number of bands, 60 instead of 80, were

selected to aid in the process of PCA.

As was stated previously, the detrend operation is expensive computationally. Thus

an additional grid search is conducted by repeating the 3rd iteration, as shown in Table
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Table 3.13: Grid search results without detrend operation where the percent occurrence
(%), average fitness (avg), and weight contribution (ωc) for each method/parameter is
reported.

Zero Mean Bands Mixtures
N L G 45 60 80 1 2 3 4 5 7 9 11

% 0.36 0.32 0.32 0.12 0.28 0.60 0.24 0.08 0.0 0.0 0.12 0.12 0.24 0.20
avg 1.64 1.65 1.65 1.63 1.64 1.66 1.68 1.64 0.0 0.0 1.64 1.66 1.64 1.63
ωc 0.59 0.53 0.53 0.20 0.46 0.99 0.40 0.13 0.0 0.0 0.19 0.20 0.39 0.33
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Figure 3.7: Average selection criteria weight with respect to mixture and band count for
final grid search iteration without using the detrend operation. Algorithmic parameters
fixed to use max-min local scaling, unit variance with PCA, and likelihood threshold
scale of λ = 3.0.

3.12, with the exception of not performing the detrend processing step. The correspond-

ing results without detrending are reported in Table 3.13, where the methods/parameters

shown are those not concretely selected. Similar methods/parameters without the de-

trending operation are seen, no significant zero-mean strategy, a higher mixture count

(> 7), and inconclusive number of bands and mixture count. A finer grid is also run

not using the detrend operation and no scaling was selected to reduce computational

complexity. The results from the finer grid search without detrend can be seen in Figure

3.7. From the results, it is concluded that the classification accuracies with and without

the detrend operation are closely matched.
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3.3.3 Final Parameter Evaluation

The final results from the iterative grid search using the C5002 RF power generator

suggests to use linear detrending and max-min local scaling for preproceesing methods,

80 bands for feature vector creation, unit variance when reducing features with PCA,

and to use 6 mixtures for the GMM with 3.0 standard deviations from mean training

likelihood for classification. These methods and parameters are then used to obtain

GMMs and classification metrics for fingerprints from all the RF power generators. For

each RF power generators, its fingerprints are partitioned as was done in the grid search,

but with 50 trials instead of 25. Table 3.14 contains the average and standard deviation

of the classification metrics for all the RF power generators as well as the number of

principal components (PCs) used.

From the results in Table 3.14 it is apparent that the one-class classification using

GMM is an effective method to assess normal operation of the RF power generators

targeted. It is seen that by sacrificing a small amount of classification accuracy ∼ 3%,

detrending can be avoided, the number of bands may be reduced from 80 to 60 and the

number mixtures from 8 to 6. These subtle reductions may prove more significant when

considering an embedded implementation.

The following is a summarizes the results of not using detrending, because they will

most likely be the target for the embedded implementation. The overall average robust

true positive rate is 94.76% with an average standard deviation of 2.05% yielding a 3σ

value of 88.61%. The specificity values are slightly lower than the true positive rate at

77.92% and 87.51%. Theses lower accuracy values may be the result of the difficultly
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Table 3.14: Classification accuracy of normal and seeded-faults for RF power generator
dataset using parameters chosen from results of iterative grid search experiments with the
C5002 model. General processing methods are unit variance with PCA and a threshold
of 3.0 standard deviations from mean training likelihood. Results are from 50 trial runs
with 15 EM generations and model selection based on validation TPR.

Generator #PCs VACC VT P R VSP C RT P R

LVG3527A 68.88 (2.83) 77.56 (0.74) 99.82 (1.01) 75.78 (0.79) 98.74 (4.34)
LVG3527B 231.94 (2.25) NA 99.29 (0.35) NA 99.09 (0.50)
LVG3560A 72.64 (2.63) 72.97 (0.00) 100.0 (0.00) 68.15 (0.00) 99.96 (0.22)
LVG3560B 81.26 (3.17) NA 99.62 (0.60) NA 99.31 (0.78)
C5002 71.44 (3.78) 90.15 (0.74) 99.46 (0.74) 89.31 (2.48) 97.98 (4.40)
C13002 310.08 (3.92) NA 91.61 (1.20) NA 91.21 (1.71)

(a) Using detrend, 80 bands, and 8 mixtures.

Generator #PCs VACC VT P R VSP C RT P R

LVG3527A 74.80 (1.53) 77.92 (0.33) 99.96 (0.21) 76.15 (0.34) 98.54 (1.72)
LVG3527B 261.92 (3.85) NA 97.29 (0.64) NA 97.07 (1.14)
LVG3560A 79.22(2.57) 66.75 (2.69) 99.95 (0.22) 66.74 (2.69) 99.87 (0.50)
LVG3560B 84.62 (4.07) NA 97.56 (2.00) NA 97.87 (1.65)
C5002 70.70 (4.14) 87.51 (3.85) 98.59 (1.51) 86.56 (4.11) 96.42 (4.17)
C13002 297.26 (3.70) NA 87.90 (1.24) NA 87.47 (1.37)

(b) Not using detrend, 60 bands, 6 mixtures.
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of separating the non-normal fingerprints as they were seeded to mimic conditions that

standard quality control methods have difficulty. Additionally, the lower specificity may

be highly dependent on the limited number of normal samples (279 and 226) used to train

and validate the GMM. Finally, a significantly higher number of principal components

were required for the RF power generator models that did not have non-normal data.

The increase in component count is most likely due to significantly larger normal sample

sizes (2,479 and 1,545) versus (279 and 226).

A baseline comparison of the classification accuracies of the proposed method on

RF power generator data is provided. The k-means algorithm was used as the baseline

because of its simple classification algorithm. For the RF power generator problem there

are two classes normal and novel or non-normal. In order to provide a comparison, data

only from RF power generator with seeded faults is used. The k-means classification

algorithm requires data from all classes during training for learning means or centroids

for each class. Seeded fault data was shuffled and split 50/50 then placed respectively in

the training and validation data sets. Robust data was removed similar to previous tests

with data from 30% unique units. The robust data only contains normal data to simulate

a real-world case where only normal data is known. The remaining normal data was split

50/50 into training and validation sets. The standard k-means implementation is used

with random initialization and distance measured using the squared euclidean distance.

The k-means algorithm was applied to the output of the reduced feature vector training

set (result after PCA) to replace EM and Gaussian mixture models. The centroids

produced from training via k-means were used to evaluate the classification of validation

and robust data. Classification for each feature vector is decided as the closest centroid.
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Table 3.15: Comparative results of k-means and GMM methods on classification of RF
power generator data. Results are from 50 trial runs and 15 model generations per trial
and selection based on TPR.

Metric Method LVG3527A LVG3560A C5002

#PC
k-means 17.42 (35.77) 39.14 (8.16) 12.10 (4.21)
GMM 74.80 (1.53) 79.22 (2.57) 70.70 (4.14)

VACC
k-means 54.56 (0.02) 60.06 (0.18) 57.86 (0.27)
GMM 77.92 (0.33) 72.97 (0.00) 90.15 (0.74)

VT P R
k-means 99.98(0.16) 100.00(0.00) 100.00(0.00)
GMM 99.96 (0.21) 99.95 (0.22) 98.59 (1.51)

VSP C
k-means 10.03 (0.05) 25.18 (0.56) 18.64 (0.76)
GMM 76.15 (0.34) 66.74 (2.69) 86.56 (4.11)

RT P R
k-means 99.98 (0.16) 100.00(0.00) 100.00(0.00)
GMM 98.54 (1.72) 99.87 (0.50) 96.42 (4.17)

Table 3.15 provides the comparative results of the proposed GMM one-class classifier to

k-means. The preprocessing methods used were local zero-mean, local max-min scaling,

no detrend, unit variance PCA with 99% variance, and 80 bands. 50 trial runs are used

with the data shuffled each trial. Additionally, for each trial 15 generations of models

(GMM or k-means) are used to reduce the effect of randomness in model initialization.

From Table 3.15 it is seen that the GMM model approach is far superior in specificity

with respect to k-means. In all, results conclude that one-class classification using GMM

can successfully identify with reasonable accuracy normal versus non-normal system

operation of an RF power generator.

3.4 Embedded Implementation

The proposed method was originally implemented using MATLAB computing software

because of its ability for rapid algorithm development and extensive toolboxes and li-

braries. However, the end goal is to implement the ONDS within the target embedded

system. C++ was chosen as the language for the embedded implementation for its speed,
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multi-platform support, and object-oriented capabilities. Additionally, no 3rd-parties li-

braries are used in order to avoid platform dependencies with additional libraries. More-

over the C++98 standard was selected for backward compatibility with legacy systems

with compilers that do not support C++0x standards.

Without 3rd party libraries custom math classes and functions were implemented.

Among the custom math classes were matrices and vectors for real and complex numbers.

Mathematical operators were implemented/overloaded for matrix multiplication, scalar

multiplication/division, element-wise multiplication/division/addition/subtraction, and

transpose. Some additional operations implemented are n-dimensional sum, mean, max,

min, variance, and co-variance. All operations and operators were implemented to con-

form to MATLAB syntax and validated for output.

For testing of the embedded implementation of ONDS the chosen platform was a Bea-

gleBone Black (BBB) with a 1-GHz SitaraTMARM R©Cortex-A8 running a 32-bit Ubuntu

13.04 distribution. The OS was set to run on the BBB’s embedded memory (eMMC)

which offers a total of 2GB of space. The embedded code developed in this work was

compiled with g++ 4.7.3 with C++98 standard and no extra optimization. Since the

BBB is not one of the RF generators, fingerprint data files were uploaded to the BBB to

simulate data collection. The one-class classifier read the data files then performed the

algorithm and output to console classification of the file(s) as normal or not-normal. The

resulting implementation classification output matched that of the MATLAB version.

Within an embedded environment importance is placed on code footprint (static

memory required), dynamic memory, and speed of execution. Table 3.16 is a summary

of recorded memory footprints and execution time. Execution time is the total time to
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Table 3.16: Embedded implementation’s code footprint, memory usage and algorithm
execution time.

Total Execution Time 600ms - 950ms
Model Information Footprint 113KB

Source Code Footprint 60KB
Executable Footprint 76.8KB
Total Code Footprint 250KB

Dynamic Memory Usage 1.1MB

classify a fingerprint, which includes time to read fingerprint data from a file as well

as model information. The dynamic memory was determined by monitoring process

memory consumption and recording the maximum memory consumed during execution.

Reported measures are based on the model using a single Gaussian component (k = 1).

Based on the memory analysis there exists no physical constraints for the code to be

ported over to an RF power generator.
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Chapter 4

Equine Distress

Presented in this chapter is an application of the ONDS to animal health monitoring,

where the data is random in nature. Equine distress can present in many ways and stem

from a multitude of factors including injury, trauma, illness, fear, and boredom. There

are a number of common acute equine distress conditions, including colic and casting

that can negatively impact a horse and result in serious injury or death if intervention

is delayed. Colic is the leading natural cause of death in horses other than old age, and

the American Association of Equine Practitioners (AAEP) estimates more than 900,000

horses in the United States will experience an episode of colic this year [71, 72]. Despite

this large incidence, ∼90% of these cases can be treated medically and without the need

of invasive emergency surgery if detected early [73, 74]. Colic is a symptom of disease,

but not a disease itself, and is generally defined as any abdominal pain. Equine colic can

involve any number of abdominal organs, not just the gastrointestinal tract. For example,

abdominal discomfort from kidney or liver disease will sometimes cause signs of colic.

Equine colic can originate from the stomach, small intestine, large intestine, or some

combination thereof, and is associated with any malfunction, displacement, twisting,
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swelling, infection, or lesion of any part of the equine digestive system. A horse suffering

from colic may show any number of signs [72]:

• Pawing and/or scraping (front legs)

• Kicking (back legs) up, or at abdomen

• Repeated lying down and rising/standing

• Rolling (+/- thrashing)

• Stretching

• Pacing

• Flank watching (i.e., turning of the head to watch stomach and/or hind quarters)

• Biting/nipping the stomach

Horses with a history of colic or who have had prior abdominal surgery are at 3-5 times

greater risk for further episodes of colic [75]. There are also behavioral risk factors that

correlate with increased risk of recurrent colic within 12 months of a colic event, including

horses that either crib/windsuck or weave. Horses that crib or windsuck have more than

a 10-fold chance of experiencing recurrent colic, and horses that weave have nearly a

4-fold chance [76].

Unfortunately, the detection of colic can be difficult because it is multifaceted and

often occurs overnight or at remote locations when and where human caretakers are

not present. Even when caretakers are present, diagnosis can be elusive with symptoms

ranging from subjective and subtle changes in the animal’s attitude (e.g., depression)
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to objective changes in vital signs (e.g., increased heart and respiratory rates, rise in

temperature), biologic functions (e.g., lack of digestion), and behavior (i.e., repeated

characteristic motion patterns of pawing, kicking, flank watching, rising/falling, rolling

with/without thrashing, lack of healthy shaking, etc). Prior information of a horse’s

normal behavior can significantly assist identification of any deviation from normal that

could correlate with distress, pain, or other aspects of discomfort. Current diagnostic

methods used by horse owners and caretakers rely on subjective behavioral observation

for understanding of a horse’s normal behavior and detection of colic. Subjective and

intermittent observation of motions, activities, and posture are potentially inefficient with

respect to consistent identification of non-normal or novel behaviors that may correlate

with distress such as colic. Thus, a remote wearable monitoring device, non-invasively

attached to a horse, that can acquire and analyze real-time data of their behavior (i.e.,

motions), and alert caretakers for early intervention at the first signs of novel events may

lead to improved survival and the quality of life outcomes for many horses.

Recent advances in computational power available for small wearable devices have al-

lowed for higher complexity of on-device algorithms. Thus, machine learning algorithms

and other signal processing methods may be implemented to achieve remote wearable

monitoring devices that can acquire and analyze real-time data. Additionally, improve-

ments in motion sensor quality and availability have provided access to significant quan-

tity/quality of motion data for statistical analysis and modeling. Therefore, the proposed

ONDS is an excellant candidate for identification of equine distress. Following
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4.1 ONDS For Equine Distress

Novel events that correspond to novel behavior are windows of motion data that are

unlikely to belong to the learned model of normal. To illustrate a novel event for equine

behavior, a roll behavior is shown in Figure 4.1. A roll behavior, or when a horse is rolling

on the ground, is typically an infrequent behavior. Furthermore, a roll that has frequent

repetitious occurrences could be an indication for colic and thus is a good target as a

novel event. Figure 4.1 contains a single roll behavior and represents an ideal novel event

with respect to its corresponding raw sensor values. The raw sensor values, in Figure

4.1, depict that the signals from a roll behavior contain high-frequency components that

are not present in surrounding sensor values. Thus, it is inferred that good features to

use for modeling novel events are frequency components. The next section explains how

the raw signals are collected and processed prior to frequency analysis.

4.1.1 Data Collection and Preprocessing

The raw data is provided by a 9-axis IMU, and is further comprised of a 3-axis accelerom-

eter, 3-axis gyroscope, and 3-axis magnetometer. Each of the sub-sensors of the IMU has

their own maximum sampling rates, thus the data collection embedded software obtains

sensor values asynchronously as they are reported by the individual sensors. The asyn-

chronously reported values are then stored/sampled at a chosen fixed rate. To provide

continual evaluation of motion data, the data collection process is implemented using a

moving window. A moving window of raw sensor data is collected for a specified window

length and window overlap. The window length, N , is selected based on the sampling

84



0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000 3250 3500

R
aw

 S
en

so
r 

V
al

ue

#104

-4

-2

0

2
3-axis Acceleration

0 500 1000 1500 2000 2500 3000 3500

R
aw

 S
en

so
r 

V
al

ue

#104

-1

0

1

2
3-axis Gyroscope

Sample Number
0 500 1000 1500 2000 2500 3000 3500

R
aw

 S
en

so
r 

V
al

ue

-1000

-500

0

500

1000
3-axis Magnometer

Figure 4.1: Example hand-segmented novel event of a roll behavior.

frequency of raw data (Fs) and the expected period of time for a suspect novel event (Ts).

The sampling frequency, Fs, is selected to be 100 Hz and Ts is chosen to be 10 s based on

observation of equine behaviors. Therefore, N = 1000, but for computational efficiency

in frequency analysis the next power of 2 is used, yielding N = 1024. A window of data

is collected by moving the previous window by the window overlap (∆). The selection of

∆ is chosen to be the shortest period of time for a suspect novel event. This time was

observed to be ∼ 2.5 s, yielding ∆ = 256.

The raw data provided use 16-bit signed numbers and can allow for a range of values

in [-32768, 32767]. However, not all the sensors use the full range and some contain

non-zero offsets. Therefore, data standardization is performed to improve multivariate

analysis. The z-score standardization method is used such that all the variables have

equal means of 0 and standard deviations of 1.
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After standardization, the raw motion data are still very noisy due to the nature of

the data collection and the sensors themselves. To improve the significance of frequency

analysis, the raw signals are filtered to remove noise. There is a reasonable assumption

that an animal is incapable of producing natural motion beyond a particular frequency

range. Thus, an animal’s general motion is typically very low-frequency; concluding that

high frequencies present in the raw data are most likely the result of sensor noise. To

remove the signal noise, a low-pass and a high-pass filter are used on each window of

data. The Butterworth filter design is chosen for both the low-pass and high-pass filters

because of its flat response in the passband and adequate filter response with minimal

number of coefficients [77]. The additional high-pass filter is used to remove any large

impulse that occurs around 0 Hz. The Butterworth low-pass filter was designed for a

cutoff frequency of 20 Hz with three coefficients, whereas the high-pass filter was designed

with a cutoff frequency of 0.5 Hz and 3 coefficients. After filtering, the feature vector

creation procedure may proceed.

4.1.2 Feature Vector Creation

A novel event for this application of equine behavior is a window of motion data that

contains frequency components that are typically not generated during normal activity.

These frequency components can be calculated by using Fourier analysis. The equine

motion data from the sensors is random with limited periodicity, thus an estimate of the

PSD is instead used of the power of FFT coefficients. The specific PSD estimate used

is Welch’s method of periodogram averaging [53]. A visual difference in the FFT and
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Figure 4.2: Single-sided power spectrum using FFT compared to the estimate of PSD
using Welch’s method.

Welch’s estimate of PSD for a window of motion data with a roll behavior for a single

variable is shown in Figure 4.2. From Figure 4.2, it is apparent that Welch’s estimate of

PSD provides more distinct frequency components in comparison to the power of the FFT

coefficients. Furthermore, the sectioning during Welch’s method significantly reduces the

number of coefficients. In Figure 4.2, the FFT has 513 coefficients and the PSD has 129.

The PSD is calculated for each individual window of data and for all nine variables. After

estimating the PSD of a window of motion data, the result is a data structure that has

dimensions [NC ×M ], where NC is the number of PSD coefficients and M is the number

of variables.

The actual frequencies within the motion data are subject to variability due to the

randomness of the signal, thus neighboring PSD values are banded together. The band-

power of the PSD sums the power estimates within a predetermined number of bands of

frequencies. The number of bands was selected such that each band spans a range of ∼ 1
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Hz. The actual number of elements in each band is calculated by using Equation (4.1),

where Bf is the desired frequency range of each band, N is the number of samples in

the window, Fs is the sampling frequency, and ∆B is the resulting number of elements in

each band. In the case of uneven division of bands, the highest frequencies are combined

as they are expected to be close to zero.

∆B =
⌊
Bf

(
NC

Fs / 2

)⌋
(4.1)

Using Bf = 1.0, NC = 129, and Fs = 100, the number of elements per band is 2. The

actual number of bands used after bandpower can be calculated by using Equation (4.2).

Using the values previously defined, the number bands (NB) is 65.

NB =
⌊

NC

∆B

⌋
+ 1 (4.2)

When reshaped into a single feature vector, the feature vector’s dimensionality becomes

[1× (NB ·M)] and for S window samples, the data becomes [S × (NB ·M)]. This high

dimensionality ((NB ·M) = 65·9 = 585) can cause computational challenges with respect

to model learning. Therfore, PCA is used to reduce the number of features. Based on

experimental results, the typical number of PCs kept are ∼ 125 when keeping p% = 99.00

of the variance. Thus, a ∼ 80% reduction in feature size for NB = 65 and M = 9 may

be achieved. After feature reduction, the data is in an appropriate format for a model to

be learned.
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4.2 Experimental Results

The use of one-class classification techniques and GMMs is applied to novel event de-

tection of equine behavior and validated via experimental analysis of offline data. The

one-class classier and GMMs are applied to a special equine behavior dataset collected

specifically for the target application. The novel event detection is explored using vari-

ous modeling parameters and performance quantified using common performance metrics

and expertly extracted novel events. Prior to the application of the proposed approach

to novel event detection, its performance was compared to other datasets and classifiers.

4.2.1 Experimental Setup

The effectiveness of the novel event detection and selection of algorithmic parameters

is based on a dataset of equine behavior from five different horses or units. Each unit

was equipped with battery-powered data collection hardware and data sampled from

a 9-axis IMU. The data collection was performed during the evening hours (6:00PM -

6:00AM) and each unit was in stall during these times. This time was selected as it

is an appropriate period of time where additional non-invasive behavioral monitoring is

typically needed. Each stall was supplied a camera to record the movement of the units

during data collection. The cameras and data collection hardware were synced using a

common Network Time Protocol (NTP) server to correlate time-stamped data samples

to specific video frames. This correlation is essential for validation of the performance

of novel event detection. Specifically, the dataset is a collection of asynchronous time-

stamped IMU data samples that are sampled at 100 Hz and stored in Comma Separated
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Table 4.1: Summary of test equine motion dataset. Each file contains 1024 data samples
of 9-axis IMU data, windows are created using a moving window of size 1024 with window
increment of 256, and total time is based on synchronized system clock times.

Unit File Count Window Count Time (minutes) Time (hours)
A 10304 41213 2078 34.63
B 11453 45809 2312 38.53
C 11242 44965 2270 39.50
D 11363 45449 2293 38.22
E 9620 38477 1940 32.33

Value (CSV) files with 1024 data samples per file. This equine motion dataset spans

three consecutive days and its raw data size is summarized in Table 4.1.
Due to the potential open-ended combinations of behaviors that could be considered

novel, a small set of behaviors were selected to evaluate the performance of the novel

event detection algorithm. The behaviors selected are briefly described by the following

list.

• Fall - Moving from standing to a laying position.

• Roll - Turning over on the ground.

• Rise - Moving from laying to a standing position.

• Shake - Shaking head/body after rising from the ground.

Videos from all the units are reviewed and event timestamps extracted for the target

behaviors. The total number of target events is tabulated in Table 4.2. To quantify

the performance of the novel event detection algorithm, the Negative Predictive Value

(NPV) binary classification metric is used. Using the data collected using the experiments

discussed in this subsection, we explore the effect of the various algorithmic parameters

of the novel event detection algorithm.
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Table 4.2: Summary of target behavior event count for all units.

Unit Fall Roll Rise Shake Total
A 15 10 15 11 51
B 13 2 13 8 36
C 12 5 12 4 37
D 15 5 15 3 38
E 11 1 11 1 24

4.2.2 Novel Event Exploration Results

As discussed in Section 4.1.1, the data was collected using a moving window with size 1024

and increment of 256. The windows are standardized using the z-score, and filtered using

a low pass then high pass filter with cutoff frequencies of 20 Hz and 0.5 Hz. Feature

vectors for each window are created from bandpowers of the power spectrum density

from each variable, estimated using Welch’s method. Feature vectors are created for all

the data collected in the equine behavior dataset. Algorithmic exploration is provided

for different model acceptance threshold scalars (λ) and different number of mixture

components (K). This exploration provides insight into the effect of thresholding and

mixture components with respect to the number of novel events detected. Gaussian

mixture models are learned on a per unit basis where data partitioning includes training

sets and a validation sets with ratios of 50%. Principal component analysis is performed

on the training sets to find projection matrices that are then used to reduce all the feature

vectors. The reduced feature vectors from the training sets are used to learn a GMM of

normal behavior for each unit. The EM algorithm is performed 25 times per training set

and the model with the best TPR.

To evaluate the effect of the model acceptance threshold scalar, (λ), and mixture

component count (K), various values are considered. For each threshold level and mixture
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(a) Novel Windows
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(b) Merged Consecutive Novel Windows

Figure 4.3: Average novel window counts normalized to total window count per unit
with respect to model acceptance values for different number of Gaussian mixtures. The
merged consecutive novel windows are novel windows that are consecutively classified as
novel and are counted only once.

count, multiple performance metrics are averaged across all units and reported. These

performance metrics include: novel window count, time per event, total time, and NPV.

Figure 4.3 shows normalized novel window counts and merged window counts. The

window counts are normalized with respect to the total number of windows collected

for each unit. To reduce the number of novel windows, windows that are consecutively

classified as novel are merged into one larger window as in Figure 4.3b. From Figure

4.3, it is seen that values of λ > 6 do not significantly further reduce novel event count

and mixture component counts K = {3, 4, 5} produce less novel windows. Also, prior to

merging novel windows less than 10% of all the windows are considered novel indicating

that the GMMs are effectively estimating normal behavior on a per unit basis. The

effect of thresholding and mixture component count on novel event count and NPV is

provided in Figure 4.4. In Figure 4.4a, a novel event is a segment in time with novel

windows that are within 30 s of each other. The NPV values were calculated based on
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(b) Negative Predictive Value (NPV)

Figure 4.4: Average novel event count and negative predictive values with respect to
model acceptance threshold values for a different number of Gaussian mixtures.

the hand targeted events from the fall, roll, rise, and shake behaviors. Figure 4.4 is

a clear side-by-side comparison of the trade-off between number of novel events versus

NPV. Using a lower threshold and lower mixture count produces higher NPVs at the cost

of significantly more novel events. High novel event count suggest an increase in false

positives where events are classified as novel when in truth they were normal. Moreover,

increased numbers of novel events require more processing power to validate them and if

used in an embedded application it may consume too much processing power. Figure 4.5,

provides the NPV for the fall and rise behaviors alone. The roll and shake behaviors were

not reported as they are nearly always detected as novel event due to the magnitude of

their high frequency components. The fall behavior exhibits the worst NPV and is most

likely due to the less dramatic nature of the fall motion profile and short event time. To

provide a better understanding of the amount of motion data that is classified as novel,

the amount of time per event and total event time is reported in Figure 4.6.

Using the data collected and metrics reported in Figures 4.4-4.6, some final parameter
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(a) Fall NPV
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(b) Rise NPV

Figure 4.5: Average negative predictive values (NPV) for fall and rise behaviors for
different model acceptance threshold values for different number of Gaussian mixtures.
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(b) Normalized Total Time

Figure 4.6: Average time per novel event in seconds and total time normalized to the total
collection time with respect to model acceptance threshold values for different number
of Gaussian mixtures.
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selections of threshold and mixture count is concluded. Based on prior knowledge through

observation of novel equine behaviors, the behaviors typically span from 3-30 s per event.

This span indicated that a threshold scalar (λ) between 3-6 is appropriate as supported

by Figure 4.6a. Additionally, Figure 4.3 shows that mixture counts of K = {3, 4, 5}

demonstrate similar novel window count and are less than K = {1, 2} mixtures. Figure

4.4b suggests that λ = 3 mixtures provides the best NPV compared to λ = {4, 5}.

Additional experimental runs for robust analysis is done to further explore the effects of

λ and K.

4.2.3 Individual Model Results

Based on the exploration grid of thresholding (λ) and mixture count (K) (previous sub-

section), a mixture count of K = 3 and a threshold level of (λ = 3) are selected for

further experimental runs. The threshold scalar value of (λ = 3) is chosen for balance of

higher NPV and lower novel event count. Tables 4.3 and 4.4 summarize the performance

metrics for each individual unit using λ = 3 and K = 3.

From Table 4.4, it is seen that unit A demonstrates the lowest NPV values. Referring

back to Table 4.1, unit A was also the unit with the most target behaviors, indicating the

horse associated with unit A is potentially more active. More active units may require

additional data samples for training to better estimate normal behavior. The training of

behavior models from independent horses requires extensive data collection, storage, and

processing using high-performance machines. Therefore, it is advantageous to explore the

possibility of a single generic model that can provide comparable novel event detection
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Table 4.3: Novel event count per unit averaged over 50 trial runs with 25 EM each run
using a model acceptance threshold scalar λ = 3 and mixture count K = 3. Standard
deviations of numbers reported are provided in parenthesis.

Unit Window Count Event Count Novel Time
Novel Consecutive Per Event (sec) Total (min)

A 2363.20 797.24 495.10 31.76 262.11
(91.33) (47.77) (14.01) (9.55) (14.81)

B 2030.20 980.98 554.22 35.40 327.01
(54.36) (24.78) (13.12) (0.55) (8.49)

C 1167.20 538.02 351.62 28.15 165.22
(114.08) (40.57) (16.11) (1.21) (13.89)

D 1395.40 601.70 383.44 29.48 188.56
(105.98) (35.83) (18.32) (0.83) (12.68)

E 1765.70 737.02 478.68 30.04 239.33
(129.80) (48.41) (34.68) (1.34) (16.90)

Avg. 1744.34 730.99 461.32 30.97 236.45
(99.11) (39.47) (24.06) (2.70) (13.35)

Table 4.4: Negative predictive values (NPV) per unit averaged over 50 trial runs with 25
EM each run and a model acceptance threshold scalar λ = 3 and mixture count K = 3.
Standard deviations of numbers reported are provided in parenthesis.

Unit NPV Ratio Behaviors Detected as Novel
Fall Roll Rise Shake

A 0.7714 0.2440 1.0000 0.9787 1.0000
(0.0212) (0.0532) (0.0000) (0.0314) (0.0000)

B 0.9256 0.7939 1.0000 1.0000 1.0000
(0.0142) (0.0394) (0.0000) (0.0000) (0.0000)

C 0.8562 0.5908 1.0000 1.0000 1.0000
(0.0468) (0.1332) (0.0000) (0.0000) (0.0000)

D 0.9732 0.9320 1.0000 1.0000 1.0000
(0.0037) (0.0094) (0.0000) (0.0000) (0.0000)

E 0.9858 0.9320 1.0000 0.9691 1.0000
(0.0200) (0.0094) (0.0000) (0.0435) (0.0000)

Avg. 0.9024 0.6985 1.0000 0.9896 1.0000
(0.0212) (0.0489) (0.0000) (0.0150) (0.0000)
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performance.

4.2.4 Generic Model Results

To assess the performance of a generic equine behavior model, experimental data was

analyzed similar to the individual models. A generic model was created across behavioral

data from multiple units. For the generic model learning, the data was partitioned such

that 3 of the 5 unit’s data was used for training and validation. The remaining 2 units are

isolated for robustness test. From the training and validation data, randomized feature

vectors are split into 50% for training and 50% for validation. Using the training data,

25 generic models are learned using EM. Using the validation data, the best generic

GMM is selected as the model that has the highest TPR. Performance metrics of novel

window count and NPV are recorded for all data including training, validation, and

robust. This entire process is repeated 50 times with the data partitioning randomized

for each trial. Figure 4.7a shows the average NPV values across all trials for all units

using K = {1, 2, 3, 4, 5} and λ = 3.0. The value of λ was selected based on the results

of the individual models. The peak in NPV (Figure 4.7a) suggests the best mixture

count for generic models is K = 4, where the average NPV is 82.64%. Figure 4.7b

uses a mixture count K = 4 and shows NPV with respect to model threshold values

of λ = {1, 2, 3, 4, 5, 6}. From Figure 4.8a, it is seen that the generic model NPVs trend

similarly to the individual models.

Figure 4.8 is provided for comparative analysis of generic and individual behavior

models. From Figure 4.8, it is seen that the individual behavior models are able to
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Figure 4.7: Generic model analysis presented as average values of 50 trials of negative
predictive values with respect to mixture count and thresholding. For (a) each model’s
threshold value was set to be λ = 3.0 and for (b) the number of mixtures was set to
K = 4.

achieve higher NPV values compared to the same model acceptance scalar (λ) used with

generic models. However, Figure 4.8b shows that by using generic behavior models,

the number novel event is significantly reduced. Therefore, using a generic model with

λ = 1.0 and K = 4, an average NPV value of 97.5% is achievable as opposed to 77.9%

for individual models with a comparable novel event count (λ = 4.0). These values

may converge with additional data per unit, because the generic model training uses ∼ 3

times more data. Nevertheless, the significant difference between generic and independent

models demonstrate the strength of mixture models. An accurate single generic model

of behavior can be learned and applied to multiple units successfully; even those units

not used in training or validation (robust units). Regardless of the use of generic or

individual models, the novel event detection algorithm implementation as an embedded

solution is required. Hence, experimentation with respect to computational complexity

via execution time is provided. In the next section, we test an implementation of the
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Figure 4.8: Performance of generic behavior models versus individual behavior models
with respect to NPV and novel event count. Values provided are average values across
all units with 50 trials performed per unit.

novel event detection algorithm within an embedded system.

4.2.5 Embedded Implementation

The target application of the novel event detection is an algorithm embedded in a wear-

able device. In order for the novel event detection algorithm to be embedded on-device

it must have a computational complexity suitable for current microprocessors. To evalu-

ate computational complexity, execution time of processing a single window of data for

various platforms is considered. For embedded testing, a GMM model was learned for a

specific unit (Unit E) and the model parameters stored in a file. Two windows of data

are pre-collected to represent a normal event and a novel event. These windows are also

stored in a file to be imported on a target platform. For each platform explored, the

model information and windows of data are loaded into memory. Each window is then

subjected to novel window classification, which is comprised of: preprocessing, feature
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vector creation, banding, feature reduction, and one-class classification. The resulting

binary classification and log-likelihood values are compared to the original values for

validation of computational accuracy. The average of the overall execution time of the

novel window classification of the two windows is recorded. Additionally, to analyze the

effect of number of mixtures (K), average execution times are reported for GMM with

K = {1, 2, 3, 4, 5}.

The original novel event detection algorithm is written using the MATLAB R© com-

puting language [78]. However, with a target application of an embedded device, the

MATLAB run-time environment is not practical because of its size and dependency on

the x86 instruction set. Therefore, the GNU Octave language and its Command Line

Interface (CLI) is selected for comparison to MATLAB. Octave is selected because of

its ease of portability from MATLAB and support of the ARM R© instruction set [79].

Furthermore, most embedded applications use a Linux-based operating system (OS) as

opposed to Microsoft Windows. Therefore, computational time using MATLAB and

Octave are explored for both Windows and Linux operating systems. It is noted that

regardless of platform or operating system, the calculation of log-likelihood values are

found to be accurate to at least four significant digits.

Figure 4.9 tabulates the execution time of 500 trials of novel window classifications on

high-performance CPUs for Windows and Linux operating systems. From Figure 4.9, the

difference between execution times of Octave and MATLAB are apparent, but it can be

mitigated by selecting the proper language for the targeted operating system. From the

experiments, MATLAB consistently demonstrated lower execution times on Windows,
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Figure 4.9: Average execution time of 500 trials of novel window classification on different
high-performance CPUs with Linux and Microsoft Windows operating systems.

whereas Octave reported lower execution times on Linux. The platform dependent per-

formance is most likely due to the tool-sets used to compile each language (e.g. the GNU

tool-sets are generally more optimized for development in Linux) and/or software drivers

for hardware. However, the end-application targets the Linux operating system and an

Octave solution is shown (Figure 4.9) to be closely matched in execution time compared

to a MATLAB solution on Windows. The Octave/MATLAB execution times on proper

operating systems with the same hardware recorded less than 1 ms differences.

A embedded platform architecture using Linux and Octave is selected for testing

based on the confirmation of accuracy and comparable execution times. Current embed-

ded/wearable devices are using ARM-based microprocessors due to their small footprint,

high computational speeds (near 1 GHz), and low-power consumption. For algorithm

testing and execution time exploration, the ARM R© CortexTM-A8 or more specifically the

Freescale i.MX53 is selected. The Freescale i.MX53 boasts a 32-bit 800 MHz processor

and the development board used has 512 DDR3 RAM and runs a Arch Linux operating
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Figure 4.10: Average execution time of 500 trials of novel window classification on the
ARM R© CortexTM-A8 with Linux operating system.

system from an external flash memory card. The Freescale i.MX53 can be scaled to op-

erate at clock frequencies of 800 MHz, 400 MHz, and 167 MHz. Each of these frequencies

are used to evaluate the execution time of novel window classification for GMMs with

mixture count K = {1, 2, 3, 4, 5}. From Figure 4.10, the effect of clock frequency is seen.

Using a mixture count of K = 4, as selected from the results in Section 4.2.3, and a clock

frequency of 800 MHz, the execution time is ∼ 0.2 s. Also, from Figure 4.10 a very subtle

exponential growth in execution time is seen as the number of mixtures increase, which is

more prominent with lower clock frequencies. A single window has 1024 samples that are

sampled at 100 Hz yielding a single window collection time to be 10.24 s. However, with

a moving window every 256 samples or 2.56 s, a window should be classified within this

time. Even at 167 MHz, the novel window classification is only 0.8 s, and thus suitable

for use in an embedded application. Moreover, the execution times presented are for pro-

cessing an entire window and it is noted that further speed-up can be achieved through

optimization based on the moving window scheme. Finally, the execution times reported
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do not consider the additional background processing that may be required such as data

collection, windowing, and other extra required background processes. These other pro-

cesses were not considered to provide a raw evaluation of execution time of the novel

window processing on a embedded platform with an ARM-based processor using Octave

in Linux.
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Chapter 5

Conclusion

Presented is an in-depth analysis of the Online Novelty Detection System (ONDS) as a

one-class classifier implemented using Gaussian mixture models. Specific applications to

identifying systemic health of RF power generators and novel behavior in equine motion

data have been implemented successfully. The data modeled and classified are multi-

variate time-series datasets from sensors with a wide range of values and under different

operational conditions. Generic functional blocks have been defined as data collection,

preprocessing, feature vector creation, model learning/testing, and classification. Many

of these procedures are common in literature. Typically, focus is placed on the model

learning procedure and classifier tuning. Our approach differs with a heavy focus on

exploring different preprocessing methods and selecting optimum algorithm parameters.

Using a thorough and methodical exploration, preprocessing methods and parameters

are experimentally selected.

With respect to the application using RF power generator, high overall average robust

classification accuracy (94.76%) with low deviation (2.05%) of normal operation of the RF

power generators were achieved. The average specificity values of 87.51% and 77.92% were

104



achieved and noted to be significant considering the non-normal conditions tested were

actual non-normal fingerprints from seeded faulty conditions. Additionally, these values

reflect the limited normal samples available for learning an adequate representation of

normal for these units. Furthermore, the normal fingerprint data collection is typically

done prior to the unit’s shipment to the customer. Therefore, the access to normal

fingerprint data is limited, driving the demand for an embedded application of GMM

and one-class classification. An embedded version of the ONDS is successfully ran on

MKS RF power generators.

For the application of novelty detection of equine behavior, metrics are reported us-

ing normal behavior models for individual horses as well as generic models. A subset

of target behaviors representing novel events (i.e., falling, rolling, rising, and shaking)

were expertly identified from a custom dataset consisting of sensor data from five unique

horses across three different nights. Using these target behaviors and a generic behavior

model, the ONDS correctly identified 97.5% of them as novel. Furthermore, only 334

novel events per unit were detected across the three days with an average event time of

43.5 s. Individual models were also considered and shown to provide higher classification

performance, but with significantly more novel events. Thus, given the dataset currently

available it is suggested to use generic behavior models over individual models for ap-

plications requiring an embedded solution or limited processing power. With respect to

processing power, the novel event detection algorithm was implemented and tested within

an embedded system and a non-optimized Octave version that confirms fast execution

times ∼ 0.2 s.
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Future work with the ONDS may involve online adaption of the GMM models. An on-

line adaptation of the GMM models could allow for model adjustments to subtle systemic

changes that may be introduced via system aging. By adapting the model, the number

of false positives may be reduced. Furthermore, investigation into using supervised feed-

back to help improve the specificity of the GMM may be explored. Supervised feedback

may be provided by an expert to confirm or reject the one-class classifiers decision. Both

applications of RF power generators and equine novel behavior detection would benefit

from online adaptation and supervised feedback. In regards to ONDS and equine novel

behavior detection, future work may involve the integration of the ONDS and other sec-

ondary processing methods. These secondary processing methods are intended to classify

novel events for high-level behavioral detection and quantification of equine distress. One

potential method for secondary processing is the use of multiple one-class GMM models

to represent individual targeted behaviors. Using the existing dataset, each behavior

would have its own model. Novel events could be compared against each model, and the

model with highest likelihood selected for the behavior’s classification. This use of indi-

vidual GMMs would allow for software reuse to maintain a small footprint and feasibly

of such an embedded system.

The results collected from the exploration of preprocessing methods and parameter

selection have confirmed the specific methods that have been implemented for an embed-

ded application. Once a GMM is learned, the online-version of the one-class classification

algorithm within an embedded system is feasible.
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Appendix A

Simplification and Derivations of MLE

A.1 Simplification - Univariate Gaussian Distribu-

tion

L (µ, σ |y) = log
N∏

j=1

1√
2πσ

exp
(
−(yj − µ)2

2σ2

)
(A.1)

L (µ, σ |y) = log

(2π)− N
2

σN
exp

− N∑
j=1

(yj − µ)2

2σ2

 (A.2)

L (µ, σ |y) = log

(2π)− N
2

σN

+ log
exp

− N∑
j=1

(yj − µ)2

2σ2

 (A.3)

L (µ, σ |y) = log
[
(2π)− N

2

]
− log

[
σN
]
−

N∑
j=1

(yj − µ)2

2σ2 (A.4)

L (µ, σ |y) = −N

2 log [2π]−N log [σ]−
N∑

j=1

(yj − µ)2

2σ2 (A.5)
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A.2 Simplification - Multivariate Gaussian Distribu-

tion

L (µ,Σ |Y) = log
N∏

j=1

1
(2π)M/2 |Σ|1/2

exp
[
−1

2 (yj − µ)T Σ−1 (yj − µ)
]

(A.6)

Let Λ = Σ−1

L (µ,Σ |Y) = log
N∏

j=1
(2π)− M

2 |Λ|
1
2 exp

(
−1

2 (yj − µ)T Λ (yj − µ)
)

(A.7)

L (µ,Σ |Y) =
N∑

j=1
log

[
(2π)− M

2 |Λ|
1
2 exp

(
−1

2 (yj − µ)T Λ (yj − µ)
)]

(A.8)

L (µ,Σ |Y) =
N∑

j=1
log

[
(2π)− M

2 |Λ|
1
2

]
+

N∑
j=1

log
[
exp

(
−1

2 (yj − µ)T Λ (yj − µ)
)]

(A.9)

L (µ,Σ |Y) = N
(

log
[
(2π)− M

2 |Λ|
1
2

])
− 1

2

N∑
j=1

(yj − µ)T Λ (yj − µ) (A.10)

L (µ,Σ |Y) = N
(

log
[
(2π)− M

2

]
+ log

[
|Λ|

1
2
])
− 1

2

N∑
j=1

(yj − µ)T Λ (yj − µ) (A.11)
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L (µ,Σ |Y) = −N ·M
2 log (2π) + N

2 log |Λ| − 1
2

N∑
j=1

(yj − µ)T Λ (yj − µ) (A.12)

A.3 Derivation - Multivariate Gaussian Distribution

Let Λ = Σ−1 be the precision matrix (inverse of the covariance matrix) and further

simplification yields the log likelihood of the MVN to be:

L (µ,Λ |Y) = −N ·M
2 log (2π) + N

2 log |Λ| − 1
2

N∑
j=1

(yj − µ)T Λ (yj − µ) (A.13)

To find estimators µ̂, Σ̂ using MLE is to solve:

∂

∂µ
L (µ,Λ |Y) = 0 and ∂

∂Λ
L (µ,Λ |Y) = 0 (A.14)

For µ̂ step-wise solve:

∂

∂µ

−N ·M
2 log (2π) + N

2 log |Λ| − 1
2

N∑
j=1

(yj − µ)T Λ (yj − µ)
 = 0 (A.15)

Substitution: xj = (yj − µ) =⇒ ∂xj

∂µ
= −1

−1
2

N∑
j=1

∂

∂xj

∂xj

∂µ
xT

j Λxj = 0 (A.16)
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Recall:
∂
(
aT Aa

)
∂a

=
(
A + AT

)
a

−1
2

N∑
j=1
−1

(
Λ + ΛT

)
xj = 0 (A.17)

Re-substitute: Σ−1 = Λ and (yj − µ) = xj

−1
2

N∑
j=1
−1

(
Σ−1 + Σ−T

)
(yj − µ) = 0 (A.18)

Recall that Σ is symmetric and A−T = A−1 for a symmetric matrix:

−1
2

N∑
j=1
−2Σ−1 (yj − µ) = Σ−1

N∑
j=1

(yj − µ) = 0 (A.19)

Further simplification and re-arrangement will yield the estimator µ̂ as:

µ̂ = 1
N

N∑
j=1

yj (A.20)

For Σ̂ step-wise solve still using Λ = Σ−1:

∂

∂Λ

−N ·M
2 log (2π) + N

2 log |Λ| − 1
2

N∑
j=1

(yj − µ)T Λ (yj − µ)
 = 0 (A.21)

Use the trace “trick”: aT Aa = tr
(
aT Aa

)
= tr

(
aaT A

)

∂

∂Λ

−N ·M
2 log (2π) + N

2 log |Λ| − 1
2

N∑
j=1

tr
(
(yj − µ) (yj − µ)T Λ

) = 0 (A.22)
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Substitute: S =
N∑

j=1
(yj − µ̂) (yj − µ̂)T

∂

∂Λ

[
−N · · ·M

2 log (2π) + N

2 log |Λ| − 1
2tr (SΛ)

]
= 0 (A.23)

Distribute the partial derivative:

N

2
∂

∂Λ
log |Λ| − 1

2
∂

∂Λ
tr (SΛ) = 0 (A.24)

Recall ∂

∂A
tr (BA) = BT and ∂

∂A
log |A| = A−T :

N

2 Λ−T − 1
2ST = 0 (A.25)

Rearrange:

Λ−1 = 1
N

S (A.26)

Re-substitute Σ−1 = Λ and
N∑

j=1
(yj − µ̂) (yj − µ̂)T = S and the estimator Σ̂ is:

Σ̂ = 1
N

N∑
j=1

(yj − µ̂) (yj − µ̂)T (A.27)
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