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Abstract

In recent years, evolution of technology has contributed a major role in the field

of optical communication systems. There is an ever growing demand for transmit-

ting signals at higher data rates and compensating the transmission impairments

simultaneously. Speed of the signal transmission down the optical fiber is limited

by transmission impairments that are characterized as linear or nonlinear losses.

In my thesis, I lay a special emphasis on linear loss especially chromatic dispersion

and it’s effect on an optical signal down the fiber and study the compensation

techniques in an electrical domain challenging the methods employed in an optical

domain. In this digital world, there is an increase in the evolution of electrical

components such as high speed memory units and low power consumption models.

Electrical domain provides advantages in terms of processing the signal in a cost

effective way and achieving the similar results with respect to the optical domain.

In addition to the analysis, my investigation includes the effect of noise present in

optical fiber communication systems and limitations of electrical components in

achieving the compensation.
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Chapter 1

Introduction

In this 20th century, technology in communications between two systems has

been evolving at a faster rate to deliver data in a fast, efficient and secure manner.

There is a lot of emphasis laid on two forms of signal propagation based on medium,

such as wired and wireless transmissions. Both forms has its advantages and

disadvantages, however, they are chosen in terms of speed, portability and security.

In this paper, we study about the signal propagation in an optical fiber and an

effective approach to mitigate linear chromatic dispersion by pre-distorting the

signal at the transmitter in the electrical domain using a dual-drive Mach-Zehnder

Modulator [1] .

In wired communications, optical fiber plays an important role is transmitting the

data for long distances in the form of light. There are different types of fiber and

fiber length can vary from few kilometers to thousands of kilometers. During it’s

propagation, transmission impairments will try to degrade the quality and limit

the transmission distance in both linear and non-linear domain. Linear trans-

mission impairments include dispersion, fiber loss, X-talk, accumulated amplified

spontaneous emission (ASE) noise and polarization mode dispersion (PMD)[3]. In

this thesis, we study to mitigate the transmission-related degradations that do not

rapidly change in time in linear domain that includes chromatic dispersion a.k.a

Group-velocity dispersion (GVD) leaving non-linear domain for future work.

In a fiber-optic telecommunications system, attenuation reduces the power of a
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transmitted signal caused by media components such as cables, splicers and con-

nectors and is significantly lower as compared to other media. And dispersion

affects the transmission in two types: Chromatic Dispersion and Modal disper-

sion, where chromatic dispersion broadens the signal in the time-domain resulting

in different speed of wavelengths and modal dispersion broadens the signal in time

due to different propagation modes in an optical fiber. Modal dispersion plays a

degrading role in multi-mode fiber whereas chromatic dispersion plays in single

mode fiber that spreads the signal across long distances.

In contrast, Chromatic dispersion is deterministic, linear, and can be compensated.

In digital communications, a bit sequence is represented as pulses and will spread

large in time and merge due to chromatic dispersion making it difficult for the

receiver to render the bit stream as shown in the Figure (1.1). This action limits the

length of fiber that a signal can be sent down without amplification or regeneration.

Figure 1.1: Pulse travels down the fiber and broadens in time domain

Further studies in the field of optical fiber communications contribute to the devel-

opment of systems compensating the impairments in electrical domain in addition

to optical domain. Electrical domain make use of digital signal processors such

as ASIC, Xilinx,etc., CMOS units, D/A and A/D converters, etc. to achieve the

compensation which is cost-cutting, ability to reproduce the signals efficiently and

lot faster , more practical in terms of functionality as compared to use of costly

optical fibers in optical domain dispersion compensation. Also, due to continuous
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evolution in electrical instruments in terms of speed and reduction in power, elec-

trical domain looks like a promising aspect to cut down the limitations set by the

optical domain. [4]

In this thesis, we study the efforts to reduce the linear impairments and re-produce

the novel technique discussed in IEEE paper "Electronic Dispersion Compensation

by signal distortion using Digital processing and a Dual-drive MZM" and extend

it’s horizon by understanding the dependent nature of various optical parameters

in different conditions. [1] To extend it’s horizon, we have included noise in op-

tical fiber communication systems such as thermal noise, shot noise and relative

intensity noise (RIN) as a measure of performance of this pre-distortion technique

with respect to the electrical parameters and its limitations.
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Chapter 2

Forward Propagation

2.1 Basic Propagation

When an optical pulse propagates down the fiber, complex value of its electrical

field E(z, T ) in time can be written in the form,

E(z, T ) =
√
P (t)exp(iφ), (2.1)

and Phase is given by

φ = φ0(t) + ωt− βz. (2.2)

where P is the power of the signal received by the photodiode at a distance z

down the fiber, φ0 is the initial phase, w is the angular frequency, and β is phase

constant. In theory, optical signal property is activated by three factors, multiple

transverse modes, multiple wavelengths and multiple polarization states and each

individually or in combination are responsible for losses in the transmission im-

pairments . However, in this paper, we consider a single mode fiber, and focus on

single wavelength which play an important role to study the effect of chromatic

dispersion, leaving effects of polarization dispersion for future work. [5]
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In a single mode fiber, each spectral component has slightly different propagation

constant, hence different phase velocities which is the main reason for the chromatic

dispersion, which further illustrates the frequency dependent nature of an optical

signal in the frequency domain. In spectral domain, with the introduction of

Fourier transform, electrical field of an optical pulse is given by

E(z, T ) =
1

2π

∫ ∞
−∞

E(z, ω) exp(−iωT ) dω, (2.3)

where E(z, ω) is the Fourier transform of the signal, in turn written as

E(z, ω) = E(0, ω) exp(iβz). (2.4)

and E(0, ω) is the Fourier transform of the signal E(0, T ) at z = 0.

2.2 Propagation constant β

Now, In general, propagation constant β in linear terms can be written in the

form,

βL(w) = η̃ω
ω

c
. (2.5)

where c is velocity of light in vacuum and η̃ is a effective mode index as a function of

carrier frequency ω that results in phase evolution for different spectral components

leading to chromatic dispersion. Considering the frequency dependent nature of

effective mode index, propagation constant β is expressed in the form of taylor

series,
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βL(ω) =
1

m!

∞∑
m=0

dmβ

dωm
(ω − ω0)

m, (2.6)

where ω0 is the reference value of carrier frequency, and ω−ω0 can be substituted

as ∆ω in the equation. Now further expanding the equation Eq(2.6), we get

βL(ω) = β(ω0) +
dβ

dω
∆ω +

1

2

d2β

dω2
(∆ω)2 +

1

6

d3β

dω3
(∆ω)3 + ....,

= β(ω0) + β1∆ω +
1

2
β2(∆ω)2 +

1

6
β3(∆ω)2 + ...,

(2.7)

ignoring higher order terms, equation can be written as

βL(ω) = βω0 + β1∆ω +
1

2
β2(∆ω)2 +

1

6
β3(∆ω)3. (2.8)

where β1 = dβ
dω

, β2 = d2β
dω2 , and β3 = d3β

dω3 are orders of propagation constant β that

are used to derive signal transmission. In this equation, β1 is called first order of

dispersion and is related as inverse of group velocity 1
vg

that accounts to a constant

delay as signal propagates through an optical fiber and βω0 does not contribute

to dispersion due to absence of differential carrier frequency, however, second and

third order of dispersion parameters β2, β3 are functions of carrier frequency and

are responsible for broadening of signal pulse in an optical fiber. [4]

2.3 Non-linear Schrodinger Equation

In this paper, we lay a special emphasis on β2 which is also called group as veloc-

ity dispersion parameter (GVD) and is expressed in the units of [ps
2

km
] and related

chromatic dispersion parameter D, where D = −2πc
λ20

β2 whose units are [ ps
nm−km ]

. For a single mode fiber, at a wavelength of 1550 nm to the right of zero dis-

persion wavelength λZD, Dispersion parameter D is found out to be 17 [ ps
nm−km ].
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[Note: Zero dispersion wavelength is defined as a wavelength at which dispersion

parameter D is zero]. [1]

In fiber optics, wave propagation is modeled by the non-linear Schrodinger Equa-

tion (NSE). NSE describes the phenomena of transmission behavior of optical

signal pulses through a nonlinear medium. Considering the propagation of optical

signal in single-mode fibers and for pulse widths > 5ps, NSE is given by

i
∂A

∂z
= −iα

2
A+

β2
2

∂2A

∂T 2
− γ

∣∣A2
∣∣A, (2.9)

where A is the varying amplitude of the optical signal pulse and T is the time

coordinate expressed in terms of group velocity vg with respect to frame of reference

t given by (T = t − z
vg

). This equation entails transmission impairments such as

fiber losses, dispersion and nonlinear effects on pulses propagating along the fiber.

Specifically, α is the attenuation constant responsible for fiber losses, β2 is the

GVD parameter responsible for pulse broadening and γ is the nonlinear parameter

responsible for fiber nonlinearity.

2.3.1 Forward Propagation Equation and Transfer function

To obtain the effect of group-velocity dispersion in optical pulses transmitted along

the fiber, a linear dispersive medium is considered. Nonlinear and fiber losses are

ignored by setting the parameters γ = 0 and α = 0 in Eq. (2.9).

The NSE becomes:

i
∂A

∂z
=
β2
2

∂2A

∂T 2
. (2.10)

Eq.(2.10) can be solved using the Fourier Transform method. A(z, ω) is the Fourier

transform of A(z,T) such that
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A(z, T ) =
1

2π

∫ ∞
−∞

A(z, ω) exp(−iωT ) dω, (2.11)

and

A(z, ω) =

∫ ∞
−∞

A(z, T ) exp(iωT ) dT. (2.12)

Applying the Fourier transform to the simplified NSE yields:

i
∂A

∂z
= −1

2
β2ω

2A. (2.13)

Rearranging Eq. (2.13) yields:

∂A

A
=
i

2
β2ω

2∂z. (2.14)

Integrating Eq. (2.14) yields:

A(z, ω) = A(0, ω) exp(
i

2
β2ω

2z), (2.15)

where A(0, ω) is the Fourier transform of the incident field at z=0. This Eq. (2.15)

is our forward propagation equation. It propagates the light from z=0 to z. In

other words, our transfer function is H(ω) given by

H = exp(
i

2
β2ω

2z) (2.16)

and we can write
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A(z, ω) = A(0, ω)H(ω). (2.17)

Eq. (2.17) is the final equation for the varying amplitude of signal pulse and shows

that GVD changes the phase of the each spectral component of the pulse but the

spectral pulse shape remain unaffected. Input pulses of arbitrary shapes can be

assessed using the Eq. (2.15) and Eq (2.17).[1]

Combing Eq. (2.4) and Eq. (2.17), Electric field of an optical pulse at length z of

an optical fiber in frequency domain is given by

E(z, ω) = E(0, ω) exp(
i

2
β2ω

2z). (2.18)
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2.4 Analysis

2.4.1 Analytical analysis

Let us consider the case of a Gaussian pulse for which incident field is of the form

A(0, T ) = A0 exp(− T 2

2T 2
0

), (2.19)

where A0 is the initial amplitude, T0 is half-width at 1/e-intensity point, and it’s

relation with the full width half maximum (FWHM) for a Gaussian pulse is given

by

TFWHM = 2
√

ln 2T0. (2.20)

The spectral amplitude of the incident field at z=0, A(0, ω) is given by

A(0, ω) =

∫ ∞
−∞

A(0, T ) exp(iωT ) dT. (2.21)

Using Eq. (2.15) and (2.19), the spectral amplitude of the incident field at z=z is

given by

A(z, ω) = A(0, ω) exp(
i

2
β2ω

2z),

=

∫ ∞
−∞

A(0, T ) exp(iωT ) dT exp(
i

2
β2ω

2z),

=

∫ ∞
−∞

A0 exp(− T 2

2T 2
0

) exp(iωT ) dT exp(
i

2
β2ω

2z),

=

∫ ∞
−∞

A0 exp(− T 2

2T 2
0

+ iωT ) dT exp(
i

2
β2ω

2z).

(2.22)
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Using the formulae in Fourier-Transforms,

∫ ∞
−∞

exp(−ax2 + bx)dx =

√
π

a
exp(

b2

4a
). (2.23)

Eq. (2.22) yields:

A(z, ω) =

∫ ∞
−∞

A0 exp(− T 2

2T 2
0

+ iωT ) dT exp(
i

2
β2ω

2z),

= A0T0
√

2π exp(−ω
2T 2

0

2
) exp(

i

2
β2ω

2z),

(2.24)

where a = 1
2T 2

0
and b = iω.

A(z, ω) = A0T0
√

2π exp(−ω
2T 2

0

2
+
i

2
β2ω

2z). (2.25)

Using Eq. (2.3), (2.23) and (2.25), the temporal amplitude of the Gaussian pulse

obtained from the forward propagation equation is:

A(z, T ) =
1

2π

∫ ∞
−∞

A(z, ω) exp(−iωT ) dω,

=
1

2π

∫ ∞
−∞

A0T0
√

2π exp(−ω
2T 2

0

2
+
i

2
β2ω

2z) exp(−iωT ) dω,

=
A0T0√

2π

∫ ∞
−∞

exp[
iβ2z − T 2

0

2
ω2 − iωT ] dω.

(2.26)

Using the formulae, take a = (
−iβ2z+T 2

0

2
) and b = −iT , Eq.(2.26) yields:

A(z, T ) =
A0T0√
T 2
0 − iβ2z

exp[− 2T 2

4(T 2
0 − iβ2z)

],

=
A0T0√
T 2
0 − iβ2z

exp[− T 2

2(T 2
0 − iβ2z)

].

(2.27)

Note: if p= x+iy is a complex number, it’s conjugate is given by p̃=x-iy; p.p̃ =
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x2 + y2 and magnitude yields |p| =
√
x2 + y2.

Using the complex numbers formulae, we need to make the denominator free of

complex terms. Now Eq. (2.27) can be written as

A(z, T ) =
A0T0√
T 2
0 − iβ2z

exp[− T 2

2(T 2
0 − iβ2z)

],

=
A0T0√
T 2
0 − iβ2z

√
T 2
0 + iβ2z√
T 2
0 + iβ2z

exp[− T 2

2(T 2
0 − iβ2z)

T 2
0 + iβ2z

T 2
0 + iβ2z

],

(2.28)

where x = T 2
0 and y = β2z.

A(z, T ) =
A0T0

√
T 2
0 + iβ2z√

T 4
0 + β2

2z
2

exp[−T
2(T 2

0 + iβ2z)

2(T 4
0 + β2

2z
2)

]. (2.29)

We now seek to write A(z,w) as A(z, w) = |A(z, w)| exp (iφA).

A(z, T ) =
A0T0√
T 4
0 + β2

2z
2

√√
T 4
0 + β2

2z
2 exp

(
i arctan(

β2z

T 2
0

)
)

exp
(
− T 2(T 2

0 + iβ2z)

2(T 4
0 + β2

2z
2)

)
,

=
A0T0

4
√
T 4
0 + β2

2z
2

exp
( i

2
arctan(

β2z

T 2
0

)
)

exp
(
− T 2(T 2

0 + iβ2z)

2(T 4
0 + β2

2z
2)

)
,

=
A0T0

4
√
T 4
0 + β2

2z
2

exp

[
− T 2T 2

0

2(T 4
0 + β2

2z
2)

+
i

2

(
arctan(

β2z

T 2
0

)− T 2β2z

(T 4
0 + β2

2z
2)

)]
,

=
A0T0

4
√
T 4
0 + β2

2z
2

exp
(
− T 2T 2

0

2(T 4
0 + β2

2z
2)

)
exp

[
i

2

(
arctan(

β2z

T 2
0

)− T 2β2z

(T 4
0 + β2

2z
2)

)]
.

(2.30)

Thus the amplitude of the Gaussian pulse at any point z along the fiber is given

by
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A(z, T ) =
A0T0

4
√
T 4
0 + β2

2z
2

exp
(
− T 2T 2

0

2(T 4
0 + β2

2z
2)

)
exp

[
i

2

(
arctan(

β2z

T 2
0

)− T 2β2z

(T 4
0 + β2

2z
2)

)]
.

(2.31)

Eq. (2.31) can be further simplified by normalizing quantities:

A(z, T ) =
A0

4
√

1 + β2
2z

2/T 4
0

exp
(
− T 2

2T 2
0 (1 + β2

2z
2/T 4

0 )

)
exp

[
i

2

(
arctan(

β2z

T 2
0

)− T 2(β2z/T
2
0 )

T 2
0 (1 + β2

2z
2/T 4

0 )

)]
.

(2.32)

Comparing Eq (2.19) and (2.32), new pulse width T1(z) can be obtained:

T1(z)2 = T 2
0 (1 + β2

2z
2/T 4

0 ),

= T 2
0 (1 +

z2

T 4
0 /β

2
2

),

= T 2
0

(
1 + (

z

T 2
0 /β2

)2
)
,

= T 2
0

(
1 + (

z

LD
)2
)
,

(2.33)

where LD = T 2
0 / |β2| is the dispersion length in terms of GVD parameter, β2. The

dispersion-broadened pulse width T1(z) is given by

T1(z) = T0

√(
1 + (

z

LD
)2
)
. (2.34)

The final expression for the amplitude of the Gaussian pulse at any point z along

the fiber yields:
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A(z, T ) =
A0

4
√

1 + (z/LD)2
exp

(
− T 2

2T 2
1

)
exp

[
i

2

(
arctan(

sgn(β2)z

LD
)− T 2(sgn(β2)z/LD)

T 2
1

)]
,

= A1A2 exp(iφ1 + iφ2).

(2.35)

where A1 = A0
4
√

1+(z/LD)2
,

A2 = exp
(
− T 2

2T 2
1

)
= exp

(
− T 2

2T 2
0

(
1+( z

LD
)2

)),
φ1 = 1

2
arctan( sgn(β2)z

LD
),

φ2 = −T 2(sgn(β2)z/LD)

2T 2
1

= −T 2(sgn(β2)z/LD)

2T 2
0

(
1+( z

LD
)2

) .
According to a book on nonlinear fiber optics [2], expressions for amplitude of a

Gaussian pulse at any point z derived in this paper are identical and plots drawn

match the characteristics. This gives a notion that formulas and concepts used are

correct and leaves a positive note for the rest of the paper.

From the above Eq (2.35), we can observe that the shape of the Gaussian pulse

remains the same as it propagates along the fiber, but the width of the pulse is

altered by the broadening factor of
√

1 + (z/LD)2. When z/LD = 2, broadening

factor is
√

5, and when z/LD = 4, broadening factor is
√

17 and case for z/LD = 0

is taken as a ideal curve as shown in the Figure (2.1).
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Figure 2.1: Plot of power vs normalized time T/T0 of a Gaussian pulse for different
values of z/LD

As we know, Power can be expressed as follows

P = |A|2,

A =
√
Pexp(iφA),

A(z, T ) = |A(z, T )| exp (iφA),

φA = Arg(A).

(2.36)

Using Eq (2.35), the phase of the signal pulse is given by

φA = φ1 + φ2,

=
1

2
arctan

(sgn(β2)z

LD

)
− T 2(sgn(β2)z/LD)

2T 2
0

(
1 + ( z

LD
)2
) . (2.37)

The magnitude of the amplitude of pulse envelope is given by
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A(z, T ) =
A0

4
√

1 + (z/LD)2
exp

(
− T 2

2T 2
0

(
1 + ( z

LD
)2
)), (2.38)

and the power is given by

P (z, T ) =
A2

0√
1 + (z/LD)2

exp
(
− T 2

T 2
0

(
1 + ( z

LD
)2
)), (2.39)

From the above Eq (2.38) and Eq (2.39), we can observe that shape of Gaussian

pulse remains same but the temporal phase of the signal pulse is varied by the GVD

parameter and factor z/LD as shown in the Figure (2.2). Note that as normalized

distance z/LD increases, the peak-to-valley phase variation also increases.

Moreover, as optical power spreads in time, the outer reaches of the temporal

phase are invaded. This increases the effective peak-to-valley phase variation.

Figure 2.2: Plot of Temporal vs Normalized time T/To of a Gaussian pulse for
different values of Z/LD and sign of β2
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A1 is a constant scaling of the amplitude over T, and A2 represents the broadening

of the pulse with distance and β2 as shown in the Figure (2.3). φ1 is a constant

phase offset over T, while φ2 represents a phase offset variation over T. As such,

φ1 does not vary the peak-to-valley voltage range of the phase, and does not

contribute to chirp.

Figure 2.3: Effect of A1 and A2 on power plots of a Gaussian pulse
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Figure 2.4: Effect of φ1 and φ2 on temporal phase plots of a Gaussian pulse for
sgn(β2) < 0

2.4.2 Numerical Analysis

Using Eq. (2.19), Power of a gaussian pulse at z = 0 is shown in the Figure (2.5).
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Figure 2.5: Power of a gaussian pulse at z = 0

Now, using FFT function in Matlab, FFT of initial power of a optical pulse is

shown in the Figure (2.6).

Figure 2.6: Power of a gaussian pulse in frequency domain at z = 0

21



Relation between time and frequency domain

In the above plots, power of a gaussian pulse is plotted against normalized time T
T0
,

due to which, to obtain the power of a gaussian pulse at z = L
LD

in frequency do-

main, frequency needs to be normalized as well. Normalized frequency fr provided

by the FFT is given by

t→ f

t

T0
→ fT0

fr = fT0

(2.40)

Contribution term

Using Eq.(2.33) and Eq.(2.40), transfer function can be written as:

H = exp(
i

2
β2ω

2z),

= exp(
i

2
β2(2πf)2z),

= exp(
i

2
β2(2π

fT0
T0

)2z),

= exp(
i

2
β2(2π

fr

T0
)2z),

= exp(
i

2
β2

(2πfr)2

T 2
0

z),

= exp(
i

2
sgn(β2)(2πf)2

z

LD
).

(2.41)

where ω = 2πf , sgn(β2) is the sign of a GVD parameter and z
LD

is the normalized

length of an optical fiber. Thus, normalized frequency term plays a major contri-

bution in modeling the amount of linear dispersion in the optical fiber, given by

the transfer function H(ω).

Using Eq.(2.18) and Eq. (2.41), Electric field of a gaussian pulse at length z of an

optical fiber in frequency domain, E(z, ω) is given by
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E(z, ω) = E(0, ω) exp(
i

2
β2ω

2z),

E(z, ω) = E(0, ω) exp(
i

2
sgn(β2)(2πf)2

z

LD
).

(2.42)

and in time domain, E((z, T ) is given by the IFFT of E(z, ω). Now, plots for

Power of a gaussian pulse for each value of normalized length of an optical fiber

z
LD

are shown in the figures below:

Figure 2.7: Power and phase of a gaussian pulse at z
LD

= 0
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Figure 2.8: Power and phase of a gaussian pulse at z
LD

= 2

Figure 2.9: Power and phase of a gaussian pulse at z
LD

= 4
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From the observations of the Figures (2.4),(2.5) and (2.6), Power and phase of a

gaussian pulse for different values of z
LD

is shown in the Figure (2.7) and (2.8).

Figure 2.10: Power of a gaussian pulse for different values of z
LD

Figure 2.11: Phase of a gaussian pulse for different values of z
LD
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Comparing the plots obtained in the analytical and numerical analysis of a gaussian

pulse for different values of normalized length L
LD

, there is difference of phase offset

in the phase plots, but there is no difference for the power plots. Thus, we can

say, shape of the pulses obtained in both the analysis for the forward propagation

are accurate and can continue to look forward for inverse propagation in the next

chapter.
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Chapter 3

Inverse-Propagation Model

The focus of my thesis is to compensate transmission impairments in an optical

fiber in the electrical domain rather than the optical domain because of flexibility,

reproducibility, cost of research, and complexity. To achieve this compensation,

we have used a novel dispersion pre-distortion technique to mitigate the chromatic

dispersion in an optical fiber in a linear dispersive medium. The idea behind

the pre-distortion technique is to generate a pre-compensated optical signal with

controlled amplitude and phase at the transmitter. During the transmission, chro-

matic dispersion in an optical fiber reverses the effect of the pre-compensation so

that the desired optical signal is received at the receiver.

3.1 Backward propagation

1. Define P(L,T)

The basic method for creating a pre-distorted signal is as follows:

Let P(L,T) be the optimal received power and Ẽ(L, T ) be the desired optical signal

at the receiver. The relation between P(L,T) and Ẽ(L, T ) is given by

P (L, T ) = |Ẽ(L, T )|2, (3.1)
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˜E(L, T ) =
√
P (L, T )exp(iφ(L, T )). (3.2)

The photo-diode at the receiver will measure P(L,T), but φ(L, T ) also exists.

2. Calculate Ẽ(L, ω)

If Ẽ(L, ω) is the Fourier transform of Ẽ(L, T ), it can be written as:

Ẽ(L, ω) = F{Ẽ(L, T )},

=

∫ ∞
−∞

Ẽ(L, T ) exp(−iωT ) dT,

=

∫ ∞
−∞

√
P (L, T )exp(iφ(L, T )) exp(−iωT ) dT.

(3.3)

3. Calculate Ẽdc(0, ω) using H(ω)

Let Ẽdc(0, ω) be the pre-distortion signal in the frequency domain at the trans-

mitter and it is defined as a product of the desired optical signal in frequency

domain at the receiver and inverse transform of the transfer function modeled by

chromatic dispersion in an optical fiber given by H(ω) = exp( i
2
β2ω

2L). Using Eq

(3.3), Ẽdc(0, ω) can be written as:

Ẽdc(0, ω) = Ẽ(L, ω)H−1(ω),

= Ẽ(L, ω) exp(− i
2
β2ω

2L),

=

∫ ∞
−∞

√
P (L, T )exp(iφ(L, T )) exp(iωT ) dT exp(− i

2
β2ω

2L).

(3.4)

4. Calculate Ẽdc(0, T ) via inverse Fourier Transform

Let Ẽdc(0, T ) be the pre-distortion signal in the time domain at the transmitter.

It is obtained by applying inverse Fourier Transform to the Eq (3.4):
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Ẽdc(0, T ) = F−1{Ẽdc(0, ω)}

= F−1{Ẽ(L, ω)H−1(ω)},

= F−1{Ẽ(L, ω) exp(− i
2
β2ω

2L)},

=
1

2π

∫ ∞
−∞

∫ ∞
−∞

√
P (L, T )exp(iφ(L, T )) exp(iωT ) dT exp(− i

2
β2ω

2L) exp(−iωT ) dω.

(3.5)

5. Cross-check

As the signal propagates along the fiber, it experiences chromatic dispersion mod-

eled by the transfer function and received optical signal at the receiver is given by

Ẽ ′(L, T ).

Ẽ ′(L, ω) = Ẽdc(0, ω)H(ω),

= Ẽ(L, ω)H−1(ω)H(ω),

= Ẽ(L, ω) exp(− i
2
β2ω

2z) exp(
i

2
β2ω

2z),

= Ẽ(L, ω).

(3.6)

Also,

Ẽ ′(L, T ) = F−1{Ẽ ′(L, ω)},

= F−1{Ẽ(L, ω)},

= Ẽ(L, T ).

(3.7)

Therefore, the received optical signal at the receiver corresponds to the desired

optical signal Ẽ(L, T ).
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6. Calculate Pdc(0, T ), φdc(0, T )

Using Eq (3.2), and (3.5), Pre-compensated power of a signal Pdc(0, T ) can be

written as:

Pdc(0, T ) = |Ẽdc(0, T )|2,

= |F−1{Ẽdc(0, ω)}|2,

= |F−1{
∫ ∞
−∞

√
P (L, T )exp(iφ(L, T )) exp(iωT ) dT exp(− i

2
β2ω

2L)}|2,

= | 1

2π

∫ ∞
−∞

∫ ∞
−∞

√
P (L, T )exp(iφ(L, T )) exp(iωT ) dT exp(− i

2
β2ω

2L) exp(−iωT ) dω|2,

(3.8)

and Pre-compensated phase of a signal Pdc(0, T ) φdc(0, T ) is given by

φdc(0, T ) = Arg{Ẽdc(0, T )},

= Arg{F−1{Ẽdc(0, ω)}},

= Arg{F−1{
∫ ∞
−∞

√
P (L, T )exp(iφ(L, T )) exp(iωT ) dT exp(− i

2
β2ω

2L)}},

= Arg{ 1

2π

∫ ∞
−∞

∫ ∞
−∞

√
P (L, T )exp(iφ(L, T )) exp(iωT ) dT exp(− i

2
β2ω

2L) exp(−iωT ) dω}

(3.9)

Once we obtain Pdc(0, T ), and φdc(0, T ), we can assess how these quantities depend

upon the chromatic dispersion and length of the optical fiber.
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3.2 Analysis

3.2.1 Analytical Analysis

Let’s take a Gaussian pulse as an example to describe the method of inverse-

propagation. The above discussed quantities can be calculated as follows:

1. Define Ẽ(L, T )

Let Ẽ(L, T ) = A0 exp(− T 2

2T 2
0

) be the desired optical signal at the receiver as shown

in the Figure (3.1).

Figure 3.1: Plot of Optimal received power vs Normalized time T
T0

2. Calculate Ẽ(L, ω):

Using Eq(2.12), the Fourier transform of Ẽ(L, T ) yields:

Ẽ(L, ω) =

∫ ∞
−∞

Ẽ(L, T ) exp(iωT ) dT,

=

∫ ∞
−∞

A0 exp(− T 2

2T 2
0

+ iωT ).

(3.10)

Using the formulae of Fourier Transforms,
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∫ ∞
−∞

exp(−ax2 + bx)dx =

√
π

a
exp(

b2

4a
). (3.11)

Here a = 1
2T 2

0
and b = iω, then Eq (3.10) yields:

Ẽ(L, ω) = A0T0
√

2π exp(−ω
2T 2

0

2
). (3.12)

3.Calculate Ẽdc(0, ω) using H(ω)

Using Eq (3.4), Ẽdc(0, ω) can be written as:

Ẽdc(0, ω) = Ẽ(L, ω).H−1(ω),

= A0T0
√

2π exp(−ω
2T 2

0

2
) exp(− i

2
β2ω

2L),

= A0T0
√

2π exp(−ω
2T 2

0

2
− i

2
β2ω

2L).

(3.13)

4.Calculate Ẽdc(0, T ) via inverse Fourier Transform

Applying the inverse transform to the Eq (3.13) and using Eq (3.11):

Ẽdc(0, T ) = F−1{Ẽdc(0, ω)},

= F−1{Ẽ(L, ω)H−1(ω)},

= F−1{A0T0
√

2π exp
(
− ω2

2
(T 2

0 + iβ2L)
)
},

=
1

2π

∫ ∞
−∞

A0T0
√

2π exp
(
− ω2

2
(T 2

0 + iβ2L)
)

exp(−iωT ) dω,

=
1

2π

∫ ∞
−∞

A0T0
√

2π exp
(
− ω2

2
(T 2

0 + iβ2L)− ωT
)
dω,

=
A0T0√
T 2
0 + iβ2L

exp
[
− T 2

2(T 2
0 + iβ2L)

]
.

(3.14)

where a = (
T 2
0+iβ2L

2
) and b = −iT .

Using the same technique employed in Eq (2.28) and (2.29), the final expression
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for Ẽdc(0, T ) yields:

Ẽdc(0, T ) =
A0T0

4
√
T 4
0 + β2

2L
2

exp
(
− T 2T 2

0

2(T 4
0 + β2

2L
2)

)
exp

[
i

2

(T 2sgn(β2)L

(T 4
0 + β2

2L
2)
− arctan(

sgn(β2)L

T 2
0

)
)]
.

(3.15)

Using Eq (2.33) and (2.34), it can be further simplified as:

Ẽdc(0, T ) =
A0

4
√

1 + (L/LD)2
exp

(
− T 2

2T 2
1

)
exp

[
i

2

(T 2(sgn(β2)L/LD)

T 2
1

− arctan(
sgn(β2)L

LD
)
)]
,

= A1A2 exp(iφ1 + iφ2).

(3.16)

where A1 = A0
4
√

1+(L/LD)2
,

A2 = exp
(
− T 2

2T 2
1

)
= exp

(
− T 2

2T 2
0

(
1+( z

LD
)2

)),
φ1 = −1

2
arctan( sgn(β2)L

LD
),

φ2 = T 2(sgn(β2)L/LD)

2T 2
1

= T 2(sgn(β2)z/LD)

2T 2
0

(
1+( z

LD
)2

) .

Power and phase plots of a pre-distorted signal Ẽdc(0, ω) are shown in the Figure

(3.2) and (3.3).
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Figure 3.2: Plots for power of pre-distorted signal for different values of z
LD

Figure 3.3: Plots of Power and Phase of iFFT’d signal for normalized distance z
LD
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Comparing Eq (2.35) and (3.16), analytically, we can conclude Forward-propagation

model differs from Inverse-propagation model in terms of sign of phase component

φ and no difference between the power plots.

5.Cross-check

The received optical signal at the receiver Ẽ ′(L, T ) corresponds to the desired

optical signal Ẽ(L, T ). Using Eq (3.7) and (3.11), equation for Ẽ ′(L, T ) yields:

Ẽ ′(L, T ) = F−1{Ẽ ′(L, ω)},

= F−1{Ẽ(L, ω)},

=
1

2π

∫ ∞
−∞

T0
√

2π exp(−ω
2T 2

0

2
) exp(−iωT ) dω,

=
1

2π

∫ ∞
−∞

T0
√

2π exp(−ω
2T 2

0

2
− iωT ),

= exp(− T 2

2T 2
0

),

= Ẽ(L, T ).

(3.17)

where a = (
T 2
0

2
) and b = −iT .
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3.2.2 Numerical Analysis

Using Eq. (2.19), Power of a desired optical signal P (L, T ) at the receiver is shown

in the Figure (3.4).

Figure 3.4: Power of a desired optical signal at the receiver

Now, using FFT function in Matlab, FFT of desired power of a optical pulse is

shown in the Figure (3.5).

Figure 3.5: FFT of a desired optical signal
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Using the relation between time and frequency domain explained in Eq.(3.18) and

contribution term in Eq. (3.19), power of a pre-distorted signal in time domain

Pdc(0, T ) for different values of normalized length of optical fiber z
LD

are shown in

the figures below.

Figure 3.6: Power and phase of a pre-distorted signal z
LD

= 0

Figure 3.7: Power and phase of a pre-distorted signal z
LD

= 2
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Figure 3.8: Power and phase of a pre-distorted signal z
LD

= 4

From the observations of the Figures (3.6),(3.7) and (3.8), power and phase of a

pre-distored signal for all values of normalized length of an optical fiber z
LD

are

shown in the Figure (3.9) and (3.10).

Figure 3.9: Power of a pre-distorted signal for different values of z
LD
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Figure 3.10: Phase of a pre-distorted signal for different values of z
LD

Comparing the plots obtained in the analytical and numerical analysis of a pre-

distorted signal for different values of normalized length of an optical fiber L
LD

,

there is difference of phase offset in the phase plots, but there is no difference

for the power plots. Thus, we can say, shape of the pulses obtained in both

the analysis for the Inverse propagation are accurate and can continue to look

forward to implement the pre-distortion model and investigate the characteristics

and parameters used to analyze the signal in both optical and electrical domain.

Sanity-check

Using Eq.(3.17), Power and phase of a received optical signal at the end of an

optical fiber for different values of normalized lengths are observed to be same as

shown in the Figure (3.11) , that means, we are able to successfully recover the

desired signal at the receiver by the means of pre-distortion. Thus, we can say,

analysis for the inverse propagation is accurate and can continue to investigate

the pre-distortion analysis in the electrical domain using a Dual-drive MZM and

digital signal processing to generate a pre-distorted signal and obtain the plots

against various characteristics involved in the process.
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Figure 3.11: Power of a received optical signal for different values of z
LD
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Chapter 4

Generation of pre-distorted signals

using Dual-Drive Mach Zender

Modulator

A Mach-Zehnder modulator(MZM) is an optical device which uses the electro-

optic effect to modulate the signals in terms of amplitude, phase, frequency and

polarization. The MZM is made of a crystal, such as lithium niobate (LiNb03),

whose refractive index depends upon the strength of electric field. The under-

lying electro-optic effect is also termed as Pockels effect which is described as a

phenomena in which the refractive index of the medium is varied by applying a

low-level DC voltage or low-level electric field. A Dual-drive MZM works on the

basic operation of a MZM and it’s design consists of one broadband RF electrode

per arm of an optical interferometer driven by an electrical voltages RF and Vbias

as shown in the Figure (4.1). Both RF electrodes are designed in such a way that

they are synchronized to modulate the electrical field of a signal at the same time

and with the same group delays[5]. Working of a DD-MZM is characterized by

applying an electrical voltage that is half the voltage of a single-drive device to

each RF port with a phase shift of π between them: −V
2
,+V

2
and biasing each arm

at the bias point, (in this paper, it is 3V π/2) that results in modulation. Thus,

by changing the voltages, we can control the overlapping of electric-field in each
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arm of an optical interferometer resulting in absence or presence of intensity and

phase modulation. In this paper, RF and bias voltage magnitudes are considered

to be equal and opposite in direction and this process is adjusted to compensate

or enhance the effect of dispersion in an optical fiber.

Figure 4.1: Operation of a Dual-drive MZM

4.0.1 Analysis of signal generation using a dual-drive MZM

Let Edc(0, T ) be the pre-distorted signal produced by a dual-drive MZM which can

be written in the form

Edc(0, T ) = Ein sin(φ1) exp(iφ2), (4.1)

where Ein is the input electric field produced by a continuous wave laser source, φ1

and φ2 are phase parameters. Using MZM analysis, phase parameters are defined

as:
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φ1 =
(a1− a2)

2
,

= −πL
λ0

[
(V1 + Vb1)µ1 − (V2 + Vb2)µ2

]
,

= −π
2

[(V1 + Vb1)

Vπ1

µ1

|µ1|
− (V2 + Vb2)

Vπ2

µ2

|µ2|

]
,

= −π
2

[(V1 + Vb1)

Vπ1
S1 −

(V2 + Vb2)

Vπ2
S2

]
,

= −π
2

[
(ν1 + νb1)S1 −

(V2 + Vb2)

Vπ2
S2

]
,

(4.2)

where half-wave voltage parameters are written in the form

Vπ1 =
λ0

2|µ1|L
, (4.3)

and

Vπ2 =
λ0

2|µ2|L
. (4.4)

and ν1 = V1
Vπ1

, νb1 = Vb1
Vπ1

and S1, S2 are signs of µ1 and µ2 respectively.

Now using Eq.(4.3) and Eq.(4.4), let us consider writing V2 in the form,

V2
Vπ2

=
V2
Vπ2

,

=
V2
Vπ2

.
Vπ1
Vπ1

,

=
V2
Vπ1

.
Vπ1
Vπ2

,

=
V2
Vπ1

.
|µ2|
|µ1|

,

=
V2
Vπ1

.M,

= ν2M,

(4.5)
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where M is defined as absolute value of ratio of electro-optic coefficients µ1 and

µ2: M = |µ1|
|µ2| . Similarly, Vb2

Vπ2
= νb2M .

Thus, using Eq.(4.2) and Eq.(4.5), φ1 is given by,

φ1 = −π
2

[
(ν1 + νb1)S1 − (ν2 + νb2)MS2

]
. (4.6)

In similar fashion, phase parameter φ2 can be written in the form,

φ2 =
(a1 + a2)

2
+
π

2
,

= −π
2

[
(ν1 + νb1)S1 +

(V2 + Vb2)

Vπ2
S2 +

π

2

]
,

= −π
2

[
(ν1 + νb1)S1 + (ν2 + νb2)MS2 +

π

2

]
.

(4.7)

4.0.2 Intrinsic chirp parameter and Sm

Intrinsic chirp parameter of a single drive MZM driven by driving voltages d1 and

d2 is given by,

α0 =
µ1 + µ2

µ1 − µ2

. (4.8)

Re-ordering the above Eq. (4.8), relation between electro-optic coefficients µ1 and

µ2, the ratio of µ’s can be written in the form,

µ2

µ1

=
α0 − 1

α0 + 1
. (4.9)

Thus, M = |µ2|
|µ1| =

|α0−1|
|α0+1| .
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Note that the sign of S2 can be written as,

S2 = S1.Sm, (4.10)

where Sm = sgn(µ2
µ1

).

But in the case of a dual-drive MZM, typically we consider sgn(µ1) = sgn(µ2) and

it is sought that µ1 = µ2, which leads to an infinite intrinsic chirp parameter α0,

hence it is not used a useful quantity in the further analysis. Based on this fact,

we can write M = 1 and Sm = 1, but to understand it’s impact on the result,

these parameters are not assigned any constant value.

Now using Eq.(4.8) and Eq.(4.10), Eq.(4.2) and Eq.(4.7) can be re-arranged as:

φ1 = −π
2

[
(ν1 + νb1)S1 − (ν2 + νb2)MS2

]
,

= −π
2

[
(ν1 + νb1)S1 − (ν2 + νb2)MS1Sm

]
,

= −π
2
S1

[
(ν1 + νb1)− (ν2 + νb2)MSm

]
.

(4.11)

The phase parameter φ2 is given by,

φ2 = −π
2
S1

[
(ν1 + νb1) + (ν2 + νb2)MSm

]
+
π

2
. (4.12)
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4.1 Relation between driving voltages V1 and V2

Using Eq.(4.1), the power of a pre-distorted signal is given by,

Pdc(0, T ) = |E|2,

= |Ein sin(φ1) exp(iφ2)|2,

= |Ein|2| sin(φ1)|2,

= Pin sin2(φ1).

(4.13)

where initial power, Pin = |Ein|2.

Re-arranging above Eq.(4.13), φ1 is written in the form,

sin2(φ1) =
Pdc(0, T )

Pin
,

sin(φ1) = ±

√
Pdc(0, T )

Pin
,

φ1 = ± arcsin
(√Pdc(0, T )

Pin

)
,

(4.14)

Thus, there is a sign ambiguity in knowing φ1 based on
√
P .

The phase of the signal is given by φ(t) is equal to φ2.

φdc(0, T ) = φ2. (4.15)

Using Eq. (4.11) and Eq. (4.12), Eq (4.14) and Eq.(4.15) can be written as,

−π
2
S1

[
(ν1 + νb1)− (ν2 + νb2)

]
= ± arcsin

(√Pdc(0, T )

Pin

)
, (4.16)

46



−π
2
S1

[
(ν1 + νb1) + (ν2 + νb2)

]
+
π

2
= φdc(0, T ). (4.17)

Driving voltage V1 is obtained by adding Eq.(4.16) and (4.17),

ν1 =
1

πS1

[π
2
− φdc(0, T )∓ arcsin

(√Pdc(0, T )

Pin

)]
− νb1, (4.18)

and driving voltage V2 is obtained by subtracting Eq.(4.16) and (4.17),

ν2 =
1

πMS1Sm

[π
2
− φdc(0, T )± arcsin

(√Pdc(0, T )

Pin

)]
− νb2,

=
1

πMS2

[π
2
− φdc(0, T )± arcsin

(√Pdc(0, T )

Pin

)]
− νb2.

(4.19)

4.2 Analysis

To analyze the importance of driving voltages that are required to generate a pre-

distorted signal Edc(0, T ), let us consider parameters M, S1 and S2 to be a constant

value 1 and biasing voltages to be equal to 0 for initial analysis. Using Eq. (3.16),

driving voltages d1(t) and d2(t) for different cases of normalized length z
LD

are

shown in the Figure (4.2) and (4.3). From the observation of figures listed below,

we can say driving voltages d1(t) and d2(t) differ by an offset of sin−1
(√

Pdc(0,T )
Pin

)
.

For further analysis, driving voltages can be plotted for different values of biasing

voltages and electro-optic parameters µ1 and µ2.
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Figure 4.2: Driving voltage d1(t) for different values of z
LD

Figure 4.3: Driving voltage d2(t) for different values of z
LD
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Chapter 5

Digital Processor Design

5.1 Introduction

This chapter details the working model of DSP processor design in detail. Proces-

sor is implemented to pre-distort the signal at the transmitter. The filter archi-

tecture consists of electrical components like an FPGA for memory requirements

, D/A converter to re-construct the analog signal for precision, and digital signal

processing (DSP) in the background to achieve pre-distortion in the electrical do-

main. Electrical domain pre-compensation has advantages over optical dispersion

compensation in terms of cost, flexibility, tuning and reproducibility. The design

of the processor architecture is illustrated in the Figure (5.1).

The input data is considered to be an infinite bit sequence consisting of 1’s and

0’s. In this paper, these bits are represented as NRZ pulses with equal rise time

and time of 15% of bit period. To achieve the same bit sequence at the receiver,

we need to pre-distort the input data using DSP and DAC.
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Figure 5.1: Digital processor architecture

5.2 Memory

The input bit sequence is stored in high speed static access memory that can be

achieved by using a high end FPGA like Altera DE boards or Xilinx. For numerical

analysis, we are using register or a variable to store each input sequence. The

memory will release the stored data as a sequence of segments of n bits. Total

number of output segments is given by 2n−n+ 1. For example, consider an initial

data sequence of ‘10110011’ and segment of n =3 . The memory will release this

sequence in 6 segments of 3 bits, and each segment will step by one bit as follows :

101, 011, 110, 100, 001, 011. Each of these data segments is sent to and processed

by the look-up table (LUT).
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5.3 Look-up Table

The RAM-based look-up table (LUT) is defined as a table of stored estimate

values, which are used to compare the feedback received from the receiver and

the transmitter and then correct the estimates to obtain precision. In this digital

revolution, there is an increase in the processing capability and memory storage

of RAM that serves a immediate purpose for research studies that involves heavy

processing and iterations to obtain simulated data. Look-up table are used to

increase the processing time to retrieve a value from memory rather than old

school input/output operation which saves time and reduces computing process

complexity[11].

To understand the design of LUT, for simplicity, we have used LUT as a collection

of variables that stores the digital bits of driving voltages that corresponds to

the construction of pre-distorted signal. Each segment of length n bits from the

memory unit are sent as an input to the the look-up table (LUT) to perform the

digital signal processing on each input segment and sample the driving voltages

required to obtain the pre-distorted signal. Each processed output is then sampled

to give a desired m bit word that determines the resolution of Digital-to-analog

converter (DAC). This m bit word which represent the driving voltages are binary

bits are sent to DAC for re-construction of driving voltages d1 and d2 to drive the

dual-drive MZM to generate a pre-distorted signal. For example the bit pattern

[0 1 1 ] will be mapped to a specific pre-distortion signal for d1 and d2.

The length of the LUT must accommodate all input segments and it is given by

2n−n+1. The values stored in the LUT are obtained from the following equations

Eq.(3.2), Eq.(3.8), Eq.(4.18) and Eq.(4.19):
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tildeEdc(0, ω) = Ẽ(L, ω)H−1(ω), (5.1)

˜Edc(0, T ) =
√
Pdc(0, T )exp(iφ(L, T )), (5.2)

ν1 =
1

πS1

[π
2
− φdc(0, T )∓ arcsin

(√Pdc(0, T )

Pin

)]
− νb1, (5.3)

and

ν2 =
1

πMS2

[π
2
− φdc(0, T )± arcsin

(√Pdc(0, T )

Pin

)]
− νb2. (5.4)

Let Ẽ(L, ω) be the desired spectrum of the input bit sequence and Ẽ(0, ω) be the

pre-distortion signal. Pre-distortion signal in the time-domain Ẽdc(0, T ) is obtained

by doing inverse Fourier transform and is used in the Eq (5.3) and (5.4) to calculate

the voltages required to drive the MZM. Thus we can say, for every consecutive

n-bit input sequence, LUT gives digital bits that corresponds to analog voltages

of d1(t) or d2(t) at the output. These LUT values can be varied by changing the

dispersion length LD, β2, T0.
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5.4 Digital-to-Analog converter

Digital-to-Analog converter (DAC) is one of the integral electrical component that

is used to study the analysis of signal in signal processing applications. By defi-

nition, it is used to convert binary bits into a analog signal, analog signal can be

used to represent either current, voltage or any electrical parameter based on the

application. Digital data is favored to analog form in the following ways:

• Ease of transmission: if data is too long, it can be divided into small chunks

of data and can be transmitted and re-produced at the expense of complexity

at the receiver.

• Secure communication: For security purposes, digital data can be easily

encrypted and cyclic redundancy check ensures integrity of the data.

• Transmission speed: Digital data can be transmitted at a faster rate and can

be made to take a shortest path to reach the destination at the expense of

resolution of data.

It’s counterpart analog-to-digital converter (ADC) has been used in vast applica-

tions, however, the usage of DAC in applications have been slightly increased lately

in 2010, with the advent of lower power consumption electronics and increase in

data-processing capabilities, more research is put into areas where the conversion

from digital domain to analog domain is used to abstract critical data to asses the

quality of the signal. Few research areas include voice over internet (VOIP), audio

speakers,etc.

In general, DAC are used to convert sampled finite-precision time-series data into

a continuous form of an analog signal. Typical operation of DAC includes con-

verting abstract values into a sequence of impluses that are then processed by

re-construction algorithm to fill the gap between the sampled data. Digital-to-

analog conversion is characterized by the following factors:

• Resolution: Number of bits that is used to represent the sampled data in the

form of an output levels is termed as resolution. number of output levels are
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given in the form of 2n, where n is the number of resolution. It ranges from 3

to 128 based on device capability. For example, if resolution is 3, number of

output levels generated are 23 = 8. Resolution can be increased to increase

the accuracy of the output analog signal.

• Smapling rate: The rate at which DACs operate to maintain the accuracy

of the output.

5.4.1 Analysis

To explain the functioning of a typical DAC, let us consider a sine wave written

in the form

y = abs(10sin(t)), (5.5)

where t is a time vector ranging from 0 to 10 in 100 points with an interval of 0.1

[ps]. If the resolution of DAC is considered to be 3, then quantization interval is

given by

q =
U

(2n − 1)
, (5.6)

where U is the amplitude of the input signal, and n is the resolution of the DAC.

Then signal is processed to obtain the digital bits which act as an input to the

DAC which can be written as

a = fix(y/q),

yd = dec2bin(a, n),

(5.7)

where a is the sampled input and dec2bin is the function in Matlab used to convert

the decimal values to the binary bits based on the resolution of the DAC. Now,
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multiplying the sampled input with the quantization interval gives re-constructed

analog signal whose characteristics can be altered by the resolution and sampling

algorithm. Re-constructed signal is shown in the Figure (5.2) and is given by

yq = a ∗ q. (5.8)

Figure 5.2: Operation of a DAC with resolution = 3

Driving voltages d1 and d2 obtained from LUT are represented in binary levels

using m bits for each symbol period. Each memory segment is converted to two

m-length word, one for d1 and one for d2. Accuracy and precision of the analog

voltages can be increased by varying the sampling rate and vertical resolution,

given by 2m. The sampling rate is given by S = CsRs, where Rs is the baudrate

and Cs is a scaling factor.
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Consider the analog drive signals d1 and d2 shown in the Figure (5.3). The points

are created at an interval of Ts. The point at t1 for each signal , for example,

comes from a single m-length word stored in the LUT. Each of the two words is

related to the same n-bit segment.

Figure 5.3: Digital-to-analog converter

Now, the performance of the system can be assessed by the parameters like n-

bit length, length of the fiber, sampling rate and quantization bits of the D/A

converter.
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Chapter 6

Pre-distortion Model

The focus of my thesis is to investigate and re-produce the characteristics im-

plemented in a electronic dispersion pre-compensation (EDP) technique using a

Dual-drive Mach-Zehnder modulator(MZM) at the transmitter depicted in Figure

(6.1).

Figure 6.1: Model design to achieve pre-distortion

As discussed earlier in chapter 3, pre-distortion model is implemented to counter

the linear transmission impairments produced during the signal propagation in an

optical fiber. The technique is to pre-distort the signal at the transmitter in the

electrical domain to deliver the desired optical signal at the receiver. Electrical

domain is chosen as opposed to optical domain due to it’s computational process

in both offline and realtime and in an effective, economical and fast way.
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As shown in the Figure (6.1), electrical components such as memory unit, digital

signal processor , and digital and analog converter are used to process the signal at

the transmitter, where optical components such as dual-drive MZM, laser source,

optical fiber and photo-detector are used to derive the optical signal needed for

analysis in both optical domain and electrical domain.

6.1 Analysis

Let us discuss the steps to analyze the pre-distortion using a single gaussian pulse.

1. Define Pdes(L, T )

Using Eq.(3.2), let Pdes(L, T ) be the desired received power and Edes(L, T ) be the

desired optical signal at the receiver which can be written in the form

Edes(L, T ) =
√
Pdes(L, T )exp(iφdes(L, T )). (6.1)

The photo-diode at the receiver will measure Pdes(L, T ), but φdes(L, T ) also exists.

A dual-drive MZM is used to generate the desired signal with an amplitude and

phase as discussed above . Let ds1 and ds2 be the voltages normalized to V π1

driving the MZM take the shape of a simple gaussian pulse as shown in the Figure

(6.2), but opposite in sign given by

ds1 = A0 exp(− T 2

2T 2
0

),

ds2 = −A0 exp(− T 2

2T 2
0

).

(6.2)

where A0 is the initial amplitude of the signal.
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Figure 6.2: Driving voltages ds1 and ds2 to obtain desired optical signal Edes(L, T )

Using Eq. (4.1), (4.6) and (4.7), desired optical signal at the receiver Edes(L, T ) is

obtained as shown in the Figure (6.3) and is given by

Edes(L, T ) = Ein sin(φ1) exp(iφ2), (6.3)

where Ein the input signal generated by a continuous wave laser source and is used

as a constant value in the analysis.
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Figure 6.3: Desired power and phase of an optical signal Edes(L, T )

Phase components φ1 and φ2 can be written as

φ1 = (−π
2

)S1(ds1 + Vb1)− (−π
2

))MS2(ds2 + Vb2), (6.4)

and

φ2 = (−π
2

)S1(ds1 + Vb1) + (−π
2

))MS2(ds2 + Vb2) +
π

2
. (6.5)

where S1 is the sign of electro-optic parameter µ1 and S2 is the sign of µ2 that are

sought to be equal and absolute value of µ2
µ1

given by M is considered as a constant

value 1.

2. Calculate Edes(L, ω)

Using FFT function in Matlab, Electric field of a desired optical signal at the

receiver in frequency domain is shown in the Figure (6.4).
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Figure 6.4: Power and phase of a desired optical signal Edes(L, ω)

3. Calculate Edc(0, ω) using H(ω)

Using transfer function in Eq. (2.16), desired optical signal at the receiver is

processed using DSP to produce the pre-distorted signal Edc(0, ω) in the frequency

domain is given by

Edc(0, ω) = Edes(L, ω)H−1(ω). (6.6)

where H(ω) is the transfer function. Using Eq. (2.41), Eq.(6.6) can be written as

Edc(0, ω) = Edes(L, ω) exp(− i
2
sgn(β2)(2πf)2

z

LD
). (6.7)

where ω = 2πf , sgn(β2) is the sign of a GVD parameter and z
LD

is the normalized

length of an optical fiber.

61



4. Calculate Edc(0, T )

Using IFFT function in Matlab, calculate the pre-distorted signal in time domain,

Edc(0, T ). The pre-distorted signal in time domain for each value of normalized

length is shown in the Figures below.

Figure 6.5: Power and phase of a pre-distorted signal Edc(0, T ) at z
LD

= 0

Figure 6.6: Power and phase of a pre-distorted signal Edc(0, T ) at z
LD

= 1
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Figure 6.7: Power and phase of a pre-distorted signal Edc(0, T ) at z
LD

= 2

Figure 6.8: Power and phase of a pre-distorted signal Edc(0, T ) at z
LD

= 3
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5. Calculate driving voltages d1(t) and d2(t)

Using Eq.(3.14), (4.18) and Eq.(4.19), derive the driving voltages d1(t) and d2(t)

normalized to V π1 that are required to generate a pre-distorted signal. This gives

an in-depth analysis of how a dual-drive MZM is driven, biasing conditions and

voltage swings of a RF signal. The normalized driving voltages d1(t) and d2(t) for

each value of normalized length are shown in the Figure (6.9).

Figure 6.9: Driving voltages d1(t) and d2(t) for all cases of z
LD
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6. Calculate E(L, ω)

Now when a pre-distorted signal is allowed to propagate in an optical fiber, pre-

distortion reverse the linear impairment of dispersion in an optical fiber giving the

desired the optical signal at it’s output. Using Eq. (6.7), Electric field of a optical

signal at the output of an optical fiber in the frequency domain, E(L, ω) is given

by

E(L, ω) = Edc(0, ω) exp(
i

2
sgn(β2)(2πf)2

z

LD
). (6.8)

7. Calculate E(L, T )

Using IFFT function in Matlab, calculate the received optical signal in time do-

main, E(L, T ). Received optical signal at the end of an optical fiber in time domain

for each value of normalized length are shown in the Figures below.

Figure 6.10: Power and phase of a received signal E(L, T ) at z
LD

= 0
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Figure 6.11: Power and phase of a received signal E(L, T ) at z
LD

= 1

Figure 6.12: Power and phase of a received signal E(L, T ) at z
LD

= 2
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Figure 6.13: Power and phase of a received signal E(L, T ) at z
LD

= 3

8. Sanity check

As a sanity check, desired signal and received signal are compared to illustrate

the accuracy of this model and undergo investigation against various parameters

involved in the analysis. Plot for differences of desired signal Pdes(L, T ) and re-

ceived optical signal at the output of an optical fiber P (L, T ) for different values

of normalized length is shown in the Figure (6.14).
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Figure 6.14: Difference between the desired and the received optical signal
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Chapter 7

Eye-diagram analysis for a NRZ

pulse

In the previous chapter, we have analyzed the process of pre-compensation tech-

nique using a gaussian pulse, however, to investigate in-depth in industry stan-

dards, a NRZ pulse is used as an input signal. A NRZ pulse gives a good under-

standing of dependent nature of pre-distortion technique on various parameters

that are measured in terms of an eye penalty. In the pre-distortion model shown

in the Figure (6.1), a input sequence of 1’s and 0’s are used as an input signal

to the digital processor for signal processing. Let us discuss the steps involved in

study of pre-distortion using a NRZ pulse.

1. Input Sequence

A Pseudo random bit sequence (PRBS) generator is used to create a PRBS se-

quence of 1’s and 0’s of order n. The length of the sequence is given by 2n, where

n is the order ranging from 1 to 32 or higher. This input sequence is given as an

input to the digital signal processor for processing the signal to generate a pre-

distorted signal. The input sequence is windowed into n-bit segment for which

study of effect of pre-distortion is analyzed on the center bit of the each individ-

ual n-bit segment. The number of n-bit segments is given by 2n − n + 1. Let us

consider a PRBS sequence of order 3, then length of the sequence given by 2n is 8

and number of individual segments given by 2n − n+ 1 is 6.
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2. Desired optical signal Pdes(L, T )

Let us consider driving voltages ds1(t) and ds2(t) normalized to V π1 take the

shape of a NRZ pulse encoding the PRBS sequence of order 3. Upon biasing the

dual-drive MZM at the biasing point of 1.25 [-] and RF voltage swing of: -.25 and

+0.25, desired signal Pdes(L, T ) is obtained. Using pattern generator object in

Matlab, a NRZ pulse is constructed for each 3-bit segment with a combined rise

time and fall time of 30 [ps] as shown in the Figure (7.1).

Figure 7.1: Normalized driving voltages ds1(t) and ds2(t) required to construct
Pdes(L, T )

The desired optical signal Pdes(0, T ) at the receiver constructed using a dual-drive

MZM is shown in the Figure (7.2).
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Figure 7.2: Desired optical signal at the receiver Pdes(L, T )

3. Calculate driving voltages d1(t) and d2(t)

Using Eq.(3.14), (4.18) and Eq.(4.19), driving voltages d1(t) and d2(t) normalized

to V π1 that are required to generate a pre-distorted signal are calculated. Once

obtained, values of driving voltages are stored in the look-up table register to

sample the input signal and convert to binary bits for re-construction of signal

using a DAC. For a normalized length z
LD

value of 2, normalized driving voltages

d1(t) and d2(t) for all the input 3-bit segment are shown in the Figure (7.3).
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Figure 7.3: Normalized driving voltages d1(t) and d2(t) at z
LD

= 2

Let us consider the resolution of the DAC is 4, then re-constructed signal for all

the input 3-bit segment at the output of the DAC is shown in the Figure (7.4).

Figure 7.4: Re-constructed D
A
output of normalized driving voltages d1(t) and d2(t)

at z
LD

and resolution = 4
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4. Derive pre-distorted signal Pdc(0, T )

The re-constructed driving voltages d1(t) and d2(t) are used to drive dual-drive

MZM to construct a pre-distorted signal Pdc(0, T ) as shown in the Figure (7.5).

Figure 7.5: Pre-distorted signal Pdc(0, T ) at z
LD

= 2 and resolution = 4

5. Calculate received optical signal at the end of an optical fiber P (L, T )

When a pre-distorted signal is sent through an optical fiber, it reverses the chro-

matic dispersion in the linear medium of an optical fiber and generates a desired

signal P (L, T ) at the end of an optical fiber as shown in the Figure (7.6).
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Figure 7.6: Received signal Pdc(0, T ) from an optical fiber at z
LD

= 2 and
resolution = 4

Figure 7.7: Received signal Pdc(0, T ) from an optical fiber at z
LD

= 2 and
resolution = 5
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Figure 7.8: Received signal Pdc(0, T ) from an optical fiber at z
LD

= 2 and
resolution = 6

From the Figure (7.6), (7.7) and (7.8), we can observe that increase in the res-

olution of the DAC, received signal at the output of an optical fiber looks less

cluttering and gives a scope to understand the analysis of eye-opening for the

center-bit for each n-bit sequence.

7.1 Eye-diagram analysis

To study the eye-diagram analysis, center bit of each n-bit sequence is considered

due to effect of chromatic dispersion of adjacent bits in a sequence. Let us discuss

the steps to calculate the eye-opening for the center bit of each sequence.

1. Indices

If t(n,m) is the time vector where n and m are indices of initial time and final

time for the center bit, corresponding P(n,m) is calculated for each n-bit sequence

to analyze the eye-opening for the center bit. Let us consider Figure (7.8) as an

example to calculate the eye-opening. We can take time vector from -0.5 to -0.25

for the center bit that corresponds to indices 150 and 175 assuming 100 points per

symbol. Now calculate the power (Y-axis) vector that corresponds to time vector,
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i.e P(150,175) that results in either a column or a row vector.

2. Windowing

To create a upper eye window and a lower eye window, a threshold point is set

which serves as a line that separates the eye into upper and lower window. Gen-

erally, threshold point can be written as

Threshold− pt =
max(S) +min(S)

2
. (7.1)

where S in the input signal. Once threshold point is set, power plot corresponding

to upper window P (P > Threshold−pt) and lower window P (P < Threshold−pt)

are calculated for each m-bit segment.

3. Concatenation

Once power plot corresponding to upper and lower window for each 3-bit segment

is calculated, then window parameters for all m-bit segments of n-bit sequence are

obtained by the concatenation of P vector. Let us consider a null vector V0 given

by [ ]. Then Upper window vector V is given by

V = V0,

a = P (P > Threshold),

V = [V, a].

(7.2)

and Lower window vector L is given by

L = V0,

b = P (P < Threshold),

L = [L, b].

(7.3)

4. Eye-opening
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After the calculation of concatenated vectors L and V for the upper and lower

window, eye-opening in [dB] is given by

Eyeopening = 10log10
(
mean(V )− 3 ∗ std(V ))− (mean(L) + 3 ∗ std(L)

)
. (7.4)

5. Eye-penalty

When a highest resolution of the DAC and normalized length z
LD

= 0 is taken,

eye-opening for the back2back case is considered as a reference value. For example,

for a PRBS sequence of order 3, and resolution of DAC equal to 7, eye-opening

value is found out to be -0.0474 [dB]. Then Eye-penalty is defined as difference

of eye-opening value for each n-bit sequence and the reference value which can be

written in the form

Eyepenalty = Eyeopeningseq − Eyeopeningref. (7.5)

Now let us asses the performance of pre-distortion technique by measuring the eye-

penalty against the parameters such as PRBS order of input sequence, resolution

of DAC, and normalized length of the fiber z
LD

.

7.2 Eye-penalty vs Resolution of DAC

The plots of Eye-penalty against the resolution of digital-to-analog converter are

shown in the Figure (7.9) and Figure (7.10). From the observations, we can con-

clude that as resolution of DAC increases, eye-penalty for different values of nor-

malized length z
LD

has been decreased and with respect to normalized length, EOP

decreases with increase in value of z
LD

. Thus, resolution of DAC plays an important

measure in calculating the eye-penalty and fidelity of the signal.
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Figure 7.9: Eye-penalty vs Resolution of DAC for different values of normalized
length z

LD
without noise

Figure 7.10: Eye-penalty vs Resolution of DAC for different values of normalized
length z

LD
without noise
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7.3 Eye-penalty vs Order of PRBS sequence

The plot of Eye-penalty against the order of PRBS sequence employed as an input

signal is shown in the Figure (7.11). From the observations, we can conclude that

as the order of the sequence increases, computational process of the technique

increases as well as decrease in the eye-penalty compared to each value normalized

length z
LD

for fixed value of resolution of DAC. Thus, we can say, as we input more

sequences of higher order, there is a chance of increasing the fidelity of the signal

with the downside of heavy computational processing.

Figure 7.11: Eye-penalty vs Order of an input PRBS sequence for different values
of normalized length z

LD
and constant resolution of DAC
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7.4 Noise analysis

In optical systems, there is noise present at the transmitter and receiver. In my

thesis, we study different types of noise that are present and measure the signal

characteristics against the electrical parameters discussed above. There are three

types of noise, such as thermal noise, shot noise and relative intensity noise(RIN)

each having it’s own effect on the output signal received at the photodiode in this

pre-distortion model.

7.4.1 Thermal noise

Thermal noise in general, affects the pulse at the zero level, so signal is bound to

have noise at it’s minimum level. In this investigation, we found effect of thermal

noise follow the similar pattern with respect to the plot with a lateral shift in the

EOP of a signal without noise for each value of normalized length as shown in the

Figure (7.12).

Figure 7.12: Eye-penalty vs Resolution of DAC for different values of normalized
length z

LD
with Thermal noise

80



7.4.2 Shot noise

Shot noise in general, affects the pulse at the ’1’ level, so signal is bound to have

noise at it’s maximum level. In this investigation, we found effect of shot noise

follow the similar pattern with respect to the plot with a lateral shift in the EOP

of a signal without noise for each value of normalized length as shown in the Figure

(7.13).

Figure 7.13: Eye-penalty vs Resolution of DAC for different values of normalized
length z

LD
with Shot noise

7.4.3 RIN

RIN measures the instability of power level of a continuous wave laser that drives

a dual-drive MZM. RIN have slight effect on the EOP as compared to other noise

parameters discussed above and is shown in the Figure (7.14).
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Figure 7.14: Eye-penalty vs Resolution of DAC for different values of normalized
length z

LD
with Shot noise

7.4.4 Total Noise

When all noise parameters are included, shape of the eye-opening plot remains the

same, however, there is lateral shift indicating an increase in EOP as shown in the

Figure (7.15).

Figure 7.15: Eye-penalty vs Resolution of DAC for different values of normalized
length z

LD
with Shot noise
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We know that in the presence of noise, signal degrades, however, it is also limited

by the resolution of DAC. From the observations in the Figure (7.16), we can

conclude that with respect to the resolution of the DAC, there is a tremendous

increase in the EOP at resolution less than 5.
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Chapter 8

Conclusion

We have successfully studied the analysis of pre-distortion technique both nu-

merically and analytically using a gaussian pulse and a NRZ pulse encoding a

2n − 1 PRBS sequence. We can conclude that pre-distortion technique reverses

the amount of linear dispersion in an optical fiber for any value of normalized

length z
LD

along the length of an optical fiber. Also to note that, this technique

only works for compensating dispersion linearly ignoring the effects of attenuation

and non-linear losses in an optical fiber. This gives an good conclusion that for

distances more than dispersion length, if we include attenuation, power of signal

could be diminished, but to overcome attenuation, it is safe to assume to use

optical amplifiers at regular intervals along the length of an optical fiber.

From the analysis of a NRZ pulse, we studied the dependent nature of pre-

distortion technique on the resolution of the DAC and order of the PRBS sequence,

however, at the expense of heavy computational power. But due to increase in the

availability of high speed processors and low power consumption electronics in the

market, we can increase the order higher than 13 to yield better results to com-

pensate the linear dispersion losses in the electrical domain. We have successfully

investigated the effect of three types of noise in the pre-distortion technique and

deducing the limitations of DAC from the plots as shown in Figure. From inves-

tigation, we can conclude that, to achieve any eye-opening penalty of signal less
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than 2 [dB], resolution of DAC has to be greater than 5 which sets an limitation

on the use of electrical component especially DAC in a pre-distortion technique.
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