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Abstract 

Pulse rate and oxygen saturation are two important clinical measurements that indicate the 

state of a person’s essential body functions. Oxygen saturation is the measurement of 

oxygenated hemoglobin in arterial blood i.e. it indicates the level of oxygen in the blood.  Pulse 

oximeters, consisting of LEDs and photodetectors, offer a simple and low cost means of 

monitoring both pulse rate and blood oxygen saturation non-invasively.  

The primary objective of this project was to develop a wireless platform for MEMS devices. 

For this project, a pulse oximeter was also developed as a demonstration vehicle for this 

wireless platform. A microcontroller and a Bluetooth module was used to transmit the data 

from the sensor to the smartphone and an Android program was developed as a part of the 

project to connect with the Bluetooth module and receive, plot and save the data. Once the 

sensor and Android application were developed, the pulse rate and oxygen saturation 

measurements were compared to measurements taken by a commercial pulse oximeter to 

determine the accuracy of the device. The sensor was able to accurately measure with an 

average error percentage of ±2.86% and ±1.08% for pulse rate and oxygen saturation 

respectively.  
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Chapter 1 

Literature Review 

Oxygen is one of the most important elements needed to sustain life. It is important to almost 

every single cell in the body. It is involved in the process of cellular respiration, where 

carbohydrates, fats and proteins are broken down to retrieve energy. A decline in the levels 

of oxygen could affect metabolism significantly. A protein in the red blood cells called 

hemoglobin (Hb) is responsible for most (about 98%) of the oxygen transport in the body. 

Oxygen binds to the protein, together forming oxyhemoglobin or HbO2. Oxygen saturation 

(SpO2) is a measure of the percentage of HbO2 in arterial blood.  

1.1 Introduction 

A pulse oximeter is a device that can measure oxygen saturation non-invasively. Prior to the 

invention of the pulse oximeter, SpO2 was measured by performing a blood gas analysis on 

samples of blood drawn from the patient. This method does not provide real time feedback 

and is an invasive procedure. For a healthy individual with sufficient oxygen in their blood 

stream, the tongue and lips appear pink. However, when the oxygen levels are low, they 

appear blue. This bluish appearance of skin and mucus membranes is cyanosis. Hypoxemia, 

or abnormally low concentrations of oxygen in the blood, used to be assessed primarily by 

looking for cyanosis. Using cyanosis for the clinical assessment of hypoxemia is extremely 

unreliable because several factors including skin color and room lighting can affect the 

detection of cyanosis. Additionally, cyanosis is only visible when the concentration of 

deoxygenated hemoglobin is above a certain limit. So a severely anemic patient may never 

show signs of cyanosis even when extremely hypoxic. Thus, a tool to constantly monitor 

oxygen saturation levels is very important. 

A pulse oximeter measures the oxygen saturation levels and the pulse rate from a 

photoplethysmogram (PPG). Photoplethysmography was first described by Alrick Hertzman 
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in 1937. He gave it the term “plethysmos”, derived from the Greek work for fullness, since he 

believed he was measuring the fullness of the tissue when he measured the amount of light it 

absorbed [1,2].  Most pulse oximeters display the plethysmograph trace in addition to the 

arterial oxygen saturation and the heart rate. The most important function of the trace is to 

judge if the oximeters is functioning correctly. However, a normal plethysmograph trace does 

not imply that the SpO2 value is correct [3]. 

A pulse oximeter consists of a red LED (~650 nm), infrared LED (~940nm) and a 

photodetector. The PPG is obtained by measuring the change in the light absorbed by the 

blood and the ratio of absorption of red to infrared light is used to calculate the SpO2. Pulse 

oximeters are used extensively in ICUs, and during surgeries and other procedures involving 

sedation. 

1.2. Historical Review 

The relationship between the absorption of light and the concentration of the absorbent was 

first described by Johann Heinrich Lambert in 1760. This was further investigated by August 

Beer, who published the Beer-Lambert law in 1851 [3]. The Beer-Lambert law is the linear 

relationship between the absorbance of light and the amount of absorbing material. 

Following the invention of the spectrometer in1860 by Kirchhoff and Bunsen, Hoppe-Seyler 

showed that oxygen changes the color of a component in blood. He coined the term 

“hemoglobin” and later showed that oxygen and hemoglobin form a loose, dissociable 

compound he called oxyhemoglobin. Stokes showed that this colored substance was the 

carrier of oxygen in the blood [4-6].  

The first device to measure the oxygen saturation in blood by illuminating it with different 

wavelengths of light was developed in the 1935 by Karl Matthes, a physician. This device 

measured ear oxygen saturation and used a second wavelength (the first being red and the 

second being green or infrared) to compensate for blood volume and tissue pigment. Millikan 

made the first portable, light-weight oximeter in the early 1940’s to train World War II pilots 
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for aviation. The Hewlett-Packard ear oximeter, developed in the early 1970’s, was the 

forerunner of pulse oximetry. It used eight different wavelengths derived from an 

incandescent source. The different wavelengths were for different absorbing substance (skin, 

oxygenated hemoglobin, deoxygenated hemoglobin etc.) and the model assumed that each 

absorbing substance acted independent of the others. Again, this model did not differentiate 

between arterial and venous blood. While it was a remarkable advance in oxygen saturation 

monitoring, the device had several disadvantages including the large, bulky earpiece and the 

need for regular recalibration [3,4,6,7]. 

In the early 1970’s, Takuo Aoyagi’s research involved using dye dilation to measure cardiac 

output.  He used two wavelengths, 805 nm and 900 nm to maximize the dye sensitivity and 

minimize the oxygen saturation sensitivity. The ratio of the two optical densities was used to 

get the dye curve, which was expected to correspond with the dye concentrations in the 

blood. However, he noticed pulsatile variations in the output, making it difficult for him to 

measure the cardiac output. He then used the wavelengths 900 nm and 630 nm. The 900 nm 

wavelength was used to avoid interference by the dye and the 630 nm wavelength was 

chosen to maximize the hemoglobin extinction change caused by oxygen saturation change. 

He then used the AC/DC ratio of the two wavelengths to calculate the oxygen saturation, 

hence developing the pulse oximeter [6, 8-10]. Aoyagi and his associates released the pilot 

model of the pulse oximeter in 1974. Biox made the first commercial oximeter in 1981, 

followed by Nellcor, who released their product in 1983. It was recognized as the standard 

for inoperative monitoring by the Association of Anesthetics of Great Britain and Ireland in 

1988 and the American Society of Anesthesiologists in 1990 [6].    
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1.3. Theory 

1.3.1. Oxygen Transport in the Body 

Oxygen is vital for survival. The absence of oxygen for a prolonged period of time will cause 

cells to die. Thus, oxygen circulation is an important indicator of a person’s health. The 

respiratory system and the circulatory system are responsible for the oxygen supplied to the 

cells. Ventilation is the process by which air moves into and out of the lungs. Ventilation is 

based on the principle that air flows from a region of higher pressure to a region of lower 

pressure. During inspiration, the muscles between the ribs contract and pull upwards, while 

the diaphragm contracts and pulls downward, causing the thoracic cavity to expand. At this 

point, the atmospheric pressure is greater than the pressure inside the lungs, causing air to 

flow in. During expiration, the muscles relax, causing the volume to decrease and the pressure 

in the lungs to increase. As the pressure inside the lungs increases beyond the atmosphere 

pressure, the air flows out of the lungs [11, 12]. 

The nasal passage warms, filters and moistens the inhaled air before it reaches the lungs. The 

nasal passage has microscopic hair called cilia which, together with the mucus, filters dust 

particles out of the inhaled air. The mucus also moistens the air, while the capillaries under 

the mucus layer warm it. The air then passes through the pharynx (or the throat) to the 

larynx, which is also referred to as the voice box. Both air and food go through the pharynx. 

When food is swallowed, a part of the larynx called the epiglottis closes the entrance to the 

trachea, hence preventing the entry of food particles into the lungs. 

The larynx leads into the trachea or the windpipe, which is kept open by ringed cartilages. 

The trachea also has mucus and cilia to filter out further pollutants and particles. The trachea 

splits into two bronchi, each of which leads to a lung. The bronchi branches out into bronchial 

tubes, which divide further into smaller structures called bronchioles as shown in figure 1.1.  

The bronchioles end in small balloon like structures called the alveoli. The alveoli is where 

the gas exchange takes place [11, 13].  
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Figure 1.1. The lungs  

The alveoli are surrounded by capillaries and the walls of the alveoli are very thin, allowing 

the exchange of oxygen and carbon dioxide between the alveoli and the capillaries. The partial 

pressure of oxygen is higher, and that of carbon dioxide is lower in the alveoli than the blood, 

causing oxygen to diffuse into the blood while the carbon dioxide moves into the alveoli. Most 

of the oxygen that enters the bloodstream binds to the hemoglobin in the blood, while a small 

amount dissolves in the plasma. The blood from the capillary then enters the heart through 

the pulmonary vein and is circulated throughout the body.  

The heart serves as a pumping mechanism for the blood. In the pulmonary circulation, oxygen 

depleted blood is pumped out of the right ventricle of the heart. The pulmonary artery 

transports this blood to the lungs, where carbon dioxide is released from the blood into the 

alveoli through the capillaries and oxygen enters the bloodstream. This oxygenated blood is 

then transported to the left atrium of the heart by the pulmonary vein.  
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In the systematic circulation, oxygen rich blood is pumped out of the left ventricle via the 

systemic arteries. The artery branches out into smaller arteries and finally into capillaries. 

The oxygen diffuses through the walls of the capillaries to the oxygen depleted tissues, while 

the waste substances and carbon dioxide diffuses into the blood from the tissues. This blood, 

which is now low in oxygen, is collected in veins and transported back to the heart [11, 13, 

15]. Figure 1.2 shows this entire process. 

 

Figure 1.2. Oxygen transport in the blood  

The amount of oxygen that gets circulated depends on three factors: the amount of oxygen 

that binds to the hemoglobin in the blood, the concentration of hemoglobin in the blood and 

the cardiac output [16]. Cardiac output is the total volume of blood pumped through the 

circulatory system in one minute. Hemoglobin (abbreviated as Hb) is the protein in red blood 

cells that carries oxygen. Each hemoglobin molecule has four binding sites for oxygen 
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molecules. A saturated hemoglobin molecules has four oxygen molecules bound to it. Every 

100 ml of blood contains about 15g of hemoglobin and each gram of hemoglobin can bind to 

up to 1.39ml of oxygen so 100 ml of blood can contain up to 20.4ml of oxygen [16, 17].  

 

Figure 1.3. Oxygen bound to hemoglobin  

1.3.2. Photoplethysmography 

A plethysmograph is used to measure a change in volume within an organ or the whole body. 

A PPG is an optically obtained plethysmogram. It is a pulsatile waveform that can be used to 

non-invasively monitor the cardiac rhythm. Light incident on the body can be absorbed by 

arterial blood, venous blood, skin, tissue, pigments and bones but the light absorbed by 

arterial blood changes as the volume of blood in the artery changes. There is more blood in 

the arteries during the systolic phase of the cardiac cycle than in the diastolic phase. Thus, a 

PPG sensor can optically monitor the blood flow by measuring the light transmitted through 

or reflected off the tissue. Figure 1.4 shows the absorption of light by tissue over time. The 

PPG waveform consists of a small AC signal riding over a large DC signal. This DC signal is 

actually a slowly varying signal and changes with respiration.  
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Figure 1.4. Variation in attenuation due to arterial blood  

1.3.3. Oxygen Saturation 

Oxygen saturation can be defined as the ratio of oxygenated hemoglobin to the total 

hemoglobin (oxygenated and deoxygenated) in the blood. If all the binding sites on the 

hemoglobin have oxygen molecules attached to them, the hemoglobin is said to have 100% 

saturation.  

SpO2(%) =  
HbO2

HbO2 + Hb 
∗ 100 

Oxygen saturation is the fifth most important vital sign after pulse rate, body temperature, 

blood pressure, and respiration. Most healthy individuals have an arterial oxygen saturation 

level of 95%-100% at sea level. Since the saturation levels depend on partial pressure of 

gases, extreme altitude can affect the saturation levels. Venous blood normally has a 

saturation of around 75%. The oxygen saturations level remains roughly constant in time but 

health problems like lung diseases or smoking can cause a decrease in these levels. For 

(1.1) 
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(1.2) 

(1.3) 

example, 94% can be considered normal for a heavy smoker. If the arterial oxygen saturation 

level is below 90%, it is considered low and requires treatment [17, 19].  

Hemoglobin forms reversible and unstable bonds with oxygen to form HbO2. In its 

oxygenated state, it appears a bright red color and in its reduced state, it appears a darker 

purplish in color. Beer-Lambert’s law can be used to calculate the absorbance of 

monochromatic light by a transparent substance through which it passes as shown in the 

equation below [3].  

𝐼𝑡 = 𝐼𝑜 ∗ 10−𝜀𝑐𝑑 

Where It is the intensity of transmitted light, Io is the intensity of incident light, ε is the 

extinction coefficient (the fraction of light absorbed at a certain wavelength), c is the 

concentration of the absorbing substance, and d is the length of the path through the sample.  

Two independent equations can be derived to describe the absorption of Hb and HbO2 at two 

different wavelengths, i.e. red and infrared. These equations can then be solved to find the 

oxygen saturation, as this depends on the Hb – HbO2 ratio. Hence, upon solving these 

equations, the SpO 2 can be calculated using the following equation [20]. 

𝑆𝑝𝑂2 = 𝐴 + 𝐵 ∗ 𝑅 

Where A and B are constants and R is the ratio of the optical density (log (𝐼𝑜 𝐼𝑡⁄ )) of the 

oxygenated and the deoxygenated hemoglobin. 

However, the Beer-Lambert law only applies to monochromatic radiation through a 

homogenous substance. There must be only one absorbent and there should be no reaction 

between the absorbent and the solvent. Blood is a non-homogenous substance and the 

amount of light absorbed changes as the volume of the blood changes. While the principle of 

pulse oximetry relies on the Beer-Lambert law, the non-homogenous nature of blood makes 

it clear that the device needs to be calibrated [3]. The calibration of a pulse oximeter will be 

discussed in the following section. 
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Figure 1.5. Example absorption spectrum of Hb and HbO2  

A pulse oximeter consists of a red LED, an infrared LED, and a photodetector. In order to get 

the SpO2, the red and the infrared LEDs must be at a wavelength where the extinction 

coefficients of Hb and HbO2 are different. Figure 1.5 shows the absorption spectrum of 

oxygenated and deoxygenated hemoglobin in the visible – near infrared region. The isobestic 

points are the wavelengths at which the extinction coefficients of the two substances are 

equal. Typically, pulse oximeters used a red LED at around 660 nm and an infrared LED at 

880 nm – 940 nm. The range of wavelengths that can be used in 600 nm -1300nm. At 

wavelengths shorter than 600 nm, the skin pigment, melanin, absorbs strongly and at 

wavelengths longer than 1300 nm, the water present in the tissues absorbs strongly [3]. 

The sensor containing the LEDs and the photodetector is placed in close contact with the skin, 

typically at the fingertip or at the wrist and SpO2 is calculated from the ratio of absorption of 

the two wavelengths. The detector can be placed such that the sensor works in reflection or 

transmission mode.  
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1.3.4. Transmittance and reflectance pulse oximetry 

In reflectance mode pulse oximetry, the LEDs and the photodetector are on the same side of 

the probe. These sensors can be placed at the fingertip or at the ear lobe. The photodiode 

measures the light back-scattered by the bone, tissues and blood vessels. In transmission 

mode pulse oximetry, the detector is placed on the opposite side of the sensor from the LEDs. 

These sensors can be placed at the fingertip, wrist, chest, forehead, etc. While a device using 

transmission mode can provide good measurements, the number of sites where it can be 

placed is limited. It must be placed at a point through which light can easily be transmitted. 

The reflectance based device, however, does not have this problem and can be placed in areas 

where light cannot easily transmit through as well.  

 

Figure 1.6. Transmittance pulse oximetry and reflectance pulse oximetry 

1.3.5. Calibrating a pulse oximeter 

The Beer-Lambert law was used to calibrate pulse oximeters originally, but as stated in the 

previous section, the law does not apply to pulse oximetry due to the presence of multiple 

absorbents and the scattering nature of blood. Pulse oximeters are now calibrated using an 

empirical method where a given ratio, R, is used to estimate the oxygen saturation levels [11]. 

R is a ratio of the amplitude of AC and DC signals from the red and the infrared LED.  
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(1.4) 𝑅 = (
(

𝐴𝐶
𝐷𝐶

)
𝑅𝐸𝐷

(
𝐴𝐶
𝐷𝐶

)
𝐼𝑅

) 

Traditionally, pulse oximeters were calibrated by the in vivo method. This method used a CO-

oximeter for comparison. There are four common types of hemoglobin: oxygenated 

hemoglobin (HbO2), reduced hemoglobin (Hb), carboxyhemoglobin (COHb), and 

methemoglobin (MetHb). The CO-oximeter analyzes the concentration of the different types 

of hemoglobin using as few as four wavelengths of light [11]. 

The procedure involved drawing blood samples from the radial artery and then analyzing 

these samples to ascertain the levels of COHb and MetHb. This is then used to calculate the 

oxygen/air mixture required to bring the oxygen saturation to 100%. Then they breathe an 

oxygen/air combination with progressively less oxygen and more nitrogen, making the 

patient progressively more hypoxic and at each stage, samples of arterial blood is collected 

from the patient and analyzed using the CO-oximeter, creating a calibration curve for oxygen 

saturation [3, 11]. 

The in vivo method was used to calibrate pulse oximeters until 1993 [11]. There are several 

problems associated with this method, the biggest being that the methods involves 

deliberately desaturating a healthy volunteer. The range over which the device is calibrated 

is limited. The volunteer cannot be desaturated below 85% without risking hypoxic brain 

damage, so the calibration curve must be extrapolated for SpO2 values below 85%.   

The in vitro calibration method typically involves whole blood (anticoagulated with heparin) 

pumped through a model finger. A pump mixes in a known mixture of oxygen, nitrogen and 

carbon dioxide and a drive system is used to simulate the pulsatile nature of arterial blood. 

The oxygen saturation is measured by the pulse oximeter being calibrated, a CO-oximeter, 

and the blood samples are tested in a blood gas analyzer for pH and pCO [11]. The calibration 

method used for this project is discussed in section 5.1. 
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Chapter 2 

Hardware Design and Circuitry 

The pulse oximeter design is comprised of 5 parts: the LED driving circuit, the photodiode 

and a current to voltage converter, filtering and amplification, a low pass filter, and 

microcontroller with Bluetooth module. This chapter discusses the design and 

implementation of the electronic circuitry, while the next chapter discusses the 

microcontroller and the Bluetooth module.  

2.1. Design Specification 

The design specifications for the sensor and the hardware are listed below in table 5.1. The 

sensor specifications were determined from commercial device specifications. The 

specifications of several commercial pulse oximeters were examined and the following 

specification were chosen, however, the entire desired range of both the pulse rate as well as 

the oxygen saturation levels will not be tested for this project.  

 

 

 

 

 

 

 

 



22 
 

Table 2.1. Design Specifications 

Hardware Specifications 

Red LED 
Maximum current allowed = 30 mA 

Power supply = 9 V 

Current limiting resistor = 330Ω 

Infrared LED 
Maximum current allowed = 50 mA 

Power supply = 9 V 

Current limiting resistor = 220Ω 

Non-inverting amplifier 
Gain ~ 85 

Single supply amplifier used 

Power supply +9 V 

Low pass filter Cutoff frequency = 15 Hz 

Sensor Specification 

Effective measuring range 
Pulse rate: 35 – 250 bpm 

Oxygen saturation: 0 – 100% 

Accuracy 
Pulse rate: ±3% 

Oxygen saturation: ±3% 

 

2.2. LED deriving circuit  

The sensor consists of an IR LED (SEP8736) at 880 nm, a red LED (VCC 5322F1) at 650 nm 

and a photodiode (PDB-C 156) with a spectral range of 400 nm to 1100 nm. The LED driving 

circuit is part “A” in the figure below. The “Control-Red” and the “Control-IR” signals come 

from the Arduino. The Arduino is used to switch the LEDs on and off, allowing the 

photodetector to measure the absorbance at both wavelengths independently. Resistors R1 



23 
 

and R2 are used to control the current through the LEDs and ensure that this is under the 

maximum allowed. 

 

 

Figure 2.1. LED driving circuit and photodetector unit 

2.3. Current – voltage converter 

Part “B” comprises of the photodiode followed by a current-to-voltage converter. This circuit 

simply converts and amplifies the current output of the photodiode to a voltage. The resulting 

output voltage, V1 is as expressed in equation 2.1. Resistor R3 determines the gain of this 

stage. The DC voltage required for the oxygen saturation calculation is obtained from the end 

of this stage, so V1 is also an input to the Arduino.  

𝑉1 = 𝐼  (𝑅3) 

 

 

(2.1) 

(B) (A) 
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2.4. Filtering and amplification 

Part “C” passes the output of the current-voltage converter through a 1μF capacitor to filter 

out the DC voltage. Resistors R4 and R5 are then used to offset the ac signal halfway between 

ground and 9V. The signal is amplified by a single supply amplifier (NJU7024) in the non-

inverting configuration and then passed through capacitor C2, which is a coupling capacitor 

that is used to block DC. This is followed by a low pass filter with a cutoff frequency of 15Hz 

to filter out any noise from the sensor. The waveform out of the amplifier is centered at 4.5 V, 

and since the maximum allowed input voltage to the Arduino is 5 V, this DC is eliminated and 

resistors R10 and R11 are used to provide a lower DC offset to the AC waveform such that the 

waveform is always below 5 V.  Finally, the diode D2 is used to limit the negative voltage input 

to the microcontroller to a maximum of -0.7 V.  

 

Figure 2.2. Filtering and amplification 

The microcontroller and Bluetooth module are used to calculate the pulse rate and the oxygen 

saturation level and transmit the data to the smartphone will be discussed in the following 

chapter. 

(C) (D) 
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2.5. Electrical Simulation 

LT Spice IV was used to simulate the circuitry in figure 2.2. A voltage source was used to 

simulate the output of the current to voltage converter. Below are the images showing the 

schematic and the simulated waveforms and the frequency response. Signal V1 from figures 

2.1 and 2.2 was modeled as a 2mV sine wave at 2Hz with a DC offset of 3V. A single supply 

operational amplifier was used to simulate the performance of the NJU7024. As desired, the 

final waveform (Vout in figure 2.4) is centered at 0.4 V. 

 

Figure 2.3. Schematic of simulated circuit 
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Figure 2.4. Simulated waveforms at V1, V2 and Vout  

 

 

Figure 2.5. Simulated frequency response.  
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Figure 2.6. Screen capture of the output PPG waveform from the sensor 

Figure 2.6 is a screen capture of a PPG waveform from the oscilloscope. The output from the 

sensor is a 200 mV peak to peak signal centered at 0.4 V, compared to the 300 mV peak to 

peak output obtained from the simulation. The amplitude and frequency of sensor output will 

vary from person to person, however, the signal will always be centered at 0.4 V as designed 

using the electronics.  
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Chapter 3 

Arduino Programming  

Arduino is an open source platform that consists of a programmable microcontroller on a 

board with I/O pins, and a software or an IDE (Integrated Development Environment) that 

can be used to write the program, upload it to the board and even view the results using a 

serial monitor. The Arduino Uno is the most used and most documented board in the Arduino 

family. It is also the most robust board made by Arduino [21]. An Arduino program is called 

a sketch. The Arduino IDE comes with several example sketches which can directly be 

compiled and uploaded to the board. In addition to the several websites and blogs that 

discuss projects on the Arduino, there are forums on the Arduino website itself that help 

answer questions and solve problems, making it a great tool for people of all skill levels.  

For this project, the Arduino is used to receive data from the sensor, calculate the pulse rate 

and the oxygen saturation values and then send this data to the Android application using a 

Bluetooth module. An Arduino Uno board was used with a SparkFun BlueSMiRF Bluetooth 

module. This chapter discusses how to use the BlueSMiRF module and briefly explains the 

Arduino program.  

3.1. Introduction to Bluetooth 

Bluetooth is a wireless communication system that can be used to send and receive data over 

a short distance. Created in 1994 by Ericsson, it was originally viewed as a wireless 

alternative to RS-232 data cables. Bluetooth devices operates in an unlicensed frequency 

band at 2.4 GHz. This band ranges from 2.4GHz to 2.485 GHz and is called the industrial, 

scientific and medical (ISM) band. It is unlicensed and available in most countries. The 

technology uses a spread spectrum, frequency hopping, full-duplex signal at 1600 hops/sec 

[22].  
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The technology gets its name from the 10th century Danish king, Harold Bluetooth. The 

standard for Bluetooth is maintained by the Bluetooth Special Interests Group (SIG). The 

Bluetooth technology is built into several devices, including smartphones, laptops, tablets, 

cars, medical devices and even toothbrushes. The development of this technology was 

instrumental in reducing the requirement for wired connections, and allows users to share 

data, music, pictures and other information wirelessly between paired devices [22]. 

3.2. Bluetooth Module 

SparkFun makes several different Bluetooth modems including Bluetooth Mate and 

BlueSMiRF. For this project, the BlueSMiRF Gold modem was used. The SparkFun Bluetooth 

modems can be used to communicate with any other Bluetooth device that supports SPP, 

including a computer or a smartphone that supports Bluetooth. If the Bluetooth module is 

being used with a computer that does not already have Bluetooth, a Bluetooth USB module 

can be plugged into the USB slot of the computer.  

Bluetooth modules can have a range of 1m – 100m depending on the type of device. A class 3 

Bluetooth module typically has a range of 1 meter, while a class 2 has a range of 10 m and a 

class 1 has a range of 100 meters. The BlueSMiRF used is a class 1 device.  

A voltage from 3.3V to 6V can be used to power the device. There is a linear 3.3V regulator on 

board since the maximum operating voltage of the module is 3.3V. The ground pin (GND) is 

the 0 reference voltage, common to all the devices connected to the Bluetooth modem. The 

TX-O and the RX-I pins are transmit and receive pins respectively. The receive pin receives 

data serially and must be connected to the transmit pin of the Arduino. Similarly, the transmit 

pin of the Bluetooth module is used to send or transmit data serially and must be connected 

to the receive pin of the Arduino. The VCC, GND, TX-O and RX-I are the pins that are required 

for all serial communication using the modem. The RTS-O pin is the request to send pin. This 

is used for hardware flow control in some serial interfaces. The CTS-I or the clear to send pin 

is another signal to control the serial flow [23]. Neither of these pins are critical for simple 
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serial interfaces and will be shorted together for this project. Figure 3.1 shows the different 

parts of the Bluetooth modem. The figure shows that there are two LEDs on the board. The 

stat LED is red and the connect LED is green.  

 

Figure 3.1. Parts of the SparkFun BlueSMiRF 

3.3. Serial Communication 

The Arduino hardware has built-in support for serial communication. Pins 0 and 1 on most 

Arduino boards are the serial receive and transmit pins. These are also connected to the 

computer via the USB connection. If these pins are used to communicate with the computer, 

they cannot be used as digital input or output pins. The begin() function is used to set the 

serial communication data rate in bits per second. For communicating with a computer, only 

the following rates cate be used: 300, 600, 1200, 2400, 4800, 9600, 14400, 19200, 28800, 

38400, 57600, or 115200. However, other baud rates can be specified if the device that the 

Arduino is communicating with requires it [24]. If the serial ports on the board are being 

used, Serial.begin(rate) can be called to set a particular baud rate. Since the serial pins are 

also connected to the computer, the serial monitor option in the toolbar menu of the Arduino 

IDE can be opened. Once the baud rate on the serial monitor is set to the same rate as that set 

using begin(), the serially transmitted data can be viewed.  
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In addition to the built-in serial pins, the Arduino also supports the SoftwareSerial library 

that can allow serial communication on any other digital pins on the Arduino board. For this 

project, pins 2 and 3 of the Arduino board are used for serial communication. Pin D2 of the 

Arduino is connected to the TX-O pin of the Bluetooth modem and the pin D3 of the Arduino 

board is connected to the RX-I pin of the Bluetooth modem. This means that pin D2 must be 

declared as the receive pin and pin D3 must be declared as the transmit pin in the Arduino 

code. Additionally, the VCC pin of the Bluetooth modem is connected to 5V pin and GND pin 

goes to the GND pin on the Arduino board.  

3.4. Setting up the Bluetooth modem 

The Bluetooth modem can be powered up by powering the Arduino it is connected to. Once 

the modem is powered, it can be used to wirelessly connect with any other Bluetooth device 

that supports SPP (most Bluetooth devices do). Once the two devices are paired, the 

Bluetooth modem can be configured to operate at the desired baud rate. The default baud 

rate of the BlueSMiRF Bluetooth modem is 115200 bps.  

The Bluetooth modem can operate in two modes – command mode and data mode. The 

command mode is used to configure the Bluetooth module. The device must be in command 

mode if the name, pin code or the baud rate of the device is to be changed. In command mode, 

the module can also scan for and connect to available devices within its range. In the data 

mode, the module is simply used to transmit and receive data.  

The status LED indicates is the device is in command mode. When the device is powered up, 

a timer called the configuration time starts counting. The default period for the configuration 

timer is 60 seconds but this can be changed to a different duration (or even turned off!). Once 

the timer has run out, the user cannot enter the command mode until the device is powered 

up again. If the red status LED blinks at the rate of 10 blinks per second, this indicated that 

the device is in command mode. If it blinks at 2 blinks per second, the device is not in 

command mode but the configuration timer is still counting and the user can still enter 
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command mode. If it blinks at one blink per second, the configuration timer has run out and 

the command mode can only be entered when the device is powered up again.   

The Arduino was used as the medium between the computer and the Bluetooth module to 

send and receive commands. To connect with the module from a computer, first power up 

the Arduino and the BlueSMiRF. Next, ensure that the Bluetooth on the computer is on and 

then scan for the BlueSMiRF. The default name of the device will most likely be on the package 

of the device. The device used was called “FireFly-D71D. Once the device has been located, 

select the pairing option. At this point, the user will be prompted to enter the pin/pairing 

code. The default code for all the RN-41 and RN-42 devices is 1234. The device is now ready 

to use but the user will require the COM port in order to serially communicate with the device 

using the serial monitor on the Arduino IDE. When Windows installs the drivers for a new 

Bluetooth device, it also creates a COM port for it. The COM ports can be viewed by opening 

up device manager and looking in the “Ports” tree or by opening the Bluetooth settings and 

look in the COMS tab as shown below.  
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Figure 3.2. Bluetooth COM ports 

Once the connection between the two devices is set up and the COM port is identified, the 

Arduino can be programmed to assist the user to enter the command mode. The SparkFun 

website has a tutorial on how to use the BlueSMiRF, which includes an Arduino sketch to 

enter the command mode (available at learn.sparkfun.com/tutorials/using-the-bluesmirf). 

The code uses the SoftwareSerial library to assign serial transmit and receive functions to 

two digital pins and then calls the begin() function with the baud rate of 115200 since this is 

the default rate.  

After the sketch is uploaded, select the COM port associated with the Bluetooth module from 

the list of ports in the Tools menu and then open up the serial monitor, again, from the Tools 

dropdown menu. In the serial monitor window, set the baud rate to 9600 and from the drop-

down menu next to the baud rate, select “No line ending”. The command mode can be entered 
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by typing in ‘$$$’ into the serial monitor. If the module successfully enters the command 

mode, it responds with CMD and the stat LED starts blinking much faster. Once it is in the 

command mode, you can view or change the settings. Settings can be viewed or changed after 

setting the line ending dropdown to “Newline”.  Typing in “D” and then “E” in the serial 

monitor returns some basic information on the device including its name, address and baud 

rate.  

 

Figure 3.3. Device information extracted using command mode 

Since the default baud rate of the device is 115200, it needs to be changed to 9600 for this 

project. The baud rate can be changed to 9600 by sending “SU,96” to the module through the 

serial monitor. If the baud rate has been successfully changed, the module responds with 

“AOK” and the device is now ready to be used for the project. The device name and pin code 

can be changed as well, but it was left at the default setting for this project.  
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3.5. Arduino Code 

The Arduino code is quite simple. First, the SoftwareSerial library must be included so that 

the Bluetooth device can use any (assigned) digital pins to exchange data with the Arduino. 

The pins used to transmit and receive data must then be declared along with the serial object. 

In this case, the serial object has been named “bluetooth”.  

 

The variables used in the code are declared and initialized, if necessary, before the setup() 

function is called. The setup() function is called when the sketch starts and runs only once 

each time the Arduino is powered up while the loop() function, which follows the setup() 

function, continuously loops and runs until the Arduino is powered off. The setup() function  

can be used to initialize variables, set up the pin modes or start the library functions. In this 

code, it is used to begin serial communication with the Bluetooth module and the computer, 

set up pin modes, and measure the ambient light when both the red and the infrared LEDs 

are off. The analogRead maps a voltage from 0 to 5 V and maps it to an integer value between 

0 and 1023. The code converts this back to a value between 0 and 5 before transmitting the 

value to the smartphone.  
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The loop() function is used to alternatively switch between the red and the infrared LEDs, 

measure the AC and DC voltages, calculate the pulse rate and the oxygen saturation and 

transmit this along with the AC waveform from the infrared LED to the smartphone. Equation 

3.1 is used to calculate the oxygen saturation value. 

𝑆𝑝𝑂2 = 𝐴 + 𝐵 ∗ (
(

𝐴𝐶
𝐷𝐶)

𝑅𝐸𝐷

(
𝐴𝐶
𝐷𝐶)

𝐼𝑅

) 

 Where A is 104.86 and B is -23.288. The device was calibrated to obtain this relationship. 

The calibration is discussed in the results section.  

The pulse rate was calculated from the AC waveform of the infrared LED. Since this waveform 

is centered at 0.40V (set using R6 and R7 in figure 2.2), the Arduino was used to check for the 

when the waveform increased beyond 0.40 V. The function millis() returns the number of 

milliseconds since the Arduino board began running the current program. This was used to 

save a time stamp at each crossing and the time stamps were then used to calculate the period 

of the waveform. 

(3.1) 
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At the end of each iteration, the AC voltage measured from the IR LED, the calculated pulse 

rate and the oxygen saturation are transmitted to the smartphone. To help the Android 

identify the beginning and ending of each transmission, the first character transmitted is “#” 

and the last character transmitted is “~”. Additionally, to help the Android sort between the 

pulse rate, the oxygen saturation and the AC voltage reading, more special characters are 

used as shown above. The Android code, discussed in the next chapter, uses these characters 

to identify the data from the input stream.   
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Chapter 4 

Building and Implementing an Android Application 

The aim of the android application is to receive the sensor data via Bluetooth and display it. 

So, the application should be able to check if the device has a Bluetooth module that can be 

used, turn this module on, connect with the Arduino, receive the data, and finally display and 

plot the data. The following chapter briefly explains the Android programming fundamentals 

and explains the objectives that were implemented. Reference [25] was used to understand 

the theory explained in this chapter.   

4.1. Android Programming Fundamentals 

Android applications are written in Java programming language. The Android SDK or the 

Android Software Development Kit is a set of software development tools that compiles the 

Java code along with any data and resource files like libraries, pictures, audio clips, etc., to 

generate a single .apk file.  The .apk (Android Package) is the file format that is used to 

distribute or install the application onto Android devices.  

The Android operating system works like a multi-user Linux system, where each application 

is a different user. The applications are each assigned a unique Linux user ID and only the 

assigned user ID can access the permissions and data associated with that app. However, it is 

possible for two different apps to have the same Linux user ID, allowing them to access each 

other’s files. An application must request permission to use the data and resources on the 

device like the camera, Bluetooth, user’s contact list and messages etc. These permissions are 

granted by the user when the app is being installed.  
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4.1.1. Application Components 

a. Activity 

An activity is a single screen with a user interface. In the app written for this project, for 

example, one activity displays the home screen, another displays the Bluetooth paired 

devices and yet another activity displays the results from the sensor. Even though the 

activities run in a sequence in the app, they can function independently of each other. A 

different app can also access these activities, if the app allows it. For example, the camera or 

the microphone app could open any messaging app to share pictures or recordings. 

b. Services 

A service does not provide any user interface. It runs in the background without blocking user 

interaction with another activity. For example, the media player app allows music to continue 

playing even after the user opens a different app. 

c. Content Provider 

The content provider allows the app to store data. If the content provider allows it, other apps 

can view or even modify this data. For example, the Android system has a content provider 

that manages the user’s contact list information. With the appropriate permissions, other 

apps can view, edit or add to the list. 

d. Broadcast Receivers 

The broadcast receiver receives system-wide broadcasts. Several broadcasts, like those 

announcing the battery is low or that an image has been captured, come from the system itself 

but apps can also initiate broadcasts. Broadcast receivers do not have a user interface but 

apps can create status bar notifications to notify the user when an event occurs.  
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4.1.2. Intent 

An intent is an asynchronous message that is used to start three of the four android 

components, namely, activities, services and broadcast receivers. At runtime, an intent can 

bind various components to each other, even components that are not a part of your app. 

There are separate methods for starting each component. An activity can be started by 

passing an Intent (a messaging object) to startActivity() or startActivityForResult() (when 

you want the activity to return a result). To start a service, the Intent must be passed to 

startService() and a broadcast can be initiated by passing an Intent to sendBroadcast(), 

sendOrderedBroadcast(), or sendStickyBroadcast().  

4.2. Android Studio 

Most Android developers use Java to develop their app. Eclipse, NetBeans and IntelliJ IDEA 

are amongst the most common editors used. For this project, Android Studio, which is based 

on IntelliJ IDEA was used. Android Studio is the official IDE for Android Application 

Development. The first step to developing an app is downloading the editor (Android Studio 

in this case) and then downloading the SDK tools and platform using the SDK manager. The 

SDK manager can be launched from the File menu (File > Settings > Appearance & 

Behavior > System Settings > Android SDK), the Tools menu (Tools > Android > SDK 

Manager), or by simply clicking the SDK Manager Icon on the menu bar. The SDK manager 

installs the required packages and the latest tools by default. In addition, there is a checkbox 

next to each available SDK platform or tool. These can be added or updated by simply 

checking the boxes, and clicking Apply and OK. For this project, the latest available packages 

at the time were installed, in addition to these packages, packages and tools available for 

Android Versions 2.2 and 2.3.3 (API levels 8 and 10 respectively) were installed since the 

Android Version of the phone used to test the applications was 2.3.6. Once the editor and the 

SDK tools are installed, the app can be developed.  
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4.2.1. Creating a Project 

Every application has an application name, a domain name and a package name. The 

application name is the name that appears to the users. The company domain name is a 

qualifier that will be appended to the package name. It has to have at least two identifiers. 

Android Studio typically remembers this domain name for every project you create. The 

package name needs to be unique if the application is to be released to the market. For 

example, if the application name is “My Application” and the company domain name is 

“companyname.com”, then the package name defaults to “com.companyname.myapplication” 

but this can be edited independent of the domain and application name. Once the application, 

domain and package names are set, you need to select the form factors your applications can 

run on and the minimum SDK. Since we require this application to run only on phones, the 

Phone and Tablet option was selected and API level 8 was set as the minimum SDK. The 

minimum SDK is the earliest version of Android that can run the application. By targeting API 

level 8, the app will run on almost all the devices active on Google Play.    

 

Figure 4.1. Configuring a new Android Studio Project 
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4.2.2. Layout XML File 

A layout file can be used to define the visual structure for the user interface of the activity. 

The layout file can be found in the “res” folder and it can be edited either using the graphical 

design assistant, where items can be dragged and placed as required, or by typing it out in 

XML (Extensible Markup Language). The application could also include code to modify the 

screen objects at runtime. The figure below shows the layout of an activity called 

“activity_example” and it includes a linear layout with a TextView and a Button.  

 

Figure 4.2. Example of an Activity Layout 

Every layout must contain one root element, which must be a View or ViewGroup object. This 

element acts like the basic building block for the UI components. Once this has been defined, 

additional objects and widgets can be added. In this example, a vertical linear layout is used 

as the root element. The android:orientation field in the code below can be horizontal or 

vertical. The vertical linear layout arranges its children components in a single column.  
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The layout file can be loaded on to the application code in the Activity.onCreate() 

implementation. Since we named our layout activity_example, this can be done be calling 

setContentView() and passing the reference R.layout.activity_example to it. 

 

Any of the View objects can have an id associated with them. In the example code, all the 

components have a unique ID. These objects can be accessed in the main java code by 

referencing the resource ID. For example, in the java code, the text in the TextView object can 

be edited by creating an instance of the object as shown below.   
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While the user interface can be set using in layout XML file, the application itself is primarily 

written in java. The java files are located in the “src” or “java” folder. The sections below 

provide more details on how the java file was written to reach the objectives of the 

application. 

4.2.3. The Manifest File 

Every app has a manifest file. All the components of the application have to be declared in 

this file. The manifest file includes a lot of information on the app including the minimum API 

level, the API libraries used, all the permissions the app needs and the hardware and software 

features required by the app like Bluetooth services or the camera.  

 

Since this app uses Bluetooth and writes to the external storage device, these permissions 

have to be included in the AndroidManifest.xml file as shown above. The Bluetooth 

permission BLUETOOTH is required to perform any Bluetooth communication, such as 

requesting a connection, accepting a connection, and transferring data. The 

BLUETOOTH_ADMIN permission is required if the app is to change the Bluetooth settings or 

initiate discovery. If you use the BLUETOOTH_ADMIN permission, you also need to include 

the BLUETOOTH permission.  
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The Manifest file uses <activity>, <service>, <receiver> and <provider> to declare the 

activity, service, broadcast receiver and content provider components respectively. When 

declaring an activity, android:name attribute specifies the fully qualified class name of the 

activity subclass and the android:label attributes specifies a string to use as the user-visible 

label for the activity. An intent filter can also be optionally included during the activity 

declaration that declare the capabilities of the app so it can also respond to intents from other 

apps. The intent filter is declared by including an <intent-filter> element as a child of the 

component declaration element as shown above. The <action> element declares the intent 

action accepted, in the name attribute. The <category> element declares the intent category 

accepted, in the name attribute. If the category is launcher, the activity is the initial activity. 

So in this case, when the app is first opened, the activity called “OpeningActivity” is launched 

first.  

4.2.4. Gradle 

Android Studio uses Gradle to compile and build the app. There is a separate build.gradle file 

for each module of the project as well as one for the entire project. The build.gradle file for 

the app is where the dependencies are listed.  

http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/app/Activity.html
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The build.gradle file lists the version of the SDK the project is compiled against. This is 

typically the latest version available, unless changed by the user. It should be Android 4.1 or 

greater. The application ID is the full package name. The minimum SDK version is the earliest 

Android version that the app supports. The target SDK version is the highest Android version 

the app has been tested against.  

 

The gradle file also lists all the dependencies. The dependency element is declared after the 

android element. The com.android.support:appcompat-v7:22.2.1 declares a dependency on 

version 22.2.1 of the Android Support Library. The Android Support Library is available in 

the Android Repository package of the Android SDK. This is one of the packages that must be 

downloaded and installed. The compile fileTree(dir: ‘libs’, include: [‘*.jar’]) tells the build 

system that any JAR file inside app/libs is a dependency and should be included in the 

compilation classpath and in the final package. To plot the data in real time, an additional 

library called AndroidPlot was used. AndroidPlot is a free tool to graph data and will be 
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discussed later in this chapter. To include this library, the .jar file was downloaded and 

included in the libs folder of the project 

(C:\Users\Username\AndroidStudioProjects\Appname\app\libs). Additionally, the .jar file 

should be included in the dependencies element. Whenever any changes are made to the 

build.gradle file, Android Studio requires a project sync to import the configuration changes.  

4.3. Bluetooth 

4.3.1. Setting up Bluetooth 

In order to use any of the Bluetooth functions, the Bluetooth permissions must be set up as 

mentioned earlier and the android.bluetooth package must be included in the Java code. Once 

this is included, the first step would be to check if the device supports Bluetooth. If it does not 

support Bluetooth, then all features will be disabled and the app cannot be used. If the device 

does support Bluetooth, the next step would be to check if the Bluetooth is on/enabled. If 

Bluetooth is supported but disabled, the user can be prompted to enable it without leaving 

the application.  

 

The BluetoothAdapter is required for any Bluetooth activity. There is one Bluetooth adapter 

for the entire system. Calling the getDefaultAdapter() function returns this adapter and the 



48 
 

application can interact with the Bluetooth adapter using this object. If the function returns 

a null, it means that the system does not support Bluetooth and the app can’t proceed any 

further. Once we have the Bluetooth adapter, we can check if it is enabled by calling the 

isEnabled() function. If it returns false, the Bluetooth adapter is disabled. To request that the 

Bluetooth be enabled, startActivityForResult() must be called with an 

ACTION_REQUEST_ENABLE action intent. This causes a dialog box to appear that requests 

the user to enable Bluetooth as shown in figure 4.3.  

 

Figure 4.3. Enable Bluetooth dialogue 

4.3.2. Finding and connecting with other devices 

BluetoothAdapter can be used to find new devices or query the list of paired devices. The 

device discovery or inquiry is a procedure when the device scans the area for other Bluetooth 

devices within its range and requests information about each one of them. If the device is 

discoverable, that is, if the device settings enable it to be visible/discoverable, it responds to 

this request by sending its Bluetooth name, class and unique MAC address back to the device 

that is currently scanning. Using this information, the first device can initiate a connection 

with the second.  When a connection is made for the first time, a pairing request is 

automatically sent. Once the devices are paired, the basic Bluetooth information is saved and 

a scan would not have to be performed to connect with this device at a later time.  

To get a list of the paired devices, getBondedeDevices() can be called. This will return a set of 

BluetoothDevices that represent the paired devices. BluetoothDevice represents a remote 

Bluetooth device. This allows you to query information on the device, like name, class and 
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address, and it allows you to connect to a device. If there are no paired devices, then the app 

displays a message that says “No devices paired. Pair with device and try again”. 

 

Once the list of paired devices has been displayed, the user can select any of the devices listed 

and the app attempts to connect to the device. If the device is within range and discoverable, 

the app connects the two devices and moves on to the next screen where the received data is 

displayed. If the device chosen is not available, the app displays a message to let the user 

know that the connection was not successful.  

To scan for new devices, startDiscovery() can be called. This process first returns with a 

Boolean indicating if the process has been started successfully, and then it retrieves the 

names of the Bluetooth devices found. The application must have a BroadcastReceiver for the 

ACTION_FOUND event to receive information about the devices discovered.  

4.4. Plotting data in real time 

To plot the data, an additional library called AndroidPlot was included as mentioned 

previously. AndroidPlot is an API for creating charts within an Android application. It is 

compatible with all versions of Android from 1.6 onward and is used by over 500 applications 

on Google Play. It is a free tool that can be used to make line, bar, scatter, step and pie charts 

and it allows both static and dynamic charting [26].  
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To create a plot in the application using AndroidPlot, the widget must first be declared in the 

Manifest file and the Gradle. It must also be defined in the XML file, where the size of the plot 

and the tags are set as shown below.  

 

 

The AndroidPlot classes must be included in the java program at the beginning of the code.  
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4.5. Saving the Oximeter Data  

The sensor data is stored on the external memory of the phone. The purpose of this file is to 

have a record of all the values measured by the sensor, to be viewed at a later point if 

necessary. The app saves it as a .txt file but it can easily be opened in Microsoft Excel, making 

it easier to go through. Any irregularity in the pulse rate or oxygen saturation levels can be 

identified using this document if the sensor was on when the event occurred. To save the file, 

the app first creates a folder called “PulseOximeter” if it does not already exist and then it 

creates a file called “OximeterData” followed by the date. The data is then saved on this file.  

4.5.1. Getting date and time 

To get the current date and time, Android classes java.util.Date, java.text.SimpleDateFormat 

and java.text.DateFormat need to be included.  
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The time gets saved in the hh:mm:ss format. The date is saved in two different formats 

because the file name cannot have special characters in it.  

4.5.2. Creating and saving to file 

Before creating a file, we need to make sure that the required permissions are listed in the 

Android Manifest file. WRITE_EXTERNAL_STORAGE and READ_EXTERNAL_STORAGE are the 

permissions required to write to and read files on the external storage respectively. Since we 

will only be writing to the file, we do not need to list the permission required to read from 

external storage. Next, we need to check if the external storage is available to read/write.  

 

If the above getExternalStorageState() returns MEDIA_MOUNTED, then the external storage 

is available to write. Files can be stored as public files or private files. Private files are treated 

as files that belong to the app. These files are accessible to the user and other apps but these 

files are such that they generally do not provide anything of value to the other apps. These 

files get deleted when the user uninstalls the app. A public file, on the other hand, remain on 

the system even after app has been uninstalled. These files are available to the user and the 

other apps. They can include picture and media files, downloaded documents, etc.  
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To save as a public file, two methods can be used. GetExternalStoragePublicDirectory() 

returns the top level public external storage directory for shoving files of a particular type 

based on the argument passed. The method takes an argument depending on the type of file 

you want to save. For example, if the app were to save a picture, the argument 

DIRECTORY_PICTURES would need to be included so that the file can be logically sorted in 

the appropriate directory. Since this app is not saving pictures, music or videos, it uses the 

method getexternalStorageDirectory(). This method is also used to save public files, but it 

returns the root external directory and not a sub-folder within the external storage.  

The following few lines of code first checks if the external storage is available to write. It then 

checks if the folder “PulseOximeter” exists in the root external storage directory. If it does not 

exist, it creates a folder by that name. It then checks if a .txt file with the name “OximeterData” 

followed by the current date exists in this directory. If it doesn’t, it creates a new file with this 

name. 

 

 Next, the app must save the data to this file. The FileWriter and BufferedWriter classes is 

used to write to/append to the file as shown below. “to_save” is the string that is passed to 
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the saved function. The content of this string will be discussed later in this chapter. Finally, if 

there was any error in saving the data, i.e. if for some reason the path name is incorrect or the 

folder or file could not be created, the “Error! Cannot save file” message is displayed on the 

screen.  

 

4.6. Receiving and sorting data 

The BluetoothSocket element represents the Bluetooth socket. This is a point of connection 

between two Bluetooth devices and allows then exchange data using InputStream and 

OutputStream. InputStream is used to read data from a source and OutputStream is used to 

write data to a source. A Handler is used to process the data received. A Handler (bluetoothIn 

in this code) is associated with a thread, and this collects the data that was received and sends 

it to the main thread/UI. The obtainMessage returns the message.  
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As mentioned in the previous chapter, the data string sent starts with ‘#’, followed by the 

pulse rate, followed by ‘+’, followed by the oxygen saturation value, followed by ‘-‘ and the ac 

component of the pulse. The string ends with ‘~’. The symbols ‘#’, ‘+’, ‘-‘, and ‘~’ are used to 

separate out the data and they are then displayed (using setText or pulsePlot) and saved. The 

string sent to the file save function consists of the date stamp, the time stamp, the pulse rate 

and the oxygen saturation value. The string ends with a carriage return so that the next set of 

data gets saved as the next line. To plot the data, the received string is first converted to the 

data type double. The app then checks if the series has reached its maximum limit. If it has, it 
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deletes the first value. It then appends the latest data received to the end of the series and 

replots it. Finally, the recDataString field is cleared. 
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Chapter 5 

Results and Conclusions 

The pulse oximeter was used to measure data continuously in 2-3 minute time spans and the 

corresponding data measured by a Contec pulse oximeter (model number CMS50D) was 

recorded simultaneously. Pulse and oxygen saturation measurements were taken in multiple 

sittings over several days. The measurements were also preformed when the subject was 

hyperventilating and after vigorous exercise to try to induce a change in the pulse rate and to 

see how well the device responds to changing pulse rates. Additionally, the oxygen saturation 

levels were measured as the subject was holding their breath for 35-45 seconds after a forced 

expulsion. The changing oxygen saturation levels were used to calibrate and test the response 

of the device.   

The AC and DC voltages from the photodiode are measured every 20 milliseconds by the 

Arduino. To calculate the pulse rate, the Arduino checks for when the AC voltage goes from a 

point below 0.4 V to a point above 0.4 V. Since the waveform is centered at 0.4 V, every pulse 

crosses this point twice – once during the rising slope and once during the falling slope. The 

Arduino notes the time every time the rising slope crosses 0.4 V and uses the time difference 

between two consecutive points to measure the pulse rate. To calculate the oxygen 

saturation, the AC peak to peak voltage is measured for both the red and the infrared LEDs 

by calculating the difference between the maximum and minimum points on the waveform. 

This AC peak to peak reading, along with the DC measurements for both the LEDs are 

substituted in equation 5.2 to calculate the R ratio. Both the oxygen saturation data and the 

pulse rate data displayed by the smartphone (and in the plots below) have been averaged 

over 6 seconds of measurements.  
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5.1. Results 

Table 5.1 shows the average pulse rate and oxygen saturation measured using both devices, 

the reference pulse oximeter and the device designed for this project. The table also shows 

the percentage error for the oxygen saturation which was calculated using equation 5.1. The 

percentage error was calculated for each data point and the absolute values were then 

averages to get the values displayed in table 5.1.  

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝐸𝑟𝑟𝑜𝑟 =  
𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑣𝑎𝑙𝑢𝑒 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑣𝑎𝑙𝑢𝑒

𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑣𝑎𝑙𝑢𝑒
∗ 100 

Table 5.1. Accuracy of average pulse rate and oxygen saturation 

Reference Pulse Oximeter Prototype Pulse Oximeter Percentage Error 

SpO2 (%) Pulse Rate 

(bpm) 

SpO2 (%) Pulse Rate 

(bpm) 

SpO2  Pulse Rate  

98.67 88.75 99.46 88.19 1.08 2.86 

To calibrate the pulse oximeter, the subject held their breath for 35-45 seconds after a 

forceful expulsion. This was repeated several times and the R (equation 5.2) value for the 

device was plotted against the oxygen saturation reading from the reference oximeter. The 

linear fit of this plot was used to calculate the oxygen saturation reported in the following 

plots. Ideally, to calibrate and test the device, the oxygen saturation levels must be measured 

over a much wider range (as explained in section 1.3.5), say 70 – 100%, but since neither the 

breath-holding process not the hyperventilating lowered the oxygen saturation below 95%, 

the accuracy of the device cannot be tested properly.  

𝑅 = (
(

𝐴𝐶
𝐷𝐶)

𝑅𝐸𝐷

(
𝐴𝐶
𝐷𝐶)

𝐼𝑅

) 

(5.1) 

(5.2) 
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Figure 5.1. Calibration curve 

Figure 5.2 shows the comparison of the pulse rates measured by the prototype device and 

the reference pulse oximeter. As mentioned in table 5.1, the total percentage error for the 

pulse oximeter measurements is 2.86%. The solid line in the plot is the linear regression line.  

 

Figure 5.2. Comparison of the pulse rate measured by the reference device and the 

prototype device  
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* 

Figure 5.3. Comparison of the oxygen saturation measured by the reference device and the 

prototype device  

Figure 5.3 shows the comparison of the oxygen saturation data measured by the prototype 

device and the reference pulse oximeter. The solid line represents the linear regression line. 

The R2 value is 0.42, indicating that the data measured by the prototype device does not 

correlate very well with the reference device. However, the resolution of the reference device 

is single digit, and this could have some impact on the percentage error calculation of the 

prototype device. A better resolution could possibly give better results.  

Figure 5.4 shows the comparison of the pulse rates after exercise. These measurements were 

made after the subject performed squats and jumping jacks. The measurements were taken 

over a 3 minute period after the exercise. The R2 value of the plot is much higher than the 

previous pulse rate plot. This is most likely because the measurements for figure 5.4 were all 

made over a short time period and the dataset is much smaller, while the dataset plotted in 

figure 5.2 is much larger and was measured over several days. The pulse rate ranges from 98 

to 132 beats per second.  
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Figure 5.4. Comparison of the pulse rate measured by the reference device and the 

prototype device after exercise. 

Figure 5.5 shows the comparison of the pulse rates during hyperventilation. As the 

measurements were started, the subject was to hyperventilate by breathing into a paper bag. 

The device is quite sensitive to motion and since the subject was attempting to hyperventilate 

during the measurement, the correlation between the measured value and the reference 

value is lower than expected even though this is a small dataset and was also measured over 

a short interval of time.  
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Figure 5.5. Comparison of the pulse rate measured by the reference device and the 

prototype device for hyperventilation test 

Figure 5.6 shows the first page of the Android application after the Bluetooth has been turned 

on and the required device has been selected. If the connection was not successful, it goes 

displays a “Connection failure” notification at the bottom of the screen. If the connection was 

successful, it starts to display the data it receives as shown in figure 5.7.  
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Figure 5.6. List of paired devices on the Android application 

 

Figure 5.7. Data display screen on the Android application 
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A pulse oximeter is very sensitive to motion and there are several factors that can influence 

the performance of the device. For a pulse oximeter that attaches at the finger, the size of the 

finger, the skin and the presence or absence or scar tissue are some of the factors at effect the 

signal received by the photodiode. Additionally, if the sensor is attached with too much or too 

little pressure, the strength of the signal received changes and if the strength of the signal 

changes constantly, both the pulse rate and the oxygen saturation calculations will be 

effected. If the sensor is clamped on too tight, this could even cut off the circulation at the 

finger, so both the sensor placement and the pressure are very important.  

5.2. Conclusion and future work 

To summarize, the aim of the project was to make a wireless platform and to develop a pulse 

oximeter to test the wireless platform. A pulse oximeter was designed and built to measure 

the pulse rate and oxygen saturation at the fingertip. The design consisted of a modified 

clothespin with a red and an infrared LED on one side and a photodiode on the other, to make 

a transmission-mode pulse oximeter. An electronic circuit was designed to convert the 

photocurrent to a voltage, and then filter and amplify this voltage to get the required pulsatile 

signal. This signal was then processed using an Arduino Uno microcontroller and then sent 

to a Bluetooth module to be transmitted to a smartphone. An Android application was written 

to turn on the Bluetooth on the smartphone and connect to a paired device. The app then 

receives the data transmitted by the Bluetooth module attached to the Arduino and displays, 

plots and saves the data in a text file.  

The pulse rate and the oxygen saturation were calculated in the microcontroller. Since the 

pulse waveform was centered at 0.4 V, the points at which the rising slope of the waveform 

crossed 0.4 V was used to calculate the pulse rate. Equation 3.1 was used to calculate the 

oxygen saturation with A as 104.86 and B as -23.288. The constants A and B were obtained 

from the calibration curve from figure 5.1.  
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The average percentage error for the pulse rate is ±2.86% and for the oxygen saturation, the 

average percentage error is ±1.08%. The required accuracy was ± 3 for both the pulse rate 

as well as the oxygen saturation but this, unfortunately, was not achieved. While the average 

error percentage is below 3%, not all the data points measured by the prototype device are 

within 3 bpm or 3% of the data points measured by the reference device. Hence, the device 

does not have an accuracy of 3 bpm or 3% for pulse rate and oxygen saturation respectively.  

The device still needs some improvement to improve the accuracy of both the pulse rate and 

the oxygen saturation. To correctly calibrate and test the device, both the pulse rate and the 

SpO2 would need to change over a much wider range, such a 40 - 120 bpm and 70 - 100%. 

Since neither the breath-holding process not the hyperventilating lowered the oxygen 

saturation below 95%, with most of the data points at 98% or 99%, the accuracy of the device 

cannot be tested properly.  

While the hardware and software components of this project have achieved the goals of 

measuring the pulse rate and oxygen saturation and wirelessly transmitting and displaying 

this data on a smartphone, there are several improvements that could be made to bring the 

device up to industry standards. The sensor is mounted on a modified clothespin, making the 

sensor uncomfortably tight for people with bigger fingers. It also starts to cut off the blood 

flow when clipped on for several minutes, making it impossible to measure data continuously 

over a large time interval. The sensor can be redesigned to be more comfortable for people 

of different sizes and so that it can be used to continuously monitor a subject for any duration 

of time. It can also be redesigned to be more aesthetically pleasing.  

While the sensor itself (the LEDs and the photodiode) was mounted on the clothespin, the 

electronics used to convert, filter, and amplify the current was implemented on a breadboard 

since it was much easier make adjustments as required. However, integrating the sensor, the 

electronics and the microcontroller onto a PCB would make the device more portable, easier 

to use, and possible more reliable since this would eliminate a small fraction of noise and 

stray signals. Additionally, this would allow the use of smaller components and minimize the 
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size of the entire design. The calibration process for the oxygen saturation curve must also be 

improved to get a wider range for oxygen saturation.   

The Android application can also be improved upon to run and save data even when the app 

is not open if the subject desires. Currently, the application pauses if the display of the phone 

is turned off and it terminates the connection if the app is closed. The current program cannot 

run as a background application. It can also be set up to display a warning if the pulse rate or 

the oxygen saturation values are constantly outside a desired range. Additionally, 

applications can be written to allow smartphones working on Apple or Windows operating 

systems to perform the same function.  
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Appendix A 

Data Sets 

Table A.1. Pulse rate data 

Pulse Rate Pulse Rate 

Reference 

Device 

Prototype 

Device 

Reference 

Device 

Prototype 

Device 

98 95 90 91 

79 75 88 88 

74 75 88 87 

75 75 88 86 

77 79 90 90 

91 94 90 91 

93 94 91 94 

94 94 102 101 

96 94 95 96 

95 97 95 95 

89 88 92 95 

90 88 92 91 

91 88 90 90 

84 85 85 86 

91 95 80 77 

82 56 80 73 

85 71 86 86 

85 85 80 80 

89 88 80 79 

90 90 80 78 
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90 90 95 95 

95 98 95 93 

95 95 95 98 

90 109 85 86 

100 98 90 90 

80 79 95 95 

 

Table A.2. Oxygen Saturation Data 

Reference 

Device 

Prototype 

Device 

99 101 

99 100 

99 100 

98 98 

98 98 

98 97 

98 98 

98 98 

99 98 

99 104 

99 101 

99 102 

99 99 

99 99 

99 99 

 



70 
 

Table A.3. Pulse Rate Data after Exercise 

Pulse Rate Pulse Rate 

Reference 

Device 

Prototype 

Device 

Reference 

Device 

Prototype 

Device 

132 131 109 108 

125 131 108 115 

119 119 105 105 

116 116 104 105 

115 128 107 105 

110 116 102 100 

105 100 100 100 

104 96 99 97 

106 100 98 97 

107 108 99 108 

108 108 99 97 

109 97 98 99 

 

Table A.4. Pulse Rate Data after Hyperventilation 

Pulse Rate 

Reference 

Device 

Prototype 

Device 

122 121 

116 85 

113 110 

107 105 

97 91 
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93 95 

90 87 

88 56 

87 61 
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