
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Theses

11-2015

Wireless Sensor Platform for Pulse Oximetry Wireless Sensor Platform for Pulse Oximetry

Anusha Aithal
aa9115@rit.edu

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation Recommended Citation
Aithal, Anusha, "Wireless Sensor Platform for Pulse Oximetry" (2015). Thesis. Rochester Institute of
Technology. Accessed from

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact
repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F8901&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/8901?utm_source=repository.rit.edu%2Ftheses%2F8901&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

1

Wireless Sensor Platform for Pulse

Oximetry

By

Anusha Aithal

A Thesis Submitted in Partial Fulfillment of the requirements for the Degree of

Master of Science in Microelectronic Engineering

Approved by:

Dr. Lynn Fuller, Professor

Thesis Advisor, Department of Electrical and Microelectronic Engineering

Dr. David Borkholder, Professor

Committee Member, Department of Microsystems Engineering

Dr. Robert Pearson, Professor

Committee Member, Department of Electrical and Microelectronic Engineering

Dr. Sohail Dianat, Professor

Department Head, Department of Electrical and Microelectronic Engineering

DEPARTMENT OF ELECTRICAL AND MICROELECTRONIC ENGINEERING

KATE GLEASON COLLEGE OF ENGINEERING

ROCHESTER INSTITUTE OF TECHNOLOGY

NOVEMBER 2015

2

Acknowledgements

I would like to express my sincere gratitude to the following people:

Dr. Lynn Fuller, for his constant encouragement and for giving me the opportunity to work

on this project.

Members of my committee, Dr. Robert Pearson and Dr. David Borkholder, for their

insightful input.

Dr. Daniel Phillips and Ms. Michelle Horan for letting me borrow their equipment.

My fellow students Kavya Duggimpudi and Karine Florent for their support.

And lastly, I would like to dedicate this work to my family.

3

Abstract

Pulse rate and oxygen saturation are two important clinical measurements that indicate the

state of a person’s essential body functions. Oxygen saturation is the measurement of

oxygenated hemoglobin in arterial blood i.e. it indicates the level of oxygen in the blood. Pulse

oximeters, consisting of LEDs and photodetectors, offer a simple and low cost means of

monitoring both pulse rate and blood oxygen saturation non-invasively.

The primary objective of this project was to develop a wireless platform for MEMS devices.

For this project, a pulse oximeter was also developed as a demonstration vehicle for this

wireless platform. A microcontroller and a Bluetooth module was used to transmit the data

from the sensor to the smartphone and an Android program was developed as a part of the

project to connect with the Bluetooth module and receive, plot and save the data. Once the

sensor and Android application were developed, the pulse rate and oxygen saturation

measurements were compared to measurements taken by a commercial pulse oximeter to

determine the accuracy of the device. The sensor was able to accurately measure with an

average error percentage of ±2.86% and ±1.08% for pulse rate and oxygen saturation

respectively.

4

Table of contents

1. LITERATURE REVIEW 9

 1.1. Introduction 9

 1.2. Historical Review 10

 1.3. Theory 12

 1.3.1. Oxygen Transport in the Body 12

 1.3.2. Photoplethysmography 15

 1.3.3. Oxygen Saturation 16

 1.3.4. Transmittance and reflectance pulse oximetry 19

 1.3.5. Calibrating a pulse oximeter 19

2. HARDWARE DESIGN AND CIRCUITRY 21

 2.1. Design specifications 21

 2.2. LED driving circuit 22

 2.3. Current – voltage converter 23

 2.4. Filtering and amplification 24

 2.5. Electrical simulation 25

3. ARDUINO PROGRAMMING 28

 3.1. Introduction to Bluetooth 28

 3.2. Bluetooth module 29

 3.3. Serial Communication 30

 3.4. Setting up the Bluetooth module 31

 3.5. Arduino code 35

4. BUILDING AND IMPLEMENTING AN ANDROID APPLICATION 38

 4.1. Android Programming Fundamentals 38

 4.1.1. Application components 39

 4.1.2. Intent 40

5

 4.2. Android Studio 40

 4.2.1. Creating a project 41

 4.2.2. Layout XML file 42

 4.2.3. The Manifest file 44

 4.2.4. Gradle 45

 4.3. Bluetooth 47

 4.3.1. Setting up Bluetooth 47

 4.3.2. Finding and connecting with other devices 48

 4.4. Plotting data in real time 49

 4.5. Saving the oximeter data 51

 4.5.1. Getting date and time 51

 4.5.2. Creating and saving to file 52

 4.6. Receiving and sorting data 54

5. RESULTS AND CONCLUSIONS 58

 5.1. Results 59

 5.2. Conclusion and future work 65

APPENDIX A 68

REFERENCES 72

6

List of figures

Figure 1.1. The lung 13

Figure 1.2. Oxygen transport in the body 14

Figure 1.3. Oxygen bound to hemoglobin 15

Figure 1.4. PPG trace 16

Figure 1.5. Absorption spectrum of Hb and HbO2 18

Figure 1.6. Transmittance and reflectance pulse oximetry 19

Figure 2.1. LED driving circuit and photodetector unit 23

Figure 2.2. Filtering and amplification 24

Figure 2.3. Schematic of simulated circuit 25

Figure 2.4. Simulated waveforms 26

Figure 2.5. Simulated frequency response 26

Figure 2.6. Screen capture of the output PPG waveform from the sensor 27

Figure 3.1. SparkFun’s BlueSMiRF 30

Figure 3.2. Bluetooth COM ports 33

Figure 3.3. Bluetooth device information extracted using command mode 34

Figure 4.1. Configuring a new Android Studio project 41

Figure 4.2. Example of an Activity layout 42

Figure 4.3. Enable Bluetooth dialogue 48

Figure 5.1. Calibration Curve 60

Figure 5.2. Comparison of the pulse rate measured by the reference device

and the prototype device 60

Figure 5.3. Comparison of the oxygen saturation measured by the reference

device and the prototype device 61

Figure 5.4. Comparison of the pulse rate measured by the reference device

and the prototype device after exercise 62

Figure 5.5. Comparison of the pulse rate measured by the reference device

7

and the prototype device for hyperventilation test 63

Figure 5.6. List of paired devices on the Android application 64

Figure 5.7. Data display screen on the Android application 64

List of tables

Table 2.1. Design Specifications 22

Table 5.1. Accuracy of average pulse rate and oxygen saturation 59

8

List of Abbreviations

HbO2 - Oxygenated hemoglobin

SpO2 - Oxygen Saturation

IDE - Integrated Development Environment

PPG - Photoplethysmogram

SPP - Serial Port Profile

SDK - Software Development Kit

APK - Android Application Package

API - Application Programming Interface

9

Chapter 1

Literature Review

Oxygen is one of the most important elements needed to sustain life. It is important to almost

every single cell in the body. It is involved in the process of cellular respiration, where

carbohydrates, fats and proteins are broken down to retrieve energy. A decline in the levels

of oxygen could affect metabolism significantly. A protein in the red blood cells called

hemoglobin (Hb) is responsible for most (about 98%) of the oxygen transport in the body.

Oxygen binds to the protein, together forming oxyhemoglobin or HbO2. Oxygen saturation

(SpO2) is a measure of the percentage of HbO2 in arterial blood.

1.1 Introduction

A pulse oximeter is a device that can measure oxygen saturation non-invasively. Prior to the

invention of the pulse oximeter, SpO2 was measured by performing a blood gas analysis on

samples of blood drawn from the patient. This method does not provide real time feedback

and is an invasive procedure. For a healthy individual with sufficient oxygen in their blood

stream, the tongue and lips appear pink. However, when the oxygen levels are low, they

appear blue. This bluish appearance of skin and mucus membranes is cyanosis. Hypoxemia,

or abnormally low concentrations of oxygen in the blood, used to be assessed primarily by

looking for cyanosis. Using cyanosis for the clinical assessment of hypoxemia is extremely

unreliable because several factors including skin color and room lighting can affect the

detection of cyanosis. Additionally, cyanosis is only visible when the concentration of

deoxygenated hemoglobin is above a certain limit. So a severely anemic patient may never

show signs of cyanosis even when extremely hypoxic. Thus, a tool to constantly monitor

oxygen saturation levels is very important.

A pulse oximeter measures the oxygen saturation levels and the pulse rate from a

photoplethysmogram (PPG). Photoplethysmography was first described by Alrick Hertzman

10

in 1937. He gave it the term “plethysmos”, derived from the Greek work for fullness, since he

believed he was measuring the fullness of the tissue when he measured the amount of light it

absorbed [1,2]. Most pulse oximeters display the plethysmograph trace in addition to the

arterial oxygen saturation and the heart rate. The most important function of the trace is to

judge if the oximeters is functioning correctly. However, a normal plethysmograph trace does

not imply that the SpO2 value is correct [3].

A pulse oximeter consists of a red LED (~650 nm), infrared LED (~940nm) and a

photodetector. The PPG is obtained by measuring the change in the light absorbed by the

blood and the ratio of absorption of red to infrared light is used to calculate the SpO2. Pulse

oximeters are used extensively in ICUs, and during surgeries and other procedures involving

sedation.

1.2. Historical Review

The relationship between the absorption of light and the concentration of the absorbent was

first described by Johann Heinrich Lambert in 1760. This was further investigated by August

Beer, who published the Beer-Lambert law in 1851 [3]. The Beer-Lambert law is the linear

relationship between the absorbance of light and the amount of absorbing material.

Following the invention of the spectrometer in1860 by Kirchhoff and Bunsen, Hoppe-Seyler

showed that oxygen changes the color of a component in blood. He coined the term

“hemoglobin” and later showed that oxygen and hemoglobin form a loose, dissociable

compound he called oxyhemoglobin. Stokes showed that this colored substance was the

carrier of oxygen in the blood [4-6].

The first device to measure the oxygen saturation in blood by illuminating it with different

wavelengths of light was developed in the 1935 by Karl Matthes, a physician. This device

measured ear oxygen saturation and used a second wavelength (the first being red and the

second being green or infrared) to compensate for blood volume and tissue pigment. Millikan

made the first portable, light-weight oximeter in the early 1940’s to train World War II pilots

11

for aviation. The Hewlett-Packard ear oximeter, developed in the early 1970’s, was the

forerunner of pulse oximetry. It used eight different wavelengths derived from an

incandescent source. The different wavelengths were for different absorbing substance (skin,

oxygenated hemoglobin, deoxygenated hemoglobin etc.) and the model assumed that each

absorbing substance acted independent of the others. Again, this model did not differentiate

between arterial and venous blood. While it was a remarkable advance in oxygen saturation

monitoring, the device had several disadvantages including the large, bulky earpiece and the

need for regular recalibration [3,4,6,7].

In the early 1970’s, Takuo Aoyagi’s research involved using dye dilation to measure cardiac

output. He used two wavelengths, 805 nm and 900 nm to maximize the dye sensitivity and

minimize the oxygen saturation sensitivity. The ratio of the two optical densities was used to

get the dye curve, which was expected to correspond with the dye concentrations in the

blood. However, he noticed pulsatile variations in the output, making it difficult for him to

measure the cardiac output. He then used the wavelengths 900 nm and 630 nm. The 900 nm

wavelength was used to avoid interference by the dye and the 630 nm wavelength was

chosen to maximize the hemoglobin extinction change caused by oxygen saturation change.

He then used the AC/DC ratio of the two wavelengths to calculate the oxygen saturation,

hence developing the pulse oximeter [6, 8-10]. Aoyagi and his associates released the pilot

model of the pulse oximeter in 1974. Biox made the first commercial oximeter in 1981,

followed by Nellcor, who released their product in 1983. It was recognized as the standard

for inoperative monitoring by the Association of Anesthetics of Great Britain and Ireland in

1988 and the American Society of Anesthesiologists in 1990 [6].

12

1.3. Theory

1.3.1. Oxygen Transport in the Body

Oxygen is vital for survival. The absence of oxygen for a prolonged period of time will cause

cells to die. Thus, oxygen circulation is an important indicator of a person’s health. The

respiratory system and the circulatory system are responsible for the oxygen supplied to the

cells. Ventilation is the process by which air moves into and out of the lungs. Ventilation is

based on the principle that air flows from a region of higher pressure to a region of lower

pressure. During inspiration, the muscles between the ribs contract and pull upwards, while

the diaphragm contracts and pulls downward, causing the thoracic cavity to expand. At this

point, the atmospheric pressure is greater than the pressure inside the lungs, causing air to

flow in. During expiration, the muscles relax, causing the volume to decrease and the pressure

in the lungs to increase. As the pressure inside the lungs increases beyond the atmosphere

pressure, the air flows out of the lungs [11, 12].

The nasal passage warms, filters and moistens the inhaled air before it reaches the lungs. The

nasal passage has microscopic hair called cilia which, together with the mucus, filters dust

particles out of the inhaled air. The mucus also moistens the air, while the capillaries under

the mucus layer warm it. The air then passes through the pharynx (or the throat) to the

larynx, which is also referred to as the voice box. Both air and food go through the pharynx.

When food is swallowed, a part of the larynx called the epiglottis closes the entrance to the

trachea, hence preventing the entry of food particles into the lungs.

The larynx leads into the trachea or the windpipe, which is kept open by ringed cartilages.

The trachea also has mucus and cilia to filter out further pollutants and particles. The trachea

splits into two bronchi, each of which leads to a lung. The bronchi branches out into bronchial

tubes, which divide further into smaller structures called bronchioles as shown in figure 1.1.

The bronchioles end in small balloon like structures called the alveoli. The alveoli is where

the gas exchange takes place [11, 13].

13

Figure 1.1. The lungs

The alveoli are surrounded by capillaries and the walls of the alveoli are very thin, allowing

the exchange of oxygen and carbon dioxide between the alveoli and the capillaries. The partial

pressure of oxygen is higher, and that of carbon dioxide is lower in the alveoli than the blood,

causing oxygen to diffuse into the blood while the carbon dioxide moves into the alveoli. Most

of the oxygen that enters the bloodstream binds to the hemoglobin in the blood, while a small

amount dissolves in the plasma. The blood from the capillary then enters the heart through

the pulmonary vein and is circulated throughout the body.

The heart serves as a pumping mechanism for the blood. In the pulmonary circulation, oxygen

depleted blood is pumped out of the right ventricle of the heart. The pulmonary artery

transports this blood to the lungs, where carbon dioxide is released from the blood into the

alveoli through the capillaries and oxygen enters the bloodstream. This oxygenated blood is

then transported to the left atrium of the heart by the pulmonary vein.

14

In the systematic circulation, oxygen rich blood is pumped out of the left ventricle via the

systemic arteries. The artery branches out into smaller arteries and finally into capillaries.

The oxygen diffuses through the walls of the capillaries to the oxygen depleted tissues, while

the waste substances and carbon dioxide diffuses into the blood from the tissues. This blood,

which is now low in oxygen, is collected in veins and transported back to the heart [11, 13,

15]. Figure 1.2 shows this entire process.

Figure 1.2. Oxygen transport in the blood

The amount of oxygen that gets circulated depends on three factors: the amount of oxygen

that binds to the hemoglobin in the blood, the concentration of hemoglobin in the blood and

the cardiac output [16]. Cardiac output is the total volume of blood pumped through the

circulatory system in one minute. Hemoglobin (abbreviated as Hb) is the protein in red blood

cells that carries oxygen. Each hemoglobin molecule has four binding sites for oxygen

15

molecules. A saturated hemoglobin molecules has four oxygen molecules bound to it. Every

100 ml of blood contains about 15g of hemoglobin and each gram of hemoglobin can bind to

up to 1.39ml of oxygen so 100 ml of blood can contain up to 20.4ml of oxygen [16, 17].

Figure 1.3. Oxygen bound to hemoglobin

1.3.2. Photoplethysmography

A plethysmograph is used to measure a change in volume within an organ or the whole body.

A PPG is an optically obtained plethysmogram. It is a pulsatile waveform that can be used to

non-invasively monitor the cardiac rhythm. Light incident on the body can be absorbed by

arterial blood, venous blood, skin, tissue, pigments and bones but the light absorbed by

arterial blood changes as the volume of blood in the artery changes. There is more blood in

the arteries during the systolic phase of the cardiac cycle than in the diastolic phase. Thus, a

PPG sensor can optically monitor the blood flow by measuring the light transmitted through

or reflected off the tissue. Figure 1.4 shows the absorption of light by tissue over time. The

PPG waveform consists of a small AC signal riding over a large DC signal. This DC signal is

actually a slowly varying signal and changes with respiration.

16

Figure 1.4. Variation in attenuation due to arterial blood

1.3.3. Oxygen Saturation

Oxygen saturation can be defined as the ratio of oxygenated hemoglobin to the total

hemoglobin (oxygenated and deoxygenated) in the blood. If all the binding sites on the

hemoglobin have oxygen molecules attached to them, the hemoglobin is said to have 100%

saturation.

SpO2(%) =
HbO2

HbO2 + Hb
∗ 100

Oxygen saturation is the fifth most important vital sign after pulse rate, body temperature,

blood pressure, and respiration. Most healthy individuals have an arterial oxygen saturation

level of 95%-100% at sea level. Since the saturation levels depend on partial pressure of

gases, extreme altitude can affect the saturation levels. Venous blood normally has a

saturation of around 75%. The oxygen saturations level remains roughly constant in time but

health problems like lung diseases or smoking can cause a decrease in these levels. For

(1.1)

17

(1.2)

(1.3)

example, 94% can be considered normal for a heavy smoker. If the arterial oxygen saturation

level is below 90%, it is considered low and requires treatment [17, 19].

Hemoglobin forms reversible and unstable bonds with oxygen to form HbO2. In its

oxygenated state, it appears a bright red color and in its reduced state, it appears a darker

purplish in color. Beer-Lambert’s law can be used to calculate the absorbance of

monochromatic light by a transparent substance through which it passes as shown in the

equation below [3].

𝐼𝑡 = 𝐼𝑜 ∗ 10−𝜀𝑐𝑑

Where It is the intensity of transmitted light, Io is the intensity of incident light, ε is the

extinction coefficient (the fraction of light absorbed at a certain wavelength), c is the

concentration of the absorbing substance, and d is the length of the path through the sample.

Two independent equations can be derived to describe the absorption of Hb and HbO2 at two

different wavelengths, i.e. red and infrared. These equations can then be solved to find the

oxygen saturation, as this depends on the Hb – HbO2 ratio. Hence, upon solving these

equations, the SpO 2 can be calculated using the following equation [20].

𝑆𝑝𝑂2 = 𝐴 + 𝐵 ∗ 𝑅

Where A and B are constants and R is the ratio of the optical density (log (𝐼𝑜 𝐼𝑡⁄)) of the

oxygenated and the deoxygenated hemoglobin.

However, the Beer-Lambert law only applies to monochromatic radiation through a

homogenous substance. There must be only one absorbent and there should be no reaction

between the absorbent and the solvent. Blood is a non-homogenous substance and the

amount of light absorbed changes as the volume of the blood changes. While the principle of

pulse oximetry relies on the Beer-Lambert law, the non-homogenous nature of blood makes

it clear that the device needs to be calibrated [3]. The calibration of a pulse oximeter will be

discussed in the following section.

18

Figure 1.5. Example absorption spectrum of Hb and HbO2

A pulse oximeter consists of a red LED, an infrared LED, and a photodetector. In order to get

the SpO2, the red and the infrared LEDs must be at a wavelength where the extinction

coefficients of Hb and HbO2 are different. Figure 1.5 shows the absorption spectrum of

oxygenated and deoxygenated hemoglobin in the visible – near infrared region. The isobestic

points are the wavelengths at which the extinction coefficients of the two substances are

equal. Typically, pulse oximeters used a red LED at around 660 nm and an infrared LED at

880 nm – 940 nm. The range of wavelengths that can be used in 600 nm -1300nm. At

wavelengths shorter than 600 nm, the skin pigment, melanin, absorbs strongly and at

wavelengths longer than 1300 nm, the water present in the tissues absorbs strongly [3].

The sensor containing the LEDs and the photodetector is placed in close contact with the skin,

typically at the fingertip or at the wrist and SpO2 is calculated from the ratio of absorption of

the two wavelengths. The detector can be placed such that the sensor works in reflection or

transmission mode.

19

1.3.4. Transmittance and reflectance pulse oximetry

In reflectance mode pulse oximetry, the LEDs and the photodetector are on the same side of

the probe. These sensors can be placed at the fingertip or at the ear lobe. The photodiode

measures the light back-scattered by the bone, tissues and blood vessels. In transmission

mode pulse oximetry, the detector is placed on the opposite side of the sensor from the LEDs.

These sensors can be placed at the fingertip, wrist, chest, forehead, etc. While a device using

transmission mode can provide good measurements, the number of sites where it can be

placed is limited. It must be placed at a point through which light can easily be transmitted.

The reflectance based device, however, does not have this problem and can be placed in areas

where light cannot easily transmit through as well.

Figure 1.6. Transmittance pulse oximetry and reflectance pulse oximetry

1.3.5. Calibrating a pulse oximeter

The Beer-Lambert law was used to calibrate pulse oximeters originally, but as stated in the

previous section, the law does not apply to pulse oximetry due to the presence of multiple

absorbents and the scattering nature of blood. Pulse oximeters are now calibrated using an

empirical method where a given ratio, R, is used to estimate the oxygen saturation levels [11].

R is a ratio of the amplitude of AC and DC signals from the red and the infrared LED.

20

(1.4) 𝑅 = (
(

𝐴𝐶
𝐷𝐶

)
𝑅𝐸𝐷

(
𝐴𝐶
𝐷𝐶

)
𝐼𝑅

)

Traditionally, pulse oximeters were calibrated by the in vivo method. This method used a CO-

oximeter for comparison. There are four common types of hemoglobin: oxygenated

hemoglobin (HbO2), reduced hemoglobin (Hb), carboxyhemoglobin (COHb), and

methemoglobin (MetHb). The CO-oximeter analyzes the concentration of the different types

of hemoglobin using as few as four wavelengths of light [11].

The procedure involved drawing blood samples from the radial artery and then analyzing

these samples to ascertain the levels of COHb and MetHb. This is then used to calculate the

oxygen/air mixture required to bring the oxygen saturation to 100%. Then they breathe an

oxygen/air combination with progressively less oxygen and more nitrogen, making the

patient progressively more hypoxic and at each stage, samples of arterial blood is collected

from the patient and analyzed using the CO-oximeter, creating a calibration curve for oxygen

saturation [3, 11].

The in vivo method was used to calibrate pulse oximeters until 1993 [11]. There are several

problems associated with this method, the biggest being that the methods involves

deliberately desaturating a healthy volunteer. The range over which the device is calibrated

is limited. The volunteer cannot be desaturated below 85% without risking hypoxic brain

damage, so the calibration curve must be extrapolated for SpO2 values below 85%.

The in vitro calibration method typically involves whole blood (anticoagulated with heparin)

pumped through a model finger. A pump mixes in a known mixture of oxygen, nitrogen and

carbon dioxide and a drive system is used to simulate the pulsatile nature of arterial blood.

The oxygen saturation is measured by the pulse oximeter being calibrated, a CO-oximeter,

and the blood samples are tested in a blood gas analyzer for pH and pCO [11]. The calibration

method used for this project is discussed in section 5.1.

21

Chapter 2

Hardware Design and Circuitry

The pulse oximeter design is comprised of 5 parts: the LED driving circuit, the photodiode

and a current to voltage converter, filtering and amplification, a low pass filter, and

microcontroller with Bluetooth module. This chapter discusses the design and

implementation of the electronic circuitry, while the next chapter discusses the

microcontroller and the Bluetooth module.

2.1. Design Specification

The design specifications for the sensor and the hardware are listed below in table 5.1. The

sensor specifications were determined from commercial device specifications. The

specifications of several commercial pulse oximeters were examined and the following

specification were chosen, however, the entire desired range of both the pulse rate as well as

the oxygen saturation levels will not be tested for this project.

22

Table 2.1. Design Specifications

Hardware Specifications

Red LED
Maximum current allowed = 30 mA

Power supply = 9 V

Current limiting resistor = 330Ω

Infrared LED
Maximum current allowed = 50 mA

Power supply = 9 V

Current limiting resistor = 220Ω

Non-inverting amplifier
Gain ~ 85

Single supply amplifier used

Power supply +9 V

Low pass filter Cutoff frequency = 15 Hz

Sensor Specification

Effective measuring range
Pulse rate: 35 – 250 bpm

Oxygen saturation: 0 – 100%

Accuracy
Pulse rate: ±3%

Oxygen saturation: ±3%

2.2. LED deriving circuit

The sensor consists of an IR LED (SEP8736) at 880 nm, a red LED (VCC 5322F1) at 650 nm

and a photodiode (PDB-C 156) with a spectral range of 400 nm to 1100 nm. The LED driving

circuit is part “A” in the figure below. The “Control-Red” and the “Control-IR” signals come

from the Arduino. The Arduino is used to switch the LEDs on and off, allowing the

photodetector to measure the absorbance at both wavelengths independently. Resistors R1

23

and R2 are used to control the current through the LEDs and ensure that this is under the

maximum allowed.

Figure 2.1. LED driving circuit and photodetector unit

2.3. Current – voltage converter

Part “B” comprises of the photodiode followed by a current-to-voltage converter. This circuit

simply converts and amplifies the current output of the photodiode to a voltage. The resulting

output voltage, V1 is as expressed in equation 2.1. Resistor R3 determines the gain of this

stage. The DC voltage required for the oxygen saturation calculation is obtained from the end

of this stage, so V1 is also an input to the Arduino.

𝑉1 = 𝐼 (𝑅3)

(2.1)

(B) (A)

24

2.4. Filtering and amplification

Part “C” passes the output of the current-voltage converter through a 1μF capacitor to filter

out the DC voltage. Resistors R4 and R5 are then used to offset the ac signal halfway between

ground and 9V. The signal is amplified by a single supply amplifier (NJU7024) in the non-

inverting configuration and then passed through capacitor C2, which is a coupling capacitor

that is used to block DC. This is followed by a low pass filter with a cutoff frequency of 15Hz

to filter out any noise from the sensor. The waveform out of the amplifier is centered at 4.5 V,

and since the maximum allowed input voltage to the Arduino is 5 V, this DC is eliminated and

resistors R10 and R11 are used to provide a lower DC offset to the AC waveform such that the

waveform is always below 5 V. Finally, the diode D2 is used to limit the negative voltage input

to the microcontroller to a maximum of -0.7 V.

Figure 2.2. Filtering and amplification

The microcontroller and Bluetooth module are used to calculate the pulse rate and the oxygen

saturation level and transmit the data to the smartphone will be discussed in the following

chapter.

(C) (D)

25

2.5. Electrical Simulation

LT Spice IV was used to simulate the circuitry in figure 2.2. A voltage source was used to

simulate the output of the current to voltage converter. Below are the images showing the

schematic and the simulated waveforms and the frequency response. Signal V1 from figures

2.1 and 2.2 was modeled as a 2mV sine wave at 2Hz with a DC offset of 3V. A single supply

operational amplifier was used to simulate the performance of the NJU7024. As desired, the

final waveform (Vout in figure 2.4) is centered at 0.4 V.

Figure 2.3. Schematic of simulated circuit

26

Figure 2.4. Simulated waveforms at V1, V2 and Vout

Figure 2.5. Simulated frequency response.

27

Figure 2.6. Screen capture of the output PPG waveform from the sensor

Figure 2.6 is a screen capture of a PPG waveform from the oscilloscope. The output from the

sensor is a 200 mV peak to peak signal centered at 0.4 V, compared to the 300 mV peak to

peak output obtained from the simulation. The amplitude and frequency of sensor output will

vary from person to person, however, the signal will always be centered at 0.4 V as designed

using the electronics.

28

Chapter 3

Arduino Programming

Arduino is an open source platform that consists of a programmable microcontroller on a

board with I/O pins, and a software or an IDE (Integrated Development Environment) that

can be used to write the program, upload it to the board and even view the results using a

serial monitor. The Arduino Uno is the most used and most documented board in the Arduino

family. It is also the most robust board made by Arduino [21]. An Arduino program is called

a sketch. The Arduino IDE comes with several example sketches which can directly be

compiled and uploaded to the board. In addition to the several websites and blogs that

discuss projects on the Arduino, there are forums on the Arduino website itself that help

answer questions and solve problems, making it a great tool for people of all skill levels.

For this project, the Arduino is used to receive data from the sensor, calculate the pulse rate

and the oxygen saturation values and then send this data to the Android application using a

Bluetooth module. An Arduino Uno board was used with a SparkFun BlueSMiRF Bluetooth

module. This chapter discusses how to use the BlueSMiRF module and briefly explains the

Arduino program.

3.1. Introduction to Bluetooth

Bluetooth is a wireless communication system that can be used to send and receive data over

a short distance. Created in 1994 by Ericsson, it was originally viewed as a wireless

alternative to RS-232 data cables. Bluetooth devices operates in an unlicensed frequency

band at 2.4 GHz. This band ranges from 2.4GHz to 2.485 GHz and is called the industrial,

scientific and medical (ISM) band. It is unlicensed and available in most countries. The

technology uses a spread spectrum, frequency hopping, full-duplex signal at 1600 hops/sec

[22].

29

The technology gets its name from the 10th century Danish king, Harold Bluetooth. The

standard for Bluetooth is maintained by the Bluetooth Special Interests Group (SIG). The

Bluetooth technology is built into several devices, including smartphones, laptops, tablets,

cars, medical devices and even toothbrushes. The development of this technology was

instrumental in reducing the requirement for wired connections, and allows users to share

data, music, pictures and other information wirelessly between paired devices [22].

3.2. Bluetooth Module

SparkFun makes several different Bluetooth modems including Bluetooth Mate and

BlueSMiRF. For this project, the BlueSMiRF Gold modem was used. The SparkFun Bluetooth

modems can be used to communicate with any other Bluetooth device that supports SPP,

including a computer or a smartphone that supports Bluetooth. If the Bluetooth module is

being used with a computer that does not already have Bluetooth, a Bluetooth USB module

can be plugged into the USB slot of the computer.

Bluetooth modules can have a range of 1m – 100m depending on the type of device. A class 3

Bluetooth module typically has a range of 1 meter, while a class 2 has a range of 10 m and a

class 1 has a range of 100 meters. The BlueSMiRF used is a class 1 device.

A voltage from 3.3V to 6V can be used to power the device. There is a linear 3.3V regulator on

board since the maximum operating voltage of the module is 3.3V. The ground pin (GND) is

the 0 reference voltage, common to all the devices connected to the Bluetooth modem. The

TX-O and the RX-I pins are transmit and receive pins respectively. The receive pin receives

data serially and must be connected to the transmit pin of the Arduino. Similarly, the transmit

pin of the Bluetooth module is used to send or transmit data serially and must be connected

to the receive pin of the Arduino. The VCC, GND, TX-O and RX-I are the pins that are required

for all serial communication using the modem. The RTS-O pin is the request to send pin. This

is used for hardware flow control in some serial interfaces. The CTS-I or the clear to send pin

is another signal to control the serial flow [23]. Neither of these pins are critical for simple

30

serial interfaces and will be shorted together for this project. Figure 3.1 shows the different

parts of the Bluetooth modem. The figure shows that there are two LEDs on the board. The

stat LED is red and the connect LED is green.

Figure 3.1. Parts of the SparkFun BlueSMiRF

3.3. Serial Communication

The Arduino hardware has built-in support for serial communication. Pins 0 and 1 on most

Arduino boards are the serial receive and transmit pins. These are also connected to the

computer via the USB connection. If these pins are used to communicate with the computer,

they cannot be used as digital input or output pins. The begin() function is used to set the

serial communication data rate in bits per second. For communicating with a computer, only

the following rates cate be used: 300, 600, 1200, 2400, 4800, 9600, 14400, 19200, 28800,

38400, 57600, or 115200. However, other baud rates can be specified if the device that the

Arduino is communicating with requires it [24]. If the serial ports on the board are being

used, Serial.begin(rate) can be called to set a particular baud rate. Since the serial pins are

also connected to the computer, the serial monitor option in the toolbar menu of the Arduino

IDE can be opened. Once the baud rate on the serial monitor is set to the same rate as that set

using begin(), the serially transmitted data can be viewed.

31

In addition to the built-in serial pins, the Arduino also supports the SoftwareSerial library

that can allow serial communication on any other digital pins on the Arduino board. For this

project, pins 2 and 3 of the Arduino board are used for serial communication. Pin D2 of the

Arduino is connected to the TX-O pin of the Bluetooth modem and the pin D3 of the Arduino

board is connected to the RX-I pin of the Bluetooth modem. This means that pin D2 must be

declared as the receive pin and pin D3 must be declared as the transmit pin in the Arduino

code. Additionally, the VCC pin of the Bluetooth modem is connected to 5V pin and GND pin

goes to the GND pin on the Arduino board.

3.4. Setting up the Bluetooth modem

The Bluetooth modem can be powered up by powering the Arduino it is connected to. Once

the modem is powered, it can be used to wirelessly connect with any other Bluetooth device

that supports SPP (most Bluetooth devices do). Once the two devices are paired, the

Bluetooth modem can be configured to operate at the desired baud rate. The default baud

rate of the BlueSMiRF Bluetooth modem is 115200 bps.

The Bluetooth modem can operate in two modes – command mode and data mode. The

command mode is used to configure the Bluetooth module. The device must be in command

mode if the name, pin code or the baud rate of the device is to be changed. In command mode,

the module can also scan for and connect to available devices within its range. In the data

mode, the module is simply used to transmit and receive data.

The status LED indicates is the device is in command mode. When the device is powered up,

a timer called the configuration time starts counting. The default period for the configuration

timer is 60 seconds but this can be changed to a different duration (or even turned off!). Once

the timer has run out, the user cannot enter the command mode until the device is powered

up again. If the red status LED blinks at the rate of 10 blinks per second, this indicated that

the device is in command mode. If it blinks at 2 blinks per second, the device is not in

command mode but the configuration timer is still counting and the user can still enter

32

command mode. If it blinks at one blink per second, the configuration timer has run out and

the command mode can only be entered when the device is powered up again.

The Arduino was used as the medium between the computer and the Bluetooth module to

send and receive commands. To connect with the module from a computer, first power up

the Arduino and the BlueSMiRF. Next, ensure that the Bluetooth on the computer is on and

then scan for the BlueSMiRF. The default name of the device will most likely be on the package

of the device. The device used was called “FireFly-D71D. Once the device has been located,

select the pairing option. At this point, the user will be prompted to enter the pin/pairing

code. The default code for all the RN-41 and RN-42 devices is 1234. The device is now ready

to use but the user will require the COM port in order to serially communicate with the device

using the serial monitor on the Arduino IDE. When Windows installs the drivers for a new

Bluetooth device, it also creates a COM port for it. The COM ports can be viewed by opening

up device manager and looking in the “Ports” tree or by opening the Bluetooth settings and

look in the COMS tab as shown below.

33

Figure 3.2. Bluetooth COM ports

Once the connection between the two devices is set up and the COM port is identified, the

Arduino can be programmed to assist the user to enter the command mode. The SparkFun

website has a tutorial on how to use the BlueSMiRF, which includes an Arduino sketch to

enter the command mode (available at learn.sparkfun.com/tutorials/using-the-bluesmirf).

The code uses the SoftwareSerial library to assign serial transmit and receive functions to

two digital pins and then calls the begin() function with the baud rate of 115200 since this is

the default rate.

After the sketch is uploaded, select the COM port associated with the Bluetooth module from

the list of ports in the Tools menu and then open up the serial monitor, again, from the Tools

dropdown menu. In the serial monitor window, set the baud rate to 9600 and from the drop-

down menu next to the baud rate, select “No line ending”. The command mode can be entered

34

by typing in ‘$$$’ into the serial monitor. If the module successfully enters the command

mode, it responds with CMD and the stat LED starts blinking much faster. Once it is in the

command mode, you can view or change the settings. Settings can be viewed or changed after

setting the line ending dropdown to “Newline”. Typing in “D” and then “E” in the serial

monitor returns some basic information on the device including its name, address and baud

rate.

Figure 3.3. Device information extracted using command mode

Since the default baud rate of the device is 115200, it needs to be changed to 9600 for this

project. The baud rate can be changed to 9600 by sending “SU,96” to the module through the

serial monitor. If the baud rate has been successfully changed, the module responds with

“AOK” and the device is now ready to be used for the project. The device name and pin code

can be changed as well, but it was left at the default setting for this project.

35

3.5. Arduino Code

The Arduino code is quite simple. First, the SoftwareSerial library must be included so that

the Bluetooth device can use any (assigned) digital pins to exchange data with the Arduino.

The pins used to transmit and receive data must then be declared along with the serial object.

In this case, the serial object has been named “bluetooth”.

The variables used in the code are declared and initialized, if necessary, before the setup()

function is called. The setup() function is called when the sketch starts and runs only once

each time the Arduino is powered up while the loop() function, which follows the setup()

function, continuously loops and runs until the Arduino is powered off. The setup() function

can be used to initialize variables, set up the pin modes or start the library functions. In this

code, it is used to begin serial communication with the Bluetooth module and the computer,

set up pin modes, and measure the ambient light when both the red and the infrared LEDs

are off. The analogRead maps a voltage from 0 to 5 V and maps it to an integer value between

0 and 1023. The code converts this back to a value between 0 and 5 before transmitting the

value to the smartphone.

36

The loop() function is used to alternatively switch between the red and the infrared LEDs,

measure the AC and DC voltages, calculate the pulse rate and the oxygen saturation and

transmit this along with the AC waveform from the infrared LED to the smartphone. Equation

3.1 is used to calculate the oxygen saturation value.

𝑆𝑝𝑂2 = 𝐴 + 𝐵 ∗ (
(

𝐴𝐶
𝐷𝐶)

𝑅𝐸𝐷

(
𝐴𝐶
𝐷𝐶)

𝐼𝑅

)

 Where A is 104.86 and B is -23.288. The device was calibrated to obtain this relationship.

The calibration is discussed in the results section.

The pulse rate was calculated from the AC waveform of the infrared LED. Since this waveform

is centered at 0.40V (set using R6 and R7 in figure 2.2), the Arduino was used to check for the

when the waveform increased beyond 0.40 V. The function millis() returns the number of

milliseconds since the Arduino board began running the current program. This was used to

save a time stamp at each crossing and the time stamps were then used to calculate the period

of the waveform.

(3.1)

37

At the end of each iteration, the AC voltage measured from the IR LED, the calculated pulse

rate and the oxygen saturation are transmitted to the smartphone. To help the Android

identify the beginning and ending of each transmission, the first character transmitted is “#”

and the last character transmitted is “~”. Additionally, to help the Android sort between the

pulse rate, the oxygen saturation and the AC voltage reading, more special characters are

used as shown above. The Android code, discussed in the next chapter, uses these characters

to identify the data from the input stream.

38

Chapter 4

Building and Implementing an Android Application

The aim of the android application is to receive the sensor data via Bluetooth and display it.

So, the application should be able to check if the device has a Bluetooth module that can be

used, turn this module on, connect with the Arduino, receive the data, and finally display and

plot the data. The following chapter briefly explains the Android programming fundamentals

and explains the objectives that were implemented. Reference [25] was used to understand

the theory explained in this chapter.

4.1. Android Programming Fundamentals

Android applications are written in Java programming language. The Android SDK or the

Android Software Development Kit is a set of software development tools that compiles the

Java code along with any data and resource files like libraries, pictures, audio clips, etc., to

generate a single .apk file. The .apk (Android Package) is the file format that is used to

distribute or install the application onto Android devices.

The Android operating system works like a multi-user Linux system, where each application

is a different user. The applications are each assigned a unique Linux user ID and only the

assigned user ID can access the permissions and data associated with that app. However, it is

possible for two different apps to have the same Linux user ID, allowing them to access each

other’s files. An application must request permission to use the data and resources on the

device like the camera, Bluetooth, user’s contact list and messages etc. These permissions are

granted by the user when the app is being installed.

39

4.1.1. Application Components

a. Activity

An activity is a single screen with a user interface. In the app written for this project, for

example, one activity displays the home screen, another displays the Bluetooth paired

devices and yet another activity displays the results from the sensor. Even though the

activities run in a sequence in the app, they can function independently of each other. A

different app can also access these activities, if the app allows it. For example, the camera or

the microphone app could open any messaging app to share pictures or recordings.

b. Services

A service does not provide any user interface. It runs in the background without blocking user

interaction with another activity. For example, the media player app allows music to continue

playing even after the user opens a different app.

c. Content Provider

The content provider allows the app to store data. If the content provider allows it, other apps

can view or even modify this data. For example, the Android system has a content provider

that manages the user’s contact list information. With the appropriate permissions, other

apps can view, edit or add to the list.

d. Broadcast Receivers

The broadcast receiver receives system-wide broadcasts. Several broadcasts, like those

announcing the battery is low or that an image has been captured, come from the system itself

but apps can also initiate broadcasts. Broadcast receivers do not have a user interface but

apps can create status bar notifications to notify the user when an event occurs.

40

4.1.2. Intent

An intent is an asynchronous message that is used to start three of the four android

components, namely, activities, services and broadcast receivers. At runtime, an intent can

bind various components to each other, even components that are not a part of your app.

There are separate methods for starting each component. An activity can be started by

passing an Intent (a messaging object) to startActivity() or startActivityForResult() (when

you want the activity to return a result). To start a service, the Intent must be passed to

startService() and a broadcast can be initiated by passing an Intent to sendBroadcast(),

sendOrderedBroadcast(), or sendStickyBroadcast().

4.2. Android Studio

Most Android developers use Java to develop their app. Eclipse, NetBeans and IntelliJ IDEA

are amongst the most common editors used. For this project, Android Studio, which is based

on IntelliJ IDEA was used. Android Studio is the official IDE for Android Application

Development. The first step to developing an app is downloading the editor (Android Studio

in this case) and then downloading the SDK tools and platform using the SDK manager. The

SDK manager can be launched from the File menu (File > Settings > Appearance &

Behavior > System Settings > Android SDK), the Tools menu (Tools > Android > SDK

Manager), or by simply clicking the SDK Manager Icon on the menu bar. The SDK manager

installs the required packages and the latest tools by default. In addition, there is a checkbox

next to each available SDK platform or tool. These can be added or updated by simply

checking the boxes, and clicking Apply and OK. For this project, the latest available packages

at the time were installed, in addition to these packages, packages and tools available for

Android Versions 2.2 and 2.3.3 (API levels 8 and 10 respectively) were installed since the

Android Version of the phone used to test the applications was 2.3.6. Once the editor and the

SDK tools are installed, the app can be developed.

41

4.2.1. Creating a Project

Every application has an application name, a domain name and a package name. The

application name is the name that appears to the users. The company domain name is a

qualifier that will be appended to the package name. It has to have at least two identifiers.

Android Studio typically remembers this domain name for every project you create. The

package name needs to be unique if the application is to be released to the market. For

example, if the application name is “My Application” and the company domain name is

“companyname.com”, then the package name defaults to “com.companyname.myapplication”

but this can be edited independent of the domain and application name. Once the application,

domain and package names are set, you need to select the form factors your applications can

run on and the minimum SDK. Since we require this application to run only on phones, the

Phone and Tablet option was selected and API level 8 was set as the minimum SDK. The

minimum SDK is the earliest version of Android that can run the application. By targeting API

level 8, the app will run on almost all the devices active on Google Play.

Figure 4.1. Configuring a new Android Studio Project

42

4.2.2. Layout XML File

A layout file can be used to define the visual structure for the user interface of the activity.

The layout file can be found in the “res” folder and it can be edited either using the graphical

design assistant, where items can be dragged and placed as required, or by typing it out in

XML (Extensible Markup Language). The application could also include code to modify the

screen objects at runtime. The figure below shows the layout of an activity called

“activity_example” and it includes a linear layout with a TextView and a Button.

Figure 4.2. Example of an Activity Layout

Every layout must contain one root element, which must be a View or ViewGroup object. This

element acts like the basic building block for the UI components. Once this has been defined,

additional objects and widgets can be added. In this example, a vertical linear layout is used

as the root element. The android:orientation field in the code below can be horizontal or

vertical. The vertical linear layout arranges its children components in a single column.

43

The layout file can be loaded on to the application code in the Activity.onCreate()

implementation. Since we named our layout activity_example, this can be done be calling

setContentView() and passing the reference R.layout.activity_example to it.

Any of the View objects can have an id associated with them. In the example code, all the

components have a unique ID. These objects can be accessed in the main java code by

referencing the resource ID. For example, in the java code, the text in the TextView object can

be edited by creating an instance of the object as shown below.

44

While the user interface can be set using in layout XML file, the application itself is primarily

written in java. The java files are located in the “src” or “java” folder. The sections below

provide more details on how the java file was written to reach the objectives of the

application.

4.2.3. The Manifest File

Every app has a manifest file. All the components of the application have to be declared in

this file. The manifest file includes a lot of information on the app including the minimum API

level, the API libraries used, all the permissions the app needs and the hardware and software

features required by the app like Bluetooth services or the camera.

Since this app uses Bluetooth and writes to the external storage device, these permissions

have to be included in the AndroidManifest.xml file as shown above. The Bluetooth

permission BLUETOOTH is required to perform any Bluetooth communication, such as

requesting a connection, accepting a connection, and transferring data. The

BLUETOOTH_ADMIN permission is required if the app is to change the Bluetooth settings or

initiate discovery. If you use the BLUETOOTH_ADMIN permission, you also need to include

the BLUETOOTH permission.

45

The Manifest file uses <activity>, <service>, <receiver> and <provider> to declare the

activity, service, broadcast receiver and content provider components respectively. When

declaring an activity, android:name attribute specifies the fully qualified class name of the

activity subclass and the android:label attributes specifies a string to use as the user-visible

label for the activity. An intent filter can also be optionally included during the activity

declaration that declare the capabilities of the app so it can also respond to intents from other

apps. The intent filter is declared by including an <intent-filter> element as a child of the

component declaration element as shown above. The <action> element declares the intent

action accepted, in the name attribute. The <category> element declares the intent category

accepted, in the name attribute. If the category is launcher, the activity is the initial activity.

So in this case, when the app is first opened, the activity called “OpeningActivity” is launched

first.

4.2.4. Gradle

Android Studio uses Gradle to compile and build the app. There is a separate build.gradle file

for each module of the project as well as one for the entire project. The build.gradle file for

the app is where the dependencies are listed.

http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/app/Activity.html

46

The build.gradle file lists the version of the SDK the project is compiled against. This is

typically the latest version available, unless changed by the user. It should be Android 4.1 or

greater. The application ID is the full package name. The minimum SDK version is the earliest

Android version that the app supports. The target SDK version is the highest Android version

the app has been tested against.

The gradle file also lists all the dependencies. The dependency element is declared after the

android element. The com.android.support:appcompat-v7:22.2.1 declares a dependency on

version 22.2.1 of the Android Support Library. The Android Support Library is available in

the Android Repository package of the Android SDK. This is one of the packages that must be

downloaded and installed. The compile fileTree(dir: ‘libs’, include: [‘*.jar’]) tells the build

system that any JAR file inside app/libs is a dependency and should be included in the

compilation classpath and in the final package. To plot the data in real time, an additional

library called AndroidPlot was used. AndroidPlot is a free tool to graph data and will be

47

discussed later in this chapter. To include this library, the .jar file was downloaded and

included in the libs folder of the project

(C:\Users\Username\AndroidStudioProjects\Appname\app\libs). Additionally, the .jar file

should be included in the dependencies element. Whenever any changes are made to the

build.gradle file, Android Studio requires a project sync to import the configuration changes.

4.3. Bluetooth

4.3.1. Setting up Bluetooth

In order to use any of the Bluetooth functions, the Bluetooth permissions must be set up as

mentioned earlier and the android.bluetooth package must be included in the Java code. Once

this is included, the first step would be to check if the device supports Bluetooth. If it does not

support Bluetooth, then all features will be disabled and the app cannot be used. If the device

does support Bluetooth, the next step would be to check if the Bluetooth is on/enabled. If

Bluetooth is supported but disabled, the user can be prompted to enable it without leaving

the application.

The BluetoothAdapter is required for any Bluetooth activity. There is one Bluetooth adapter

for the entire system. Calling the getDefaultAdapter() function returns this adapter and the

48

application can interact with the Bluetooth adapter using this object. If the function returns

a null, it means that the system does not support Bluetooth and the app can’t proceed any

further. Once we have the Bluetooth adapter, we can check if it is enabled by calling the

isEnabled() function. If it returns false, the Bluetooth adapter is disabled. To request that the

Bluetooth be enabled, startActivityForResult() must be called with an

ACTION_REQUEST_ENABLE action intent. This causes a dialog box to appear that requests

the user to enable Bluetooth as shown in figure 4.3.

Figure 4.3. Enable Bluetooth dialogue

4.3.2. Finding and connecting with other devices

BluetoothAdapter can be used to find new devices or query the list of paired devices. The

device discovery or inquiry is a procedure when the device scans the area for other Bluetooth

devices within its range and requests information about each one of them. If the device is

discoverable, that is, if the device settings enable it to be visible/discoverable, it responds to

this request by sending its Bluetooth name, class and unique MAC address back to the device

that is currently scanning. Using this information, the first device can initiate a connection

with the second. When a connection is made for the first time, a pairing request is

automatically sent. Once the devices are paired, the basic Bluetooth information is saved and

a scan would not have to be performed to connect with this device at a later time.

To get a list of the paired devices, getBondedeDevices() can be called. This will return a set of

BluetoothDevices that represent the paired devices. BluetoothDevice represents a remote

Bluetooth device. This allows you to query information on the device, like name, class and

49

address, and it allows you to connect to a device. If there are no paired devices, then the app

displays a message that says “No devices paired. Pair with device and try again”.

Once the list of paired devices has been displayed, the user can select any of the devices listed

and the app attempts to connect to the device. If the device is within range and discoverable,

the app connects the two devices and moves on to the next screen where the received data is

displayed. If the device chosen is not available, the app displays a message to let the user

know that the connection was not successful.

To scan for new devices, startDiscovery() can be called. This process first returns with a

Boolean indicating if the process has been started successfully, and then it retrieves the

names of the Bluetooth devices found. The application must have a BroadcastReceiver for the

ACTION_FOUND event to receive information about the devices discovered.

4.4. Plotting data in real time

To plot the data, an additional library called AndroidPlot was included as mentioned

previously. AndroidPlot is an API for creating charts within an Android application. It is

compatible with all versions of Android from 1.6 onward and is used by over 500 applications

on Google Play. It is a free tool that can be used to make line, bar, scatter, step and pie charts

and it allows both static and dynamic charting [26].

50

To create a plot in the application using AndroidPlot, the widget must first be declared in the

Manifest file and the Gradle. It must also be defined in the XML file, where the size of the plot

and the tags are set as shown below.

The AndroidPlot classes must be included in the java program at the beginning of the code.

51

4.5. Saving the Oximeter Data

The sensor data is stored on the external memory of the phone. The purpose of this file is to

have a record of all the values measured by the sensor, to be viewed at a later point if

necessary. The app saves it as a .txt file but it can easily be opened in Microsoft Excel, making

it easier to go through. Any irregularity in the pulse rate or oxygen saturation levels can be

identified using this document if the sensor was on when the event occurred. To save the file,

the app first creates a folder called “PulseOximeter” if it does not already exist and then it

creates a file called “OximeterData” followed by the date. The data is then saved on this file.

4.5.1. Getting date and time

To get the current date and time, Android classes java.util.Date, java.text.SimpleDateFormat

and java.text.DateFormat need to be included.

52

The time gets saved in the hh:mm:ss format. The date is saved in two different formats

because the file name cannot have special characters in it.

4.5.2. Creating and saving to file

Before creating a file, we need to make sure that the required permissions are listed in the

Android Manifest file. WRITE_EXTERNAL_STORAGE and READ_EXTERNAL_STORAGE are the

permissions required to write to and read files on the external storage respectively. Since we

will only be writing to the file, we do not need to list the permission required to read from

external storage. Next, we need to check if the external storage is available to read/write.

If the above getExternalStorageState() returns MEDIA_MOUNTED, then the external storage

is available to write. Files can be stored as public files or private files. Private files are treated

as files that belong to the app. These files are accessible to the user and other apps but these

files are such that they generally do not provide anything of value to the other apps. These

files get deleted when the user uninstalls the app. A public file, on the other hand, remain on

the system even after app has been uninstalled. These files are available to the user and the

other apps. They can include picture and media files, downloaded documents, etc.

53

To save as a public file, two methods can be used. GetExternalStoragePublicDirectory()

returns the top level public external storage directory for shoving files of a particular type

based on the argument passed. The method takes an argument depending on the type of file

you want to save. For example, if the app were to save a picture, the argument

DIRECTORY_PICTURES would need to be included so that the file can be logically sorted in

the appropriate directory. Since this app is not saving pictures, music or videos, it uses the

method getexternalStorageDirectory(). This method is also used to save public files, but it

returns the root external directory and not a sub-folder within the external storage.

The following few lines of code first checks if the external storage is available to write. It then

checks if the folder “PulseOximeter” exists in the root external storage directory. If it does not

exist, it creates a folder by that name. It then checks if a .txt file with the name “OximeterData”

followed by the current date exists in this directory. If it doesn’t, it creates a new file with this

name.

 Next, the app must save the data to this file. The FileWriter and BufferedWriter classes is

used to write to/append to the file as shown below. “to_save” is the string that is passed to

54

the saved function. The content of this string will be discussed later in this chapter. Finally, if

there was any error in saving the data, i.e. if for some reason the path name is incorrect or the

folder or file could not be created, the “Error! Cannot save file” message is displayed on the

screen.

4.6. Receiving and sorting data

The BluetoothSocket element represents the Bluetooth socket. This is a point of connection

between two Bluetooth devices and allows then exchange data using InputStream and

OutputStream. InputStream is used to read data from a source and OutputStream is used to

write data to a source. A Handler is used to process the data received. A Handler (bluetoothIn

in this code) is associated with a thread, and this collects the data that was received and sends

it to the main thread/UI. The obtainMessage returns the message.

55

As mentioned in the previous chapter, the data string sent starts with ‘#’, followed by the

pulse rate, followed by ‘+’, followed by the oxygen saturation value, followed by ‘-‘ and the ac

component of the pulse. The string ends with ‘~’. The symbols ‘#’, ‘+’, ‘-‘, and ‘~’ are used to

separate out the data and they are then displayed (using setText or pulsePlot) and saved. The

string sent to the file save function consists of the date stamp, the time stamp, the pulse rate

and the oxygen saturation value. The string ends with a carriage return so that the next set of

data gets saved as the next line. To plot the data, the received string is first converted to the

data type double. The app then checks if the series has reached its maximum limit. If it has, it

56

deletes the first value. It then appends the latest data received to the end of the series and

replots it. Finally, the recDataString field is cleared.

57

58

Chapter 5

Results and Conclusions

The pulse oximeter was used to measure data continuously in 2-3 minute time spans and the

corresponding data measured by a Contec pulse oximeter (model number CMS50D) was

recorded simultaneously. Pulse and oxygen saturation measurements were taken in multiple

sittings over several days. The measurements were also preformed when the subject was

hyperventilating and after vigorous exercise to try to induce a change in the pulse rate and to

see how well the device responds to changing pulse rates. Additionally, the oxygen saturation

levels were measured as the subject was holding their breath for 35-45 seconds after a forced

expulsion. The changing oxygen saturation levels were used to calibrate and test the response

of the device.

The AC and DC voltages from the photodiode are measured every 20 milliseconds by the

Arduino. To calculate the pulse rate, the Arduino checks for when the AC voltage goes from a

point below 0.4 V to a point above 0.4 V. Since the waveform is centered at 0.4 V, every pulse

crosses this point twice – once during the rising slope and once during the falling slope. The

Arduino notes the time every time the rising slope crosses 0.4 V and uses the time difference

between two consecutive points to measure the pulse rate. To calculate the oxygen

saturation, the AC peak to peak voltage is measured for both the red and the infrared LEDs

by calculating the difference between the maximum and minimum points on the waveform.

This AC peak to peak reading, along with the DC measurements for both the LEDs are

substituted in equation 5.2 to calculate the R ratio. Both the oxygen saturation data and the

pulse rate data displayed by the smartphone (and in the plots below) have been averaged

over 6 seconds of measurements.

59

5.1. Results

Table 5.1 shows the average pulse rate and oxygen saturation measured using both devices,

the reference pulse oximeter and the device designed for this project. The table also shows

the percentage error for the oxygen saturation which was calculated using equation 5.1. The

percentage error was calculated for each data point and the absolute values were then

averages to get the values displayed in table 5.1.

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝐸𝑟𝑟𝑜𝑟 =
𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑣𝑎𝑙𝑢𝑒 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑣𝑎𝑙𝑢𝑒

𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑣𝑎𝑙𝑢𝑒
∗ 100

Table 5.1. Accuracy of average pulse rate and oxygen saturation

Reference Pulse Oximeter Prototype Pulse Oximeter Percentage Error

SpO2 (%) Pulse Rate

(bpm)

SpO2 (%) Pulse Rate

(bpm)

SpO2 Pulse Rate

98.67 88.75 99.46 88.19 1.08 2.86

To calibrate the pulse oximeter, the subject held their breath for 35-45 seconds after a

forceful expulsion. This was repeated several times and the R (equation 5.2) value for the

device was plotted against the oxygen saturation reading from the reference oximeter. The

linear fit of this plot was used to calculate the oxygen saturation reported in the following

plots. Ideally, to calibrate and test the device, the oxygen saturation levels must be measured

over a much wider range (as explained in section 1.3.5), say 70 – 100%, but since neither the

breath-holding process not the hyperventilating lowered the oxygen saturation below 95%,

the accuracy of the device cannot be tested properly.

𝑅 = (
(

𝐴𝐶
𝐷𝐶)

𝑅𝐸𝐷

(
𝐴𝐶
𝐷𝐶)

𝐼𝑅

)

(5.1)

(5.2)

60

Figure 5.1. Calibration curve

Figure 5.2 shows the comparison of the pulse rates measured by the prototype device and

the reference pulse oximeter. As mentioned in table 5.1, the total percentage error for the

pulse oximeter measurements is 2.86%. The solid line in the plot is the linear regression line.

Figure 5.2. Comparison of the pulse rate measured by the reference device and the

prototype device

y = -23.288x + 104.86

94.5
95

95.5
96

96.5
97

97.5
98

98.5
99

99.5
100

0.2 0.25 0.3 0.35 0.4 0.45

O
xy

ge
n

 S
at

u
ra

ti
o

n
 (

%
)

R

Calibration Curve

y = 1.1678x - 15.452
R² = 0.6812

60

70

80

90

100

110

120

60 65 70 75 80 85 90 95 100 105

P
ro

to
ty

p
e

D
ev

ic
e

Reference Pulse Oximeter

Pulse Rate (bpm)

61

*

Figure 5.3. Comparison of the oxygen saturation measured by the reference device and the

prototype device

Figure 5.3 shows the comparison of the oxygen saturation data measured by the prototype

device and the reference pulse oximeter. The solid line represents the linear regression line.

The R2 value is 0.42, indicating that the data measured by the prototype device does not

correlate very well with the reference device. However, the resolution of the reference device

is single digit, and this could have some impact on the percentage error calculation of the

prototype device. A better resolution could possibly give better results.

Figure 5.4 shows the comparison of the pulse rates after exercise. These measurements were

made after the subject performed squats and jumping jacks. The measurements were taken

over a 3 minute period after the exercise. The R2 value of the plot is much higher than the

previous pulse rate plot. This is most likely because the measurements for figure 5.4 were all

made over a short time period and the dataset is much smaller, while the dataset plotted in

figure 5.2 is much larger and was measured over several days. The pulse rate ranges from 98

to 132 beats per second.

y = 2.5x - 147.2
R² = 0.4189

96

97

98

99

100

101

102

103

104

105

97 97.5 98 98.5 99 99.5 100P
ro

to
ty

p
e

P
u

ls
e

O
xi

m
et

er
 D

at
a

(%
)

Reference Pulse Oximeter Data (%)

Oxygen saturation (%)

62

Figure 5.4. Comparison of the pulse rate measured by the reference device and the

prototype device after exercise.

Figure 5.5 shows the comparison of the pulse rates during hyperventilation. As the

measurements were started, the subject was to hyperventilate by breathing into a paper bag.

The device is quite sensitive to motion and since the subject was attempting to hyperventilate

during the measurement, the correlation between the measured value and the reference

value is lower than expected even though this is a small dataset and was also measured over

a short interval of time.

y = 1.1127x - 12.046
R² = 0.7669

80

90

100

110

120

130

140

80 90 100 110 120 130 140

P
ro

to
ty

p
e

P
u

ls
e

O
xi

m
et

er

Reference Pulse Oximeter

Pulse Rate - Exercise

63

Figure 5.5. Comparison of the pulse rate measured by the reference device and the

prototype device for hyperventilation test

Figure 5.6 shows the first page of the Android application after the Bluetooth has been turned

on and the required device has been selected. If the connection was not successful, it goes

displays a “Connection failure” notification at the bottom of the screen. If the connection was

successful, it starts to display the data it receives as shown in figure 5.7.

y = 1.2357x - 35.24
R² = 0.5911

60

70

80

90

100

110

120

130

60 70 80 90 100 110 120 130

P
ro

to
ty

p
e

P
u

ls
e

O
xi

m
et

er

Reference Pulse Oximeter

Pulse Rate - Hyperventilation

64

Figure 5.6. List of paired devices on the Android application

Figure 5.7. Data display screen on the Android application

65

A pulse oximeter is very sensitive to motion and there are several factors that can influence

the performance of the device. For a pulse oximeter that attaches at the finger, the size of the

finger, the skin and the presence or absence or scar tissue are some of the factors at effect the

signal received by the photodiode. Additionally, if the sensor is attached with too much or too

little pressure, the strength of the signal received changes and if the strength of the signal

changes constantly, both the pulse rate and the oxygen saturation calculations will be

effected. If the sensor is clamped on too tight, this could even cut off the circulation at the

finger, so both the sensor placement and the pressure are very important.

5.2. Conclusion and future work

To summarize, the aim of the project was to make a wireless platform and to develop a pulse

oximeter to test the wireless platform. A pulse oximeter was designed and built to measure

the pulse rate and oxygen saturation at the fingertip. The design consisted of a modified

clothespin with a red and an infrared LED on one side and a photodiode on the other, to make

a transmission-mode pulse oximeter. An electronic circuit was designed to convert the

photocurrent to a voltage, and then filter and amplify this voltage to get the required pulsatile

signal. This signal was then processed using an Arduino Uno microcontroller and then sent

to a Bluetooth module to be transmitted to a smartphone. An Android application was written

to turn on the Bluetooth on the smartphone and connect to a paired device. The app then

receives the data transmitted by the Bluetooth module attached to the Arduino and displays,

plots and saves the data in a text file.

The pulse rate and the oxygen saturation were calculated in the microcontroller. Since the

pulse waveform was centered at 0.4 V, the points at which the rising slope of the waveform

crossed 0.4 V was used to calculate the pulse rate. Equation 3.1 was used to calculate the

oxygen saturation with A as 104.86 and B as -23.288. The constants A and B were obtained

from the calibration curve from figure 5.1.

66

The average percentage error for the pulse rate is ±2.86% and for the oxygen saturation, the

average percentage error is ±1.08%. The required accuracy was ± 3 for both the pulse rate

as well as the oxygen saturation but this, unfortunately, was not achieved. While the average

error percentage is below 3%, not all the data points measured by the prototype device are

within 3 bpm or 3% of the data points measured by the reference device. Hence, the device

does not have an accuracy of 3 bpm or 3% for pulse rate and oxygen saturation respectively.

The device still needs some improvement to improve the accuracy of both the pulse rate and

the oxygen saturation. To correctly calibrate and test the device, both the pulse rate and the

SpO2 would need to change over a much wider range, such a 40 - 120 bpm and 70 - 100%.

Since neither the breath-holding process not the hyperventilating lowered the oxygen

saturation below 95%, with most of the data points at 98% or 99%, the accuracy of the device

cannot be tested properly.

While the hardware and software components of this project have achieved the goals of

measuring the pulse rate and oxygen saturation and wirelessly transmitting and displaying

this data on a smartphone, there are several improvements that could be made to bring the

device up to industry standards. The sensor is mounted on a modified clothespin, making the

sensor uncomfortably tight for people with bigger fingers. It also starts to cut off the blood

flow when clipped on for several minutes, making it impossible to measure data continuously

over a large time interval. The sensor can be redesigned to be more comfortable for people

of different sizes and so that it can be used to continuously monitor a subject for any duration

of time. It can also be redesigned to be more aesthetically pleasing.

While the sensor itself (the LEDs and the photodiode) was mounted on the clothespin, the

electronics used to convert, filter, and amplify the current was implemented on a breadboard

since it was much easier make adjustments as required. However, integrating the sensor, the

electronics and the microcontroller onto a PCB would make the device more portable, easier

to use, and possible more reliable since this would eliminate a small fraction of noise and

stray signals. Additionally, this would allow the use of smaller components and minimize the

67

size of the entire design. The calibration process for the oxygen saturation curve must also be

improved to get a wider range for oxygen saturation.

The Android application can also be improved upon to run and save data even when the app

is not open if the subject desires. Currently, the application pauses if the display of the phone

is turned off and it terminates the connection if the app is closed. The current program cannot

run as a background application. It can also be set up to display a warning if the pulse rate or

the oxygen saturation values are constantly outside a desired range. Additionally,

applications can be written to allow smartphones working on Apple or Windows operating

systems to perform the same function.

68

Appendix A

Data Sets

Table A.1. Pulse rate data

Pulse Rate Pulse Rate

Reference

Device

Prototype

Device

Reference

Device

Prototype

Device

98 95 90 91

79 75 88 88

74 75 88 87

75 75 88 86

77 79 90 90

91 94 90 91

93 94 91 94

94 94 102 101

96 94 95 96

95 97 95 95

89 88 92 95

90 88 92 91

91 88 90 90

84 85 85 86

91 95 80 77

82 56 80 73

85 71 86 86

85 85 80 80

89 88 80 79

90 90 80 78

69

90 90 95 95

95 98 95 93

95 95 95 98

90 109 85 86

100 98 90 90

80 79 95 95

Table A.2. Oxygen Saturation Data

Reference

Device

Prototype

Device

99 101

99 100

99 100

98 98

98 98

98 97

98 98

98 98

99 98

99 104

99 101

99 102

99 99

99 99

99 99

70

Table A.3. Pulse Rate Data after Exercise

Pulse Rate Pulse Rate

Reference

Device

Prototype

Device

Reference

Device

Prototype

Device

132 131 109 108

125 131 108 115

119 119 105 105

116 116 104 105

115 128 107 105

110 116 102 100

105 100 100 100

104 96 99 97

106 100 98 97

107 108 99 108

108 108 99 97

109 97 98 99

Table A.4. Pulse Rate Data after Hyperventilation

Pulse Rate

Reference

Device

Prototype

Device

122 121

116 85

113 110

107 105

97 91

71

93 95

90 87

88 56

87 61

72

References

[1]J. Allen, 'Photoplethysmography and its application in clinical physiological

measurement',Physiol. Meas., vol. 28, no. 3, pp. R1-R39, 2007.

[2]A. Alian and K. Shelley, 'Photoplethysmography', Best Practice & Research Clinical

Anaesthesiology, vol. 28, no. 4, pp. 395-406, 2014.

[3]J. Moyle, Pulse Oximetry, 2nd ed. London: BMJ Books, 2002, pp. 1-35.

[4]J. Severinghaus and P. Astrup, 'History of blood gas analysis. VI. Oximetry', Journal of

Clinical Monitoring, vol. 2, no. 4, pp. 270-288, 1986.

[5]E. Eger, L. Saidman and R. Westhorpe, The wondrous story of anesthesia. .

[6]Y. Pole, 'Evolution of the pulse oximeter', International Congress Series, vol. 1242, pp. 137-

144, 2002.

[7]N. Townsend, ‘Pulse Oximetry’, Medical Electronics, Michaelmas term, pp. 32-36, 2001

[8]J. Severinghaus and Y. Honda, 'History of blood gas analysis. VII. Pulse Oximetry', Journal

of Clinical Monitoring, vol. 3, pp. 135-138, 1987.

[9]J. Goldman, M. Petterson, R. Kopotic and S. Barker, 'Masimo Signal Extraction Technology

Pulse Oximetry', Journal of Clinical Monitoring and Computing, vol. 16, no. 7, pp. 475-

483, 2000.

[10]T. Aoyagi, 'Pulse oximetry: its invention, theory, and future', Journal of Anesthesia, vol.

17, no. 4, pp. 259-266, 2003.

[11]J. Webster, Design of pulse oximeters. Bristol: Institute of Physics Pub., 1997.

[12]Biologyonline.us, 'Pulmonary Ventilation', 2015. [Online]. Available:

http://biologyonline.us/Online%20A&P/AP%201/Northland/AP1lab/Lab%2011/73.

htm

73

[13]'How does the blood circulatory system work?', Institute for Quality and Efficiency in

Health Care (IQWiG), 2012.

[14] Wikipedia, 'Lung', 2015. [Online]. Available: https://en.wikipedia.org/wiki/Lung.

[15]Breath2000.org, 'Breathing', 2015. [Online]. Available:

http://www.breath2000.org/physiology.html.

[16]Konica Minolta Sensing, Inc., 'How to read SpO2', 2006.

[17]Who.int, 'WHO | Pulse oximetry: training manual', 2015. [Online]. Available:

http://www.who.int/patientsafety/safesurgery/pulse_oximetry/tr_material/en/.

[18]T. Tamura, Y. Maeda, M. Sekine and M. Yoshida, 'Wearable Photoplethysmographic

Sensors—Past and Present', Electronics, vol. 3, no. 2, pp. 282-302, 2014.

[19]N. Stubán and N. Masatsugu, 'Non-invasive calibration method for pulse

oximeters',Periodica Polytechnica Electrical Engineering, vol. 52, no. 1-2, p. 91, 2008.

[20]S. Duun, R. Haahr, K. Birkelund and E. Thomsen, 'A Ring-Shaped Photodiode Designed for

Use in a Reflectance Pulse Oximetry Sensor in Wireless Health Monitoring

Applications', IEEE Sensors J., vol. 10, no. 2, pp. 261-268, 2010.

[21]Arduino.cc, 'Arduino - ArduinoBoardUno', 2015. [Online]. Available:

https://www.arduino.cc/en/Main/ArduinoBoardUno.

[22]Bluetooth.com, 'How it Works | Bluetooth Technology Website', 2015. [Online].

Available: http://www.bluetooth.com/Pages/How-It-Works.aspx.

[23]Learn.sparkfun.com, 'Using the BlueSMiRF - learn.sparkfun.com', 2015. [Online].

Available: https://learn.sparkfun.com/tutorials/using-the-bluesmirf.

[24]Arduino.cc, 'Arduino - Reference', 2015. [Online]. Available:

https://www.arduino.cc/en/Reference/HomePage.

http://www.breath2000.org/physiology.html

74

[25]Developer.android.com, 'Android Developers', 2015. [Online]. Available:

http://developer.android.com/.

[26]'Androidplot', 2015. [Online]. Available: http://androidplot.com/.

	Wireless Sensor Platform for Pulse Oximetry
	Recommended Citation

	tmp.1450796020.pdf.LKgGT

