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ABSTRACT 

Significant efficiency increases are being made for bulk heterojunction organic photovoltaic 

prototype devices with world records at 11%. However the chlorinated solvents most frequently 

used in prototype manufacture would cause local health and safety concerns or large scale 

environmental pollution upon expansion of these techniques for commercialization. Moreover, 

research to bridge prototype and large-scale production of these solar cells is still in its infancy. 

Most prototype devices are made in inert glove box environments using spin-coating. There is a 

need to develop a non-toxic ink and incorporate it into a material deposition system that can be 

used in mass production.  

In this thesis, P3HT:PCBM organic photovoltaic devices were fabricated with the help of inkjet 

printing. P3HT:PCBM blends were dissolved in organic solvent systems , and this solution was 

used as the ink for the printer. The "coffee-ring effect" as well as the effect of inkjet printing 

parameters on film formation were highlighted - thus the inkjet printing method was validated 

as a stepping stone between lab-scale production of OPVs and large-scale roll-to-roll 

manufacturing.  

To address the need of a non-toxic ink, P3HT:PCBM blends were then dispersed in water, using 

the miniemulsion method. The nanoparticles were characterized for their size, as well as the   

blending between the P3HT and PCBM within the nanoparticle. These dispersions were then 

converted into inks. Finally, these nanoparticle inks were inkjet-printed to fabricate OPV devices. 

Based on the results obtained here, tentative "next steps" have been outlined in order to 

improve upon this research work, in the future. 
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CHAPTER 1 - Introduction to the thesis - Inkjet 

printing of organic photovoltaics using a water-

based active layer ink 

 

1.1 Introduction – The need for renewable energy 
Fossil fuel consumption is at an all-time high due to the ever growing needs of ever growing 

populations. This is a concern because the world will eventually run out of fossil fuels such as 

coal and oil (a.k.a non-renewable sources of energy) and wanton consumption of these fuels 

causes increased air pollution as well as emission of greenhouse gases. These emissions 

manifest themselves in the form of Global Warming[1]; the melting of the Polar ice caps[2,3] is 

just one of the many alarming effects that threatens human life. 

On the other end of the spectrum, it is very near impossible to stop consuming this energy! 

Developing countries like India and China are severely starved for electricity; large swathes of 

the populations do not have access to electricity. In poorly developed parts of the country, it 

leads to the women and children of the families having to travel large distances to scavenge for 

wood and biomass to use as fuel; fuel which becomes harder and harder to acquire as each day 

passes [4].  

Thus, there must be an emphasis in developing infrastructure and improved technologies that 

use renewable sources of energy. Hydroelectric, wind and solar power can be harnessed to 

address the growing appetite for electricity by being able to supply off-grid power. This is an 

ideal situation as remote areas may be powered by using small scale wind turbines or solar 
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panels, without needing to invest large amounts of funds in connecting the said areas to the 

country’s electricity grid. 

 

1.2 Solar energy – Organic Photovoltaics (OPVs) / Organic Solar Cells 

Solar power technology is advancing day by day. From conventional silicon based cells to thin-

film CIGS solar cells all the way to Perovskites[5]; researchers are constantly working to improve 

device efficiencies and make solar power a competitive alternative to conventional fossil fuelled 

power generators. 

In particular, the field of Organic Photovoltaics (OPVs) is garnering an immense amount of 

attention. Ching W Tang’s [6] pioneering work with OPVs and OLEDs combined with Heeger, 

MacDiarmid and Shirakawa’s [7] Nobel Prize winning work with conductive polymers has 

resulted in current interest in optimizing processes and materials for fabricating better OPVs. 

OPVs are promising due to the following reasons: 

 They are a thin film technology; the thicknesses of these devices are on the sub-micron range. 

This would mean that the quantity of material used to manufacture these cells would be low. 

 They are “roll-to-roll” solution processable; these OPVs are generally made out of 

semiconducting polymers and organic small molecules. This means that the materials may be 

modified so as to make them soluble in different solvents. These solvents can then be deposited 

relatively easily using roll to roll methods such as Screen Printing, Gravure Printing, Inkjet 

Printing and so on. 

 Flexibility; OPVs promise to be processed onto flexible substrates. This would mean that OPVs 

can be integrated into small scale devices efficiently.[8] 
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 They have a low cost of fabrication when compared with conventional silicon based 

photovoltaics. 

 OPVs , once optimized thoroughly, may have an Energy Payback Time of 1 day. According to a 

study by Espinosa et al [9], in the future it would take only 1 day for manufactured OPVs to 

recoup their cost in terms of materials and energy used to make them. 

OPVs also have their share of disadvantages : 

 The OPV technology is still in its infancy. Unlike silicon based solar cells which have reached the 

stage of commercialization, OPVs still have a way to go. 

 There is still a lot left to study about OPVs - The sheer amount of possibilities in terms of new 

things to learn about OPVs (such as using different alternative Donor Acceptor materials, 

optimizing electrodes etc.) makes it challenging to narrow down on the “correct” parameter to 

focus on; hence the need for more study. 

 Most of the results reported in literature regarding OPVs are done so by academia. These results 

are based on prototype devices which have been fabricated in the confines of an inert glove-box 

so as to get the best reportable result. This is well and good for prototyping but does not 

necessarily show that the process can be scaled up. 

 OPV materials are generally solution processed using chlorinated and/or aromatic solvents. 

Similar to the prototyping point that was brought up before, there is only a small amount of 

research focus addressing the challenge of making the OPV materials soluble in less deadly 

solvents. This will inevitably result in scale-up issues when using chlorinated solvents on a large 

scale.[9] 

 Everybody who is working on developing OPVs may not necessarily have the infrastructure in 

place to demonstrate high throughput fabrication of OPVs. This is an issue as prototype devices 
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that are (conventionally) made using spin coating on a small scale will require a different skill set 

than the skills required for dealing with devices made using a high throughput technique such as 

inkjet printing. As Frederik Krebs [10] succinctly puts it “…there is a huge difference between 

preparing and aligning a small multilayer structure typically on a solid substrate like glass, and 

the precise coating and/or printing of large areas with the same accuracy on flexible substrates 

…This requires a high degree of technical skill, and the combination of scientific knowhow on 

how to tune the chemical and physical properties of the ink that is to be processed, with the 

technical knowhow of different processing procedures and the conditions they apply to. This 

simple challenge may very well become a bottleneck in the further development as such 

combined skills are not necessarily present in a research group.” 

Thus there is a need to exert efforts in understanding how to make the OPV roll-to-roll 

processable while using an enviro-friendly solvent/ink system. 

1.3 Focus of Thesis – Outline and summary of chapters 

The primary objective of this thesis work was to develop a basic competency in inkjet printing of 

organic photovoltaics. The secondary objective was to inkjet print OPV devices using 

environmentally-friendly inks. 

The thesis is outlined as follows: 

Chapter 2 is the experimental and instrumentation section of the thesis. Here the fundamentals 

of OPV are discussed. The materials and methods that have been used in this study will also be 

outlined in brief. Techniques such as UV-Vis Absorbance and Photoluminescence spectroscopy, 

goniometry, light scattering techniques for particle sizing and inkjet printing are also discussed. 
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In Chapter 3, salient literature results on inkjet printed OPV are tabulated in the form of  a 

literature survey;  using this as a guideline, various inkjet printing parameters/concepts such as 

coffee-ring effect, marangoni-flow of inks, firing voltage, drop spacing, platen temperature are 

explained. By modifying the aforementioned parameters, and dissolving the active layer 

materials in an organic solvent ink system, proof-of-concept OPV devices were fabricated using 

inkjet printing, and characterized for their power conversion efficiencies. Thus, inkjet printing 

was validated as a roll-to-roll process for the fabrication of OPV. 

Now, chlorinated solvents such as chloroform and chlorobenzene which are commonly used to 

process OPV materials (as seen in Chapter 3), may not be used on a large scale as they are highly 

flammable and carcinogenic; they pose serious threats to human health as well as towards the 

environment. To overcome this obstacle, the OPV active layer materials may be dispersed in the 

form of nanoparticles in relatively "non-toxic" solvents such as water. In Chapter 4, the 

miniemulsion method was used to disperse the active layer materials in the form of a 

nanoparticle dispersion, with the help of surfactants. The importance of the nanoparticle size, 

blending of the donor:acceptor materials within the nanoparticle, and wetting of nanoparticle 

inks in the context of printed OPVs, is highlighted. Finally, working OPV devices were fabricated 

through the use of spin-coating and inkjet printing of the aforementioned nanoparticle inks. 

Thus, water-based OPV nanoparticle inks were investigated as a possible stepping stone 

between lab-scale and large scale manufacturing. 

To conclude ,Chapter 5 explains the inter-dependence of the different steps taken in inkjet 

printing ( inkjet printing settings, ink design, substrate modification etc.).  To improve upon the 

results obtained in this thesis, each of these steps must be systematically addressed. Future 

experimental outlines and testable hypotheses have been written and explained here.  
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CHAPTER 2 - Experimental Methods 

ABSTRACT/OBJECTIVE - The purpose of this chapter is to introduce some of 

the common experimental methods that are used in this thesis (such as 

inkjet printing, spin coating, spectroscopy measurements) as well as 

explore some basic fundamentals of the working of organic photovoltaics. 

2.1 The structure of an OPV 

 

Figure 2.1 : A cartoon of a typical organic photovoltaic device that is fabricated in research 
laboratories. 

 

The organic photovoltaic (OPV) devices fabricated for this study consist of the following 

functional layers (as shown in Figure 2.1) 
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The Anode –The most commonly used anodic material used in OPVs is Indium Tin Oxide (ITO). 

This is highly used due to it being a transparent conducting material [21]. The ITO is coated onto 

glass, enabling light to pass through it and get absorbed by the active layer materials. 

The Buffer layer – An interfacial layer or buffer layer is used to (i) smoothen out the surface of 

the Anode/Cathode, (ii) tune the work function of the respective electrode. PEDOT:PSS  

( poly(3,4-ethylenedioxythiophene) polystyrene sulfonate) is a popular buffer layer [3] that is 

used as a hole transport layer between the active layer and the anode. 

The Active Layer - The active layer forms the "bulk heterojunction" of the OPV. The active layer 

consists of an intimate mixture between an electron "Donor" (a semiconducting organic 

material In which, upon excitation, an electron is promoted to a higher lying state, leading to 

what may be described as a tightly bound electron-hole pair) and an electron "Acceptor" ( a 

material which captures the electron from the Donor material). The most common active layer 

materials that are used as benchmark materials are P3HT or poly(3-hexylthiophene-2,5-

diyl)which is a semiconducting polymer donor material and PCBM or (6,6)-phenyl-C61-butyric 

acid methyl ester, a fullerene derivative which acts as the electron Acceptor[22]. 

The Cathode – The cathode completes the OPV circuit, and thus the device. Aluminum is used as 

the cathode material in this study. 
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2.2 The working of an OPV 

 

Figure 2.2 : Cartoon describing the step by step mechanism of generation of electricity from the 
OPV. 

The anode and cathode sandwich the active layer. 

 

The donor material within the active layer absorbs incoming light and generates a bound 

electron-hole pair or exciton. The exciton diffuses (through Förster resonance energy transfer - 

FRET [1] ) towards the donor-acceptor (D-A) interface.  At the D-A interface the electron from 

the exciton pair transfers over to the acceptor through Dexter electron/energy/charge transfer 

[2]. The electron then diffuses to the cathode;  thus the hole left behind at the  D-A interface 

diffuses towards the anode - the anode and cathode are presumably connected to the device of 
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interest (such as a phone or a battery) and the generated hole and electron travel through the 

device to recombine, thus completing the circuit.  

 

Figure 2.3: A cartoon describing the Working of the OPV in terms energy levels of the donor and 
acceptor. 

 

The concept described in Figure 2.2 can be re-explained in Figure 2.3 in terms of the excited 

states and energy levels the of the donor and acceptor molecules. (From Figure 2.3) Light is 

absorbed by the donor molecule - this imparts energy to the electrons in the HOMO of the 

donor molecule. The molecule is now in its "excited" state. The excited electron can now relax 

back to the ground state (highest unoccupied molecular orbital - HOMO) either by releasing its 

energy through photoluminescence or undergo internal conversion and vibrational relaxations 

(see Absorbance and Fluorescence section). However, when the excited donor molecule is 
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sufficiently close to another molecule (acceptor) having a LUMO offset, the electron may 

transfer from the LUMO of the donor to the LUMO of the acceptor. Finally the electron from the 

LUMO of the of the acceptor diffuses to the cathode material (acts as an electron conductor)[7]. 

To prevent immediate recombination of charges as well as indeterminate flow of generated 

holes and electrons, the buffer layer (acting as the hole transport layer) allows only holes to 

travel towards the anode and blocks electrons due to the energy level mismatch between the 

buffer layer and the acceptor. This concept is shown in Figure 2.4 as a side-by-side comparison 

between the individual layers of the device and their energy (HOMO-LUMO) levels. 

Figure 2.4: Energy Levels and Figure adapted from Conducting Polymer Materials for Flexible 
OPV Applications: Orgacon™ PEDOT : PSS by Luc Vanmaele, Ph.D.*8+ 

 

2.3 General steps involved in fabricating an OPV 

Spincoating is used to fabricate prototype OPV devices. In this thesis, spin coated OPV devices 

are used as control devices i.e. spincoated devices are used to compare device performance 
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with inkjet printed devices (as seen in later chapters). The following is the Standard Operating 

Procedure [9] used in making spincoated OPV - this procedure is followed throughout the thesis. 

Cleaning of ITO substrates- Isopropyl alcohol - IPA  (purchased from Macron Fine Chemicals, 

ACS reagent grade quality) is used to clean ITO slides. ITO slides are immersed in IPA and 

sonicated in a VWR Model 75D bath sonicator for 30 minutes. The slides are then gently wiped 

with kim-wipes and immersed in acetone (purchased from Fischer Scientific Chemicals, ACS 

histological grade quality) and sonicated for 30 minutes. After this, the ITO slides are again 

wiped with kim-wipes and quickly blow-dried with clean-room air. Once the substrates have 

been cleaned, a small piece of Kapton tape is used to mask off the ITO (anode) contact for the 

completed device (Figure 2.5) 

 

 
Figure 2.5: Cartoon of the PEDOT:PSS coated ITO (blue) with Kapton tape affixed on top (red 

rectangle). The tape is removed when testing the devices to expose the ITO contact. 
 

Preparation and coating of PEDOT:PSS solution- 2.5ml of PEDOT:PSS (purchased from Sigma 

Aldrich, high-conductivity grade)is diluted with 2.5ml of deionized (DI) Water. This mixture is 

then filtered through a 0.45um-PTFE syringe filter. The cleaned ITO substrates are then 

spincoated with the prepared PEDOT:PSS solution using a Chemat Technology spin coater 

(model KW-4A)for 30 seconds and at a speed of 5000 rpm. The PEDOT:PSS coated ITO slides are 

then placed onto a hot plate at 160oC  inside fume hood (or a vacuum oven at elevated 

temperature) to get rid of any residual solvent in the PEDOT:PSS film, for 30 minutes. 
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Preparing and coating the Active Layer solution- The active layer materials (P3HT:PCBM) are 

dissolved in the chosen ratio using the requisite solvent system (chloroform for spin coating, 1,2 

dichlorobenzene for inkjet printing). Specific active layer formulations are outlined in pertinent 

chapters of this thesis. 

The active layer solution is then either spincoated/printed onto the prepared PEDOT:PSS coated 

ITO slides. The active layer is spincoated using the spincoater inside a glove box to ensure no 

external contamination occurs within the film. The films are coated using a speed of 800 rpm 

and a time period of 18 seconds. Once this is done, the films are left to dry for about 2-3 

minutes.  

 

Deposition of aluminum top contact (cathode)- Prepared active layer films are transferred to 

the evaporation chamber where the cathode material is vapor deposited on top of the active 

layer. The evaporator is an Angstrom vacuum deposition system, Model numberS6458, powered 

by an Inficon SQC-310 Deposition Controller, and vacuum controlled with a Varian Turbo-V 81-

AG turbomolecular pump. The rotation of the device holder is mediated by an Oriental Motor 

Company Gearhead, model 2GN36KA, whose functionality is controlled by the deposition 

controller. Tungsten evaporation boats 

(purchased from R.D. Mathis) are used as holders for 2 aluminum pellets (Alfa Aesar Puratronic, 

alumina shot, 4-8mm, 99.999% purity). The evaporation boat is placed inside the evaporator. 

Once the active layer films and aluminum has been attached and secured within the evaporator, 

the chamber is closed and is evacuated using a vacuum pump. Deposition of aluminum cathode 

may start when the pressure inside the evaporator has reached ~10-6-10-7torr.Depending on the 

device requirement, 100-200nm of aluminum is deposited onto the active layer. Once this is 
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done, the evaporation process is stopped and the evaporation chamber is depressurized so as to 

remove the finished films. 

 

2.4 Characterizing the Power Conversion Efficiency of an OPV 

The Power Conversion Efficiency of an OPV device is extrapolated from the J/V characteristics of 

the device. Figure 2.6 shows the typical JV characteristics of a photovoltaic device. The J/V 

curves are measured using the 4-point probe method [9,23]. 

 
Figure 2.6: J-V Curve cartoon adapted from[10]. 

 

The Power Conversion Efficiency (PCE%) is determined by: 

PCE = 
(𝑉𝑜𝑐 ∗ 𝐼𝑠𝑐 ∗ 𝐹𝐹)

𝑃𝑖𝑛  

Where Voc is the Open Circuit Voltage i.e the Voltage across the device when no current is 

flowing through it. This is essentially a parameter that is determined by the materials in use. 
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Different Donor materials will have different HOMO levels thereby determining the Voc of the 

material.[11,12,13,14] 

The Isc is the Open Circuit Current i.e the Current flowing through the device when there is no 

voltage applied across the device. Here, Isc = 𝑛𝑒𝜇𝐸 

 

Where n is the density of charge carriers, e is the elementary charge, µ is the mobility and E is 

the electric field. 

 

The FF is the Fill Factor. Fill Factor is a parameter that quantifies the process involved in 

fabricating the solar cell.  

FF = 𝐴1
𝐴2  = 

𝑉𝑚𝑚𝑝 ∗ 𝐼𝑚𝑚𝑝
𝑉𝑜𝑐 ∗ 𝐼𝑠𝑐  

Where Vmmp and Immp are the Voltage and Current at the maximum power point. 

 

Current density-Voltage (J-V) characteristics of the devices were obtained in the dark and under 

simulated 1 sun, 100 mW cm-2 power density, provided by a Newport 91159Full Spectrum solar 

simulator with xenon lamp that had been calibrated with a round-robin InGaAs photovoltaic cell 

fabricated at NASA. The NASA calibration photovoltaic was independently calibrated at NASA 

before shipment. The devices are tested as soon as possible after evaporation of the aluminum 

contacts. The devices are measured in 2014 using a Keithley 2400 Sourcemeter (4-point probe 

measurement). The data is tabulated and collected using an internally-developed LabView 

program. A dark current measurement is made, and then the shutter is opened and the active 

device is measured. The film is placed in the same location on the testing surface every time in 

an effort to minimize errors. 
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2.5 The DIMATIX 2831 Inkjet Printer 

 

Figure 2.7:  The Fujifilm Dimatix 2831 Deposition Printer -  (a) cartoon showing the external 
features of the Dimatix  - (b) print carrriage housing the ink cartridge. 

 

The DIMATIX 2831 Materials Printer (see Figure 2.7)  was used to inkjet print the OPV devices as 

reported in Chapters 3 and 4. 

Inkjet printing is a versatile materials deposition technique that offers (i) low material wastage 

(ii) large amount of control over patterning , (iii) excellent printed resolution depepnding on the 

inkjet printer specifications [18]. 

Inkjet printing has been used to coat and print a large variety of functional materials to be used 

in functionally printed devices [19]. Some of them include - thin-film transistors,light-emitting 

devices, memory and magnetic applications ,contacts and conductive structures , sensors [20] 

and of course organic solar cells 
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Figure 2.8 : Cartoon schematic showing the working of the inkjet process. 

 

In the Dimatix, The jetting is carried out using a piezo-electric diaphragm that is located inside 

the inkjet nozzles. This basically takes place in 3 phases (Figure 2.8) 

PHASE 1 – Here the ink fluid is drawn towards the nozzle when the piezo-electric diaphragm 

relaxes. 

PHASE 2 – Here, the voltage is increased in the piezo-electric element causing it to deform. This 

deformation pushes the ink out of the nozzle in the form of a jetted droplet.  

PHASE 3 – Finally, the voltage inside the piezo-electric is decreased again causing the ink to flow 

back inwards due to capillary action.  
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Thus, it is a Drop-on-Demand system ;the pattern to be printed may be designed using the 

proprietary Dimatix CAD software. Parameters such as firing voltage, drop spacing etc. will be 

discussed in Chapter 3 of this thesis.  

2.6 UV-Vis Absorbance and Fluorescence measurements 

 

Figure 2.9 : Jablonski Diagram describing the various photophysical mechanisms taking place in 

excited states of semiconducting materials[15]. Absorbance and Fluorescence spectroscopy 

were used in characterizing blend ratios of the P3HT:PCBM when making solutions/inks for 

active layers. 

 

UV-Vis absorbance spectroscopy (Figure 2.9) is a powerful and versatile tool that is used in 

characterizing the photophysical properties of the donor and acceptor materials used in this 
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thesis. UV-Vis spectroscopy was used to study the blending of the P3HT:PCBM nanoparticles, as 

seen in Chapter 4. 

The absorption measurements of all solutions/dispersions were taken using a Shimadzu UV-

2100PC spectrophotometer. The instrument was set to scan from 900nm to 300nm. A fast scan 

speed, 0.5 nm wavelength increments and 2 nm slit width were applied when taking the 

measurements. A “control” solution (which contains pure solvent)was always used to baseline 

the spectrum and remove excess noise from the signal and to account for the light scattering of 

the solvent and the cuvette. 

Similarly, fluorescence spectroscopy is another versatile measurement for materials 

characterization, that was used to examine the relaxation mechanisms of the excited states for 

each material as a function of molecular structure as well as study the blending of P3HT:PCBM 

nanoparticles (as explained in Chapter 4). 

The fluorescence emission measurements of all solutions/dispersions were taken using a 

HORIBA      Jobin-Yvon Fluoro Max fluorometer. Quartz cuvette (type 23/Q/10) with a patch 

length of 10 mm was used for determining absorbance and fluorescence spectra of all 

solutions/dispersions. The cuvette was cleaned using the THF/IPA/Acetone/Water when 

finishing each reading. 

2.7 Goniometry 

A Rame-hart Goniometer was used for characterizing the surface tension of inks used for inkjet 

printing (Chapter 4). Goniometry was also used for characterizing the wetting of inks on 

different substrates.  Surface tension measurements were made using the pendant drop 

method [17]. 
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Contact Angle measurements were made using the sessile drop method [16]. 

2.8 Quasi-elastic Light Scattering 

 

Figure 2.10 : Cartoon schematic of Quasi-elastic light scattering setup. 

 

Quasi-elastic light scattering (or in some cases Dynamic Light Scattering)[4,5,6] is a versatile 

technique that can be used to measure and study the size, shape and size distributions of 

nanoparticles suspended in liquids – this is a particularly useful alternative to conventional 

imaging techniques like Scanning Electron Microscopy or Transmission Electron Microscopy 

which may prove to be more time and energy consuming. 

As shown in Figure 10, the QLS system may consist of 5 main components –  
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1)The Light Source (typically a LASER of particular wavelength), which provides light of a specific 

wavelength and intensity of the incident beam as well as the geometry of the illuminated 

volume. 

2) The Sample/ Sample Holder, which contains the sample cuvette, influences the scatter of the 

light at the entrance and exit points of the incident beam. The scatter is determined by some 

factors which include –the nature of the particles in the sample, sample concentration and 

cuvette size (volume). 

3) Light/Photo Detector, which collects and registers the intensity of the scattered light coming 

out of the exit point of the sample. 

4) The Correlator is continually fed data from the photodetector ; the correlator then computes 

the correlation function of the intensity fluctuations from the photodetector. 

5) Finally, the Computer analyses the correlation function and determines the size and size 

distribution of the particles. 

The specifications of the QLS setup used in this thesis work are as follows –  

 Quasi-elastic light scattering was performed on a Brookhaven Instruments Light Scattering 

Goniometer. Samples were illuminated by a 35 mW He-Ne Laser (Spectraphysics) and 

hydrodynamic radii were obtained from 2nd order Cumulance Analysis of the resulting 

correlation function. The equipment was operated by Dr. George Thurston. 

 Care was taken to ensure that samples were devoid of external contaminants like dust particles 

by preparing the samples in the confines of a well-ventilated fume hood; random contaminants 

floating around in the sample will cause excess scattering of light which will result in erroneous 

measurements.  
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CHAPTER 3 - Validating the Inkjet Printing Method 

by printing functional organic photovoltaic devices 

ABSTRACT/OBJECTIVE - The objective of this chapter was to validate the 

inkjet printing method by printing a working OPV device. A malfunctioning 

Dimatix 2831 inkjet printer was repaired and brought up to working 

condition. P3HT:PCBMwas dissolved in 1,2 dichlorobenzene and toluene to 

form an ink. This ink was then inkjet printed onto PEDOT:PSS-coated ITO 

substrates to form P3HT:PCBM thin films. Various printing parameters 

(including solvent choice, drop spacing, firing voltage) were varied in an 

attempt to understand and optimize the uniformity of the film. Finally, 

aluminum cathodes were evaporated onto the films to form functional OPV 

devices. These devices were characterized for their power conversion 

efficiencies. The inkjet printing method was thusly validated by this result. 
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3.1 Introduction 

One of the main promises of OPV materials is that they can be solution processable i.e. the 

materials can be dissolved in appropriate solvents; these solutions can then be cast, coated or 

printed using a wide variety of roll-to-roll / reel-to-reel material deposition techniques such as 

screen printing, gravure printing [2] and so on. 

Krebs, in his excellent reviews of printing and coating techniques used for making OPVs [3,4] , 

states that it is imperative that efforts be put into making roll-to-roll processing more efficient. 

Indeed, the majority of OPV literature [13,14] cites the advantages of roll-to-roll processing of 

OPV materials, yet very few journal papers actually deal with the processing of the OPV 

materials, and herein lies the challenge. A vast majority of prototype OPV devices are fabricated 

by spin-coating the active layer onto a small, rigid conductive substrate (usually a glass/ITO 

substrate); this spin coating is usually done in the confines of a clean room and/or a glove box 

containing an inert atmosphere inside. While this method is extremely effective in screening and 

characterizing OPV materials for their performance, it is a far cry from large scale coating 

techniques. In spin-coating, the thin film is formed by dynamically shearing off excess material 

from the wet film, a process which is not seen in conventional coating and printing methods, 

where the film is formed without any forces of shear acting on it. Not only does spin-coating 

lead to a wastage of material (due to shear), this process does not translate well when coating 

large-area rolls of flexible substrates, which is required to lead to a low dollar-per-watt market 

entry point. Ultimately, if the prototype device obtained from spin coating gives a high 

efficiency, but researchers are unable to translate this system into a mass-production setting, it 

will become a waste of effort. By focusing on the end-goal i.e. large area roll-to-roll coating of 

OPV, and starting to prototype devices using these roll-to-roll methods, researchers may then 
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focus their attention on improving the final product;  failure modes of OPV materials in the 

presence of the outside atmosphere will be significantly more different when comparing large 

scale vs. small. Also, heretofore largely overlooked factors such as the adhesion [49] between 

the various layers of a fully printed flexible OPV module, encapsulation and the logistical design 

challenges that will eventually arise [48]all need to be solved. 

The purpose of this thesis chapter is to start to bridge the gap between spin-coating and roll-to-

roll coating. An attractive alternative to spin-coating that also offers roll-to-roll scalability, is 

inkjet printing.  In this chapter, the inkjet printing method was successfully adapted to fabricate 

proof-of-concept OPV devices; the challenges accompanying inkjet printing (such as appropriate 

solvent choice, complexity of formulations and printing parameters) are highlighted. 

3.2 Advantages of using Inkjet Printing 

The advantages to inkjet printing are manifold. Primarily, inkjet printing has very low materials 

usage; it can be used to deposit ink only where it's needed and proof of concept prototypes can 

be made on a small scale using small quantities of inks. Other coating methods such as slot-die 

coating and screen printing require much larger quantities of materials to operate [15].Indeed,  

large materials usage is not typically conducive to research and development purposes due to 

the high cost of the active layer materials. Inkjet printing thus also fares better than spin-coating 

when it comes to materials usage, again as most of the materials are sheared off of the 

substrate in spin-coating. 

Inkjet printing is also a mask-less and non-contact method of coating, unlike gravure printing 

and doctor-blading. This reduces the chance for the deposited films to get contaminated by 

impurities that may be present on the gravure-web /knife-blade. [16] 
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Another innovative idea proposed by Teichler et al.,[15] is to use inkjet printing as a tool to 

rapidly and reproducibly fabricate and populate a thin-film library with maximum materials 

efficiency[15,17,18]. Changing the donor or acceptor, concentration of inks, thicknesses of 

printed films may be automated by inkjet printing; this may be a very appealing method for 

study. The structure-property characteristics of these films may be rapidly elucidated by using 

UV-vis absorbance and fluorescence quenching to quickly determine effective blending of 

materials. This concept can be taken a step further by changing the substrates that the inks are 

printed on, or by, for example, modifying the hole/electron transport layers. Ink vehicle 

formulations may also be rapidly validated for their effect on uniform film formation (the 

importance of ink formulation is elaborated later on in the chapter).  

3.3 Experimental details 

3.3.1 Repairing the printer 

A prerequisite for conducting this thesis works was to, in fact, get access to a working inkjet 

printer that was capable of printing novel functional materials. The Dimatix Materials Printer 

DMP-2831 is one such tool that fit the bill; a malfunctioning Dimatix printer was obtained and 

repaired by the author. Once it was repaired, standard tests and calibrations were run using 

Dimatix test fluids; the jetting of model fluids was observed to be uniform and it was thus 

determined that the machine was successfully repaired.  

3.3.2 Literature Guidelines 

Inkjet-printed organic photovoltaics have been fabricated by other research groups using widely 

different conditions such as different active layer materials, solvent formulations, PEDOT:PSS 



 

~ 28 ~ 
 

thicknesses and different ink concentrations. A brief literature survey has been tabulated as 

follows, with respect to these different conditions.  

 

Table 3.1 : Factors that impact the Power Conversion Efficiency of OPV devices, tabulated from 
salient literature references. 

 

The power conversion efficiencies obtained from inkjet printed OPVs ,depend on multiple 

factors (as mentioned in Table 3.1).  

Factor 1 - (PEDOT:PSS Thickness)- PEDOT:PSS layers of different thicknesses have been reported 

in literature, as tabulated above ( see Chapter 2 and Appendix A for more on PEDOT:PSS) . 

Different thickness layers may affect the morphology of the printed active layer, thereby 

impacting device efficiency. 

Factors 2 and 3 - Donor: Acceptor Materials and Ratios. Power conversion efficiencies are highly 

dependent on the materials used and the ratio that they are combined in.  
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Factor 4 - Concentration of the ink. The solid loading fraction/concentration of the ink has an 

impact on the thickness of the final film (Factor 11) , and thus impacting the power conversion 

efficiency of the OPV device[20].  

Factor 5 - Drop Spacing - This is the distance between consecutively printed ink droplets. The 

larger the drop spacing, the larger the distance between the deposited ink droplets. Different 

concentrations of inks require optimized drop spacings for the deposition of uniform films.  

Factors 6,7,8 - Evaporation of solvent - The method by which the printed wet film is  dried 

impacts the morphology of the dried film.  

Factor 9 - Solvent system - Different solvent systems have different rates of drying, which 

influence Factors 6,7 and 8. The "coffee-ring" drying of films is also affected by the solvent 

system, as will be discussed in the later sections if this chapter. 

Table 3.1 highlights another non-obvious parameter: The effect of the regioregularity of the 

polymer on the inkjet printing, and subsequently the devices is not obvious but its importance is 

explained by Hoth et al. [12] . That study showed that having a highly regioregular polymer 

donor results in very rapid gelation of the polymer within the solvent, and causes the printed 

devices to fail in efficiency. This causes the internal viscosity of the ink to increase until it is not 

printable anymore as the polymer forms an extremely viscous gel. This highlights a major 

discrepancy as normally, a highly regioregular P3HT tends to yield high efficiencies when spin-

coated; when the same is tried for printing, the material fails as it loses its solubility over time, 

hindering its processability.  

From Table 3.1, it can be inferred that there is no one "correct" method to fabricate an OPV 

through inkjet printing. It can even be said that there is only an empirical relation between the 
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processing method, choice of materials, solvents and the operator[21]; indeed, since this is a 

nascent field of research, it behooves the researcher to first understand a few core parameters 

of inkjet printing, before delving into a full-factorial design of experiments that studies and 

optimizes all the parameters step by step. Thus, the objective of this thesis chapter was to 

develop a baseline understanding about inkjet printing, and validate inkjet printing as a viable 

method of fabricating OPV. Keeping this in mind, the parameters used in the inkjet printing 

studies conducted in this thesis chapter were chosen and discussed below. 

3.3.3 The coffee ring effect   

Solids, whether dissolved or dispersed over the entire ink drop, will become concentrated into a 

ring-like deposit as long as (i) the ink droplet meets the surface of the substrate at a non-zero 

angle, (ii) the contact line of the ink drop is pinned to its initial position (good wetting of the 

solvent) and (iii) the solvent evaporates[22]. As described by Deegan et al., this phenomenon is 

due to the geometrical constraints of the droplet; the free surface of the ink droplet "squeezes" 

the fluid outward to compensate for evaporative losses. This phenomenon is commonly seen in 

spilled coffee drops, where the coffee solids dispersed in the water form this ring-like pattern, 

hence the moniker "the coffee-ring" effect. This phenomenon is ubiquitous in many practical 

applications such as uniform coatings, complex self-assembly of nanomaterials/molecules, 

painting and washing[23]. 

The coffee-ring is generally overlooked in spin-coated OPV devices as the thin film is formed by 

dynamically  shearing off excess solvent, leaving behind a uniform thin film. However, in the 

case of inkjet printing of OPV, the thin film is formed under static shear i.e. the excess solvent is 

removed only through evaporation, giving rise to the coffee-ring [10]. This is not ideal when 

considering the fact that the desired film should be uniformly thick across large areas. 
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The coffee-ring can be alleviated, however, by modifying the surface tension gradient within the 

ink droplet. This induced surface tension gradient is called the "Marangoni Eddy" attributed to 

the "Marangoni Effect"[24]. Since the coffee-ring is caused due to the outward flow of liquid 

caused by capillary forces - solvent lost at the edges of the droplet through evaporation is 

replenished by liquid from the center of the droplet, the flow can be turned inward by adding 

"contaminants" to the droplet - these contaminants may be surfactants [25,26] or even co-

solvents [27] in the case of the Marangoni effect. This inward flow is induced from regions of 

low surface tension (surfactant/contaminant/co-solvent) and high surface tension (primary 

solvent). 

3.3.4 Solvent selection and ink formulation  

Keeping the above discussion in mind, the solvent selection and ink formulation was chosen 

based on the extensive inkjet printing work conducted by Hoth et al[1,5,12]. Here, Hoth et al. 

demonstrated the importance of utilizing a binary solvent formulation of ortho-dichlorobenzene 

(oDCB) and 1,3,5-trimethylbenzene (mesitylene) in fabricating inkjet-printed OPV devices. They 

first showed that using a "pristine" ink formulation such as 100% oDCB resulted in highly 

irregular film formation, de-wetting between the ink and underlying PEDOT:PSS  and 

micrometer scale thickness variations in the printed areas. This ultimately combined to give 

poor device performance. Next, they used  a  pristine 100% tetralene formulation and found 

that resulting films also suffered from poor morphology and rough surfaces. The thought is that 

this is attributed to the high boiling point of the solvent (260oC ) allowing coffee-ring formation 

of the ink droplets. Finally, they demonstrated that using a binary solvent system -  68% v/v 

oDCB and 32% v/v mesitylene mixture ( oDCB having a higher surface tension of 37 dynes cm-1, 

mesitylene  with a lower surface tension of 28.2dynes cm-1 ) resulted in the best results. By 



 

~ 32 ~ 
 

combining solvents with different surface tensions, Marangoni eddies could be induced within 

the wet film and reduce the effect of the coffee-ring as seen in pristine ink formulations [8]. This 

ink formulation ideology has been further referenced by other research groups as seen in Table 

3.1, where different donor:acceptor material combinations were inkjet printed in a variety of 

solvent formulations such as [7,9,10,11]. Therefore, in this thesis, the procedure used by Hoth et 

al. was used as a foundational approach. 

3.3.5 Donor:Acceptor materials choice 

P3HT:PCBMblends have been widely used as benchmarking materials in OPV[19], and will 

continue to be studied in the years to come due to the enormous knowledge gleaned from them 

for the past 20 years and their commercial availability. Indeed, the majority of printed/coated 

organic photovoltaics, regardless of processing techniques, have used P3HT:PCBMblends as 

benchmarks. Thus, it was a logical choice to choose these materials as results obtained from 

devices made from them may be easily compared to results obtained in literature, thereby 

educating the author in future iterations of studies. 

P3HT (highly regioregular poly (3-hexylthiophene-2,5-diyl)) was obtained from Reike Materials . 

PCBM (Phenyl-C61-butyric acid methyl ester, 99% pure) was obtained from American Dye 

Source. 42mg of P3HT and 33mg of PCBM were dissolved in 5ml of solvent formulation.  

The P3HT:PCBM ratio was chosen to be around ~1:0.8 - this ratio was chosen based on the work 

by Muller et al.[6] Here, Muller showed that the donor:acceptor ratio that yields the best device 

efficiency for P3HT:PCBM  was at 1:0.8, where the P3HT:PCBM blend is described as slightly 

hypoeutectic i.e. the blend contained a combination of a P3HT:PCBM mixed phase, and a pure 

PCBM phase. Muller demonstrated that the best device efficiencies were obtained by exploiting 

this particular interpenetrating microstructure. 
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This was a deviation from Hoth's approach[5], where a ratio of 1:1 was used. The reasoning 

behind this was not explicitly stated in the paper; one may hypothesize that the film formation 

and thus the phase separation between the P3HT:PCBM in the case of [6] (where spin-coating 

was used) will be different from the case of [5] (inkjet printing) and thus yield to different 

optimal conditions for different processing techniques. 

3.3.6 Drop spacing and Firing Voltage of the Inkjet Printer 

In conventional spin-coated films[50], the thickness of the film is dependent on properties such 

as the concentration of the polymer i.e. the solid loading of the ink, the initial viscosity of the 

liquid, spin time, liquid density and finally the spin speed. As mentioned before, the film is 

formed due to dynamic shearing off of the excess liquid. 

However, when using the Dimatix inkjet printer, the final thickness of the film is affected by the 

concentration of the ink, inkjet nozzle diameters, drop spacing (Figure 3.1) between individual 

ink-jetted droplets and the firing voltage (Figure 3.2) with which the ink is jetted out of the 

nozzle. This is in addition to the wetting caused by the ink itself; typically the inks have a surface 

tension ranging between 27 dynes cm-1 and 40 dynes cm-1; a low surface tension ink would 

spread across the substrate well, requiring less overall ink to cover the substrate and vice versa. 

(See Table 3.2 and 3.3) 
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Figure 3.1: Cartoon describing the effect of inkjet drop spacing on film formation 

 

The drop spacing determines the distance between successive inkjet drops as they fall towards 

the substrate. The printed drop will hit the substrate and spread out, and individual drops 

should connect with each other. If the drop spacing is too large, the final dried film that is 

formed may not be fully interconnected. Such a film may have large gaps and pinhole defects. 

On the other hand, if the drop spacing is too small, the material will be deposited excessively 

over very small areas causing  the film to be too thick. Optimal drop spacing also depends on the 

solid loading fraction of the ink. 
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Figure 3.2: Cartoon describing the effect of inkjet cartridge firing voltage on the jetting of 
materials 

 

A piezo-electric diaphragm controls the frequency and velocity with which ink is jetted out of 

the nozzles [51]. A voltage is passed through the piezo-electric material, causing it to change 

shape. This shape change causes material to be ejected out of the nozzle. The higher the firing 

voltage, the more material is shot out of the nozzle per drop. Higher firing voltages may be used 

to inkjet inks of higher viscosities[5]. 

Thus for each different concentration of ink used, and each different solvent mixture that has its 

own wetting characteristics, there is a different range of drop spacing and firing voltages that 

can be used to yield uniform, pinhole free-free films. Here, for an ink concentration of 15mg/ml 

and a solvent system of 68% oDCB and 32% mesitylene, the drop spacing and firing voltage were 

selected by conducting a screening experiment for the different settings. The results are 

outlined in the "Results and Discussion" section, in Tables 3.2 and 3.3. 
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3.4 Results and Discussion 

3.4.1 Screening experiment results for the Drop Spacing and Firing Voltage 

To narrow down the different possible drop spacing and firing voltage ranges that may yield 

uniform films, the film quality with respect to different drop spacings and firing voltages were 

recorded using optical microscopy (Table 3.2 and Table 3.3).  

Plain glass microscope slides were cleaned by sonication in acetone followed by sonication in 

IPA. These glass slides were used as the substrates in the screening experiment. The printer 

platen temperature was set at 40oC . 

5mm2 squares were printed onto the substrates by varying the drop spacing and firing voltage. 

The concentration of the ink was 15mg/ml P3HT:PCBM dissolved in a 1:0.8 w/w ratio. Solvent 

was 68% oDCB and 32% mesitylene. (See following sections on "Device making process" and 

"Effect of platen temperature...")  

For the first iteration, the Drop Spacing was set to 20µm and the Firing Voltage was varied 

between 8 Volts and 20 Volts. Empirically, it was determined that for "high" firing voltages of 

15V and 20V, excess materials were deposited resulting in concentrated material build up at the 

center of the dried film. This is not ideal for 2 reasons: (i) the final film is non-uniform and (ii) 

excess material is used. Thus, in the second iteration, "lower" firing voltages (8V and 10V) were 

now kept constant, and the drop spacing was varied between 10µm and 30µm. The results are 

tabulated as follows: 
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Table 3.2 : Effect of changing drop spacing and firing voltage on final dried inkjet-printed 
P3HT:PCBM films. 
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Table 3.3 : Firing Voltage and Drop Spacing screening experiment results. 

 

Thus, through screening the parameters (as seen in Tables 2 and 3), it was determined that a 

firing voltage of 10V and a drop spacing of 18µm was appropriate for reproducibly yielding 

uniform printed films.  

3.4.2 Device making process 

ITO glass substrates, (24mm)2in area were cleaned by sonicating for 30 minutes in acetone 

followed by a 30 minute sonication in IPA. PEDOT:PSS solution (Baytron PH, σ = 10−100Scm−1, 

diluted 1:1 with deionized water) was spin-coated onto the cleaned ITO substrates at 4000 rpm 

for 30 seconds, in air. These films were then left to dry on a hotplate at 160oC for 20 minutes. 

Inkjet Printing of the P3HT:PCBM inks was done using a Dimatix 2831 Materials Printer in the 

open air. The ink was printed onto the PEDOT: PSS-coated ITO substrates using a Drop Spacing 

of 18μm. The firing voltage was set at 10 Volts and the platen temperature at 40oC. Finally, the 

dried films were then transferred to an inert atmosphere followed by deposition of a 150nm 

thick aluminum top electrode. Aluminum (pellets, used as purchased from Alfa Aesar Puratronic, 
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alumina shot, 4-8mm, 99.999% purity) was evaporated under a low pressure (<10−6 Torr) to 

form the top electrode. The evaporator used was an Angstrom vacuum deposition system, 

Model numberS6458, powered by an Inficon SQC-310 Deposition Controller, and vacuum 

controlled with a Varian Turbo-V 81-AG turbomolecular pump. 

3.4.3 Film Thickness 

The Dimatix 2831 has a line-by-line rastering pattern of material deposition. To print a square 

P3HT:PCBM active layer square of 20mm2, it can take up to 100 passes to complete the print, 

wherein a single line is printed in each pass. Thus, the thin film thickness gets affected by how 

quickly each individual line dries, and by the re-dissolution of material when the next successive 

line is printed. It is assumed that the inkjet droplet has a volume of 10 picoliters = 1013nm3. For 

the purpose of rough calculation, if the drop is considered to be a cube, it will have a height 

(thickness) of ~21544nm. The droplet, once deposited onto the substrate, spreads out due to 

wetting; thus the wet film thickness decreases. If it is assumed that the height/thickness is 

decreased by 50%, the wet film thickness will be ~10772nm or   10.7μm. The dry film thickness 

can then be calculated using the following formula 

𝐷𝑟𝑦 𝐹𝑖𝑙𝑚 𝑇𝑖𝑐𝑘𝑛𝑒𝑠𝑠

=  𝑊𝑒𝑡 𝐹𝑖𝑙𝑚 𝑇𝑖𝑐𝑘𝑛𝑒𝑠𝑠 ∗ (𝑉𝑜𝑙𝑢𝑚𝑒% 𝑆𝑜𝑙𝑖𝑑 𝐿𝑜𝑎𝑑𝑖𝑛𝑔 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑖𝑛𝑘) 

Thus, if the ink has a solid loading of 1.5%, and a wet film thickness of 10.7μm, the final dry film 

thickness comes out to ~161.6nm. 
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3.4.4 Effect of Platen Temperature on the drying of wet films 

Another printing parameter that was briefly investigated was the platen temperature of the 

inkjet printer. The platen’s (substrate holder) temperature can be regulated. Once the substrate 

temperature has been set, the printer will not print until the substrate has reached the set 

temperature. Substrate temperature is very crucial to printing, as film formation is dependent 

on both solvent components as well as substrate temperature. Unoptimized substrate 

temperatures lead to films that dry either too fast, where the solvent dries much too quickly 

leaving behind gaps or too slow where the materials are given time to crystallize out of the 

solvent without forming a uniform film. The platen temperature for the Dimatix 2831 has an 

upper limit of 60oC.  

For the first iteration, the devices were printed onto a platen temperature set arbitrarily at 

50oC.Visually, it was observed that the film solution rapidly accumulated at the center of the 

substrate. This caused the material to be highly concentrated in the middle of the film and much 

more thin at the edges of the film - an oversight on the author's part, as this phenomenon had 

already been outlined by Hoth et al. [5,12] . For the given solvent system of 68% oDCB and 32% 

mesitylene, they empirically found that the optimum temperature setting was at 40oC. At 40oC, 

the film formation was much more uniform as the materials were deposited evenly across the 

surface of the substrate.  

Thus for the second iteration, the films were printed onto the platen set at a temperature of 

40oC, and the films were visually observed to be much more smooth and uniform. This confirms 

the applicability of Hoth's approach for our system. 

Outlined below are the device results obtained from different platen temperatures; the more 

uniform devices obtained at 40oC yielded higher efficiencies due to the more uniform contact 
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between the aluminum electrodes and the printed film. it was found that the power conversion 

efficiencies of the devices increased from 0.32% (for the films printed at 50oC) to 0.67%(for the 

films printed at 40oC).This is also attributed to the increase in the open circuit voltage shown in 

Figure 3.4 and Table 3.4. 

 

 

 

 

 

Figure 3.3: J/V Curves of devices measured with respect to the platen heating temperature. 
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Platen Temperature PCE% Voc (V) 

50oC 0.321 +/- (0.119) 0.246 +/- (0.028) 

40oC 0.667 +/- (0.028) 0.320 +/- (0.010) 

Table 3.4 : PCE and Voc tabulated with respect to the platen heating temperature 

3.4.5 Inkjet-Printed device performance with respect to further annealing of printed films 

In bulk heterojunction organic photovoltaics, the physical [40],optical [39] and electrical 

properties of the active layer films[41] exhibit a strong structure-property relation with the 

morphology of the active layer. Thus miniscule changes within the morphology/arrangement of 

molecules within the active layer result in changes in the aforementioned properties, and finally 

the device performance.  For P3HT:PCBM based systems, it is common for device performance 

to be improved by modifying and reordering the nanoscale morphology of the bulk 

heterojunction. This restructuring of the morphology can be accomplished through processes 

such as (i) thermal Annealing [6,31,32], (ii) solvent Annealing [33,34] and through the addition of 

(iii) processing additives [35,36,37,38].  
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In freshly processed films, it is found that the PCBM negatively impacts the hole mobility of the 

P3HT due to the disruption of the P3HT crystallinity. By annealing and reordering the nanoscale 

morphology of the active layer, the P3HT and PCBM phases may be optimally arranged [6] such 

that the hole mobility of the P3HT increases and gives rise to a higher device efficiency. On the 

other hand, the diffusivity of the PCBM, the functional groups present on the fullerene, and the 

molecular weight of the P3HT all influence how well the PCBM "mixes" with the P3HT and thus 

determines the ease or difficulty with which the PCBM is able to disrupt the crystallinity of the 

P3HT on the nanoscale. Through annealing, the PCBM can be induced to diffuse out of the P3HT 

chains and allow the P3HT to reorganize in a device-favorable morphology [42]. A note must be 

made here about "optimal" phase separation through annealing - if the annealing process is 

carried out for an extensive period of time, the favorable nanoscale phase separation will 

convert to unfavorable micrometer-scale phase seperation [43] resulting in poor device 

efficiencies. 

Similarly, Jenny Nelson outlined the relation between the nanoscale morphology and the charge 

mobility through the P3HT [44];  according to Lilliu et al.[45], the hole mobility within the P3HT 

is highly anisotropic and is greatest along the backbone of the polymer chain. By rearranging the 

morphology of the P3HT:PCBM  and improving the conjugation between individual P3HT chains, 

highly efficient devices were fabricated[46]. 

This rearrangement of the molecules is also reflected in the open circuit voltage of the OPV. A 

"higher" short-circuit current Voc indicates a higher driving force for charge separation between 

the P3HT and PCBM. The Voc is directly related to the energy band gap between the LUMO of 

the P3HT and the LUMO of the PCBM [47]. This is shown in Figure 3.5. 
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Figure 3.4 : J/V Curves of devices measured with respect to post-annealing of completed devices 

 

 PCE% Voc (V) 

Unannealed 0.667 +/- (0.028) 0.320 +/- (0.010) 

 Annealed at 120oC 1.002 +/- (0.018) 0.462 +/- (0.023) 

Table 3.5 : PCE and Voc tabulated with respect to the post-annealing of completed devices 
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For the thesis, the inkjet-printed devices were subjected to thermal annealing to investigate the 

change in device performance. The completed OPV devices were placed on a hotplate set at 

120oC for 5 minutes, with references  [5,12] used as a guideline for the annealing parameters. 

The annealed devices were then measured for their power conversion efficiency, open circuit 

voltage and short circuit current. The PCE% improves from 0.67% to 1.00%. There is also an 

increase in the open circuit voltage from 0.32V to 0.46V.  

These trends show good correlation with the phase separation studies referenced; thus, the 

potential for further improving inkjet-printed device efficiency through thermal annealing was 

investigated and validated.  

3.5 Conclusion and future work with solvent based Inkjet printing 

A malfunctioning DIMATIX 2831 inkjet printer was repaired and used to successfully fabricate 

functioning P3HT:PCBM-based organic photovoltaic devices.  The solvent system for the ink was 

chosen based on the methodology put forward by Hoth et al. Inkjet Printing parameters such as 

drop spacing and firing voltage were investigated. The settings for yielding a uniform film 

visually devoid of pinholes and film forming defects were obtained. The film thickness was 

estimated to be around ~160nm in thickness. After optimizing the platen temperature and 

annealing the printed films, the best power conversion efficiency of the devices was seen to 

peak at around 1.03%. Thus the inkjet printing method is validated for the first time in this 

research group. 

The results obtained from this thesis chapter can be used as a baseline or "jumping off point" for 

further studies. By identifying the new variables (i.e. ones that are not obvious in spin-coating) 

that arise from inkjet–printing,i.e film formation influenced by drop spacing and firing voltage, 

film thickness variation due to changing concentrations of inks,a more in depth iteration of 
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study can be conducted in the future. By iteratively and systematically tweaking the printing 

parameters, more promising OPV materials may be investigated using this method. P3HT being 

a semi-crystalline donor material may "print" much differently than some of the new OPV 

materials currently being studied such as poly (2, 5-bis (3-hexadecylthiophen-2-yl) thieno [3, 2-

b] thiophene (pBTTT), and squarylium dye based donor materials [28,29,30]. Very little study has 

been conducted on the much more crystalline [29] and small-molecule[30] materials, in terms of 

printing.This will pose new challenges when considering the final goal of roll-to-roll 

processability of materials. By validating new and novel materials using a roll-to-roll processing 

technique such as inkjet printing, decisions can be taken in improving molecule design to be 

more suited for large scale processing methods. (See Chapter 5) 
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CHAPTER 4 - Inkjet Printing of Organic 

Photovoltaics using water based inks 

ABSTRACT/OBJECTIVE - P3HT: PCBM nanoparticle based inks were 

fabricated using the miniemulsion technique. The nanoparticles were 

characterized for their size using a quasi-elastic light scattering technique. 

The average diameter of P3HT:PCBM nanoparticles was found to be 52nm. 

The blending of the P3HT and the PCBM was tested using UV-Vis 

absorbance and fluorescence spectroscopy – it was found that the blend 

ratio of the nanoparticle can be controlled by varying the individual 

concentrations of the P3HT and PCBM in chloroform ("the oil phase") of the 

miniemulsions. Finally the P3HT:PCBM nanoparticle inks were spin 

coated/inkjet printed onto PEDOT:PSS coated ITO substrates to form the 

active layer of the organic photovoltaic cell. Aluminum cathodes were 

evaporated onto the printed nanoparticle active layer film to form 

functioning OPVs.  
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4.1 Introduction 

Life cycle analyses for polymer solar cells conducted by Espinosa et al. [1,2] revealed some 

interesting results. According to the study, the projected increase in the energy demand 

between the years 2011 and 2050 is on the order of 1 GW a day - equivalent to building a new 

nuclear power plant every day for the span of 40 years. The study hypothesized that if the 

current challenges plaguing organic photovoltaics (stability, performance, processability)[4] 

were addressed, then OPVs could potentially have an energy payback time anywhere between 7 

to 1 days i.e. the energy it would take to manufacture 1 GW worth of OPV modules can be 

reclaimed within 7 to 1 days. One of the issues mentioned was processability: most OPV 

materials are currently being processed by dissolving them in aromatic and/or chlorinated [3] 

solvents. This poses major long term issues when it comes to manufacturing OPV on a large 

scale. The most apparent issue is that the solvents are not friendly towards the environment; 

aromatic solvents such as toluene, benzene etc. are inflammable whereas chlorinated solvents 

such as chloroform, chlorobenzene and dichlorobenzene are carcinogenic, posing severe threats 

to human health. Secondly, to come close to a target OPV production of "1 GW a day", 16 

million gallons of chlorinated solvents would be needed to produce 1 GW worth of OPV. A 

logical solution to this would be to design materials which are soluble in relatively "non-toxic" 

solvents such as water, ethanol and isopropanol. By solubilizing the materials through addition 

of (i) ionic side chains (such as sulfonic acids, carboxylic acids) or (ii) by the addition of nonionic 

alcohol and/or glycol side chains, the materials may conceivably be processed using water[3]. 

However, this would result in a complete paradigm shift in terms of OPV materials design, 

where the solvent-material interaction, film formation and device performance would have to 

be completely rethought. There would also be a significant effort and time cost associated with 

the synthesis of the necessary new materials. To overcome this challenge, an intermediate 
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solution is proposed: the currently-used active layer materials may be dispersed in water, 

thereby bypassing the usage of harmful organic solvents. 

This chapter's study describes two goals. Firstly, to formulate and characterize a water-based 

nanoparticle ink consisting of poly(3-hexylthiophene-2,5-diyl) as the donor (P3HT) and phenyl-

C61-butyric acid methyl ester as the acceptor (PCBM). Blending of the PCBM within the P3HT 

nanoparticle was confirmed by UV-Vis absorbance and fluorescence spectroscopy – it is crucial 

that the PCBM is sufficiently blended within the P3HT so that the P3HT:PCBM domains within 

the nanoparticle may be further optimized by annealing and phase separation of the PCBM 

within the P3HT [5]. 

The second goal is to fabricate working devices out of the P3HT:PCBM nanoparticle inks. These 

inks are spin coated as well as inkjet printed onto poly(3,4-ethylenedioxythiophene) polystyrene 

sulfonate (PEDOT:PSS) coated indium tin oxide (ITO) substrates. Here, inkjet printing is used as 

the “roll-to-roll analogue” instead of conventional coating techniques such as slot-die coating 

and screen printing [7]. Inkjet printing is a non-contact method of printing; less material is 

wasted in inkjet printing because the printer is designed to “drop-on-demand” and requires only 

2-3ml of formulated ink to print devices - this makes it very convenient to pattern the substrate. 

Aluminum cathodes are evaporated onto these active layer films to form OPV devices. These 

devices are characterized for their power conversion efficiencies. 

4.2 Dispersing active layer materials in water using the miniemulsion method 

The miniemulsion method is a versatile approach for fabricating organic (polymer/small 

molecule) nanoparticles dispersed in aqueous solvents. These emulsions are made as follows: 

the target material (which needs to be dispersed) is first dissolved in the appropriate solvent. 

This is called the "oil-phase". The oil-phase is highly immiscible with the water due to the 
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interfacial tension between the two phases. (the continuous phase). This interfacial tension is 

reduced by adding emulsifying agents (or surfactants); finally, by applying high shear, the oil-

water-surfactant mixture can be homogenized to form a stable suspension of oil-phase droplets 

within the water.  

According to Landfester [6], the homogenization step is critical for obtaining a highly 

monodisperse, small-size droplets within the miniemulsion. By applying a high shear (either 

through ultrasonication or high-pressure homogenization) the polydispersity of the suspended 

droplets is gradually reduced (by constant fusion and fission of the droplets) until a steady state 

is reached, where the final size distribution will not change much even with extended 

application of shear[8]. Another factor that influences the final droplet/particle size is the 

surfactants/emulsifying agents that are used - by varying the type of the surfactant i.e. 

anionic/cationic/nonionic and the concentration of the materials, the particle sizes can be 

influenced (see Chapter 5). 

4.3 Literature Review 

The miniemulsion approach is quickly becoming a popular method of fabricating OPV; some of 

the pertinent academic findings are listed below and were used by the author to develop a basic 

understanding of nanoparticle-based OPV. 

Kietzke et al. in collaboration with Landfester et al. [12,13] were the first researchers to report 

on nanoparticle-based OPV. They pioneered the miniemulsion method; working OPV devices                          

were fabricated using M3EH-PPV (poly[2,5-dimethoxy-1,4-phenylene-1,2-ethenylene-2-

methoxy-5-(2-ethylhexyloxy)−(1,4-phenylene-1,2-ethenylene)]) as the hole-accepting material 

(donor) and                 CN-Ether-PPV(poly[oxa-1,4-phenylene-1,2-(1-cyano)ethenylene-2,5-

dioctyloxy-1,4-phenylene-1,2-(2-cyano)ethenylene-1,4-phenylene]) as the electron-accepting 
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material (acceptor). The highest external quantum efficiency obtained using this method was 

14%.  

In the next iteration of study [14,15], Kietzke et al. showed that the device performance varied 

heavily depending on the blending of the nanoparticles, using PFB [poly(9,9-dioctylfluorene-2,7-

diyl-co-bis-N,N’-(4-butylphenyl)-bis-N,N’-phenyl-1,4-phenylenediamine)] as the donor and F8BT 

[poly-(9,9 dioctylfluorene-2,7-diyl-co-benzothiadiazole)] as the acceptor. In a study comparing 

devices made from separate donor and acceptor particles with devices made from particles 

containing both the donor:acceptor blended within the same particle, it was shown that the 

blended particles performed much more efficiently. They concluded that the length scales of 

charge dissociation between the donor and acceptor are much smaller in the case of blending 

due to the larger donor:acceptor interface surface area. This larger interfacial area was more 

favorable for efficient extraction of charge from the OPV device. The power conversion 

efficiencies for these devices peaked at ~0.004%.[16] 

Since the seminal work of Kietzke, Paul Dastoor and colleagues began to champion the concept 

of "solar paints" - they were able to adapt the miniemulsion method to yield highly efficient 

OPVs, as compared to the preliminary attempts by Kietzke et al. From the year 2010 to present 

day, the Dastoor group has managed to improve spincoated device efficiency from 0.39% to 

2.50% [16]. Some of the salient findings of their work are that the power conversion efficiencies 

depended on the molecular weights of the donor materials (P3HT) as well as the side-chains 

present on the acceptor (PCBM) molecules [17]. This heavily influenced the miscibility of the 

PCBM within the P3HT thereby giving rise to different bulk heterojunction morphologies, and 

thus different power conversion efficiencies(see Chapter 5). They also determined that the 

structure of the blended nanoparticle depended on the surface energies of the donor and the 
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acceptor[18]. PCBM was experimentally shown to form the "core" of the P3HT:PCBM 

nanoparticle due to it having a higher surface energy than the P3HT.  

 

Figure 4.1 - Excess surfactant molecules act as charge traps at the electrode interface [11] and 
impact the morphology and connectivity of the dried nanoparticle film [9] 

 

Feron et al. [11] showed that the presence of impurities and defects/improper connection at the 

cathode/bulk-heterojunction active layer interface gave rise to an "s-shaped" J/V curve, 

indicative of  charge traps, as shown in Figure 4.1. These charge traps caused loss in fill factor as 

well as deterioration of power conversion efficiency in OPV devices. This is relevant to 

nanoparticulate devices as well; the morphology of nanoparticulate films may not provide an 

optimum interface with the cathode materials deposited on top of the active layer, thus giving 

rise to suboptimal device performance. By adding more interfacial layers between the active 

layer and the cathode (such as an extra layer of PCBM, Bathocuproine) the interfacial 

connection can be improved, giving rise to improved device performance. 

The aggregation/arrangement of P3HT molecules within the bulk heterojunction of the device is 

intimately related to the optoelectronic as well as charge transport properties of the device (as 
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explained in Chapter 3). Nagarjuna et al. [19] showed that this aggregation could be 

manipulated within the miniemulsion nanoparticles, by manipulating the "oil-phase" solvent. By 

using an oil-phase solvent mixture consisting of a good solvent and a marginal solvent, highly 

ordered and monodisperse P3HT aggregates could be obtained (see Chapter 5). 

Bag et al. [9] , using TOF (time-of-flight) measurements and photocurrent measurements, 

showed that the presence of excess surfactant/emulsifying agent within the dispersions heavily 

impact the device performance. They showed that "good" dispersions were those which had 

very little excess surfactants present in the final deposited film. It was shown that excess 

surfactant disrupted the packing of the deposited nanoparticles, thereby impacting the charge 

transport within particle-to-particle, as shown in Figure 4.1. They also showed that the 

surfactant present on the surface of the nanoparticles was responsible for disrupting some 

generated photocurrent by blocking the electrons' path between the active layer and the 

electrode. 

Recently Bag et al. also published a journal article outlining some of the procedures that the 

Venkataraman group [10] used to fabricate nanoparticle based OPVs. They reported that the 

methods used by Dastoor et al. were not very reproducible, and that the success of the 

procedure was highly dependent on the person conducting the experiment itself.  

4.4 Importance of Blending between the Donor and Acceptor 

There is a large body of published work that alludes to the importance of the blending and 

domain sizes of the donor and acceptor within the bulk heterojunction of the OPV. In 

conventional inorganic semiconductors, the binding energy for the generation of free carriers is 

very small; free charges are generated freely under ambient conditions,upon excitation of the 

material across the band gap. Organic semiconducting materials on the other hand, possess an 
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exciton binding energy that needs to be overcome before the free charges are generated (hole-

electron dissociation)[21]. A successful pathway of splitting this exciton and generating free 

charges is at the donor/acceptor interface (see Chapter 2). Other factors that determine the 

generation of free charge sare the free carrier mobility and lifetime. Diffusion lengths and 

lifetimes of excited states in organic semiconducting materials are extremely low; typical 

diffusion lengths of exciton pairs are in the range of 10-20nm [24]. By intimately mixing the 

donor with the acceptor material, a large surface area of the donor/acceptor interface is 

obtained[22,23], as well as reducing the average distance that the generated exciton has to 

travel to reach that interface.  This concept of blending is explored in more detail in the later 

parts of this chapter: it was seen that the miniemulsion method can be used to fabricate 

blended P3HT:PCBM particles, thereby effectively creating intermixed domains of P3HT and 

PCBM within a single nanoparticle itself.  
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4.5 Experimental details 

4.5.1 Preparation of P3HT: PCBM nanoparticles using the miniemulsion method 

 

Figure 4.2: Cartoon schematic describing the minimemulsion method of fabricating P3HT:PCBM 
nanoparticles; adapted from reference [8]. 

From Figure 4.2, the step wise method for fabricating P3HT:PCBM miniemulsion nanoparticles is 

as follows: 

[STEP1] - P3HT (highly regioregular poly (3-hexylthiophene-2,5-diyl)) was obtained from Reike 

Materials. PCBM (Phenyl-C61-butyric acid methyl ester, 99% pure) was obtained from American 

Dye Source. Reagent grade chloroform was obtained from Sigma-Aldrich. SDS (sodium dodecyl 

sulfate) was obtained from MP Biomedicals, Inc (Ultra-Pure, M.W = 288.38). 

SDS was dissolved in DI water to yield a 40mM concentration solution [17,18].The critical micelle 

concentration of SDS in water is 8mM. Thus, to ensure that the P3HT:PCBM is completely 

suspended within the micelles, excess SDS is added [17]. P3HTand PCBM can be dissolved using 
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chloroform, in the desired ratio and concentration. The P3HT:PCBM chloroform solution is then 

injected into the surfactant solution. 

BLEND RATIO Volume of P3HT 
stock added (mL) 

Volume of PCBM 
stock added (mL) 

Extra volume of 
Chloroform added 

(mL) 

[1:0] 1.00 0 1.00 

[1:0.25] 1.00 0.25 0.75 

[1:0.50] 1.00 0.50 0.50 

[1:0.75] 1.00 0.75 0.25 

[1:1] 1.00 1.00 0 

[0:1] 0 1.00 1.00 

 

Table 4.1 : A description of the precursor blend solutions used in the formation of nanoparticles 
of P3HT:PCBM (for blend study). Each precursor blend solution had a final volume of 2mL. 

 

*Stock solutions of P3HT and PCBM dissolved in chloroform with a concentration of 2mg/ml 

were prepared as shown in Table 4.1. They were then added in the requisite amounts to make a 

total volume of 2ml. 0.1ml of each of these solutions was injected into 2.78ml of aqueous SDS 

solution (40mM).Nanoparticles made using these solutions were used to investigate the 

blending and formation of nano-domains within the P3HT:PCBM nanoparticles , as detailed in 

the prior section of this thesis chapter 

*P3HT and PCBM in the ratio of 1:0.8 (27mg total) were dissolved in 0.6ml of chloroform; this 

solution was then injected into 2.78ml of aqueous SDS solution (40mM).Nanoparticles made 

using this solution were used in fabricating OPV devices, as explained in a later section of this 

chapter. 
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[STEP 2] -  These mixtures were then subjected to high shear –i.e. they were sonicated using a 

Misonix Qsonica XL2000 horn sonicator for 50 seconds at a power setting of 3, with a horn tip of 

3mm diameter to form miniemulsions. 

[STEP 3] - The freshly made miniemulsion samples were heated at 66oC for 90 minutes whilst 

stirring at 300 rpm to evaporate off the chloroform. The remaining solutions were stable 

dispersions of P3HT:PCBM nanoparticles. A Ramé-hart Contact Angle Goniometer Model 200, 

using the sessile pendant drop method (Chapter 2), was used to measure the surface tension of 

this dispersion. It was found to have a surface tension of 30-33 dynes cm-1, indicating that excess 

SDS surfactant is still present within the dispersion, as shown in Figure 4.3. (In Step 1, excess 

surfactant was used to ensure that all the P3HT:PCBM would be efficiently dispersed within the 

water - Once the materials have been dispersed, the excess surfactant needs to be removed 

from the water as it deteriorates device performance[9].) 

 

Figure 4.3 : Effect of dialysis steps on the surface tension of the ink 
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 [STEP 4] - Reducing surface tension for better wetting of ink - Excess surfactant was removed by 

dialyzing the dispersion with DI water. Dialysis of these dispersions was carried out using 

Amicon Ultra-4 (10 kDa MWCO) centrifugal dialysis tubes, purchased from Millipore. The 

dispersions were added to the tubes and centrifuged at 4000 rpm for 30 minutes. The filtrate 

was discarded and the retentate was re-diluted with 2ml of DI water again. The tubes were 

centrifuged at 4000 rpm again for 30 minutes. This process was carried out 4 times. Then, the 

surface tension of this dispersion was measured to be 66 dynes/cm – this increase in surface 

tension indicated that the majority of the SDS was successfully removed after dialyzing. For the 

5th time, the retentate was diluted with 2mL of 20 vol. % ethanol in water[10], and centrifuged 

until the final retentate volume was 0.5mL yielding the final ink. The surface tension of the 

resulting dispersion was again measured to be 37dynes/cm. Thus, the final ink is devoid of 

excess SDS surfactant which may hinder charge transport in the active layer [9] by inducing 

charge traps (for reference see Figure 4.1 & 4.3), and has a low surface tension which facilitates 

better wetting of the substrate as seen below, in Figure 4.4. 

 

Figure 4.4 : [Step 4] Wetting of ink on PEDOT:PSS coated ITO (a) after dialyzing 4 times with DI 
water (contact angle of 46.74o) and (b) dialyzing with 20 vol.% ethanol solution for a 5th time 

(contact angle of <10o) 
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4.5.2 Determining average nanoparticle diameter using Quasi-Elastic Light Scattering 

Quasi-elastic light scattering was performed on a Brookhaven Instruments Light Scattering 

Goniometer. Samples were illuminated by a 35mW He-Ne Laser (Spectraphysics) and 

hydrodynamic radii were obtained from 2nd order Cumulance analysis of the resulting 

correlation function. Refer to Chapter 2 for experimental setup details. 

4.5.3 Spectroscopic Analysis 

UV-Vis absorbance spectra of the dispersions were characterized using a Shimadzu UV-2100PC 

spectrophotometer. Fluorescence of the dispersions was characterized using a HORIBA Jobin-

Yvon Fluoro Max fluorimeter – an excitation wavelength of 485nm (a characteristic wavelength 

for P3HT) was used; slit widths of 5nm were selected for the fluorimeter. 

4.5.4 Device Fabrication by Spin Coating  

ITO glass substrates (24mm)2in area were cleaned by sonicating for 30 minutes in acetone 

followed by a 30 minute sonication in IPA. Then the substrates were subjected to oxygen plasma 

treatment for 2-3 minutes, using the experimental setup found in [20] .PEDOT:PSS solution 

(Baytron PH, σ = 10−100Scm−1, diluted 1:1 with deionized water) was spin coated onto cleaned 

ITO substrates at 4000 rpm for 30 seconds. These films were then left to cure on a hotplate at 

160oC for 20 minutes. After drying the films, the substrates were subjected to ozone treatment 

again for another 2-3 minutes. 

P3HT:PCBM nanoparticle inks were spin coated onto these substrates at 1000RPM for 30 

seconds.  These films were then transferred to an inert atmosphere, within 5 minutes of 

spincoating. This was followed by deposition of a 150nm thick aluminum top electrode. 

Aluminum (pellets, used as purchased from Alfa Aesar Puratronic, alumina shot, 4-8mm, 
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99.999% purity) was evaporated under a low pressure (<10−6 Torr) as the top electrode. The 

evaporator used was an Angstrom vacuum deposition system, Model number S6458, powered 

by an Inficon SQC-310 Deposition Controller, and vacuum controlled with a Varian Turbo-V 81-

AG turbomolecular pump. 

4.5.5 Device Fabrication by Inkjet Printing 

ITO glass substrates (24mm)2in area were cleaned by sonicating for 30 minutes in acetone 

followed by a 30 minute sonication in IPA. PEDOT:PSS solution (Baytron PH, σ = 10−100Scm−1, 

diluted 1:1 with deionized water) was spin-cast onto cleaned ITO substrates at 4000 rpm for 30 

seconds. These films were then left to cure on a hotplate at 160oC for 20 minutes. 

Inkjet Printing of the P3HT:PCBM nanoparticle inks were done using a Dimatix 2831 Materials 

Printer. The ink was printed onto the PEDOT: PSS coated ITO substrates. Each OPV active layer 

film consisted of 2 printed layers printed using a drop spacing of 20µm and a firing voltage of 

20V. The platen temperature was set to 35oC; this ensured that the printed films would dry 

within 2 minutes of printing. As soon as a film was printed, it was immediately (within 30 

seconds) transferred to an inert atmosphere followed by deposition of a 150nm thick aluminum 

top electrode (same as the method followed for the spin coated devices) 

4.5.6 Device Performance Characterization 

The OPV devices were tested immediately after fabrication, using a four-point probe method. 

Current density−voltage (J−V) characteristics of the devices were obtained under simulated 1 

sun - 100mW cm-2 power density, provided by a Newport 91159 Full Spectrum solar simulator 

with xenon lamp (see Chapter 2 for full method). 
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4.6 Results and Discussion  

4.6.1 Diameter of Nanoparticles 

Nanoparticle samples for size distribution analysis were prepared by removing an aliquot (~50μl) 

of dialyzed ink and diluting it with 10ml of DI water. Then 1ml of this diluted dispersion was 

decanted into the glass tubes used by Dr. George Thurston's QLS setup. The particle size 

distributions were calculated by obtaining the hydrodynamic radii of the nanoparticles. Samples 

from inks (made the same way, 8 different times) were tested. The following is the raw data 

obtained: 
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Table 4.2 : The effective diameter of the nanoparticles as measured by quasi-elastic light 
scattering. 

Sample Number Effective Diameter [nm] RMS Error [10^-3]

50.3 3

52.2 3.8

50.5 4

49.3 4.6

49.3 14.4

51.7 2.29

50.1 2.7

46.9 4.72

48.1 840

41.7 5.7

48.8 6.6

49.3 7.1

50.3 7.1

47.4 6.39

44.9 8.8

36.6 16

55.9 14.6

47 1.8

46 2.4

45.9 8.1

56.6 5

57.1 2.46

55.4 3.7

57.2 2.59

55 3.72

59.4 2.455

58.9 2.5

57.7 2.3

57.6 2.06

59.7 2.1

59.1 11.8

62 0.4

57.2 9.8

53.8 2.3

62.4 5.93

56.5 5.9

50.5 6.9

50.1 8.4

49.3 5.1

53.4 5.5

55 10.8

47.9 8.3

6

7

8

1

2

3

4

5

Quasi Elastic Light Scattering was performed on a Brookhaven Instruments Light Scattering 
Goniometer. Samples were illuminated by a 35 milliwatt He
hydrodynamic radii were obtained  from 2nd order Cumulance  Analysis of the resulting correlation 
function.
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Using quasi-elastic light scattering, the effective average diameter of the nanoparticles (made 

for devices) was found to be 52.2nm +/- (5.5nm). This is useful in two ways - 1) the Dimatix 

inkjet printer manufacturer suggests that the maximum particle diameter must be less than 

200nm so as to not clog the inkjet nozzles and 2) the nanoparticle size must be small (see 

literature guidelines) for efficient exciton diffusion between the P3HT: PCBM interface. If the 

P3HT: PCBM domains inside the nanoparticles are too large then it becomes difficult to extract 

charge due to the poor exciton diffusion lengths of the generated electrons. [24] 

4.6.2 Blending of Nanoparticles 

In conventional bulk heterojunction OPV [9], the active layer film is spincoated onto the 

substrate. Usually this leaves an amorphous mixture of the donor and acceptor[19]; a 

subsequent annealing step is applied to the film so as to phase separate the donor and the 

acceptor into domains which benefit device performance [25]. As mentioned earlier in this 

chapter, it is extremely important for the P3HT and the PCBM to be well blended with each 

other and in close proximity with each other. This blending results in effective charge 

dissociation at the donor/acceptor interface. Moreover by blending the donor and acceptor 

together, the surface area of the donor/acceptor interface can be maximized thereby increasing 

possibility of charge transfer at this interface [26]. 

The first blending experiment was to determine if the results obtained by Dastoor et al. [17] 

could be reproduced; it was shown that the P3HT:PCBM nanoparticle formed a core-shell  

nanoparticle, where the PCBM formed the core of the nanoparticle.  
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To determine if blending of P3HT and PCBM is taking place, absorbance and fluorescence of (i) 

P3HT nanoparticles by themselves,(ii) P3HT and PCBM nanoparticles that have dispersed 

separately and (iii)P3HT: PCBM nanoparticles that have been supposedly blended together are 

measured. 

 

Figure 4.5 : Absorbance and Fluorescence of Just P3HT nanoparticles ,P3HT and PCBM 
nanoparticles that have been formed from separate solutions of pure P3HT and PCBM and then 

added together in nanoparticle form in the ratio of [1:0.25] and P3HT:PCBM nanoparticles 
formed from a single P3HT:PCBM blend solution in the ratio of [1:0.25]. All the solutions are of 

the same optical density at the excitation wavelength. 

 

From Figure 4.5, it is observed that the fluorescence for the P3HT nanoparticles by themselves is 

relatively high, whereas in the nanoparticles made from a single mixed P3HT and PCBM 

precursor solution the fluorescence is heavily quenched. When the P3HT and PCBM 

nanoparticles are made separately but are present in the same sample, only a small reduction in 

fluorescence is observed which is attributed to the collisional quenching between the P3HT and 

the PCBM nanoparticles. From this result, it was concluded that the PCBM does indeed blend 

with the P3HT nanoparticles when both of them are present in the oil phase before the 

emulsification process. This is somewhat consistent with results obtained by Dastoorand co-

workers [17].This blending occurs at all concentrations of P3HT and PCBM(as will be shown in 
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the upcoming section of the chapter). Blending also takes place without the presence of 

surfactant(see Appendix B); in this thesis, no work has been conducted on the effect of 

sonication power on the blending - this will be addressed in future work (see Chapter 5). 

After confirming that the PCBM can be blended within the P3HT component of the nanoparticle, 

the absorbance and fluorescence of nanoparticles with different ratios of P3HT:PCBM are 

measured. 

 

 

Figure 4.6 : Miniemulsions of P3HT:PCBM made with different ratios of P3HT and PCBM 

 

Using the details specified in Table 4.1, miniemulsion nanoparticles with varying P3HT:PCBM 

ratios were fabricated. The resulting nanoparticle dispersions can be seen in Figure 4.6, above.  
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Figure 4.7 : Absorbance spectra of P3HT nanoparticles with increasing amounts of PCBM 
blended within. As the concentration of PCBM increases, the absorbance signal at 330nm 

increases. 

 

By comparing Figures 4.7 and 4.8 it can be seen that the P3HT absorbance spectrum changes 

with respect to the PCBM concentration. As the PCBM concentration is increased, the respective 

absorbance signal is also increased at ~330nm. The P3HT concentration is always kept constant 

(see Table 1). 
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Figure 4.8 : Fluorescence quenching of nanoparticles with different P3HT: PCBM ratios. As PCBM 
concentration increases, the fluorescence signal decreases indicating efficient quenching of 

emission as well as blending of PCBM with the P3HT 

 

From Figure 4.7, it can be seen that the PCBM signal at 330nm increases with an increase in 

P3HT:PCBM ratio (from [1:0] to [1:1] P3HT:PCBM)The increase in PCBM concentration is also 

reflected in Figure 4.8 where the fluorescence signal continues to decrease with the increase in 

PCBM ratio. This indicates that the PCBM is in close proximity with the P3HT, hence the P3HT 

and PCBM are successfully blended. The concentrations of the P3HT is kept constant. 
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Figure 4.9 : A Stern-Volmer plot of the quenching of P3HT fluorescence in blended 
nanoparticles. Fluorescence intensity was summed over the range 500-800nm and was divided 

by the absorbance of the solution at the excitation wavelength of 485nm. 

 

From Figures 4.7,4.8 and 4.9 it can be concluded that the concentration of PCBM within the 

P3HT can be effectively controlled. The stern-volmer plot indicates that the relation between 

fluorescence quenching and concentration of quencher is not completely linear.  There is a 

substantial increase in quenching between [1:0.75] and [1:1] nanoparticles; this indicates that 

the PCBM domains inside the P3HT are well mixed; a possible explanation for this is that for 

P3HT:PCBM at a ratio of [1:1], the blend forms a hypoeutectic blend where the PCBM is well 

mixed with the P3HT, as reported by Müller et al.[27] 

This is also an indication that the makeup of the nanoparticle can be effectively controlled by 

modifying the concentrations and ratios of the P3HT and PCBM inside the chloroform prior to 
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the miniemulsion process, and that this methodology may be translated to other 

donor/acceptor materials as well. [14] 

 

4.6.3 P3HT:PCBM nanoparticle based OPV film formation : Spin Coating Vs. Inkjet Printing 

The film morphology of inkjet printed films were characterized for uniformity using optical 

micrographs. 

 

Figure 4.10 :(a) Inkjet Printed and (b) Spin Coated P3HT:PCBM nanoparticle based OPVs 

 

Figure 4.11 : Zoomed in optical micrographs of the (a) inkjet printed film and (b) spin coated film  
of nanoparticulate films 

(a) Inkjet Printed 

Device 

(b) Spin Coated Device 

200um scale a 200um scale b Inkjet Printed Device Spin Coated Device 
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From Figures 4.10 and 4.11, it can be seen that the inkjet printed film is highly irregular as 

compared to the spin coated film. Unlike in chapter 3 (printing of organic solvents), the printing 

parameters were not fully optimized for the water-based ink in chapter 4, resulting in non-

uniform inkjet printed nanoparticulate films.  

 

Figure 4.12 : Top-down optical micrograph of an inkjet printed P3HT:PCBM nanoparticle film 
showing the (a) aluminum cathode evaporated onto the P3HT:PCBM  layer to form an OPV and 

(b) dried patterns of printed P3HT:PCBM  ink. (Scale bar of 2mm) 

 

The ink (described in the Experimental section) was inkjet printed onto PEDOT:PSS coated ITO 

substrates (inkjet printing parameters described in the Experimental section) using the Dimatix 

2831 Materials Printer. Empirically, it was found that a single printed layer was not sufficient to 

fully cover the surface of the substrate; pinhole defects in the dried film were clearly visible to 

the naked eye. To offset this, a second layer was printed to decrease the number of pinhole 

defects – however, improper drying of the inks cause wave-like drying patterns in the final film 

[15] as seen in Figure 4.12. This is hypothesized to be the main cause of non functioning devices, 
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as discussed in the upcoming sections - when the aluminum cathode comes in contact with film 

defects and pinholes, it has a higher chance to come in contact with the underlying anode (ITO), 

and thereby shunt the device. 

For future iterations of this experiment, more effort must be paid towards optimizing the film 

formation and controlling the drying process of the film. A much more in-depth study needs to 

be conducted with respect to platen temperature (see Chapter 5). 

4.6.4 Film Thickness 

From Chapter 3, the film thickness for the inkjet printed film is estimated to be ~150nm.The 

spincoated film thickness is also assumed to be around ~150nm, as the spincoating parameters 

used in this thesis chapter were the same as the parameters used by Ulum et al. [17,18]. 

4.6.5 Device Performance : Spin Coating Vs Inkjet Printing 

8 OPV films were spincoated, and another 8 OPV films were inkjet printed. Each film has a total 

of 12 devices, formed by vacuum-deposition of aluminum cathodes through a shadow mask. 

Among the 12 devices, there are 6 "smallest area" devices having a surface area of 0.017cm2, 4 

"small area" devices having a surface area of 0.034cm2 , 1 "medium area" device having a 

surface area of 0.096cm2 and finally 1 "large area" device of surface area 0.196cm2. The cartoon 

represented in Figure 4.13, is representative of a typical OPV film studied in this thesis. 
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Figure 4.13 : Cartoon showing devices located on each printed film 

The power conversion efficiencies for the devices were tabulated with respect to (i) process , (ii) 

film and (iii) device area, as follows: (all measurements marked with a "-" indicates that the 

device was not functional i.e. it behaved like a resistor and did not yield a power conversion 

efficiency) 
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Table 4.3 : Device efficiencies tabulated with respect to device area as well as the process used.  

 

From Table 4.3 and Figure 4.14, it is seen that the spin coated devices are less prone to failure as 

compared to the inkjet printed devices. The spin coated devices also have higher power 

conversion efficiencies than the inkjet printed devices, on average. Currently, the author does 

not have a concrete reason as to why the PCE% ranges between 0.0001% and 1% - a range 

spanning 4 orders of magnitude. Indeed, for the inkjet printed films, none of the "smallest area" 

devices were seen to work - this is indicative of extremely poor contact between the aluminum 

cathode and the underlying active layer(as can be seen from Figure 4.10(a)); this concern should 

be addressed in future iterations of inkjet printing experiments. 

DEVICE AREA Film 1 Film 2 Film 3 Film 4 Film 5 Film 6 Film 7 Film 8

Large Area 0.08 0.135 0.09 0.01 0.07 0.053 - -

Medium Area - 0.21 0.16 0.15 0.05 0.11 0.02 -

Small Area 1 - 0.53 - 0.39 - - 0.33 0.0004

Small Area 2 0.04 - - 0.32 0.21 - 0.16 0.01

Small Area 3 0.01 0.26 0.17 0.37 0.1 0.0027 0.23 -

Small Area 4 0.079 0.1 0.33 0.13 0.05 - - 0.01

Smallest Area 1 0.03 0.71 0.63 0.92 0.53 0.67 0.12 0.04

Smallest Area 2 - - 0.54 0.03 0.2 0.36 - 0.11

Smallest Area 3 0.14 0.14 - 0.61 0.17 - 0.12 0.01

Smallest Area 4 - - - 0.68 0.35 - - 0.11

Smallest Area 5 - - - 0.74 - 0.14 0.7 0.14

Smallest Area 6 - 0.42 0.02 0.63 0.32 - 0.22 0.07

SPINCOATED DEVICE EFFICIENCIES (%)

DEVICE AREA Film 1 Film 2 Film 3 Film 4 Film 5 Film 6 Film 7 Film 8

Large Area 0.11 0.006 0.003 0.0002 0.001 - 0.001 -

Medium Area 0.35 0.04 0.002 0.01 - 0.28 0.027 0.02

Small Area 1 0.3 - 0.122 0.03 0.21 - 0.21 0.21

Small Area 2 - - - 0.01 0.41 - 0.2 -

Small Area 3 0.02 - 0.05 0.31 - 0.02 0.03 -

Small Area 4 0.08 - - - - - - -

Smallest Area 1 - - - - - - - -

Smallest Area 2 - - - - - - - -

Smallest Area 3 - - - - - - - -

Smallest Area 4 - - - - - - - -

Smallest Area 5 - - - - - - - -

Smallest Area 6 - - - - - - - -

INKJET PRINTED DEVICE  EFFICIENCIES (%)
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Figure 4.14: Pie charts showing the success/failure rate of the devices ; spincoated vs. inkjet 
printed 

 

 

Figure 4.15 : Distribution of power conversion efficiencies obtained from the working 
P3HT:PCBM nanoparticle OPV devices. The distribution of PCE had a very high standard 

deviation; values for both spincoated and inkjet printed devices ranged between 0.0001 and 1%. 
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Figure 4.16 : J/V Characteristics of the best device obtained through inkjet printing 

 

 Spincoated 
Devices 

Inkjet Printed Devices 

Best (Hero) PCE% 0.92% 0.41% 

Average PCE% 0.236% 0.109% 

 

Table 4.4 : Best and Average power conversion efficiencies obtained from spincoated and inkjet 
printed P3HT:PCBM nanoparticle devices. 

 

From Figure 4.16 and Table 4.4 : Spin coated devices yielded an average power conversion 

efficiency of 0.24%, with the best device efficiency peaking at 0.92%. The inkjet printed devices 

yielded an average power conversion efficiency of 0.11% with the best device efficiency peaking 

at  0.41%.  
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4.7 Conclusion 

In this chapter, blended P3HT:PCBM nanoparticles were dispersed in water, using the 

miniemulsion method. By using UV-vis absorbance and fluorescence measurements, the PCBM 

was confirmed to blend with the P3HT inside the nanoparticle. This result is consistent with 

results obtained by Ulum et al. [17,18] , where it was shown that the PCBM formed the core of 

the P3HT:PCBM nanoparticle, due to its higher surface energy relative to the P3HT. This 

blending is crucial for efficient organic photovoltaics; when donor:acceptor domains are 

blended, higher amounts of charges dissociate at the donor:acceptor interface [26]. Next, 

P3HT:PCBM nanoparticle inks were formulated and used to fabricate working OPV devices using 

spin coating and inkjet printing. Though the device performances are modest as compared to 

the spin-cast device results obtained by Dastoor et al. [17] and Venkataraman et al. [10], the 

objective of fabricating chlorinated solvent-free organic photovoltaics was acheived using inkjet 

printing as a roll-to-roll process analogue. Thus, inkjet printing is demonstrated to be a viable 

stepping stone between spin casting and roll-to-roll printing of OPVs, and using a water-based 

ink is proof-of-concept for scaling up into a process that is environmentally friendly.  

The results obtained in this chapter are , as mentioned previously, quite modest; for future 

studies, the quality of data may be improved by breaking down the inkjet printing process and 

systematically testing each part of the process. This breakdown is given in Chapter 5, along with 

a set of experimental outlines that can be followed to iteratively improve the complete process.  
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CHAPTER 5 - Future Work 

5.1 Introduction 

In Chapter 4, it was reported that P3HT:PCBM nanoparticles suspended in a water-based ink 

were inkjetted to fabricate working devices. Objectively, if this result is to be improved in future 

iterations of experiments, the concept of "Inkjet Printing of OPV" must be reviewed once again. 

 

Figure 5.1 : Five facets of the inkjet printing process encountered in this thesis that need to be 
addressed rigorously in future works, to improve the OPV devices 

 

There are in fact at least five inter-dependent steps of the OPV inkjet process that need to be 

addressed [1,2,3,4,5], as shown in Figure 5.1.  
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In this chapter, each step  is further broken down into smaller facets - These parameters are 

explained in some detail. Future experimental work is outlined based on optimizing each 

relevant facet. By optimizing the facets, the overall step may be optimized. By systematically 

optimizing all five steps, the dream of a high-efficiency, water-based, inkjet printed OPV device 

may be achieved. 

5.2 Step (1) - Printing Settings/ Parameters 

Uniform deposition and film formation via inkjet printing is highly dependent on the printing 

parameters. Each of the parameters are outlined in Figure 2, and in the text following. 

 

Figure 5.2 : The breakdown of the various Printing parameters, and their effect on the final 
printed film 
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Drop Spacing - the drop spacing determines the distance between successive inkjet drops as 

they fall from the inkjet nozzle, towards the substrate. For instance, if the desired printed film 

needs to be a uniform thin line , the drop spacing needs to be adjusted such that the individual 

deposited ink droplets join and coalesce with each other. If the drop spacing is too large, then 

the printed line would not be connected as the ink droplets will not join with each other. If the 

drop spacing is too small, then the printed line can be seen to "bulge" as the individual ink 

droplets are being deposited on top of one another due to overlap -  this has been detailed in 

the work conducted by Soltman and Subramaniam[5]. This dependence of uniformity of the 

printed line on the drop spacing was also reported by Stringer and Derby[6].Teichler et al. 

outlined the importance of optimizing the drop spacing when printing polymer thin films, using 

inkjet printing [7]. 

Drop Height Spacing - A parameter that was not investigated in this thesis is the drop height 

spacing. In the Inkjet Printing setup used in this thesis, the height difference between the inkjet 

nozzle and the substrate is set at 1mm, by default. Thus the ink droplet has to travel a distance 

of 1 mm before it impacts the surface of the substrate. Perelaer et al. reported that by 

increasing the height spacing, the in-flight evaporation of the solvent can be increased[8]. They 

showed that, depending on the solid loading fraction of the inks, the droplet diameter could be 

reduced by almost half through this method. By reducing the amount of solvent on the 

substrate, the "coffee-ring" (as described in Chapter 3) may be reduced significantly, leading to 

more uniform printed films. 

Firing Voltage- From Chapter 2 and Chapter 3, the cause of inkjetting is described.In brief, a 

piezoelectric diaphragm is connected to the ink reservoir, with both being located inside the ink 

cartridge and a voltage pulse is sent through this piezoelectric element, causing it to change 
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shape. This change in shape creates an artificial pressure inside the reservoir, pushing out the 

ink. Thus, by changing the intensity and frequency of this "firing" voltage pulse, the frequency of 

the jetting action as well as the velocity of the jetted droplets can be modified. High viscosity 

inks require a high firing voltage for efficient jetting, and vice versa for low viscosity inks[9]. Thus 

the frequency and velocity with which the droplet is jetted [10], need to be matched with the 

drop spacing for printing uniform films. 

Drying Conditions of the freshly printed wet film - Efficient drying/evaporation of solvent from 

the printed film is desired for rapid processing. As has been described in Chapter 3, the platen 

temperature ,or general method by which the film is dried, impacts the final morphology of the 

film. Having a high temperature may not be conducive to good film formation - each solvent 

system has its own optimal range of platen heating temperatures [7,12]. For instance, a 

P3HT:PCBM ink, dissolved in a 68% o-Dichlorobenzene and 32% Mesitylene mixture, requires a 

platen temperature of 40oC, as determined by Hoth et al.[11] through trial and error. The 

optimum platen temperature setting was not systematically determined for the devices 

reported in Chapter 4 - a platen temperature of 35oC was arbitrarily chosen; this resulted in 

highly non-uniform dried films.  

Thus, for the future, a large emphasis needs to be placed on determining the *optimum platen 

temperature ranges for aqueous P3HT:PCBM nanoparticle inks. The possibility of drying the 

films using *infrared dryers and through *convection, should also be addressed [13]. 

Inkjet Droplet Size - Another inkjetting parameter that impacts the final printed film, but one 

which has not been explored in the results of this thesis, is the inkjet droplet size. The size of the 

droplet is primarily influenced by the inkjet nozzle diameter [14]. Finer, higher resolution 

printed features require smaller nozzle diameters. The droplet size produced by the Dimatix 
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printer used in this thesis has a diameter for a 10 picolitre drop; the drop size can be further 

brought down to 1  picolitre diameter droplets, by using the 1 picolitre ink cartridges sold by 

Dimatix. Since the printer was essentially used for "coating" squares and not for printing fine 

features[15], this printing parameter may be investigated fully at a later time.  

5.2.1 Future experiments and testable Hypotheses for Step (1) - Printing Settings / Parameters 

HYPOTHESIS 1 : By improving the uniformity of the printed film, the Power Conversion Efficiency 

can be improved.  

 

Figure 5.3 : Mockup of Firing Voltage + Drop Spacing matrix Vs Drying conditions 

 

EXPERIMENT 1 :As shown in Determine the relation between Firing Voltage + Drop Spacing with 

film formation for water-based P3HT:PCBM nanoparticle inks, as described in Chapter 4.After 
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determining the optimum drop spacing and firing voltage ranges, systematically determine the 

PLATEN TEMPERATURE required for forming uniform films. 

1) Record the film morphology and features using an optical microscope. 

2) Gather Surface Roughness data of the printed film using optical profilometry and/or Atomic 

Force Microscopy.  

3) Determine which printing + drying settings yield "uniform" (low surface roughness) and "non-

uniform" (high surface roughness) films.. 

4) Fabricate devices on said "uniform" and "non-uniform" films. Characterize the Power 

Conversion Efficiency of the films and plot the distribution of efficiencies for the uniform and 

non-uniform films. 

 

Figure 5.4 : Frequency/ Normal distribution of device efficiencies w.r.t the drying conditions of 
the film. (Keeping in mind that the drying is itself a product of firing voltage, drop spacing and 

heating of the wet film.) 

 

5) Confirm that the Non-uniform films yield devices which perform poorly as compared to the 

uniform films, as shown in Figure 5.4. 
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5.3 Step (2) - Modification of the substrate 

The next printing step that needs to be addressed is the Substrate onto which the ink is being 

printed. More specifically, the appropriate substrate modification must be determined such that 

the final printed film is optimized for device use. Some of the substrate modification routes are 

shown in Figure 5.By matching the surface energies and the morphology of the substrate with 

that of the ink, wetting of the ink can be effectively controlled leading to uniformly printed films. 

 

Figure 5.5 : The breakdown of some of the common substrate modification techniques used in 
literature, for their effect on making substrates more amenable for printing water-based inks. 

 

Effect of printing water-based inks onto PEDOT:PSS - A concern that needs to be addressed is 

the stability of the PEDOT:PSS buffer layer towards a water-based ink. PEDOT:PSS is a very 

hygroscopic material; the absorption of ambient water-vapor by the PEDOT:PSS, has been often 

cited as one of the main reasons for deteriorating OPV device performance [16]. By allowing 

water molecules to infiltrate the PEDOT:PSS chains, the PEDOT:PSS film experiences decohesion 
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failure where the PEDOT:PSS film succumbs to mechanical fracture - the "glue" that holds the 

PEDOT:PSS film together is coulombic attraction between the PEDOT and the PSS; it was shown 

by Dupont et al[16]. that water forms powerful hydrogen-bonding with the strained SO3
- groups 

present on the PEDOT and overcomes the coulombic interaction. This degradation of the 

PEDOT:PSS layer results in deteriorated charge mobility and hole collection, and eventually turns 

the PEDOT:PSS/ Active Layer interface into a region of high electrical resistance, as shown by 

Kawano et al.[17]  

In this thesis work, a water-based ink was directly printed on top of the PEDOT:PSS layer, and 

the resulting films were converted to OVP devices with modest performances, as reported in 

Chapter 4. For future work, the following question needs to be answered: what is the impact of 

the water-based ink on the underlying PEDOT:PSS layer, and thereby what is the effect of the 

change in the PEDOT:PSS (if any) on the resulting power conversion efficiency? This 

understanding will help narrow down on factors that limit water-based nanoparticle OPV 

performance. As it currently stands, this question has not been explicitly addressed in literature, 

in the case of water-based nanoparticle OPV devices. Dastoor and colleagues [19,20] have 

fabricated nanoparticle OPV devices using spin coating, and have stated that they did not 

observe any deterioration of the PEDOT:PSS layer, due to the fact that the time of interaction 

between the water-based ink and the PEDOT:PSS was very low - the same may not be said for 

inkjet printing because water-based ink spends a lot more on the surface of the PEDOT:PSS as it 

has to dry by solvent evaporation.  

Alternatives to PEDOT:PSS - Owing to the shortcomings of PEDOT:PSS, a lot of research focus 

has been placed on finding alternatives to PEDOT:PSS as buffer layer materials for OPVs. 
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* Zinc Oxide (Inverted OPV architecture) 

Zinc Oxide(ZnO) has been used as an electron collection material (PEDOT:PSS is a hole collection 

material), in an OPV device architecture that follows the following OPV structure:  

Cathode (ITO) /Electron Collection Layer(ZnO)/Active Layer/Anode 

This is known as the Inverted OPV architecture [16,21,22] and has been shown to exhibit higher 

functioning lifetimes[22]due to the fact that the PEDOT:PSS has been replaced. 

* Other hole collection layers such as Molybdenum Oxide, Vanadium Oxide and Tungsten Oxide 

Metal oxides such as Molybdenum Oxide (MoOx) [23], Vanadium Oxide (VOx)[24] , Tungsten 

Oxide (WOx)[25,26], Titanium Oxide (TiOx)[27] are currently being investigated for their usage as 

hole collection layers in OPVs. The main promise of using these materials lies in the fact that 

they do not degrade in the presence of water vapor, unlike PEDOT:PSS. (Some preliminary work 

can be seen in Appendix A, where PEDOT:PSS and MoOx buffer layer devices were compared for 

their power conversion efficiencies) Thus, another study is the inkjet printing of water-based 

inks on these metal oxide layers, and the subsequent device performances. 

Surface Activation - By exposing the surface of the substrate to an oxygen/atmospheric plasma 

treatment, the surface energies of the substrate can be modified to improve wetting and 

spreading of inks [28]. This method was used in Chapter 4, where PEDOT:PSS coated ITO 

substrates were exposed to the oxygen plasma treatment for 2 minutes. This may give rise to a 

few new questions: apart from improving the wettability of the substrate, does the oxygen 

plasma have a positive/negative effect on the substrate's electronic properties? PEDOT:PSS is a 

polymer based buffer layer, and MoOx etc. are metallic - will the oxygen plasma completely 

deteriorate the PEDOT:PSS after excessive exposure? Is oxygen plasma treatment better suited 
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for metallic oxide layers? A study conducted by Sun et al.[29] reports that plasma treatment of a 

MoO3hole collection layer causes it to get reduced to MoOx, where x<3, leading to superior OPV 

device performance. If so, this may be doubly beneficial for water-based OPV devices; (i) the 

plasma treated metal oxide layer will facilitate good wetting of the ink and (ii) the plasma 

treatment itself will improve conductivity of the metal oxide layer through surface activation.   

Surface Patterning - Morphology of the substrate may also be used to influence printed film 

formation. The substrate can be patterned with materials of low and high surface energies. 

Sirringhaus et al. [30] were able to pattern polyimide coated glass substrate using 

photolithography, introducing 50nm tall features on the substrate. By inkjet printing the water-

based inks in between the hydrophobic polyimide features, they were able to fabricate thin film 

transistors. A similar approach was reported by Hendriks et al., where the substrate was 

patterned using a hot-embossing method [31]. In this case, grooves with fixed widths and 

depths were introduced into the glass substrates. When the ink is printed on top of these 

grooves, it flows down into the groove to form patterned films. Surface patterning is especially 

useful for the formation of high resolution printed features; it still remains to be seen if this 

approach can be adapted for forming uniform films from the  water based OPV inks (as opposed 

to single lines). 

5.3.1 Future experiments and testable Hypotheses for Step (2) - Modification of the substrate 

HYPOTHESIS 2 : Oxygen plasma treatment of different buffer layers (PEDOT:PSS, MoOx) will 

improve the wetting of the printed ink. Improved wetting will give rise to better dried film 

formation, leading to higher power conversion efficiencies of devices made from those films. 

However, the plasma treatment will impact the electrical properties of the buffer layer itself 

leading to improved/deteriorated device performance as a function of plasma treatment 
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duration. For instance, the PEDOT:PSS buffer layer would be expected to get heavily oxidized by 

extensive plasma treatment step, resulting in a deteriorated PEDOT:PSS film. This could lead to a 

reduced PCE% of the overall device. 

 

Figure 5.6 : Experimental matrix studying the effect of Substrate Vs. Surface treatment 
conditions on the power conversion efficiency 

 

EXPERIMENT 2 : As shown in Figure 5.6, calculate the power conversion efficiencies of devices 

fabricated using the conditions specified in the experimental matrix.  

(i) Record the contact-angle of the ink on each different substrate/treatment configuration - this 

yields quantitative information as to how well the printed film will wet the surface as well as the 

film formation of the dried film. 
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Figure 5.7 : Plotting the change in power conversion efficiency w.r.t (i) the different buffer layer 
used as well as (ii) the duration and /or intensity of surface treatment on each buffer layer. 

 

(ii) Record the power conversion efficiencies and plot the data as shown in Figure 5.7. 

 

5.4 Step (3) - Conditions for Fabrication of Miniemulsion Nanoparticles 

The way the miniemulsion is prepared influences the average size distribution of the 

nanoparticles. Size is of utmost importance; if the nanoparticles are too large, it gives rise to a 

larger probability for the inkjet printer nozzles to clog. The Dimatix printer specifications state 

that the maximum particle size may be <200nm in diameter. The following step, as shown in 

Figure 5.8, outlines the major factors within the miniemulsion process that influence 

nanoparticle size. 
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Figure 5.8 : The breakdown of parameters that influence the nanoparticles fabricated in the 
miniemulsion 

 

Sonication Time/Duration - In the miniemulsion, the nanoparticle droplets are created through 

the application of sonication i.e. high shear force. This shear causes the constant fusion and 

fission of the droplets - this continues until the droplet size becomes highly homogeneous. Thus 

the sonication duration directly impacts the final particle size [32] 

Sonication Power/Intensity - Similar to the sonication duration, the sonication intensity also 

impacts the final particle size distribution. The higher the sonication power, the smaller the 

nanoparticle size. [33,34] 

Surfactant - The crucial ingredient for a miniemulsion is the emulsifying agent i.e. the surfactant. 

The final size of the nanoparticle depends on the miniemulsion droplet size. This droplet size is 

directly influenced by the *concentration of the surfactant[35] where high concentration of 

surfactants lead to smaller droplet sizes after sonication, and thus smaller nanoparticle size 

distributions. Hand in hand with the surfactant concentration, the *type of surfactant[36]also 

influences droplet size. For instance, *anionic surfactants may adsorb differently to the surface 

of the suspended nanoparticle than cationic or nonionic surfactants[37]; different surfactants 
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have *different critical micelle concentrations, *different molecule sizes/chain lengths[38] 

which end up playing a large role in droplet formation.  

 

5.4.1 Testable hypotheses for Step (3) - Conditions for Fabrication of Miniemulsion 

Nanoparticles 

HYPOTHESIS 3: Sonication Time , Sonication Power and the Surfactant concentration can be 
manipulated to yield highly monodisperse nanoparticles for water-based OPV inks  

 

Figure 5.9 : Hypothetical calibration curves that yield particle size distributions as a function of 
(a)Sonication Time, (b)Sonication Power/Intensity, (c)Concentration of donor:acceptor 

suspended and (d)surfactant concentration. 

EXPERIMENT 3 : Plot the calibration curves (as shown in Figure 9) to confirm the control of 

particle size distributions using the miniemulsion approach. 

Record the particle size distributions using the Quasi-Elastic Light scattering method outlined in 

Chapter 2 and Chapter 4. 

Plot: 
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(i) Particle Size Distribution Vs. Sonication Time 

(ii) Particle Size Distribution Vs. Sonication Power 

(iii) Particle Size Distribution Vs. Concentration of donor:acceptor dissolved in the "oil-phase" of 

the miniemulsion 

(iv) Particle Size Distribution Vs. Surfactant concentration (and different surfactants) 

5.5 Step (4) - Properties of Nanoparticles as a result of miniemulsion conditions 

 

Figure 5.10 : The breakdown of the properties of the nanoparticles that can be synthesized 
based on the miniemulsion conditions. 

 

From Figure 5.10, the nanoparticle parameters are broken down into the following 

Size - As discussed in STEP 3, the miniemulsion conditions determine the particle size 

distributions. 

Photophysical properties - the act of generating charge originates in the absorption of light and 

therefore the photophysical properties of the donor:acceptor materials used within the 
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nanoparticle. By *improving the Donor: Acceptor material systems (and blend ratios) 

[39,40,41,42,43] light may be absorbed more effectively resulting in increased power conversion 

efficiencies.*Another concept that might be worth investigating is the ternary blends of 

donor:acceptor materials within the nanoparticle [44]. In Ternary blends, 2 donors materials 

with differing (often complimentary) ranges of light absorbance and 1 acceptor (or 1 donor and 

2 acceptor) have been shown to greatly increase device efficiency, as a much larger spectrum of 

light is seen to be absorbed.  *Finally, Tan et al. showed that changing the conjugation length 

between the donor:acceptor materials using different  surfactant molecules [38] can lead to 

better device performance. Thus, by investigating the above methods , nanoparticle based OPV 

device performance may be further improved. 

5.5.1 Testable hypotheses for Step (4) - Properties of Nanoparticles as a result of miniemulsion 

conditions 

HYPOTHESIS 4: Particle Size and size distributions impact the final printed film thickness and 

uniformity of the film. Particle Size distribution also determines the power conversion efficiency 

obtained from the films as different particle sizes would lead to different length scales that the 

excitons generated within the nanoparticle will have to traverse based on the internal makeup 

of the particle (again, this comes back to the donor:acceptor materials and their blend ratio; for 

a well mixed nanoparticle, exciton diffusion may be highly efficient regardless of particle size as 

there is a large chance for the generated exciton pair to diffuse towards the Donor:Acceptor 

interface. However, the larger the particle, the probability for the generated exciton pair to get 

trapped in impurities/structural defects of the nanoparticle). Finally, Power conversion 

Efficiency is related to the uniformity of the film; the rougher the printed film, the higher the 

chances of device failure due to short circuiting of the electrodes (see HYPOTHESIS 1) 
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Figure 5.11 : Interdependency between Power Conversion Efficiency, Particle Size Distribution 
and Printed/ Spin Coated Film uniformity 

EXPERIMENT 4: Confirm the relation between particle size distribution, film uniformity (surface 

roughness) and resulting power conversion efficiencies. 

By plotting the calibration curves for the relations outlined in Figure 5.11, a firm understanding 

for the structure-property relation of the nanoparticle OPV can be developed - where a much 

more uniform film structure may give rise to a higher PCE% 

HYPOTHESIS 5: Different Donor:Acceptor material systems will yield efficient power conversion 

efficiencies when the blend ratio between each donor:acceptor system has been optimized. 

(See blend ratio study in Chapter 4) 
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Figure 5.12 : Power conversion efficiencies obtained from nanoparticle OPV devices made from 
different Donor:Acceptor Materials and different blend ratios 

 

EXPERIMENT 5 : Find out the power conversion efficiencies of nanoparticle OPVs made by the 

following conditions: 

(i) Donor is kept constant - Acceptor is changed in different wt% ratios 

(ii) Acceptor is kept constant - Donor is changed in different wt% ratios 

(iii) Changing the conjugation length of the Surfactant used - thereby improving charge mobility 

through the nanoparticle film 

By populating the experimental matrices and plotting the calibration curves for each as outlined 

in Figure 5.12, further structure-property relations between the donor:acceptor blends and 

device efficiency can be understood - ultimately guiding the researchers to develop better 

materials in order to achieve higher device performance. 



 

~ 102 ~ 
 

5.6 Step (5) - Physical Properties of the Ink 

The "final" step that needs to be addressed is the ink itself; the physical, fluid properties of the 

ink vehicle influences inkjetting behaviour (thereby influencing the change in inkjet printing 

parameters as seen in Step 1 - this completes the cycle). The fluid properties of the ink also 

influence how the ink wets the substrate (influencing Step 2 - substrate modification). The main 

properties of the ink are tabulated in Figure 5.13, and detailed in the following sections. 

 

Figure 5.13 : Breakdown of the physical/fluid properties of the ink vehicle 

Surface Tension–It is the surface tension of the ink vehicle that (i) holds the ink liquid at the 

inkjet nozzle[1],preventing leaking/dripping in the absence of negative pressure within the ink 

cartridge and (ii)influences the spreading/wetting of the ink droplet on the substrate[45]. 

Viscosity - The viscosity of the ink influences (i) the final printed shape[1] and also (ii) the 

printing parameters used in Step 1 , such as the pulse Firing Voltage. High Viscosity inks require 

high firing voltages as it requires a higher amount of energy to be ejected from the ink 

nozzle[45,46] 
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Marangoni Flow–Marangoni flow was discussed in Chapter 3. In the case of "pure" solvent 

systems such as 100% water or 100% o-Dichlorobenzene, the final dried film will have a coffee-

ring formation due to the capillary flow of the liquid towards the periphery of the ink droplet, 

when the solvent is being evaporated. By introducing a surface tension gradient within the 

solvent (usually by adding a secondary co-solvent with a different surface tension) an inward-

flow of liquid can be induced; thus, the coffee-ring effect can be significantly reduced, leading to 

more uniform film formation. This inward, uniform flow is called Marangoni Flow[47,48]. 

5.7 Conclusion 

Inkjet printing parameters, selection of printing machine specifications, modification of the 

susbtrates, ink fabrication and nanoparticle sizes are only a few of the many parameters that 

need to be optimized for the fabrication of efficient nanoparticle OPV devices; what adds to the 

complexity of the problem is that all these parameters are directly dependent on one another.  

In this chapter, the various parameters were discussed in brief.  Experimental outlines for 

testing these parameters were also suggested. By changing these parameters systematically and 

measuring the effects on specific measurables, it is hoped that the process of inkjet printing of 

OPV can be streamlined iteratively, in future studies. 
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APPENDIX A–Using Molybdenum Oxide as a 

replacement for PEDOT:PSS 

ABSTRACT/OBJECTIVE – Solution processed Molybdenum Oxide is used as 

a substitute for PEDOT:PSS Hole Transport Layer in P3HT:PCBM devices . 

Performance and Efficiencies were compared between devices containing 

PEDOT:PSS  and those containing MoOx. Device Performance was found to 

be very comparable. Thus, MoOx may be used in water-based 

Nanoparticulate OPV due to its higher stability. 

A.1 Introduction 

Hole Transport Layers (HTL)/ Electron Blocking Layers (EBL) are commonly used to induce 

direction of flow of photogenerated charges within the active layer of the OPV. For instance, the 

Hole transport layer which would lie between the Anode and the Active Layer will have a HOMO 

level which will facilitate hole movement , but since the LUMO is too high, the electron will be 

blocked and must travel in the OTHER direction. Thus, charge is transported in one direction and 

efficiency is improved. 

One of the most (if not most) commonly used Hole Transport layers is PEDOT:PSS.[1] It is used in 

all varieties of organic electronic devices from OPVs to OLEDs. It is even being studied to be used 

as an alternative to ITO, as an electrode[2,3]. 

However, PEDOT:PSS has a major weakness - it degrades very quickly in the presence of water. 

Since it is amphiphilic, the Hydrophilic (and Hygroscopic) PSS retains moisture from the 
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atmosphere and this severely impacts device performance. Indeed, it has been seen that the 

major reason for declining device performance can be linked to the degradation of the 

PEDOT:PSS[4]. Thus there is a need to develop a water-stable alternative to PEDOT:PSS if 

devices are to be made using water-based active layer inks. 

An alternative to PEDOT:PSS can be developed in two ways –  

1) Changing the device architecture [5] such as an Inverted OPV structure– Instead of using 

PEDOT:PSS as a HTL between the Anode and Active layer, an Electron Transport Layer may be 

implemented between the Cathode and Active Layer. Zinc Oxide (ZnO) is commonly used as the 

ECL, in this case. This method was shown to decrease degradation. However, the author’s 

expertise does not lie in fabricating inverted solar cells, thus this method was not considered. 

2) Replacing the PEDOT:PSS itself - Metal Oxides have been and are still being studied for their 

usage in OPVs and other organic devices. Oxides like Vanadium Oxide, Molybdenum Oxide and 

Tungsten Oxide [6] are some promising candidates that work as charge transport layers. 

Molybdenum Oxide (MoOx) was chosen as the replacement to PEDOT:PSS due to its ease of 

processability [7,8,9]. 

Spun-cast P3HT:PCBM devices with PEDOT:PSS and devices with MoOx were fabricated; device 

performance were characterized and compared – it was found that the device performances 

were very comparable indicating that MoOx may be used as a Hole Transport Layer in water-

based nanoparticulate OPV. 
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A.2 Experiment 

Molybdenum Oxide Preparation : The method was derived from [9]. Ammonium 

MolybdateTetrahydrate was purchased from Sigma Aldrich and used without further 

modification. Ammonium MolybdateTetrahydrate (NH4)6Mo7O24.4H2O is a precursor material 

that dissociates into MoO3 , NH3 (gas) and H2O upon dissolving in Water and subsequent 

heating. 

400mg of (NH4)6Mo7O24.4H2O was dissolved in 10ml of DI Water to yield a 4% w/v solution. This 

solution was stirred for 70 minutes at 200rpm while heating at 80oC – this is sufficient for 

adequate dissolution of the precursor – the solution was then further diluted to a 0.2% w/v 

solution.  This solution was subsequently spincoated onto pre-cleaned ITO slides at 4000rpm for 

30 seconds. MoOx films were finally annealed at 300oC for 12 minutes prior to application of 

P3HT:PCBM active layer. 

PEDOT:PSS Preparation: 2.5ml of PEDOT:PSS and 2.5ml of DI water was mixed and filtered 

through a 0.45 micron PTFE syringe filter. This solution was subsequently spincoated onto pre-

cleaned ITO slides at 5000rpm for 45 seconds. PEDOT:PSS films were annealed/heated at 100oC 

for 30 minutes prior to application of P3HT:PCBM active layer. 

Active layer Preparation and device fabrication:15.1 (+/- 0.1) mg of P3HT and 12.0 (+/- 0.1) mg of 

PCBM were dissolved in 1ml of Chloroform to yield a P3HT:PCBM solution in the ratio 1:0.8. This 

solution was sonicated and gently heated so as to completely dissolve the materials inside the 

chloroform.  P3HT:PCBM active layers were spincoated onto MoOx/PEDOT:PSS pre-coated films 

at 800rpm for 18 seconds, inside the glove box. All active layer films were then annealed at 

120oC for 10 minutes before putting them inside the evaporator. Finally, the aluminum cathodes 

was evaporated onto the P3HT:PCBM films at a pressure of <10-6Torr. 
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A.3 Results, Discussion and Conclusion 

Power Conversion efficiencies of the devices were measured using a Newport 91159 Full 

Spectrum solar simulator with a power density of 100 mW cm-2 (1-sun illumination). The xenon 

lamp in the solar simulator is calibrated with a Round-Robin InGaAs photovoltaic cell fabricated 

at NASA. The OPV devices were tested immediately after fabrication. 

Tabulated as follows are the measured device performance results. 
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Figure A.1 : J/V Curves of PEDOT:PSS devices 

 

PEDOT:PSS 

Device Area (cm2) No. of devices  Largest PCE % Avg PCE% St. Dev. 

Largest -
0.1963495cm2 

2 1.53 1.515 0.0212132
0 

Medium -
0.096211275cm2 

2 1.42 1.385 0.0494974
7 

Small -
0.034636059cm2 

8 1.64 1.5025 0.1081995
5 

Smallest -
0.0176714587cm2 

7 1.96 1.691428571 0.2097958
1 

 

Table A.1 : PEDOT:PSS Hole Transport layer device results 
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Figure A.2 : J/V Curves of MoOx devices 

 

MoOx 

Device Area(cm2) No. of 
devices 
tested 

Largest 
Power 

Conversion 
Efficiency% 

Average 
Power 

Conversion 
Efficiency% 

Standard 
Deviation 

Largest -
0.1963495cm2 

4 1.55 1.48 0.112694277 

Medium -
0.096211275cm2 

4 1.31 1.25 0.09539392 

Small -
0.034636059cm2 

15 1.62 1.228 0.199291603 

Smallest -
0.0176714587cm2 

10 2.6 1.398 0.447953371 

 

Table A.2 : MoOx Hole Transport Layer device results 
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Figure A.3 : Comparing Average Device Performance between PEDOT:PSS and MoOx based 
devices 

 

 

Figure A.4 : Comparing the Best Individual Device Performance (per device area) between 
PEDOT:PSS and MoOx based devices 
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From Figure A.3 and A.4, The PEDOT:PSS and MoOx based devices were found to have very 
comparable power conversion efficiencies, across all device areas. As PEDOT:PSS devices are a 
benchmark OPV material, this result indicates that the MoOx can be used as an effective Hole 

Transport layer instead of PEDOT:PSS. 

However, further study is still required in understanding and determining if MoOx is indeed a 

better alternative to PEDOT:PSS when it comes to water-based nanoparticle OPV devices. Some 

of the points of interest that need to be addressed in future studies are  –  

1) Impact of water-based ink on the morphology of the PEDOT:PSS/MoOx.  

2) Rearrangement of underlying PEDOT:PSS /MoOx layer by the water. 

3) Wetting of water-based ink on the surface of PEDOT:PSS/MoOx . 

4) Modification of surface energies of PEDOT:PSS/MoOx by ozone plasma treatment. 

5) MoOx surface activation/ modification of HOMO/LUMO levels by ozone plasma treatment – 

can the charge transfer at the MoOx be further improved? 

6) Characterize thickness of MoOx films and its impact on device performance. 
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APPENDIX B - Fabrication of P3HT-PCBM 

nanoparticles using the reprecipitation method 

ABSTRACT/OBJECTIVE -  P3HT:PCBM nanoparticle dispersions were 

fabricated using the flash-precipitation/nano-precipitation/reprecipitation 

technique. Nanoparticles were characterized for their size and blending 

using UV-Vis absorbance and fluorescence spectroscopy. A correlation 

between spectral features and particle size was found.  

B.1 Introduction 

Reprecipitation is commonly used in drug manufacturing where the drug molecule is crystallized 

into nanoparticles by solvent shifting [3]. Recently, these reprecipitation methods were utilized 

by Jason McNeill et al and Andre Gesquiere et al to make nanoparticles of their analytes. These 

analytes were then subjected to their Single Particle/Molecule Spectroscopy/Studies. 

Reprecipitation is conventionally used for understanding BULK characteristics on NANO SCALE; a 

single molecule of the analyte by itself may not give enough information about its properties in 

devices. In bulk films of the analyte we may not really study individual domains – the idea being 

that different sized domains may have different electronic properties. In nanoparticles however, 

the bulk characteristics of multiple molecules coming together combined with smaller more 

reproducible domain sizes means that researchers may effectively study the electronic 

properties of the materials more effectively [4-10]. 
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In this appendix section, the reprecipitation method is described in some detail. This method is 

used to fabricate P3HT:PCBM nanoparticle dispersions. These nanoparticles are then 

characterized for their size, blending of P3HT:PCBM and photophysical properties.  

B.2 Experimental Section 

B.2.1 Nanoparticle Synthesis using the reprecipitation method 

P3HT and P3HT:PCBM blends were dissolved in THF to make precursor solutions.  By modifying 

the concentration of the P3HT/PCBM within the precursor, the size of the resulting nanoparticle 

can be modified. A [1:0] precursor solution is one where 1mg of P3HT and 1mg of PCBM are 

dissolved in 10ml of THF ; Similarly, a [2:2] precursor solution is one where 2mg of P3HT and 

2mg of PCBM are dissolved in 10ml of THF 

THF is a weak solvent for P3HT and PCBM. The precursor solution needs to be sonicated/heated 

for a while before the P3HT gets dissolved. One would know that the P3HT has dissolved when it 

is seen that the dark-pink turbid polymer solution has turned into a clear orange solution. If 

these precursors are left alone and not used immediately, the P3HT starts to gel [15,16]. This 

behooves the experimenter to “re-dissolve” the polymer. 

A scintillation vial containing 10ml of water was placed in a bath sonicator. 1ml of desired blend 

precursor solution was injected into this vial , while the vial was being sonicated. A VWR pipette 

with 1000 microliter pipette tips was used to inject this precursor solution manually. The pipette 

tip was placed close to the middle of the vial (underneath the surface of the water) and the 

solution was manually injected over a period of 10 seconds; the sonication continued for 

another 10 seconds before it was stopped. 
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The change from solution to dispersion for P3HT and P3HT:PCBM blends can be visibly seen as 

the color would change from yellow/orange to pink. 

B.2.2 Filtration of Dispersions 

Syringe filters were used to determine the size of the nanoparticles. The larger the average size 

distribution of the nanoparticles,  the more material lost in the filters. This loss in material 

should  be reflected in UV-Vis absorbance spectra of the nanoparticle dispersions before and 

after filtration. Once the dispersions are made, the THF is evaporated off from each dispersion 

by heating it for ~3 hours at 65 C, while stirring at 1200rpm or by gently evaporating the THF at 

room temperature for ~24 hours. 

Once the THF was removed, 4ml of the chosen dispersion was decanted into  a fresh sterile 

syringe. A 200nm PES filter from VWR was fitted onto the syringe and the dispersion was gently 

filtered.  

B.2.3 Spectroscopy 

Absorbance was measured using a Shimadzu UV-2100PC spectrophotometer. Measurements 

were taken at 0.5nm intervals using a Fast scan speed. (See Chapter 2) 

Photoluminescence was measured using a HORIBA Jobin -Yvan Fluoro Max fluorimeter. 

Measurements were taken at 1nm intervals using a 1 second integration time. Slit Widths of 

5nm 

 

 

 



 

~ 120 ~ 
 

B.3 Results and Discussion 

B.3.1 Confirming blending of P3HT:PCBM in nanoparticles using absorbance and fluorescence 

spectroscopy 

 

Figure B.1: Normalized Absorbance and Fluorescence spectra of P3HT and P3HT:PCBM in 
solution and dispersion. 

 

Figure B.1 shows the absorbance and fluorescence profiles of the P3HT and P3HT:PCBM in 

solution and in dispersions.  

For the P3HT in solution the absorption max occurs at 446nm. When PCBM is added to the 

solution, the absorption max for P3HT is still the same, a characteristic peak at 325nm appears 
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for the PCBM indicating that it is in solution. Moreover there is also a small feature at around 

430nm which is attributed to the characteristic absorbance of PCBM. 

Now, the absorbance of the dispersions is red shifted from 446nm to 505nm. This is because the 

molecules of the P3HT are now interacting with each other; the spectra of nano-solid state 

domains of P3HT .Packing restricts the torsional motion of the backbone and therefore increases 

the conjugation. There will also be J- and H-aggregates that will form. Aggregation may be 

computed by looking at the structure of the absorbance; This is a qualitative assessment that is 

backed by work done by Spano and colleagues [12,13]. An interesting side track here is that , for 

future projects, models developed by the Spano group can be used to model the occurrence of 

aggregates based on domain size of the crystal (which is the particle size of the 

nanoparticles).[18,20,21] 

Their spectra is also more resolved i.e. 3 distinct features for the P3HT are seen to form– a 

major peak at 505nm, a shoulder at 550nm and a second shoulder at 605nm. The PCBM 

absorbance max is also red-shifted from 325nm to around 332nm. This indicates that the PCBM 

is also in solid state [11]. 

By observing the fluorescence of the solutions it is seen that there is negligible quenching of 

fluorescence with an increase in PCBM. This is due to the P3HT and PCBM molecules having 

negligible interaction with each other in solution. PCBM will typically not quench that well (if at 

all) through Forster energy transfer because the band gap for PCBM is bigger than that for P3HT. 

DEXTER Energy Transfer quenching is required and this needs close interaction. 

In the precipitated nanoparticles increasing the PCBM concentration lead to fluorescence 

getting rapidly quenched. 
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Figure B.2 : Raw Fluorescence spectra of P3HT:PCBM nanoparticles where the PCBM ratio is 
changed. 

 

 

Figure B.3 : Stern Volmer Plot of P3HT:PCBM nanoparticles. The chromophore here is the P3HT 
and the PCBM acts as the quencher. 
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Figure B.3 is a Stern Volmer plot of the P3HT:PCBM nanoparticles where the ratio of the PCBM 

(quencher) is increased, keeping the P3HT constant. The assumption here is that since the 

nanoparticles are being made the same way, the majority of quenching must be coming from 

the PCBM. The ratio of the PCBM is plotted on the x-axis and (Io/I) is plotted on the y-axis. Here , 

(Io/I)=(Unquenched Fluorescence/Fluroescence with quencher)  

It has been shown in literature on multiple occasions that the PCBM has a higher surface energy 

than the P3HT [17] . It makes sense that the P3HT likes to form a shell around the PCBM, to form 

a core-shell nanoparticle.  So when the P3HT is kept constant and the PCBM concentration is 

increased, it behooves the P3HT to become more “spread-out” (because there is more PCBM 

domains to latch on to) i.e the PCBM is severely disrupting the P3HT domains. This is reflected in 

the SV plot. 

B.3.2 Confirming particle size of nanoparticles using uv-vis absorbance and filtration 

experiments 

 

Figure B.4 : Average material lost after filtering through a 200nm pore syringe filter. 
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(Dispersions are measured for UV-vis absorbance before and after filtering. The decrease in 

absorbance intensity is directly proportional to material loss.) 

Here, the concentration of the precursor solution is plotted on the x-axis. The solution is of [1:1] 

ratio P3HT:PCBM in THF. So for example “2” on the x-axis means that 2mg of P3HT and 2mg of 

PCBM was dissolved in 10ml of THF. This solution was then used to make nanoparticles with 

[2:2] P3HT:PCBM ratio. This is different from a [1:1] in terms of CONCENTRATION. The y-axis 

shows the % material lost after filtering 4ml of the dispersion through a 200nm pore syringe 

filter. 

The hypothesis here is that by increasing the concentration of the precursor, the average size of 

the precipitated nanoparticle dispersion will also increase. 

From Figure B.4 -  For “low” concentration precursor solutions, material loss is quite low – 

around 10% for 1 filtration step. As we increase the concentration of the precursor (2.5mg P3HT 

+ 2.5mg PCBM dissolved in 10ml THF) material loss is significantly higher. This means that more 

material is getting lost in the filters as the average particle size is becoming larger in size, thus 

lending credence to the hypothesis made before. The concentration of the polymer: fullerene 

inside the THF-water domain is increased due to more material dissolved inside it, thereby 

resulting in larger droplet sizes. This finally leads to larger particles that get precipitated out. 
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Concentration 
(mg/10mlTHF) 

Average material Lost for 1st 
filtration (%) 

Standard Deviation 1st 
Filtration 

1 10.07844797 3.628356445 

1.5 13.41943285 5.0406365 

2 11.44169166 2.977219023 

2.5 32.53926859 26.98631388 

3 31.94499831 15.48568765 

3.5 39.92587946 31.66347412 

4 57.91762148 10.56052252 

Table B.1 : Raw data of material loss for each concentration of precursor after filtering through 
a 200nm syringe filter. 

 

Figure B.5 : Increase in Vibronic Peaks at 550nm and 605nm w.r.t particle size.  
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As seen before , it was determined that as the precursor solution concentration was increased, 

the particle size also increased. 

Here, it turns out that there is spectroscopic evidence that also tells us that the nanoparticle 

dispersions are  of different size distributions; there are multiple features in the absorbance 

spectra that change with the change in concentration of the dispersion i.e different particle sizes 

/ domain sizes distributions have different absorbance profiles in the case of P3HT. For instance, 

the red-shifting of the peak at 500nm, and the steady increase in shoulder intensities at 550nm 

and 605nm as seen in Figure B.5. 

B.3.3 Disruption of aggregation by PCBM in P3HT:PCBM nanoparticles 

Gesquiere et al [10] used a variety of techniques such as SEM, AFM, TEM to determine particle 

sizes of their P3HT:PCBM particles. In that process they also used a Confocal microscope setup 

to determine fluorescence-quenching characteristics of their nanoparticles , where they were 

looking at nanoparticles with increasing PCBM ratio.  

They determined that PCBM got stuck inside the P3HT chains. They also determined that 

increasing PCBM ratio caused more disruption of P3HT interchain interactions, disruption of 

P3HT crystallinity also. This concept of PCBM disrupting P3HT crystallinity is not new and has 

been shown before with experiments on P3HT:PCBM thin films [19]. 
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Figure B.6 : Blue-shifting of main P3HT peak at 500nm, with respect to increasing PCBM 
concentration within the P3HT:PCBM nanoparticles 

P3HT:PCBM Blend ratio Absorbance Wavelength Max. for P3HT 

[1:1] 505.5nm 

[1:2] 497.5nm 

[1:3] 487.5nm 

[1:4] 465.5nm 

Table B.2 : Absorbance max. of P3HT with increasing PCBM inside the nanoparticle 

 

From Figure B.6 and Table B.2, it is seen that this trend persists in the nanoparticles as well - the 

P3HT crystalline peaks at 505nm, 550nm and 605nm are affected with increasing the presence 

of PCBM. 
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