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P. Venkataraman

Description of Book

Essential Mechanics - Statics and Strength of Materials with MATLAB and Octave combines two
core engineering science courses - “Statics” and “Strength of Materials” - in mechanical, civil, and
aerospace engineering. It weaves together various essential topics from Statics and Strength of
Materials to allow discussing structural design from the very beginning. The traditional content of
these courses are reordered to make it convenient to cover rigid body equilibrium and extend it to
deformable body mechanics.The e-book covers the most useful topics from both courses with
computational support through MATLAB/Octave. The traditional approach for engineering content is
emphasized and is rigorously supported through graphics and analysis. Prior knowledge of MATLAB
is not necessary. Instructions for its use in context is provided and explained. It takes advantage of
the numerical, symbolic, and graphical capability of MATLAB for effective problem solving. This
computational ability provides a natural procedure for What if? exploration that is important for design.
The book also emphasizes graphics to understand, learn, and explore design. The idea for this book,
the organization, and the flow of content is original and new. The integration of computation, and the
marriage of analytical and computational skills is a new valuable experience provided by this e-book.
Most importantly the book is very interactive with respect to the code as it appears along with the
analysis.
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FOREWORD

This book is the result of a long held passion and belief that computation can empower and energize
thinking and learning even in basic courses. | am hoping that all of you who use this book will confirm
or disagree with this idea by dropping me a line at the email address at the end of this page.

The book took over five years to finish. It was mostly due to the many forks in the development.

Fork 1

It did not begin as a book. It started as a collection of MATLAB code that could accompany traditional
instruction in basic engineering (Statics) and structural mechanics (Strength of Materials) courses. It
essentially translated standard equilibrium and later structural analysis into code. The emphasis was
not writing code but rather using MATLAB as a super calculator. The initial code had detailed
explanation but subsequent development and extensions were just copy, paste, and edit with minor
new features.

As a background for this effort “Statics” is usually the first engineering science course in most
engineering curriculum. The traditional instruction is about introducing the concepts of equilibrium
across different physical problem varieties and defining the physical quantities involved. Sadly you
cannot design the structure in this course because that information is delivered through another
course “Strength of Materials”. In many institutions this is a two course sequence. In other
institutions it is a single course delivered in sequential fashion. The new information in the second
course, which allows for design, is the introduction of stress and strain. This is a simple concept and
does not require a significant amount of time to incorporate. Structural design is mostly analysis from
Statics and finished with stress and displacement calculations from Strength of Materials.

Fork 2

In Fork 1 it became apparent that you could effortlessly do what if? analysis with this code - the
essence of design. You could change the weight, or the length, or the diameter, and obtain the result
without much sweat. You could also adapt the code easily to different problems with minor effort. In
affecting this transition and making it work in code you have to pay attention to structural analysis.
This is a powerful skill to learn in a basic course. In addition the ability to vary parameters of the
problem allowed for development of design sensitivity right from the beginning provided it was utilized.

One might ask why not move the learning of stress and strain to “Statics” and then start talking about
design from the start? This would actually perfectly merge the two courses and make it one.

| tried to develop content that did just this and started to extend problems in Statics to calculate
stress, strain, and displacement so that it appeared a natural integration. This was easier to do than
organizing the table of contents to deliver this information formally in the most useful manner. One
constraint was that Statics was a freshman course and was calling upon mathematic principles that
were being simultaneous introduced in a separate mathematics courses. Including structural design
early meant including discussions of fracture early. Fracture even in the most simplest form is a
challenging concept. Avoiding fracture is the goal of successful structural design. This took a long
time to juggle and incorporate and | do not believe it is perfectly done here. It is a challenge and | am
relying on the instructors to get the students through this with discussion and illustration. Its
importance in design can be easily understood by the students, but the content necessary for analysis
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takes some time to learn and understand.

One effective way to understand the concepts was through graphics. MATLAB is a wonderful tool to
explore engineering content graphically. Simple graphics are easy to generate in MATLAB. In
addition, the classical formulation and solution of the engineering analysis was easily incorporated
using symbolic calculations in MATLAB. It was similar to working out analysis on paper and following
the same steps. The graphic confirmation of design solutions is also an effective way to understand
and learn.

Fork 3

The efforts in Fork 2 extended the current work to include all topics in Strength of Materials. It
naturally included the corresponding required topics in Statics. Suddenly, it started taking shape as a
complete text book with an emphasis on design that was naturally incorporated. This led me to reflect
on applied design.

Structural design in essence is choosing material or materials, determining loads the structure should
support, and identifying dimensions that can withstand the loads without failure. In most text book
situations the loads are generally known and the choice of material is usually based on experience
and practice. The design challenge, particularly in instructional practice, is to select the dimensions of
the structure so that it does not fail.

In traditional textbooks and instruction, cross-sectional properties based on dimensions of structures
are often presented in Statics, where they are not used and relegated to the appendix in Strength of
Materials, where they are necessary and important. In this book we avoid the appendix all together.
The cross-sectional properties are introduced in the beginning as they are the essence of design.
They also provide an avenue to become familiar with MATLAB code while using it numerically,
symbolically, graphically, and sometimes textually.

Fork 4
This happened recently. In early 2019, the book felt bare with only examples and no additional
practice problems. | started adding a few problems at the end of the sections.

Fork 5

In July 2019, | retired as an academic. | had always planned to release this book under Creative
Commons license. | felt compelled to make the book truly useful under the new license. | resolved to
provide support for Octave in this book. At least one MATLAB code in every section will have the
Octave support and discuss the behavior of the code in Octave.

| am very comfortable with MATLAB and have been using it for more than a decade. The initial
MATLAB code in the book was created using Version 2015a. All of the code in this book is verified
with this version. | have not used Octave until now. | expected some learning delay. Since Octave
accepts m-files | tried running the same MATLAB in Octave and to my surprise it worked. This made
my task easier. | used the MATLAB code in Octave and debugged sufficiently to see that the code
executed in Octave with the same results.

In this book, the text is written by me. The code is also original. Most of the figures used in the
analysis are drawn by me. You will find some whimsical ones before | got more disciplined. There is a
lot of color as it was planned as an e-book.

This is Version 1 of Essential Mechanics - Statics and Strength of Materials with MATLAB and
Octave.
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Technical Information involved in the development of the book:
The book was written in Scrivener from Literature and Latte
The figures are created using Canvas X from Canvas GFX
The mathematical formulas are generated using MathType from Design Science
MATLAB code using MATLAB version 2015a from Mathworks
Octave code using GNU Octave version 5.1 from GNU Octave site
Python and Sympy through Anaconda Python 3 distribution

The website for the book is at:

hitos) | f almechanics/!

All figures used for illustration are from public domain sources. The majority of them from Wikimedia
Foundation (Wikipedia). If a particular figure in this book should not be present because of proprietary
reason, please notify the author and he will exclude it and update the electronic file.

Some table of properties are also from Wikimedia Foundation (Wikipedia).

| would have welcomed any assistance for editing the manuscript. | have done it twice for content and
several times for formatting. Initially | planned to publish this as an epub file where formatting can be
lose. However for reaching a bigger audience a pdf file in letter size made more sense. That means
compiling and editing images so that they remain complete. Adjusting code so that there is no
unintentional wrapping. | am sure there are lots of errors still. Hopefully with your help | can capture it
in the website for the book.

P. Venkataraman

January 2020.

Rochester, NY, USA.

Email : Venpanch1@outlook.com

Profile: https://sites.google.com/site/venkatpan/

Alumni:
[. I. T. Kanpur, B.Tech, 1974
Rice University, PhD, 1984


https://sites.google.com/site/essentialmechanics/home
https://sites.google.com/site/venkatpan/

Essential Mechanics

INTRODUCTION

Essential Mechanics: Statics and Strength of Materials with MATLAB and Octave

Formal Description:

Essential Mechanics - Statics and Strength of Materials with MATLAB and Octave combines two
core engineering science courses - “Statics” and “Strength of Materials” - in mechanical, civil, and
aerospace engineering. It weaves together various essential topics from Statics and Strength of
Materials to allow discussing structural design from the very beginning. The traditional content of
these courses are reordered to make it convenient to cover rigid body equilibrium and extend it to
deformable body mechanics.The e-book covers the most useful topics from both courses with
computational support through MATLAB/Octave. The traditional approach for engineering content is
emphasized and is rigorously supported through graphics and analysis. Prior knowledge of MATLAB
is not necessary. Instructions for its use in context is provided and explained. It takes advantage of
the numerical, symbolic, and graphical capability of MATLAB for effective problem solving. This
computational ability provides a natural procedure for What if? exploration that is important for design.
The book also emphasizes graphics to understand, learn, and explore design. The idea for this book,
the organization, and the flow of content is original and new. The integration of computation, and the
marriage of analytical and computational skills is a new valuable experience provided by this e-book.

Essential Mechanics - Statics and Strength of Materials with MATLAB and Octave, can be
used in the earliest core engineering science course in mechanical, civil, and aerospace engineering.
It is probably a required service course for most other engineering disciplines. In this book it
represents an integration of topics from Statics and Strength of Materials to make it useful for design.
If you have already graduated these courses you will have been introduced to the topics through
through adjoining courses probably titled “Statics” and “Strength of Mechanics”. Many would have
had a single course with Strength of Materials content following Statics in sequence.

Statics is about calculating loads (forces and couples) assuming a rigid structure. Strength of
materials assumes a deformable structure and uses the loads determined in Statics to study the
deformation of structure as well as the stress capacity of the structure. A significant portion of the
effort in the Strength of Materials course is applying Statics initially to the problem.

For engineering design, which attempts to design structures that do not fail structurally during their life
time, the critical knowledge is acquired through the Strength of Materials course which depends
significantly on Statics. The course on Statics merely lays the preliminary calculation of the loads that
the individual parts of the structure must carry during the operation. With just “Statics” the students
cannot design as they cannot determine if the product or device will fail. “Statics” is just an special
applied “Physics” course dealing with equilibrium. Students are forced to recollect their “Statics” when
they continue with “Mechanics of Materials” in a two-course sequence. This is a challenge in todays
learning environment. It is also a waste of opportunity in design instruction. Design is complete when
analyzed for failure. The failure is related to the stresses that the structure must endure. This book
attempts to combine and thread the calculations of the loads with the stresses to ensure that the
structure will not fail and the approach should make intuitive sense.

Another advantage of proceeding in this direction is to make available the extra course to continue
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with advanced applications of mechanics that could involve numerical approaches to structural
design. These are essential for real world structural design - using software that deliver solutions
through finite and other discrete element methods.

Let us consider a simple example to illustrate this connection between Statics and Strength of
Materials in design:

Figure. A simple design problem

In this problem you seek the answer to the question : Will he be rudely awakened or the rope
will hold the weight?
You can reformulate the question : Will the rope fail?

“Statics” will solve for the load carried by the rope.

“Statics” cannot answer the question by itself.

“Strength of Materials” will use this load to calculate if the stress in the rope will cause failure.
The question can only be answered by the combination of “Statics” and “Strength of Materials”

Calculating the stress is such a simple extension that it is a shame to postpone it to another
course and make the student wait to understand design.

In summary - Statics ignores the deformation of the structure. In Strength of Materials we
allow the structure to deform. A design goal is to ensure the deformation is elastic, that it the
structure returns to the undeformed state once the loads are removed. The actual material
properties will determine this behavior. In this book we will combine this analysis.

How to calculate the answer?

The solution in most of structural engineering problems is to use the Laws of Physics — in this
case the simplified Newton’s Law for stationary objects — called an equilibrium equation.

We solve this problem by:

o Simplifying the figure by making assumptions
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- this is a physical model representing the actual problem

o Identifying the information that is known
- like the angle the rope makes with the horizontal line

o Solving for the unknowns (or missing information) using the natural law or Newton’s
Law— in this case the force in the rope - using algebra and/or calculus and/or geometry
- this is the mathematical model

These are standard procedure followed by all text books in Statics

o Calculating the stress in the rope and checking that it will not rupture, and sometimes
calculate the sag in the hammock

This is the the application of Strength of Materials
This book solves this problem immediately instead of waiting for another course

o Checking that the number makes sense
- this comes must become a part of your engineering instinct - through practice and
experience

o Additionally in this book we use the computational tool MATLAB/Octave to solve the
problem.

o The required MATLAB code is integrated into the book. It is not a pre-requisite.
To be effective, you should do all of the above in a

- Simple

- Consistent

- Effective, and very importantly through an
- Easily remembered process

Why MATLAB?

Many times engineering calculations can be extensive. Many times the graphical solution help
understand the solution and develop an instinct. Often there are several unknown that must be
simultaneously solved. Designing is about answering What If? questions. Programming the
calculations is a smart way to deal with design. If things go well then programming reinforces
engineering knowledge. Programming can be learned by using MATLAB as a highly efficient
calculator that can effortlessly combine symbolic, numeric, graphical, and textual computation in an
integrated manner.

The MATLAB code in this book will also run on Octave except in specific cases because of syntax
and parsing issues. Sometimes it is just a matter of a single line that must be commented out or
included or changed. The code uses symbolic variables in most exercises and you will need to
include the corresponding toolbox in Octave. The symbolic analysis in Octave is parsed to the Python
module sympy. Knowledge of Python is not necessary. The Octave code is verified to run for at least
one example in each section where MATLAB code appears. The Octave used in the book is GNU
Octave, version 5.1.0. Remember it is the same file with the MATLAB code with suggested changes
if any. For this book programming in Octave is same as programming in MATLAB. You will type in
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the MATLAB code in the Octave editor. The MATLAB code runs on Version 2015a. It should run on
later versions without problems. This was tested with some random examples from the book. The
MATLAB version was 2019a.

Important Note about Materials: Till recently the material meant metals. Today, design is all about
new engineered materials. Most new aircraft designs use composite materials, a mixture of metal and
plastic that is light and can handle all the stresses that the aluminum alloys can. As a benéefit - it is
lighter than the metal it will replace. Same performance but at lower weight and hence more efficient.
Recently Ford announced that its new trucks will be made of Aluminum instead of steel and thereby
saving over 600 Ib in weight. This also improves engine performance because of reduced weight.
Another extreme example is synthetic biology where you can design organisms through software.
Engineering new materials is an exciting new field of rewarding pursuit. Computational multi-physics is
developing new models for additive manufacturing. Nano-materials are being embedded in new
concrete structures. All of these require new areas today rely of computational skills.

To the Users:

Please consider this as a WARNING. The best way to view this e-book is through a laptop or a
desktop screen with at least 90 columns of text data. This will prevent inadvertent code wrapping.
Both MATLAB and Octave are not kind when this event occurs. They will flag errors that may take
time and effort to fix, apart from being very frustrating. To avoid parsing errors both MATLAB and
Octave require to be informed about continuation of code on the next line. They only allow it certain
circumstances.

To the Student:

Thank you for for picking up this e-book. | really hope you find this useful. | am sure you might come
across some errors and if you find them kudos - pat yourself on the back since you understand the
material you are trying to learn. Initially you might find it easy to copy and run these codes and maybe
think “ this author dude certainly knows his MATLAB”. If you always did it you will continue to just
confirm my expertise. However, if you played with the code, improved it, made it do additional
interesting things in the same context, used it to explore more design issues, then Thank You. | hope
you will share you work with others. | wrote this book specially for you. Please drop me a line about
what can make it more useful. | will certainly use it in my next book.

To the Instructor:

Thank you for picking up the book, recommending it, or even adopting it. | am hopeful it works for
you. You will find that the analysis in this book does not lack substance compared to the other texts
out there. It does not discount or shorten the development of the technical topic or the idea behind it.
You will see that the development is not weak in graphics either. It might appear that there is a lot
going on all the time with the code. Students may be able to run with it if you start it for them. Here, |
encourage you to consider coding is just copy, paste, edit, and extend. The words Essential
Mechanics at the beginning of the tile is to keep the text as small as possible by focusing on
important and necessary topics. | will look forward to your comments. Please also consider assigning
students to come up with their problems and share them with all of us. This e-book is released under
Creative Commons licensing. You can add, subtract, and change topics and make it your own.

P. Venkataraman

January 2020.
Rochester, NY, USA.
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ESSENTIAL FOUNDATIONS IN ENGINEERING SERIES

Essential Foundations in Engineering Series in is a planned wishful collection of e-books in core
engineering courses, Each one will address a core area contained in its name and provide an
excellent substitute for standard texts on the topic. The initial set of books will target the common core
courses from mechanical, aerospace, or civil engineering, primarily with beginning mechanics,
strength of materials, and fluid mechanics. They are also useful as service courses for the remaining
engineering programs. One singular characteristic of these introductory books is the presentation
being to the point, relevant, and sufficient. The student can always follow up, if necessary, at online
resources like “Wikipedia” or “Scholarpedia”, “The Engineering Toolbox”, “eFunda’”, other websites,
and other books. The topics include those covered in any standard course at any unlverS|ty These
e-books will be next generation textbook with emphasis on design thinking woven throughout the
book and integrated from the beginning with computation. This will allow instructors to challenge their
students with advanced problem solving using open-ended design exercises and encourage visual
examination of the solution. It allows students to develop a new, and much required skill set that is
easily extensible and professionally valuable.

Each e-book will have more than just formulas. The formulas themselves are developed rigorously
through clear examples and graphics. In addition there is MATLAB/Octave code to perform regular,
complex, and involved calculations based on these formulas. The code integrates symbolic,
numerical, graphical and textual programming as appropriate. These computational exercises can be
hands-on and part of lecture in a regular classroom. The software used is readily available for
personal laptops. The e-book series has no requirement for prior knowledge of software. Exposure to
basic mathematics courses in a standard engineering curriculum will be necessary. The books
teaches and incorporates computational code as required and encourages students to use and
extend the code at all times. MATLAB/Octave is used an an efficient and high powered calculator to
solve very specific problems rather than a software package that requires training and general
exposure. The skill learned here can be easily deployed in other courses. The book can be used
independently of the MATLAB/Octave content, but there are far more elegant textbooks on the
subject that will be more useful and less distracting. The book can still be used as a text formally
ignoring the MATLAB/Octave content with students can be encouraged to use MATLAB on their own.
The coverage is the same as in any standard textbook on the subject.

This book is illustration driven. The calculations are performed both step by step and also use
software. Initially you might find this tedious, however sustained use in a short period of time will likely
change your mind. The book encourages you to streamline your coding through copy, extend, and
reuse. The earlier code you meet are commented in greater detail to guide your understanding.
Consider this simple fact: You need only about 250 MATLAB commands to cover the typical
mechanical engineering curriculum - and this includes most of the courses. This is demonstrated in

this course taught by the author: https://sites.google.com/site/mece689specialtopics/home

Having taught over the last 35 years in a department of mechanical engineering the author realizes
that both teaching and learning change with each generation. Each generation appears to have
different outlook on learning, the effort that they are willing to invest, their ability to comprehend, their
motivation to think, and very important today, their ability to handle distractions. Of course other
educators may have a very different experience, which also depends on the institution, its branding,
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and the nature of students it attracts.

e These e-books are meant to communicate the essential knowledge referred in their titles. They
may also serve as a reference for prior learning that has been forgotten. Unlike standard text
books that are packed with material, the aim here is to to illustrate important topics in a simple
and unified manner and get to the applications faster. Topics requiring more detailed
knowledge are also available in the books.

e Finally, it matters if the students can apply what they learn consistently, if they remember the
concepts, if they recollect the procedure which may have been applied consistently some time
ago. For this reason, the e-books contemplated in this series should be a big help.

One important question still remains: Do we really need another book in these core courses?

There are a lot of excellent books on core courses in engineering. Today, they are also
accompanied by enormous publisher support. They
Have excellent color illustrations
Detailed explanation of topics - more details with new edition
Lots of supplementary materials to enable teaching and learning
Supporting websites with more materials that appear with clicks
More pages with each edition
More expensive with each edition
Increased cost of sustaining these features

With Essential Foundations in Engineering you get a very concise version. The guarantee that
you will learn will depends on you and not on any of these books, including the one being touted here.
The primary motivation for this book is to provide a challenging, productive, skilled, and happy
assimilation of your academic and learning experience in engineering problem solving.

The first book in this series is :

Essential Mechanics - Statics and Strength of Materials with MATLAB and Octave

Currently two others are planned by the author to appear within the next five years.

Essential Fluid Mechanics -Fluid Mechanics with MATLAB and Octave
Essential Dynamics - Dynamics and Vibrations with MATLAB and Octave

The remaining is left for others to take the lead..
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1. PRELIMINARIES

Prior to dealing with ideas from mechanics we will attend to some preliminary information that is
important for communication of values involved in engineering calculations. This is the idea of
dimensions and units. They are independent of any discussion, of any topic, of any area, from

science and applied physics.

This chapter also suggests a way to get started with MATLAB. It provides some comments on the
way it will be used in the book. This assumes that MATLAB is available on your laptop or or have
access to it. Today it is also possible to access it on line through a browser as long as you have a

license for it.
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1.1 UNITS

What do you want to know when you see the giant pumpkin? There is a clue in the picture. Like most
of us you want to know how much it weighs.

| tell you “it weighs 2500!”. As an engineer you would like to nail down the details and you have a
follow up question “2500 what?”

If you are reading this book in the US you probably instinctively assume it weighs 2500 [Ib].
However if you are reading this in the rest of the world you will instinctively assume 2500 [kg].

One of the two is inaccurate since for the rest of the world the US pumpkin would be about 5514 [Ib]
(this is heavier than your car!);

If I told you that “it weighs 2500 feet per second!”
You definitely know that something is odd — it cannot be “2500 feet per second “

As an engineer, particularly working in global teams, there is a need to communicate technical
information accurately— in this example - the weight of the pumpkin. If it weighs 2500 [Ib], then it
should weigh 11200 [N] (N stands for Newton), or about 1142 [kg] (kg stands for kilogram). The
reason for two different numbers for the weight is that it is expressed in two different systems of
units -one used in USA (US System) and the other used in most of the world (S/ System). In addition
different quantities are commonly (due to practice) expressed in certain ways even if the units do not
appear correct.

Figure 1.1.1 How much does it weigh?

There are three quantities we needed to express this technical information - the weight of the
pumpkin - (it is true for all other technical information too) are:

US System S| System
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Weight (Quantity of interest) Weight (Quantity of interest)
2500 (Value) 11200( Value)
Units [Ib] Units [N]

Even in the above expression we are not consistent with practice. The US unit expresses the weight
as standard practice, while in the Sl system, the standard practice is to describe is the weight
through the unit of mass [kg].

Example 1.1

Figure. 1.1.2 Units involved in changing the tire
You are using the tire wrench to remove the lug nuts to change the flat tire. The same torque

Quantity of interest: Torque Value: 25 Newton-meter : Units
Quantity of interest: Torque Value: 18.44 pound-feet: Units

1.1.1 Problems

Problem 1.1.1
In what different ways the capacity/performance of a new car is expressed? Record at least 3 and
express their information for your favorite car.

Problem 1.1.2
How is the performance of the Jet engine for the Boeing 787 aircraft expressed?

Problem 1.1.3
What are the different ways in which climate change is expressed?
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1.2 SYSTEM OF UNITS

A single system is efficient, convenient, economical, and makes sense. The US system units is
difficult for the United States to give up because a lot of expert technical knowledge and intuition
gained over generations is tied to this particular unit system.

The world will use a single system once the US decides it wants too give up the US system. The
intent has been there for decades but the US units are still used vigorously. Living 2 miles from the
grocery store is better imagined than 3.21 kilometers for persons living in the US.

There are two popular “Systems of Units” in practice. The first one is the “System International” or Sl
System of Units — used across the world where the unit for weight is Newtons. The second is the US
or the English System — mostly used in USA — where the unit for weight is pound (or pound force to
be strict). Any material for sale in the USA will display the specifications in both system of units.

= 4

- o dl

Figure 1.2.1 Widespread use of US Units

-US, Burma, Liberia are three countries that have not adopted the Sl as the sole system of units
(from Wikipedia)

1.2.1 Sl - or System International

The International system of units is used globally for commercial purposes as well as in science and
engineering. It appeared in 1960 and some of the standards are maintained at the International

Bureau of Weights and Measures at Severn, near Paris, France. It is also sometimes referred to as
the metric system.

The Sl is a more complete system.
In fact the US/English system have no units for many of the physical quantities that have been
defined or discovered recently.

The Sl is a system of units of measurement defined through seven (7) BASE UNITS

Table 1.1 S| Base Units
Name Unit Symbol Quantity Symbol
metre/meter m length /
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kilogram kg mass m
second S time t
ampere A electric current /
kelvin K thermodynamic temperature T
candela cd luminous intensity Iy
mole mol amount of substance n

Sl: Base and Derived Units
The meter stick is an instrument that measures one meter between marked ends.

r.!-
e
et
&y

Figure 1.2.2 The meter stick

In SI units the measured length is 1 meter. The information on length can be expressed in several
alternate units in the same unit system.

In the same Sl units it is also :
e 100 centimeters
e 1000 millimeters
e 10% microns
e 10° nanometers

It is important to use the appropriate unit defined through context and practice. For example the
nanometer is useful in discussing the wavelength of light. Microns may be appropriate when
discussing products in the semiconductor industry. Millimeters may be appropriate for discussing
blood vessels. The BASIC unit of length is the meter (alternately metre)

In addition to BASIC units many physical quantity can be expressed through DERIVED units.
Derived units imply a combination of basic units. For example

The density of water is 1000 kilogram/meter® [kg/m?]. This is a derived unit. Every physical quantity
can be associated with a corresponding basic or derived unit in the S| system of units.

Consider another example of the linear elastic spring from physics. We will apply a force (F) to
stretch it through a distance (s). Not only is the force equal to spring constant (k) times the deflection
(s), the units for the force must equal to the product of the units for the spring constant and the
deflection in base units.

F=ks or [N] = [K] [s]
k=F/s or [K] = [N/m]
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Figure 1.2.3 A linear spring - derived units

Units used in Mechanics

Table 1.2 Sl Units in Mechanics

Quantity
length

mass
time
acceleration

angle

area

density

energy

force

moment of a force
(torque)

pressure

stress
volume (solid)

volume (liquid)
work

There are two corollaries that we will respect:

Unit

meter

kilogram

second

meter per second
squared

radian

square meter

Unit Symbol

rad
m2

kilogram per cubic meter kg/m?®

Joule
Newton
Newton meter

Newton per square
meter

Newton per square
meter

cubic meter

liter

Joule

J
N
Nm

N/m?2
N/m?2
m3

103 m3
J

Essential Mechanics

Alternate Symbol

1 Joule = 1Nm
1 N: 1 kg-m/s?

Pa: Pascal

Pa: Pascal

L
1 Joule = 1Nm

1. Any law or equation we develop must have the same unit on both side of the equal sign

2. Every term in the equation must also have the same units

(These are usually better expresses using the word dimensions rather than units - but that comes

later)

1.2.2 US System of Units
The US customary unit system has some overlap with the British Imperial system. It was defined in
modern form in 1959. In 1988 Congress passed a bill for confirming adoption of the S| system but
left the timing indefinite. So the adoption is in transition. We will refer to this system as the US
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system.

We can recognize base units and derived units like we did for S| units. We also need a way to
translate information between the two systems. However the US system does not have units
available for a lot of physical quantities that have been important recently.

Unlike the S| system where units for the same quantity , for example length, can vary by orders of 10
(millimeter, centimeter, meter, kilometer), the units for the same quantity in the US have no
connection. The units for length in the US system of units can be expressed in several ways. This is
displayed in Table 1.2.3.

Table 1.3 Various US units for length (source Wikipedia)

Unit Alternate Unit SI Equivalent
1 inch (in) 2.54 cm

1 foot (ft) 12 in 0.3048 m

1 yard (yd) 3 ft 0.9144 m

1 mile (mi) 1760 yd 1.609344 km
Survey

1 link (i) 3% ft or 7.92 in 0.2011684 m
1 (survey) foot (ft) 1200/2937 m 0.3048006 m
1 rod (rd) 25 li or 16.5 ft 5.029210 m
1 chain (ch) 4 rd 20.11684 m
1 furlong (fur) 10 ch 201.1684 m
1 survey (or statute) mile 8 fur 1.609347 km
(mi)

1 league (lea) 3 mi 4.828042 km
Nautical

1 fathom (ftm) 2yd 1.8288 m

1 cable (cb) 120 ftm or 1.091 fur 219.456 m

1 nautical mile (NM or nmi) 8.439 cb or 1.151 mi 1.852 km
Similar tables can be established for area, volume, mass, cooking measures etc.
US: Base and Derived Units

Table 1.2.4 lists some of the base and derived units in the US system. It also shows the
corresponding S| Units and the corresponding conversion factors for equivalence.

Table 1.4 US Units in Statics and the corresponding Sl Units with conversion factors

Quantity US Unit Equivalent SI Unit
length 1 feet [ft] 0.3048 [m]

mass 1 slug [slug] 14.594 [kg]

mass 1 pound mass [Ibm] 0.4536 [kg]

time 1 second [s] 1[s]

acceleration 1 [ft/s?] 0.3048 [m/s?]

angle 1 [rad] 1 [rad]

area 1 [ft?] 0.0929 [m?]

density 1 [slug/ft3] 515.38 [kg/m7]
energy 1 [ft-1b] 1.356 [J ]

24


http://en.wikipedia.org/wiki/United_States_customary_units

force

moment of a force (torque)
pressure

pressure

Stress

volume (solid)

volume (liquid)

1 pound force [Ib]
1 [Ib-ft]

1 [Ib/ft?]

1 [Ib/in?], [psi]

1 [Ib/in?], [psi]

1 [ft%]

1 gallon [gal]

Essential Mechanics

4.448 [N]
1.356 [Nm]
47.88 [Pa]
6.895 x10° [Pa]
6.895 x10° [Pa]
0.02832 [m?]
3.785 Liter [L]

work 1 [ft-Ib] 1.356 [J or Nm]

1.2.3 Conversion between Systems of Units
To work in both system of units you need to how to convert between them. It is a simple arithmetic
process with both the numbers and the units themselves.

Example 1.2

For example, in USA, the speed at which you are traveling is usually expressed in miles per hour —
say 25 [mph]. In basic units you will need to express the speed in feet per second [ft/s]. In the SI
system the corresponding base units are meter per second [m/s], while the popular expression for the
speed is kilometer per hour [km/hr].

In order to convert from [mph] to feet per second [ft/s] it we need to know that

1 [mile] is 5280 feet [ft]
1 [hour] is 3600 second [s]

e | B ]t ]

hour hour 3600 seconds 1 miile
=BG R
3600 | seconds s

To convert from US units [mph] to S| units [m/s]

25[“‘“‘*5}2{@@}{ 1 hodr }{szso M}{o.sms meter}

hour heur 3600 seconds 1 mile 1 feet
=S ><0.3048[ HIcicE }:11.176[ﬁ}
3600 seconds s

To convert from [m/s] to [km/hr] or [kph] we can use the conversion factor listed in Table 1.4

11.176{’"}11.176 | | km | 13600 X 40.234[1”"}40.234[1:‘01@]
s ¥ | 11000 1 hr h

1.2.4 Accuracy

For the conversion of units and other calculations in this book you are likely to use a calculator and
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sometimes you will get a long number. Further additional operations with the number you will
continue to obtain these long numbers. For example: cos (25) = 0.906307787 and 2*cos(25) =
1.812615574.

Do we need to know the answer to so many places after the decimals? Let us consider that you are
expressing the length in centimeters.

If you are building desk and chairs you need one place after the decimal for a well built product.

If you are building cars you need two places after the decimal for a good looking car.

If you are building airplanes you need three places after the decimal for a well functioning aircraft.

The number of decimal points is related to the accuracy of your calculations. In engineering problems
the information is usually considered to be accurate to 0.2%. For example if you are using 2500 [N]
for the weight of the pumpkin, a 0.2% error in this estimate is expressed as 2500 + 5 [N]. Your
calculations are only as good as the accuracy of your information. It does not make sense to report
answers to the ninth place after the decimal. In this eBook we will report our calculations to two
places after the decimal — unless otherwise warranted.

You can choose also to round off your value to the second decimal place. If the number in the third
place after the decimal is greater than or equal to 5 then the second place number is increased by 1,
except if the second place number is 9. You will then have to change the first place number or not
round off. You must be consistent in applying round off. Hence cos (25) = 0.91 and 2*cos(25) = 1.81
(and not 1.82).

1.2.5 Dimension

How do we know that the units for acceleration in basic S| units is [m/s?]? We can always look it up in
a table (Table 1.2), in a book ,or obtain it by searching the Internet. A more fundamental idea is that
every physical quantity is associated with a Dimension.

This is very important in the subject of fluid mechanics. Also, this is very different from the concept of
Dimension (D) that is geometrically associated with a problem (like 1 D problem, 2D problem , or 3D
problem) in science and engineering, that progressively includes more information, more equations,
more work, and is more difficult to solve. We will come this path in this book later. A simple way to
understand Dimension that is associated with the units of a physical quantity is to accept that are a
set of basic dimensions — (Table 1.2.5).

Table 1.5 Basic Dimensions

Quantity Symbol
length L
mass m
time t
electric current 1
thermodynamic temperature T
luminous intensity I,
amount of substance n

Let us consider speed as an example. We know that the average speed is computed by dividing the
distance traveled by the time for the travel.
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t

As distance | L
speed=— = —— —

JAY time
The dimension for speed is [L/t]. The units for speed can be obtained by substituting appropriate

units for the dimensions in the definition. Units for speed : [m/s]; [km/h]; [ft/s]; [ft/h]; [miles/h]; [in/s];
etc. Similarly acceleration is

b s

: speed : %
acceleration = — — ==
time t

Units for acceleration: [m/s?]; [ft/s?]; [in/s?]; etc.

Example 1.3

Using the Newton’s law of gravitation , find (a) the dimension of the universal gravitational constant
(G); (b) Its basic units in the Sl system; (c) Its basic unit in the US system.

The Newton’s law of gravitation, where F is the force between the two masses, m1 and m2, and ris
the distance between the centers, can be expressed as:

m,m
e

~
.
el

I

Assumptions: To proceed we need to know the dimension of the force. We can look up a book or we
can obtain it by using Newton’s second law, F = ma (from physics).

Solution:

Dimension of force, F:

[F]=[m]x[a] = {mﬁ}

IZ

(a) Dimension of G :

WL
[G] } [F][?][?] } £2 [L][L] _ Li
[m,][m,] [%}[m] mt*

(b) [G] = [m%kg-s?] or [m3kg's?]

(c) [G] = [f®/slug-s? = [ft3 slug™ s77]

Note: We work with symbols the same was as we work with numbers.

27



Essential Mechanics

1.2.6 Additional Problems

Problem 1.2.1
The stress has the units of force/area. The stress in a material is 13500 Ib/in? (or psi). Convert the
stress to the basic S| system (N/m?). This unit is also called a Pascal [Pal].

Problem 1.2.2
The power of a jet engine powering the big airplanes is about 60 MW (mega Watts). Calculate its
power in basic US units. Then express it in terms of horsepower.

Problem 1.2.3
Express the standard atmospheric pressure at sea level in both basic Sl units and US units.
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1.3 USING MATLAB/OCTAVE IN THIS BOOK

If you are already comfortable with MATLAB you can skip this section. If you are new maybe this brief
introduction may be useful. All coding is hands on in this book. You are expected to type the code
and understand what is happening. There are explanation for what you are doing when you are using
it for the first time. All code in the book is run on MATLAB version R015a. That was the version
when | started writing this book.

If you are planning to use the book with Octave. The code is the same as MATLAB. Installation
discussion is in Section Section 1.3.4.

MATLAB is always evolving. Twice a year there are updates to the software and they are newer
versions. In general MATLAB is backward compatible until the command is retired. These updates
should not affect its use in this book. You can have the latest version of MATLAB if that is accessible
to you. The results of running the code should be the same. However sometimes the layout of the
directories will have moved. When you first open MATLAB by double clicking the program for the first
time you will see a layout in Figure 1.3.1 called the default layout which includes five separate
windows clustered together that | have also explicitly identified.
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Figure 1.3.1 MATLAB Default Layout
These five windows are identified as:

1. Command Window:This is the window with two forward arrows >>

The two forward arrows is the MATLAB prompt. The prompt indicates that MATLAB is ready to act
on your commands.

This is the window you can interact directly with MATLAB. All results of numerical calculations
appear in this window.

You can suppress information in this window by placing a semi colon at the end of the sentence.
This is the most important Window for this book (and for the use of MATLAB)

2. Editor: This is the window above Command Window. This is where MATLAB code is written.
MATLAB code is also called a script. MATLAB is a scripting language. It is interpreted instead of
being compiled. If you do not follow it is OK. It means that MATLAB will debug your script as it
executes the commands in sequence.

Another important thing for this book is that instead of interacting with MATLAB one line at a time, we
set up a several lines of code that can be run one at a time automatically and the calculations can be
seen in the Command Window. The collection of code is saved in a file before running. This is called
a script file. The extension for these files is .m. You can assign any name to these files but
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remember to start with an alphabet and avoid any spaces in the name. You can include numbers and
the underscore. You should probably name them so that you can pick them out later to run them
again, extend them, or modify them.

This is second most important Window for this book. This way all your code is always saved.

MATLAB will debug your script before executing it. If you have errors then you will have to correct
them before a successful execution of the script. MATLAB will advise you of the type of error and
sometimes suggests way of correcting it. One kind of error is the semantic error because you did not
follow the rules of the language. We will be aware of the MATLAB language as we write more and
more code and this error will decrease as we solve more problems. The second is the execution
error and this is a problem with your calculation. For example you are dividing by a zero accidentally
and this will cause NaN - not a number.

Errors are always a source of frustration but resolving them gives you more capability of avoiding
them in the future. Tackling errors is part of learning to use any engineering software.

3. Workspace: This window will show the number and type of your variables. Is is also identified as
Your List of variables in Figure 1.3.1. It prevents you from using the same name for the variable for
two different quantities. This should not be a problem in this book as our collection of variables will
likely be small and you may be able to remember them always - since you are writing the code.

This Window can be closed for this book as its use is very limited.

4. Current Folder: The current folder window is like a windows File Explorer window. It is a display
of files in your current folder. You do not need this window. Once you save your file and run the code
you will be in placed in the current folder since you will have to select it. You can press the icon Open
to see additional files in the folder or in other folders.

This window can be closed for the book as its use is very limited.

5. Details: This show the type of data in your file.
This Window can be closed for this book as its use is very limited.

There is another window in MATLAB that appears only when necessary.

6. Figure Window: The Figure Window will appear only if we are are plotting in MATLAB. It is used
to display plots and figures. MATLAB produces publication quality graphics and you can control all of
the properties through selection or through script.

1.3.1 Two Window Layout
The two-window layout is recommended for this book. This the Command Window and the Editor
organized side by side. You can do this by doing the following two steps.

Step 1. Click the Home Tab at the top level
(a) Click on the Environment area to drop down a collection of icons
(b) Click on the Layout Icon to drop down a another menu
(c) Select Command Window Only

You should see two windows one on top of other as in Figure 1.3.2. During the next step we will
disconnect them and arrange them next to each other.
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24 % let us do it numerically so we can draw specific contours
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Figure 1.3.2 Two Windows Layout.

Step 2. In the Command Window (lower one) on the right there is a drop down menu. Click on the
drop down menu and select Undock.

The Command Window and the Editor are separate. Adjust them so that they are side by side and
of the same length
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Figure 1.3.3 Command Window and Editor Side by Side

1.3.2 Calculating in Command Window
We can do small calculations within the command window. Consider the first part of Example 1.2.1.

We define the variable mile as 5280
We define the variable hour as 3600

The equal sign in MATLAB (and all other programming languages) is called an assignment statement
It does not mean equal to.

mile = 5280 will store the value 5280 at a location in the computer memory addressed by the word
mile. This is what a variable means. It is a placeholder for the number 5280.
hour = 3600 defines another variable storing the value 3600.

25*mile/hour multiplies 25 by the value in the variable mile and divides by the value in the variable
hour to calculate to 36.667

This is the rounded value for the value of 25 miles per hour in feet per second.

You have to interpret it this way. MATLAB has no clue about units and dimensions. Itis just a
calculator. You are responsible for any references to the calculations. The calculations are captured
in Figure 1.3.4. You type at the MATLAB prompt. It echos the information you type by default.

MATLAB does all its calculation to 16 decimal places even if it does not display all the digits.
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>> mile = 5280 ®
mile =
5280
>>» hour = 3&00
hour =
3600
»» 25*mile/hour
ans =
36.667
B s>

Figure 1.3.4 Direct calculations in the Command Window

1.3.3 Calculation Through the Editor

The same calculation are performed by creating and saving a script file in the editor. The code in the
editor and the results in the Command Window are shown below. The code is run in the editor by
pressing the big green filled triangle named Run in the editor.

i Sec133m x| +

5280 O
3600 =
= 25*mile/hour| =

i mile

|

1
Pl o= hour
2

.| 2 usages of "hour” found |sc:Ept | Ln 3 Col 13
Figure 1.3.5a The code in the editor.

The file name is in the tab. The complete path is in the window banner.
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_‘ ' Command Window — O >

>» Secl 3 3 "
mile =
5280
hour =
3600
ans =
36.667
S e

Figure 1.3.5b Results in Command Window

Note that this code is saved in a file until you choose to delete it.
In this book we will collect the code in the Editor and run it instead of interacting directly with the
Command Window.

1.3.4 Octave Program
The Octave program is a free software from GNU foundation that is compatible with MATLAB scripts

(https://www.gnu.org/software/octave/0 ). For the most part your MATLAB script should execute in

octave without any change. There is no information about Octave in this book. If you are familiar
with it then it should be easy to move between MATLAB and Octave. In this book the MATLAB script
is executed in Octave with highlighted changes.

If you are already an Octave user you can sKkip this section unless you have not used symbolic
calculations in Octave. If you a new Octave user you will be typing the same code as MATLAB. So
all explanations apply to you too.

The Octave code is edited in the Octave GUI editor. The results are available in the Octave
Command Window. The figure is available in the Octave Figure Window.

The following is just provided for illustration. This is using the GNU Octave GUI.

Command Window: Octave
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€ Command Window - O et

Command Windaw B
GHNU Octawve, wversion S5.1.0

Copyright (C) 2019 John W. Eaton and others.

his is free software; see the source code for copying conditions.

here is ABSOLUTELY NO WARRANTY: not even for MERCHANTABILITY or

FITHESS FOR & PARTICULAR PURPOSE. For details, type 'warranty'.

ctave was configured for "xB6_64-wed-mingw3Z".
dditional information about Octave is availabkle at https:/f/wwwWw.oCLave.ord.

Please contribute if you find this software useful.
For more information, wisit https:/f/fwww.octave.org/get-involved.html

Read https:// www.octave.org/bugs.html to learn how to submit bug reports.
For information about changes from previous versions, type 'mews'.

>

Figure 1.3.6a The Octave Command window

Editor: Octave

) Octave — O X
File Edit Debug Window Help MNews

|l 'h' I:.:J Current Directory: ‘C:‘IJJsers‘l,lTS V‘ ‘t E‘
Editor F X
File Edit View Debug PRun Help

- a3 ~O02 it eeed 8

<unnamed = @
1]

line: 1 col: 1 encoding: S5YSTEM  ecl: CRLF

Figure 1.3.6bThe Octave Editor

We will use Octave with the same MATLAB m-files that appear in the text and will appropriately edit
them.
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1.3.5 Octave Installation

In this book we use a lot of symbolic calculations. The symbolic program support is provided by
sympy - which is the symbolic toolbox for python. You really do not need to know sympy and python
to run the code in the book. You just need to install the symbolic package as explained in the text at
all places where it is required.

| found the instruction available here quite helpful: | hope the link is still available when you are using
the book.

| have the Anaconda3 package installed for python and sympy. The GNU Octave version is 5.1.0.
Almost all the code worked. | have included the Octave run for the last piece of MATLAB code in
each section to show the same code works for MATLAB and Octave.

Note that Octave is quite forgiving of MATLAB code for comment even though it uses a different
character to signal a comment.

The assumption in this book is that you will be using consistently, either MATLAB or Octave, for all
the problems.

1.3.6 Some Problems

Problem 1.3.1

Define a variable that will convert miles per hour and give you kilometer/hour. Therefore if you
multiply a value - say 60 - with this variable it will give you the value of 60 miles/hour in terms of
kilometers per hour.

Problem 1.3.2
Define a variable that will convert [psi] to [Pa] . Therefore if you multiply a value - say 60 - with this
variable it will give you the value of 60 psi in Pascals.

Problem 1.3.3
Define a variable that will convert [kW] (kilo Watts) to [ft-Ib/s].
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2. HELPFUL CONCEPTS

Any engineering course will be built upon some essential concepts from physics and mathematics.
That is an important reason to pay attention to the physics and math service courses that is taught
outside the engineering department. The first set of courses in several engineering disciplines are
usually the core courses in Statics, Dynamics, and Strength of Materials. These are developed
from the basic physics of Newtonian Mechanics. In the engineering version of this course (namely
Statics, Dynamics, and Strength of Materials). Here the topics are embellished, stretched, or applied
in a specific manner in a formal and consistent way so that the information is useful for design. This
chapter of the book revisits some of those elements from physics and mathematics that are essential
in the development of many of the core courses, including this book Essential Mechanics. It is an
important review and hosts a collection of many formulas that will appear in problem solving
throughout the book. The content should be familiar or should be covered concurrently if you are in an
undergraduate engineering program and following this book. This chapter should refresh some of
your memory. it is also used to get you to solve problems using MATLAB. Some topics may skip
some detailed developments

This Chapter includes the following:

e Newton’s Third Law - Action and Reaction
e Scalars , Vectors and Matrices

e \ector Multiplication

e Trigonometric relations

e Functions, Derivatives, and Integrals

e Center of Mass, Moment of Areas

e Forces

e Moments and Couples

The list above is quite expansive. Calculations are shown in detail. Please be informed that some of
the calculations are performed in MATLAB as it is integrated throughout the book. All MATLAB code
appears where they are used. You can ignore it if you do not want to learn to do it in MATLAB. The
book still works without using MATLAB. But there are far more, very good books, without the
distraction of MATLAB. It is nevertheless a way to gain exposure and confidence in using software to
solve engineering problems. MATLAB in this book is used as a high powered calculator rather than a
programming platform.

Why MATLAB? Why not Python? Or something else. MATLAB has become very ubiquitous and is
now usually available to engineering undergraduates and graduates across the world through the
institutional license or through a personal copy of the student edition while you are a student. The
author has lots of resources in MATLAB and feels that it is the quickest way to solve, display, explore,
and understand engineering problems with a minimum of effort, especially for routine calculations,
particularly at the introductory level.
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MATLAB is not free. Octave which works like MATLAB is free software from the GNU Foundation.
The reason for MATLAB also applies to Octave.

It will be useful to remember that you will likely comeback to reference the information here many
times. You might initially want to move on if you understand the topics here as you may have seen
them in math and physics courses before. They are usually found in the Appendix in most books.
They are here because they are the most important ideas for structural design. They also form an
essential foundation for many topics to come.

You must visit the last two sections in this chapter. They describe Forces and Couples. These are

the two ways action is delivered to the structure that you are designing. All of Statics, Mechanics ,
and even Dynamics is how to create or resist or handle these actions on the structures.
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2.1 NEWTON’S THIRD LAW - ACTION AND REACTION

It is strange that Newton’s third Law appears here before the first and the second Laws. However the
application of the first two Laws (most of the book), is based on the concept espoused by the third
Law which recognizes the important concepts of action and reaction. The following illustrations
should explain the concept.

Figure 2.1.1 Newton’s third law

The main effort in a helicopter is provided by the rotating big blades through a torque. This lifts the
helicopter and causes it to move. The engine provides the power to turn these blades. When the
engines turn this rotor, the rotor will attempt to turn the engine on the fuselage where people sit in the
opposite direction (making them dizzy). This is a consequence of Newton’s third law - action and
reaction. In Figure 2.1.1, the tail rotor of the helicopter prevents the helicopter from spinning. The tail
rotor will generate a Force, which will create a couple that will balance the torque. The reaction to the
force created by the tail rotor is a torque that is easily absorbed by the fuselage. A two rotor design
in Figure 2.1.2 will counteract the torque by having two rotors turning in the opposite directions.

Figure 2.1.2 Contra-rotating rotors providing action and reaction

Another example is the recoil from firing a rifle will be absorbed by the shoulder — sometimes called a
“kick”. Thus the action of sending the bullet flying off creates a reaction that must be absorbed by the
shoulder
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Figure 2.1.3. Recoil

2.1.1 Action and Reaction

Here is another simple illustration that you can follow along. If an eraser is not convenient you can
grab your pen or anything else you find. Experiencing it will make more sense. | am going to grab the
pencil eraser by two fingers and push it against the wall. | am doing this horizontally. My fingers or
the eraser do not touch the table. Neither the wall or the eraser will move — a problem in statics.

Mars plastic

l P STAEDTLER

Figure 2.1.4 The eraser, grabbing it, and pushing it against a wall

As | push the eraser against the immovable wall, | will feel the eraser pushing against my fingers.
We term this as Reaction to the Action of pushing against the wall.

In fact, since the eraser is in contact with the wall, the wall will push back on the eraser — Action and
Reaction between the eraser and wall.

But since my fingers are in contact with the eraser, this reaction is transmitted to my fingers through
the eraser — Action and Reaction between the eraser and my fingers.

This is Newton’s Third Law. Interaction of two bodies will produce an Action and Reaction that will be
equal and opposite.

This action, in this example, we will call a FORCE. The Reaction is also a FORCE. In problems in
statics and dynamics very often the reaction is as important as the force in setting up and solving the
problem.

2.1.2 ldealization

We will often use or assume certain pattern of action/reaction to simplify the problem. Often, the
realistic problem cannot be solved easily. We need to model the reality to use the mathematics we
know. In this sense these are physical models - that model the physics, and mathematical models -
that model the interactions. Sometimes it is difficult to separate the two. In the early classes the
models are simpler and the same topic in graduate school may be handled in a more complex
manner to take advantage of the advanced mathematics you have been exposed to. Let us return to
the last picture in Figure 2.1.4. This is my action of holding the eraser against the wall through my two
fingers. The action and reaction of the eraser and the wall is taking place at the highlighted section
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d STAEDTLER
Mars plastic

en & Libww de lates

Figure 2.1.5 Action and reaction at the wall

While we accept that there is action and reaction between eraser and wall at the highlighted section,
however, if we look at them together we cannot expose or see this action/reaction to calculate its
magnitude since the action and reaction will cancel each other. We have to look at the wall or the
eraser alone. Now, we look at the eraser only — focusing on the right end where it interacts with the
wall. We will model the effect of the wall on the eraser. We are also going to ignore the effect of my
fingers on the eraser for the time being.

d STAEDTLER

Mars plastic

Figure 2.1.6a Effect of the wall on the eraser

The effect of the wall is to push on the eraser through the regions of the wall in contact (only some is
shown to avoid cluttering the figure). You will find that the smooth looking end of the eraser has lots of
bumps (visible under magnification) and these bumps will contact the wall more than the other areas
in the cross-section. These bumps are randomly distributed. The forces at these contact points can
be in any direction. To use this model we need to know random distributions, averaging, and many
other advanced mathematical topics. Let us look at a simple model.

d STAEDTLER <+ ge—
Mars plastic f

Figure 2.1.6b Uniformly distrib.uted force

Intuitively, we can expect that it will be easier if we can represent the effect of the wall as a uniformly
distributed action. A more simpler model is shown below.

d STAEDTLER -+
Mars plastic

igure 2.1.6c Concentrated fo‘rce
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It is even easier if we represent the action of the wall by a single arrow at the center of the area of the
eraser. This single arrow — representing the action of the wall is called the force of the wall on the
eraser. It is the lumped effect of the distribution of forces on the eraser - make the math simpler. It
will be definitely easier to establish than the randomly located randomly directed force distribution in
the eraser. This is also called a concentrated force. As you can see we have a choice in the way we
model the interaction of the wall and the eraser. This will dictated by convenience and your ability to
handle the mathematics

Focusing on the eraser alone and leaving the wall and the fingers off the figure is essential to analyze
problems in Mechanics. This is termed as “Drawing a Free Body Diagram (FBD)”

2.1.3 The Free Body Diagram (FBD)

Here is another illustration with the eraser in Figure 2.1.7. This time | am just holding up the eraser
between my fingers (the leftmost figure). We will assume uniformly distributed forces. On the eraser
we can represent the interaction of my fingers as shown (next illustration). In this illustration we need
to know the extent of the forces and the location to truly represent the forces. The magnitude of the
forces need not be the same. There is equal and opposite reaction on my fingers (next illustration). If
we represent the physics through a concentrated force (next two illustrations), we need to know the
location only. The forces can only be shown if we consider the eraser or the finger alone. Together,
we cannot expose the forces as in the first figure of the series.

-,

Mars plastic

- i e
N amlll ?<TAEDTLER B 3 STAEDTLER \;?“‘ gz g ““1* v

M lastic

Figure 2.1.7 The interaction between the eraser and the fingers.

Consider the eraser alone in the last illustration. This is called the freebody diagram (FBD) of the
eraser. (you have removed (freed) the eraser from the problem). FBD is the most important concept
in Mechanics (no analysis is possible without it).

Additional Examples of FBD

The second example is the man trying to move the heavy dresser. On the left we have him exerting a
concentrated force and a distributed force on it. On the right is the FBD of the dresser. Here we have
isolated the action on the dresser by the man, the floor, and the weight of the dresser.
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Figure 2.1.8 FBD of the dresser

The third example is you resting after dealing with all this new concepts in mechanics. On the right is
the is your FBD with your distributed weight and the action of the mattress on you. If you are
wondering why they are equal and opposite, it is because of another Newton’s Law - if you are at rest
there should be no unbalanced force on you.

your weight distribution

reaction by the mattress

Figure 2.1.9 FBD of you resting

If you look at the examples above you should wonder why the dresser and you are two dimensional.
Why are the figures representing the problem in two dimensions so convincing? This is another
idealization - reducing the dimension to make the mathematics easy. We are assuming that the
action is the same across the object in the direction normal to the diagram shown. Or, more
technically, the third dimension will not affect the results of the problem.

Surface and Body Forces

Let us revisit the FBD in Figure 2.1.8. There is another new thing that has suddenly appeared in the
figure. You can see the model of the man pushing and being representation by a concentrated and a
distributed force. You can also see the action of floor on the dresser as a distributed force. These are
called surface forces. They are always placed on the boundary of the body/object. In this case on
the left side and the bottom. These are also classified as applied forces or reactions.

There is the third force in the figure called W. This is the weight. This acts through the volume of the
object/body - which is the dresser in this example. This is called a body force. It is always present in
all problems. We can choose to ignore it in the model if it is appropriate and does not influence the
problem as much as the applied forces at the surface. It is usually placed at the center of mass -
another concept for another day. The center of mass is influenced by the distribution of mass in the
object/body. A uniform distribution of mass will locate this point at the center of the geometry.

2.1.4 Statics and Equilibrium

Statics is the study of objects and structures that are stationary. The objects do not move. Therefore
there can be no unbalanced loads on the object. According to Newton’s second law any
unbalanced loads will cause the object or the structure move accordingly. If the sum of applied loads
on the object is zero then the object is considered to be in equilibrium. This is best illustrated
through the FBD of the object or structure. Every problem in Statics and Strength of Materials is
examined under equilibrium. Consider a simple illustration of an object attached to the wall which is
subject to to a tensile force in Figure 2.1.10a. In addition we use the following simplifications:

The wall is considered an immovable object - so the wall and the object do not move either together
or separately.

To understand what is happening to the object at the wall a FBD of the object is necessary

In the FBD the object has the applied force on the right end. To prevent it from moving the wall must
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exert a reaction force equal and opposite to the applied force - Figure 2.1.10b.

A B A B
|— F -F g— —F

(@) (b)

Figure 2.1.10 Original tensile loading and FBD of object AB

In the following we will be using this concept in several examples before actually defining equilibrium
formally in Chapter 4.

2.1.5 Additional Problems

Problem 2.1.1
A person is on a diving board. Describe the action and reaction

Figure. Problem 2.1.1

Problem 2.1.2.
Changing the lug nut. Describe the action and reaction
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Figure. Problem 2.1.2

Problem 2.1.3

One way to bring down a damaged branch is to throw a rope over the limb and pull on either side.
Describe the action and reaction

Figure. Problem 2.1.3

46



Essential Mechanics

2.2 SCALARS AND VECTORS

We have been representing the force as an arrow in the previous discussion. That is deliberate since
Force is a Vector. Every physical quantity in Mechanics and other subjects, which required a value
and an unit can be characterized as a (i) scalar, (ii) vector, or (iii) tensor.

A tensor is usually handled in an advanced courses of mechanics. In the earlier courses, the tensor
quantities, like stress and strain are just dealt without reference to them being a tensor. It should not
detract from your understanding of mechanics. They are extremely useful in expressing the natural
laws in a succinct form to make them independent of coordinate systems. We will avoid using the
term tensor in the book.

2.2.1 Scalar

A scalar quantity is completely characterized by value and its units. No additional description is
required. For example, the length of the table is 1.2 [m] or 3.94 [ft]. The work done while climbing a
flight of stairs is 1600 [J] or 1180.1 [ft-Ib].

To use a scalar in calculations — that is if you are adding to it or multiplying it or dividing with it - you
just treat its value like a number — like regular arithmetic.

Some examples of scalar are length, mass, time, energy, frequency, power, work, density, and
volume.

2.2.2 Vector
A vector quantity, in addition to value and units , is also characterized by
(a) the direction in which it acts (represented by an arrow).
(b) the point at which it is applied (important for vectors like force) — point of application.

The illustration of a vector is best accompanied by a figure. Figure 2.2.1 shows the weight suspended

by two ropes attached to the trees - a model of the person enjoying the hammock. The force in the
ropes must be directed along the ropes.
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Figure 2.2.1 Vectors

Some examples of vectors are: displacement, force, couple, moment of a force, velocity,
acceleration, momentum, impulse.

A point force or concentrated force identifies the point of application of the force (through the tail or
the head of the arrow).

Vector Arithmetic has a completely different set of rules. Many physical laws are best expressed
through vectors..

Representing the two-dimensional (2D) force vector

We look at the example of the weight suspended between the palm trees. The force on the right rope
has a value of Fr and it is at an angle of 64 with respect to the horizontal. The force on the left rope
has a value of F|_ and is at an angle of 6, with respect to the horizontal (the ropes and the weight must
be in a plane). Let us call the force due to the weight (body force - remember) of 100 [kg] as W and it
acts straight down (actually towards the center of the earth). Figure 2.2.2 is an idealization of Figure
2.2.1 and is sufficient (and necessary) for engineering calculations. We have shown the vector with a
bar over the top in the graphics. In the text on the page it is difficult to place an over bar through the
software. We will distinguish the vector from its magnitude by using bold font. Notice, that Figure
2.2.2 represents a FBD of the ring in Figure 2.2.1.

FR

ref

Figure 2.2.2 Idealization of Figure 2.2.1 and vector representation

There are three ways to represent a 2D Vector: If the magnitude of FR is 1474.16 [N] and 01 is 25

[deg]
1. The vector is written as the product of a magnitude of the vector with a unit vector indicating its

direction.
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Fr "\ Ir—Ir 5

Bt F=F,e,
= PRl

/'éR F—‘FR €y

Figure 2.2.3a Product of magnitude and unit vector

F, =147416e, (2.1)

2. The vector is written as the components in a reference coordinate system (default is
rectangular/Cartesian system).

In the Cartesian coordinate system, There are two axes (or coordinates or arrows) at 90 degrees
drawn with arrows.The tail of the arrows meet at the origin: O. One axis is called the x- axis. It is also
identified by the unit vector i. The other axis is called the y —axis. It is also identified by the unit vector
j-

We represent the vector Fr of Figure 2.2.3b by geometrically drawing an arrow of the proper length at
the angle 8 with the tail at the origin O.

Note the unit vector erin the same direction as Fr is also drawn parallel.

- F

ﬁ R R

<

= o

mn: :x. - xi
(18 0| I ’

>
Fr cos(0,)

Figure 2.2.3b Vector representation in Cartesian system

F=F +F =Fi+Fj

Fi L

=(F, cnsﬁj:}; +(F, siné) 7

F,=1474 16cos(25)i +1474.16sin(25) ;
=1336.04; +623.01;=F. +F,

As a consequence of the Cartesian representation the vector components have the following
additional relations. The information between two vertical bars stands for absolute value of Fy. This is
a positive value.

(2.2)
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Fy =|Fy|=JF; +F} =+/1336.04° +623.01' =1474.16

dfl =—_ Cos5 =—_ 5Iif =—:
- E 5o

> (2.3)
,1336.04

=Ccos —mm
4 1474.16
&, =1cos(25)7 +1sin(25) 7=09067 +0.423 ;

F, =1474.16x(0.9067 +0.423 ;) =1336.04; +623.01;

=cos 1 0436=25

The advantage of this representation is that we can represent the vector in terms of components. The
components of the vector Fgr are Fx and Fyin the x and y directions. The magnitude/value of the
vector along the x and y directions are Fxand F, respectively. The component vectors are formed by
just multiplying the magnitude with the corresponding unit vectors i and j. Vector addition is
geometric. We lay the first vector (Fx). Then lay the next vector (Fy) maintaining its direction so that
it's tail is at the head of the first vector. The new vector (resultant vector) is then the vector from the
tail of the first vector to the head of the second vector - Fr. Figure 2.2.3c illustrates the vector
addition for the Fr vector (2.2) expresses the results mathematically. Fx and Fy are at right angles to
each other.

Figure 2.2.3c -Vector addition of components

3. Another set of angles associated with a vector are direction cosines - angle the vector makes with
the positive directions of the coordinates. These are angles a and 3 as shown in Figure 2.2.3d. The

sum of o and B is 90 degrees. The definition of the vector this way throws up the set of relations in
(2.4)

-
A
<
<
b

Figure 2.2.3d Direction cosines
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F,=F,(cosc)i + F,(cos 5) ]
R, = JF; cos’ a+ F; cos’ B (2:4)

Jn:uﬁz a+cos’ =1 OR cos'a+cos’ B=1

Vector Addition (Components)

We illustrated vector addition previously in defining vectors through their components. Let us choose
a value for the force in the left rope in Figure 2.2.2 and add the two vectors. We can add vectors
through their components instead of the geometrical addition that was demonstrated in Figure 2.2.3c.
Say Fis 1383.17 [N] at 6, = 15 [deg] (as shown in the figure below). Let R be the resultant vector -
the new vector that results from vector addition.

—X,—1

Figure 2.2.4a The two vectors

FRJ(
Figure 2.2.4¢c Their components

We have extended the x-axis on the left and this will indicate negative x-components (of the vector
FL , and negative unit vector -i. Also taken for granted is that the arrows indicate the positive
directions of the coordinates (and positive directions for unit vectors). The set of calculation in adding
vectors using components are shown in Equation (2.5)
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R=F,+F

R=R+R; F,=F,+F,; F=F.+F
Ri+Rj=(F,+F)i+(F,+F,)j

F, =1336.041+623.01 (2.5)
F, =1383.17(cos15)(~i)+1383.17(sin15)( j)

= —1336.041 +357.99]
R =1336.04-1336.04=0; R =623.01+357.99 =981

3 g

Vector Addition (Geometric)

Let us add the two vectors geometrically. We start with vector Fr. Move F parallel to itself so that the
tail of Fi is at the head of Fr. The resultant vector R is drawn from the tail of the first vector to the
head of the second vector. Vector addition of two non-parallel vectors will result in a triangle as shown
in Figure 2.2.5a.

1‘) ] ref

Figure 2.2.5a Vector addition

There are some geometric identities in vector addition that are useful when the vectors form a triangle
as in Figure 2.2.5a. They are called the cosine rule and sine rule. This can be seen in the geometry
of vector addition in the set of relations Equations (2.5). These are very useful in establishing angles
and magnitudes. Additional angles are introduced for these relations.

Figure 2.2.5b Triangle identities
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CosineRule:R* = F; + F' —2F,F, cos(8, +6,)
" SR
sin 3, sin 3 sin(& +6,)
R = 1474.16" +1383.17% — 2x1474.16x1383.17 x cos(25 +15) = 981
A Fpxsin(G+6))) _ . 1 1474.16xsin(25+15) |

il R ) ) 081 )

sine Rule:

(2.6)

=75

Addition of Three Vectors
In Figure 2.2.6a there are three vectors. Let us add these three vectors using the previous values for
the components of Fr and FL. Wis 981 [N] in the direction -j.

Figure 2.2.6a Three vectors

Adding the vectors geometrically, note that the start of R and end of R is the same point - a zero
vector

FL
— F
W R
ref

R=0

Figure 2.2.6b Geometric addition of three vectors

2.2.3 MATLAB Vector Handling

Vector handling is natural in MATLAB. By default vectors are defined as row vectors until you make
them column vectors. Even if we are dealing with only a 2D vector we will represent the same vector
as a 3D vector so that regular matrix arithmetic is easily included. In this case the third component is
zero. Remember, you can drop the semi-colon at the end of the line to see the calculations
corresponding to that line. This is our first code.

The code is very long particularly if this is the first time you are using MATLAB. The code is long
because of explanations and the fact that we are printing a lot of information in easily readable
format. Then there are code that does the calculations. Also you will see the figure window for the
first time. If you pay attention now the next time we will not need these same explanations again - so
the code length will be smaller. We are printing everything. For the next code we will copy, paste and
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edit a lot of statements.

This time:
1. Start MATLAB so that the Command Window (CW) and Editor are visible
2. Press the + button below the icons in the Editor. It should generate a blank space for a new
script file.
3. Copy and paste the code below to that region. Select the code with a mouse and use the
right button to copy and paste
. Press the green run arrow in the editor
. You will have to save the file. Save the file in a directory where you will collect the code for this
chapter. Make sure you do not have a ‘space’ in the name of the file
6. If there are no errors (there should be none if you copied all the code) you should see some
information in the command window and a plot of the vector addition.

oA

In the code below:
e MATLAB code is color coded
e % - MATLAB comment: MATLAB ignores anything to the right of percent sign - the characters
are in green color
e clc, clear, format compact, close all are ways to control interaction with MATLAB
e |gnore any underlining in the code below - it is unwanted spell check by the word processor
e Elements in single quotes are text/string elements which are in violet color
e |In general all MATLAB commands are in lower case

Essential Mechanics
$ P. Venkataraman
S

% clear : clear all variables

% you are planning to run this code from the beginning each time
% remove this command if you running multiple script files

% format compact : avoid an extra line feed when writing to command window
% close all : close all plot windows that are open

% WE WILL USE THESE COMMANDS IN ALL FUTURE CODE (without this explanation)
% REMEMBER run without semicolon at the end to see what MATLAB prints to
C

W
99000900000000000000909000000000000009090000000000000000000000000000000009000000009O0

O O0OO0O0OO0OO0OO0OO0OO0OOOOOOODODODODODODOODODODODODODODODODODODOOODODOOODODOODODODODODODODODOODODOODODOOOOOOOODOOODO©OO©O™©©
%% print information about problem - CW stands for command window

fprintf ('Section 2.2.3\n") % prints information moves to next line
fprintf ('Vector addition\n') % same and \n makes MATLAB go to next line
fprintf('--————-------"--"-"-----—- ")

0 0 0 0 0 0 0O [} [} 0 0 0 0 0 0 Q0 0 0 0 0 O 0 0 0 0 O 0 0 0 0 O 0 0 0 0 O 0 0 0 0 O

%% Data and print

FR = 1474.16; thtl = 25; % define FR (magnitude) and thtl (angle)
fprintf ('\nFR = %$6.2f thtl $6.2f",FR,thtl) % print information to CW
FL = 1383.17; tht2 = 15; % define FL (magnitude) and tht2 (angle)
fprintf ('\nFL = %$6.2f tht2 = %6.2f',FL,tht2)

M = 100, g = 9.81;
fprintf ('\nM = %$6.2f",M) % define mass
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%% create vectors - rectangular system
% vector is a 3 element row array with x,y,z components within []

parenthesis

% for 2D vectors define z - component as zero

FRv = [FR*cosd(thtl),FR*sind(thtl),0]; % vector FR

fprintf ('\nVector FR = [%6.2f, %$6.2f, %6.2f] ',FRv) % print vector FR to
CW

FLv = [-FL*cosd(tht2),FL*sind(tht2),0]; % vector FL

fprintf ('\nVector FL = [%6.2f, %6.2f, %6.2f] ',FLv) % print vector FL to
CW

Wv = M*g*[0,-1,0]; % vector weight

fprintf ('\nVector W = [%$6.2f, %6.2f, %$6.2f] ',Wv) % print vector FL to CW

%% add the vectors
R = FRv + FLv + Wv; % R is the sum of the vector addition
fprintf ('\nResultant vector R = [%6.2f, %6.2f, %$6.2f] ',R) % print R

%% Unit vectors

eR = FRv/norm (FRv) ;

fprintf ('\nUnit Vector eR= [%6.2f, %$6.2f, %6.2f] ',eR) % print unit vector
eR

el = FLv/norm (FLv) ;

fprintf ('\nUnit Vector elL= [%6.2f, %6.2f, %6.2f] ',elL) % print unit vector
eR

fprintf ('\n\n') % skip two lines and then display prompt

%% Drawing the vectors -2D ARROWS using quiver command

quiver (0,0,FRv(1),FRv(2),0,"'r");

% first two values 0, 0, are the starting x and y values - TAIL

% second two values FRv(l) ,FRv(2) - vector components length (x, y) - HEAD
% next value 0 is scaling factor

% 'r is red color

hold on % adding more stuff to the same figure

quiver (FRv(l),FRv(2),FLv(l),FLv(2),0,'b"); % second vector

% tail for FL vector is the head of first vector - first two wvalues

% second two values FLv(l) ,FLv(2) - vector components length (x, y) - HEAD
% no scaling

$ 'b' blue color

+FLv (1), FRv(2)+FLv(2),Wv(l),Wv(2),0, 'm"); % add third vector
fit the vectors

quiver (FRv (1
axis image

%

In the Command Window

Section 2.2.3
Vector addition

FR = 1474.16 thtl = 25.00

FL = 1383.17 tht2 = 15.00

M = 100.00

Vector FR = [1336.04, 623.01, 0.00]
Vector FL = [-1336.04, 357.99, 0.00]
Vector w = [ 0.00, -981.00, 0.00]
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Resultant vector R = [ 0.00, -0.00, 0.00]
Unit Vector eR= [ 0.91, 0.42, 0.00]
Unit Vector eL= [ -0.97, 0.20, 0.00]

In the Figure Window

800 .

800 .

700 H .

B0 - .

500 H .

400 .

300 .

200 H .

100 H .

I:I 1 1 1 1 1 1
o 200 400 B0O0 800 1000 1200

Figure 2.2.7 Geometric addition of three vectors in MATLAB

Now some additional exercises and explanations:

1. First compare the results printed to the command window with the values calculated in the
previous section. Do they match?
2. After running the code walk through it line by line make a list of items for which you need more
explanations
3. Notice that the unit vectors 1, j, and k are implicit. We need to work with only the
components.
. A physical vector has three values between square parenthesis.This is also called an array.
. We work with three components in the array even if this is a two-dimensional example. They
are in order of x, y, and z components.

6. Count the number of lines starting with . These don’t do any calculations

7. Count the number of lines that begin with fprint£f. These are only used to print neatly to
CWwW.

8. The characters $6.2£f prints a real number with two numbers after decimal and total width of
six character spaces. When printing a vector you need to print three numbers. That is why
[$6.2f, %6.2f, %6.2f]

9. The value between single quotes like "section 2.2.3\n' is a string that is printed as
written unless it also prints a number.

10. You can define multiple variables or commands on a single line. The must be separated by a
semicolon or comma.
11. FR = 1474.16; This is an assignment statement. You are storing the value of 1474.16 in the

variable called FR. This use of “=” sign is true for all programming languages. Same is true for

o b
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other variable declaration. In this sense it is not an “equal to” implication.

12. Here you are assigning an array to the variable FRv. FRv =
[FR*cosd (thtl) ,FR*sind (thtl) ,0];

13. The quiver command draws an arrow as explained above. It requires the tail location and the
length of the arrow components.

14. The command hold on will allow you to add additional information to the figure. Otherwise it
will overwrite the previous information (which will be deleted from the figure).

2.2.4 GNU Octave

The following is the version information for Octave

GNU Octave, version 5.1.0

Copyright (C) 2019 John W. Eaton and others.

This is free software; see the source code for copying conditions.

There is ABSOLUTELY NO WARRANTY; not even for MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. For details, type 'warranty'.

Octave was configured for "x86_64-w64-mingw32".

Additional information about Octave is available at https://www.octave.org.

1. Copy and Paste the MATLAB Code in the Octave Editor. Run the code in Octave
Octave Execution:

1. Start Octave GUI so that the Command Window (CW) and Editor are visible

2. Press the New script button below the menu bar in the Editor. It should generate a blank
space for a new script file.

3. Copy and paste the code above to that region.

4. Press the yellow run arrow in the editor

5. You will have to save the file. Save the file in a directory where you will collect the code for this
chapter. Use a different directory for Octave files. Make sure you do not have a ‘space’ in the
name of the file

6. If there are no errors (there should be none if you copied all the code) you should see some
information in the command window and a plot of the vector addition.

In Octave Command Window

Section 2.2.3
Vector addition

FR =1474.16 tht1 = 25.00
FL=1383.17 tht2 = 15.00

M =100.00

Vector FR =[1336.04, 623.01, 0.00]
Vector FL = [-1336.04, 357.99, 0.00]
Vector W =[ 0.00, -981.00, 0.00]
Resultant vector R = 0.00, -0.00, 0.00]
Unit Vector eR=[ 0.91, 0.42, 0.00]
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Unit Vector eL=[-0.97, 0.26, 0.00]

In Octave Figure Window

1000 F T T T T T =

800 b

600 - d

400 [ =

200 - b

0 1 1 1 1 1 1
0 200 400 600 800 1000 1200

Figure 2.2.8 Geometric addition of three vectors in Octave

The same code is run in Octave. The numerical results are the same while the figure is the same
except for the arrow heads.

2.2.5 Additional Problems
In the following problems, first solve the problem by hand and then re-solve by MATLAB/Octave and
compare.

To solve the problem in MATLAB:

. Copy and paste the code in the editor and save it with a different name for each problem.

. Edit the code to define your own variables and assign it the new values

. Edit the print statements to reflect the new variables

. Delete any line that you do not need.

. Check the calculations have the right variable names in them

. Delete any calculations that do not apply to the problem.

. Run the code and make sure you have no programming error - it appears in red and will point
you to the line where the error is.

. If hand calculation and MATLAB calculation do not match - figure out why they do not match.
Go forward calculation by calculation

NOoO O WN -~

oo

Problem 2.2.1
Add the two vectors F1 and F2. Vector F1 has a magnitude of 100 and is inclined at a negative angle

of O = 35 degrees (below the positive x direction). Vector F2 which has components 35 and 50 in the
x and y directions respectively (units do not matter for this problem). Calculate the vector which
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results from this vector addition and sketch the addition in your note book.

Problem 2.2.2

R1, R2, R3, and R4 are four vectors with magnitudes of 15, 20, 25, 30 units respectively. The angle
with respect to the positive x-direction are 30, 75, 135, and 225 degrees respectively. Find the vector
sum of these four vectors and sketch them in your note book.

Problem 2.2.3
Add the vectors in Problem 2.2.1 and Problem 2.2.2 and obtain the resulting vector.
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2.3 THREE DIMENSIONAL VECTORS

Three dimensional (3D) vectors, mathematically are no different than 2D vectors. We will use for
illustration a popular celebration in India called “Gokulashtami”, or Lord Krishna’s birthday which
mostly occurs in the month of August. A human pyramid is formed to smash the pot filled with money
and goodies suspended far above the road.

i‘. = S _-..-""'\.-r‘ ” E = n -
dl P .-'?I.'J"I-:'.-'l.l.- Fd T "'-, O .-""; BT w':-;.* i
Figure 2.3.1a. The pot of goodies (image from Google)

We will bring the problem down to earth and redefine it as
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Figure 2.3.1b. The pot of gold

We can represent the pot through a three point suspension. We expect the three ropes to be in
tension: there is a force in each rope, along the rope from the pot to the point of suspension. The
weight of the gold is downward. We assume that these forces meet at a point to keep it simple. We
then have the most unglamorous description of the problem in Figure 2.3.1c. You cannot even
distinguish that they are 3D vectors because of the limitation of the 2D illustration. We must embellish
the representation to convey the actual information. We introduce some reference, in this case a
coordinate system, to make sense of direction.

Figure 2.3.1c. A model of the original problem

2.3.1 3D Vector Representation
Like 2D vectors, 3D vectors can also be represented in 3 ways.

Magnitude and unit vector
The vector is written as the product of a magnitude of the vector with a unit vector indicating its
direction. Same as the 2D vector. Let us focus on vector Fj.

F.
A
6'1 \
//'
F1
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Figure 2.3.2 The 3D vector

R-Fa-IF

4 (2.7)

Cartesian Coordinate System

The popular and simple way to deal with vectors is to use the three-dimensional rectangular or the
Cartesian system. While there are alternative coordinate systems like cylindrical or spherical
coordinate system, depending on the geometry of the problem, we will limit our vector description to
the rectangular system at this phase. The Cartesian coordinate system (3D) has an origin (point O),
and three mutually perpendicular axes (or coordinates or arrows) marked as X, y, z with positive unit
vectors i, j, and k respectively.

z, K

F
l—-)

"y,

Figure 2.3.3 Vector F1 in the Cartesian system

This coordinate system we use must also be a right-handed system so that all the formulas you know
work consistently. The three coordinates must be defined in a certain way. Once the first two
coordinate directions (x, y) are defined then the third (z) is established using the right hand rule. Hold
out your right hand. Assume x is along the fingers, y along the hand (towards elbow), then z must be
in the direction of the thumb, as you rotate from x to y. This is illustrated in Figure 2.3.4.

Figure 2.3.4 Right handed system

3D Vector using Components
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Ys

Figure 2.3.5 Vector and components

The vector F4 can be described by the vector addition of the components F1x, F1y, F12. You will also

notice that several other vector additions can be defined in Figure 2.3.5. F44 is in horizontal plane. F4y
is normal to this plane.

F=F, +F,+F.=Fi+Fj+Ek

‘Fl :‘Fl.-'z+ Ir (2.8)
‘Fl.-'z = 11'+ 1_1'; ‘Fir :‘Fl:

‘Fl :F'l.-':'+ _11' :F'l:: + _1_1' F:

3D Vector using Magnitude (F;) and two angles (6, ¢)
Once again we will define the F4 vector. We will use its magnitude (F1) and angle 6 is measured from

the x — axis (typically), while the angle ¢ is measured from the horizontal plane. This is often referred
to as a spherical coordinate system.

\
—>

Y;

Figure 2.3.6 3D vector using magnitude and two angles

R =F,+F,
Fu=Fcost; F,=Rsing=F, 29)
F, =FcosQcos®; F, =Fcos(psinb

3D Vector using Magnitude (F4) and Direction Cosines (a, 3, )
We will define the vector F4 using the vector magnitude (F+) and three angles (a, B, y) - called the
direction angles - drawn with respect to the positive coordinate directions (x, y, z) and vector F4
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respectively.

bz K

F1Z

Y ]

N &
v
=

Figure 2.3.7 3D vector using magnitude and direction cosines

F,=Fcoso, F, =FcosP F_,=FcosTy; (2.10)

cos” OL+cos” P+cos =1

Note that there are only two independent angles because of the relation among the cosine of the
three angles.

Vectors from Coordinate Locations

Physical vectors can be derived from coordinate locations. Any point in space can be identified by its
coordinate location - location with respect to the origin of the coordinate system. This is an important
way to obtain unit vectors. The vector from point A to point B can be obtained from the coordinates
at B minus the coordinates of A, multiplied by the corresponding unit vector along the coordinates.
The unit vector in the direction of the vector is the same vector divided by its magnitude. Consider
Figure 2.3.1b again.

Figure 2.3.1b Pot of gold suspended by three ropes

The point P which is the origin has the value P (0, 0, 0). The coordinates of the other points , with
respect to point P, are also provided within a parenthesis in order: (x value, y value, z value). They are

A(2,-2,0); B(2,-2,10); C(4,10,0); D (4,10, 10); M(-2,3,0): N (-2, 3, 12);
Q(1,1,0; 0O(,1,8).
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Let us calculate the vector F4 with some values. Let F4 have a magnitude of 657.02 [N] or 146.59 [Ib].
F1 is directed along the line OD, where point O is at O (1, 1, 8) [m] and point D is at D (4, 10, 10) [m].
Figure 2.3.8 shows the line joining the points O and D. It also shows the various vectors associated
with the vector F4.

D(4, 10, 10)
011,1,3)/

Figure 2.3.8 Vector F

If Oy, Oy, and O, represents the X, y, z coordinates of point O, and Dy, Dy, D, represents the x, y, z
coordinates of point D

f[:Dx —ij‘kj[:ﬂl_ﬂy:]_i_i-[ﬂz _D:J

-
i

& =égp = v 2

J(D,-0. +(D,-0,)"+(D.-0,)
— 1(4—1)+710-1)+k(10-8) _i(3)+7(9)+k(2)
LT a1 10— +10-82 YR+ 9 42 4
e, =éop =0.31i +0.937+0.21k

—F_i+F

- ]_'I.

j+Fik

F1 is shown scaled in the figure.

Let us calculate ¢ and 6

55
u;?}:ﬂin'l%:ﬂin'l ;?; =sin™'0.2062 =11.90[deg]
1 s (2.12)
,
TR ki =cos " 0.3162 =71.57[deg]
Fcosg 657.02xcos(11.9)

Let us calculate a, B, and y
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F
o =cos™ Fl = :55_1(211.) =cos " 031= 71.94[ deg]
1
a2y -1 -1
B=cos F =cos (g,)=cos” 0.93=2157[deg] (2.13)
1
¥ =cos™ ‘%1 = cos™ (g_}=cos™ 0.21="78.09[deg]
1

Example 2.1. Compute the vectors F; and F;
Use the Figure 2.3.1b and the coordinates of the various points to identify vectors F2 and F3 given
that the magnitudes are 938.4 {N] and 1195.35 [N] respectively.

i(2—1)+ #3-1)+kr12-8)
1 =€gn = > o
SR P P
F, =938.4x(—0.5571 +0.3714 /+ 0.7428k ) = —522.77i + 348.517+ 697.03k [N ]
. i(2-1)+5(2-1)+k(10-8)
” JR+(=3)2+2
=1195.35x(0.26731 —0.80187+0.5345k ) =319.47i + —958.417 +638.94k [ N]

=—0.5571i +0.37147 +0.7428%k

My

]

=0.2673 —0.80187 +0.5345k

(NN

e

(2.14)

Handling 3D Vectors in MATLAB

The following code computes the vectors F4and all the angles - (Eqn. 2.12 - 2.14) and vectors Fa,
and F3.

Also no formatted printing is involved. All calculations are displayed in the command window (no
semicolon at the end of code)

Note that the code is mostly calculation

MATLAB Code

% Essential Mechanics

©00000000000000000000000000000000000000000000000000000000000000000000o0
OO0OO0DO0OOO0DOOOOOODOOODOOODOOODOOODOODODODOODODOLODODODODODOLOODOOODOOLOODOOODOOODOOODOOOOOOOODOOOO©OO©O™©O™O
clc, clear, format compact, close all
©00000000000000000000000000000000000000000000000000000000000000000000o0
OO0OO0DOOO0OOOOOOODOOODOOODOOLOODOOODOODODODODODODOLODODODODODODODOOODOOLODODOOODOOODOOODOODODOOOOODOOOO©OO©O™©O™O
%% Data

% the points

P =[0,0,01; A= 1[2,-2,0]; B =[2,-2,10]; c = 14,10,0]1; D = [4,10,101;
M = [_21310]1 N = [_213112]1 Qo = [llllo]; 0o = [11118]/

% the magnitude
F1 = 657.02; F2 = 938.4; F3

Il
—
—
O
ol
w
ol
~.

%% Section 2.3.1 - Vector F1
eOD = (D-0)/norm(D-0)
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Flv = F1*eOD

phil = asind(F1lv (3)/F1)

thetal = acosd(Flv(l)/ (Fl*cosd(phil)))
alphal = acosd(Flv (1) /F1)

betal = acosd(Flv (2)/F1)

gammal = acosd(Flv(3)/F1)

%% Example 2.3.1

the unit vectors F2 F3
eON = (N-0) /norm (N-0)
(B-0) /norm (B-0)

o\

0}

O

(oy)
Il

% the vector components
F2v = F2*eON
F3v =F3*eOB

In the Command Window

eOD
.3094 0.9283 0.2063

ol

Flv
203.2993 609.8979 135.5329
phil =
11.9047
thetal =
71.5651
alphal =
71.9753
betal =
21.8319
gammal =
78.0953
eON =
.5571 0.3714 0.7428

L2673 -0.8018 0.5345
-522.7695 348.5130 697.0260

319.4707 -958.4122 638.9415

Observation

Essential Mechanics

The code is mostly calculations and is fairly short. You can introduce formatted printing if you wish.

You can borrow from previous code and edit the statements.

2.3.2 Multiplication of Two Vectors

Vector multiplication occurs frequently in Statics and Dynamics and in all areas of mechanical
engineering. Given two vectors there are 3 ways to multiply them. The first way multiplies them to
yield a scalar result. The second way multiplies them so the result is a vector. The third way
multiplies two vectors and the result is a second order tensor. You come across tensors in

advanced courses and research, so we will avoid it in this book.

In the undergraduate engineering

curriculum you will probably not require it formally. We use it without calling it a tensor. In the
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following will use the two vectors, V4 and Vy, illustrated in Figure 2.3.9. We have included the
coordinate system. We have moved the vectors parallel to themselves so they are placed tail-to-tail
at R to display the angle 6 between them.. You must have learned that we can do that with vectors -
that is move them parallel to themselves without changing the problem (unless they are force
vectors). It is still okay to do that with force vectors to illustrate multiplication, but force vectors can be
moved along their line of action only.

H
X
Figure 2.3.9 Two vectors

Scalar Product or Dot Product

Two vectors V4 and V3 are multiplied in such a way that the result is a scalar, S. Note: we cannot
display S graphically. This is called the scalar product or the dot product. This multiplication is implied
by placing a dot between the vectors. The multiplication depends on the included angle 6, between
the vectors when their tails meet.

Pty =,

L (2.15)
7,

cos 8=V V,cos @

Consider the dot product among the unit vectors in the right handed Cartesian system. The unit
vectors are perpendicular to each other
foi=1x1xcos90=0={vk = jok

;';=1K1KE{JED=1=}-IE=£I£ (216)

is(—i )=1%1%cos180=—-1

If the vectors are expressed as components, and the dot product is only defined between two vectors,
then the details of the dot product can be worked out and cleaned up to a simple formula as below.
The angle between the vectors can also be identified through the components.
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=V i +V j+Vo ks Ty=Vyi+V,,f+V.k
Tioly = (Vi + 17,5 + Vo ke o Vil + 73, 7 +75 K )
Tl = (i (V) + (5 o V2,5) + ({72

(W2 ) (598) + (B ) (5o5) +(BoyPe ) 5ok

1" 2y

- .\'.

+(V. V) [ fooi j +(".7,) [ E-}:] +(V.7:) [;.: J

K

Rolly = ViV + ViV, + V%,

v, B R, R,

cos = (2.17)

r 1 1 1 Fd 1 1
nr VSV P+ + Yy

Let us work through an example. We will define V4 = -2i + 2j + 3k [m/s] and V2= 1i + 4j + -5k [m/s]

-

oly =(-2)(1) +(2)(4)+(3)(-5) =—9 | m*/ 5]

A s S - .. SRS
7B V2242243 xy12+42 457 4.12x648
8=109.68

Can you find the angle between the F1 and F; vectors of the earlier example (Figure 2.3.1b) ?

Vector Product or Cross Product
Two vectors V4 and V3 are multiplied in such a way that the result is a third vector V3. Vector V3 is
- normal to both vectors V4 and V; (also normal to the plane formed by the two vectors)
- directed using the right hand rule as the remaining fingers rotate from the first vector V4 to the
second vector V-

Unlike Ehe Scalar product, the order of the vectors being multiplied is important in the Vector product
Z,kak

[
x 1 I
Figure 2.3.10 Vector cross product
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e shiash (2.18)
x F _|TF

}1K}:—|’T’1 2

The cross/vector product among the unit vectors
r}{j_lxlxﬂngﬂlﬂ: ﬂ: Jxi=—k
Fxk=(D)sin907 =i: kxj=—i 2.19)

j
Fxi=((D)sin907=7 ixk=—;
Pxi=(D(Dsin 0= 0= jx j=kxk

Essential Mechanics

Therefore, if the two vectors are expressed as components in the Cartesian coordinate system, then

-

Fix=W i +V, j+V h; Vo=V, i+Vy,j+V, i
ITE}{}_’:=[EP'£:'M]>{[“I= z]+[]-'= z]}{[ff"1j]+[f=",z]:={[l’_.ﬁrj
+(V, 7, ) (=) +(7, 1, ][‘jxjf]+[}glyh][.jx;.:fj
+(¥, fkj[_éxf f]+[:rl;r:;l:] [ f&xj:]+ (7,

ix Py = (bt ) + (Bl ) (k) + (Bae) ()

+(%, 7, ) () + (7

) R k)

+ (T2 ) (5)+ (b, ) () + (VTsaesk
e = Vi |+ [ ViV, —

FixP =iV,

o Wk | 3 [

P

A simpler and useful way to evaluate the cross product in the Cartesian coordinate system is to set up
a determinant as shown below:

- I -

i j Kk
RxV=Vy Wy V|-

,r i r
II: }23' ILZ:
r r TF I 17 r oTr | 17
L'_I.EI.:;I.':I_-}[I-E Zz_}z Ix]+‘lT':|: 1x

P Ve
W W

e
e

e =

. W
. ¥

Iy

F F Ir
Vg — 1y _z:l

The two formula are identical while the terms in the j parenthesis are switched to give the negative

sign in the second.
Working through an example with V¢ =

(2.20)

Vix,=i| 7,

-2i + 2j + 3k [m/s] and Vo = 1i + 4j + -5k [m/s]

70



Essential Mechanics

i K
ﬁg::ﬁi}{iirz —2 2 3
1 & =5

i[(2)(-5)—(3)(4)]-F[(-2)(-5) (3 )]+ k[(-2)(4)-(2)(1)]
i [-22]- 7[ 7]+ k[-10]

|

;=

[FE]

gy A

=22 +71 410" =25.16 [ m" / 5 |

L =W, sin109.68 = /2% +2° +3* 1+ 47 + 57 5in(109.68) = 25.16[ m® / 5|
The order of multiplication of the vectors is important. Hence

]T_,T"::,{I?z_}_f (2.21)

L7,
-

Scalar/Dot Vector and Vector/Cross Product Multiplication in MATLAB

-

In the MATLAB Editor

Essential Mechanics
% P. Venkataraman
S

% Section 2.3.2 - Dot and cross product
©0000000000000000000000000000000000000000000000000000000000000000O0o0
O O0OO0DO0OOO0OOOODOOODOOODOOODOOODOOODODODODODODODODOOODOLOOOLOODOOODOOLOODOOODOODODOODOOOOOODOOOOW©OO©O©O™O
clc, clear, format compact, close all
©00000000000000000000000000000000000000000000000000000000000000000o0o
O O0OO0DO0OOO0ODOOOOOODOOLOODOOODOOODOOODODODODODODODODOODODOLODOOLOODOOODOOLOODOOODOOODODOOOOOOOOOOO©OOO©O™O
fprintf('--————------"-"-"-"-"-"-"-"-"-"-—-—— \n'")

fprintf ('Scalar and Vector Product\n')
fprintf('--————--------"-"-"-"-"-"-"-"--——— \n'")

%% Data

vl = [-2,2,3]

v2 = [1,4,-5]

%% Scalar or dot product

S = dot (V1,V2)

theta = acosd(S/ (norm (V1) *norm(V2)))

%% Vector or cross product
V3 = cross(V1,V2)
V3Mag = norm(V3)

In the Command Window

V1l =
-2 2 3
V2 =
1 4 -5
g =
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theta =

109.6830
V3 =

-22 -7 -10
V3Mag =

25.1595

2.3.3 Multiplication of Three Vectors

These special multiplication appear in dynamics but otherwise rare. There are two of them. The first is
a scalar triple product and the second is the vector triple product.

Scalar Triple Product

The scalar triple product is defined between three vectors. The final value is a scalar. For vectors Uy,
U, and Us,this product is defined as:

S=Uo(U,xU,) (2.22)

This is an ordered multiplication sequence. The cross product is performed first to yield a vector and
then the dot product between vectors yields a scalar.

You can easily show that the scalar triple product can be evaluation as a determinant using the vector
components in order.

=1 e Bl Belpe W ih | B Ui

§ =U{U,x L' !

E’1-11' E’1-1_1' E’E:
= B L, L
.. EL. Bl

Vector Triple Product
The vector triple product is defined between three vectors. It results in a vector. It is very useful in the
study of dynamics. For vectors U1, U2 and U3, the product will be a fourth vector U4. This involves

two serial applications of the vector product. The order of multiplication is suggested in the definition
of the product.

ﬁ4 — E—l _';,{['.E'_: ® E_.-__:l] (2.23)

Scalar and Vector Triple Product in MATLAB
n the MATLAB Editor

% ssential Mechanics
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clc, clear, format compact, close all
fprintf('--——-——-------""-""-""-"""""""" = \n')
fprintf ('Scalar and Vector Triple Product\n')
fprintf('--——-—-----"--""-""-""""""" \n')
%% Data

vl = [-1,2,3]; U2 = [1,-2,3]; U3 = [1,2,-3];
%% Scalar Triple Product

S1 = dot(Ul,cross(U2,U03)) % definition

A = [U1l;U0U2;U03]

S2 = det (A) % using determinant

%% Vector Triple Product
U4 = cross (Ul,cross (U2,U03))

N

In the Command Window

S1 =
24
A =
-1 2 3
1 -2 3
1 2 -3
S2 =
24
U4 =
10 4 -6

Octave Execution
The same code was run in octave editor without change. The results are shown below

In Octave Command Window

S1 = 24
A =

1 2 3

1 -2 3

1 2 -3
S2 = 24
U4 =

-10 4 -6

Recommendation
This code tested both the dot and the cross product in Octave. Students are recommended to test the
MATLAB code in Sections 2.3.1 and 2.3.2 in Octave to see if the numbers are the same
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2.3.4 Additional Problems
In the following problems, first solve the problem by hand and then re-solve by MATLAB/Octave and
compare your solutions

Problem 2.3.1
The rocket is moving straight up in the vertical plane. It's location is a function of time and can be
expressed as y = 50 t? [m], where t is the time in seconds. Att =0 it starts with y = 0. (a) Find the
unit vector along the line OA. (b) Find the unit vector along the line OB. (c) Is the z — axis directed
into the page or out of it?

«Bt=10s

o -

|-' 200 m
Problem 2.3.1

Problem 2.3.2

The large heavy metal sculpture of mass 500 kg is hung by three cables off tall posts that are 30 m
high which intersect at D. The poles are located 10 m from the center O at various angles to the axis
shown. The sag in the cables at the center O is 2 m (D is below the point A by 2 m). (a) Find unit
vectors along the three cables drawn from point D. (b) What is the dot product of the vector DB and
DC? (c) What is the cross product of the vectors DA and DB? (d) What is the result of the scalar
triple product of the vectors DA,DB, DC expressed as DA.(DB x DC)? (e) What is the result of the
vector triple product DA x (DB x DC)?
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Problem 2.3.2

Problem 2.3.3
We can make MATLAB draw 3D vectors, show the result of their addition. It is similar to the code in
the previous section except that you have to use quiver3. From MATLAB documentation:

A three-dimensional quiver plot displays vectors with components (u,v,w) at the points (x,y,z), where
u, v, w, X, y, and z all have real (non-complex) values.

quiver3(x,y,z,u,v,w) plots vectors with directions determined by components (u,v,w) at points
determined by (x,y,2z).

Given three vectors (through the components) : U1 =[-1,2,3]; U2 = [1,-2,3]; U3 =[1,2,-3];
(a) First draw the three vectors with their tails at the origin.
(b) Display the vector addition of the three vectors with the tail of the first vector (U1) at the origin.

See if you can reproduce the solution. The dotted vectors are part of the vector addition. The black
vector is the final vector after the addition of the three vectors.
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Problem 2.3.3
10 &
5 | :.' :.‘
™
0.
-5
2 \\\
1 - \-‘\\
S ) b
D \\-\ e
., e 0.5
- \\\ o 0
g 0.5
y :
2 4 X
Problem 2.3.3

In MATLAB you can get help on any command in the extensive MATLAB documentation. For less
extensive information you can type the command name in the command window after the prompt:

>> help quiver3
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2.4 MATRICES AND ALGEBRAIC EQUATION

Some of you may not have heard of matrices yet. Some of you may have. They are a special
numerical quantity like vectors. They are very important in solving real engineering problems using
software. There are usually several courses offered on this subject all the way to graduate school. In
this book we are interested in them because they are useful in solving problems in statics. We really
do not require its definition, except for knowing how to set it up so that you can use the extensive
features of your calculator to easily solve problems involving matrices. Solving by hand takes a lot of
time. Matrices are natural to MATLAB and they are easily handled. To begin with the vectors we
used in MATLAB in the previous sections are are special matrices. They are a matrix with a single
row or a single column. In a matrix information is organized in a number of rows and a number of
columns. Every row will have the same number of column elements. A square matrix will have equal
number of rows and columns. We have used row vectors in MATLAB during previous calculations.
Remember that this book just rehashes all the material you have studied or will soon learn in
engineering.

In general problem solving in engineering courses mostly involve:
e a simultaneous solution for many unknown quantities (or unknowns)
e these unknowns are related through a set of equilibrium equations ( or the physical laws)
e these equations will be linear (only these are solvable)
e these equations can also be organized as a matrix equation
e we will need as many equations as there are unknowns (a square matrix)

We certainly do not need to know about matrices to solve the set of these equations. They can be
solved naturally through substitution and elimination. This takes longer and tedious. On the other
hand

Using matrices,

- you can take advantage of your graphics calculator and solve these problems quickly and with
little effort.

- you can take advantage of Wolfram (MATHEMATICA) server to solve your matrix problems on
line.

- you can take advantage of any engineering software available on your computer (MATLAB,
Octave, MAPLE, MATHEMATICA,PYTHON, etc.).

- this is what you will be doing in advanced courses and therefore we can get started early .

2.4.1 Definition of Matrix
Here is a brief introduction to a matrix. We have previously used the vector V4

ir |17 17 17

lrr1 = [}lx If]\r Ll::l

This is a row vector, or a matrix with 1 row and 3 columns. The transpose of this vector/matrix will be
a column vector with the row elements. Its symbol (superscript T) is shown as:
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=

} Ix
-

I_.-" == F

1 ly

2
1z

The matrix is a set of numbers organized as rows and columns and surrounded by square
parenthesis. We will mostly deal with square matrices (same number of rows and column). The size
of the matrix is defined by the number of rows and columns. The example of a 4x3 (first number
indicates number of rows and the second indicates the number of columns) matrix, in various forms is
shown below: The first is a matrix with numbers. The second is a matrix with a symbol a and two
subscripts. The first subscript is the row location. The second subscript indicates which column it
belongs to. The third representation is just defines a matrix.

3 i 2 dy Gy G

LA ay @y Oy
Al= 7 I e S -2 O (2.24)
[ ] 9 8 ? ? [ ]-1-: 'ﬂ_:'.]_ -f?_:: H_:'._:'. 2 [ ]4-:

| ol €y Qg Qg |

A new matrix [B] can be formed by taking the transpose of matrix [A] — interchanging the rows and
columns (it will have 3 rows and 4 columns). Note the standard representation of a transpose -
superscript of T in capitals.

ay,

[E]_:H:[;i]:r: @y Gy G dg (2.25)

e e

H_:'-l &

-
-

2.4.2 Multiplying Matrices

You can multiply two matrices (and obtain a third matrix) if and only if (iff) the number of columns of
the first matrix equals the number of rows of the second matrix. Let us create the matrix [D] by
multiplying matrices [Alaxs and [Claxz
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ay, a,
ﬂ"ll a,,
da: .
dyy  y
|8y Dy

[p]=[A][c]-

(D]

3
4
9

1

S5 L =

4

T3 +(1)(4)+(2)(=5)
(4)(1)+(5)(4)+(6)(=5)
(9)(1)+(8)(4)+(T)(~5)

(1)(1) +(4)(4)+(T)(-5)

E3?11 du

d: 1 d::

E3]I31 dSl
i d41 d42 A

= Uy €y + A3 Cyy + 05505,

(3)(=3)+(1)(2)+(2)(6)]
(4)(=3)+(5)(2)+(6)(6)
(9)(=3)+(8)(2)+(7)(6)

(2.26)

(1)(=3)+(4)(2)+(T)(6)

Essential Mechanics

We can use matrix multiplication on vectors also. If V4 =[-22 3] and V; =[14 -5]

3

|

-

—2

2 3 & —S5l={2

3

Matrix Multiplication in MATLAB

In MATLAB Editor

-8 10
—-10
12 15

79
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-3 5
— 34 (2.27)
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28 7
(2.28)



Essential Mechanics

Essential Mechanics

o)
o

Venkataraman

Section 2.4.2

P.

o

- Matrix Multiplication

o)
o

oo
oo
oo
oo
o
oo
oo
oo
oo
o
oo
oo
oo
oo
o
oo
oo
o
oo
o
oo
oo
o
oo
o
oo
oo
o
oo
oo
oo
oo
o
oo
oo
oo
o
o
o
oo
o
o
o
oo
oo
o
o
o
oo
oo
o
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo

format compact, close all

clear,

clc,

oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo

fprintf ('Matrix Multiplication\n')

fprintf ('-------- - - - - ————————————-\n")

- matrices are written within square parenthesis

(3,1,2;4,5,6;9,8,7;1,4,7]

separates elements in the same row

(7)

a comma (,)
a semicolon

o)
o

separates rows

o)
o

(1,-3;4,2;-5,¢6]

a row vector

o)
o

(-2,2,3]
(1,4,-5]

V1

another row vector

transpose of V2

o)
o

V2

= v2's

V2T

(single quote)

the transpose is represented by an apostrophe

o)
o

%% Matrix multiplication

A*C

D

%% Vector Multiplication

V3

V1i*v2'

V1'*v2

V4

In the Command Window

Matrix Multiplication

N O~~~

V2T

5
34

-6

31

6
-18

47

V3
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-9

v4 =
-2 -8 10
2 8 -10
3 12 -15

2.4.3 System of Algebraic Equations

System of linear algebraic equations is quite common in Statics. We can set up the system of
equations as a matrix equation and there are efficient procedures to solve these equations. You can
also grind the solution by substitution and elimination but it is very much less work if you have a
graphical calculator or MATLAB as most of you have.

In the following we create a system of three equations in three unknowns x, y, and z. We are
interested in the value of x, y and z that simultaneously solves the three equations. We expect them
to have unique values. Since we are multiplying each unknown by a constant these are called linear
equations. We will solve them the traditional way in Section 2.4.4. Here we will recognize that the
equations can be assembled as a linear matrix equation using vector/matrix multiplication in Eq.
(2.29)
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(2.29)
(2.30)

System of Algebraic Equations

]
01

.}m

X
)
o
L

o
J

Thelast equation can be set up as

[2 =2 1]{

-

! |
Essential Mechanics
Venkataraman
Section 2.4.2

We can combine the three matrix forms of each equation into a single one by consolidating a matrix
P.

equation as
Solving Matrix Equation in MATLAB

Thefirst equation can be set up as
Thesecondequation can be set up as

(2 2 1][

A][x]=[5]:
In the Editor

o)

x+2y—2z=1

[3 2

€]

o
o

o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

format compact, close all

clear,

clc,

oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo

o
o

oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
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fprintf('-—————--"-"-""""""“"“""“"“"“"-"—"—"——————— \n"')
fprintf ('System of Algebraic Equations\n')
fprintf('—-———————-—- - \n")

2220002880800 00088080000088080000088000000880000008800000088080500008080505 05

% Symbolic calculation is similar to how you would solve in your
% lecture notes.

% Symbolic variables are a new type of variable

% They are not numbers but symbols

% You have to identify them before using them

% MATLAB treats them differently

S22 0028000008800 0000808000008808000000808000000808000080080808000808080805 0005

%% Data

sSyms x y Z % x y and z are three symbolic variables

eql = '"2*x + 2%y + z = 9! % define first equation

eq2 = '"3*x + 2%y =2%*z = 1" % define second equation

eqgql3 = '2%x -2*y + z = 1" % define the third equation
%% solution - first method -(symbolic solution)

sol = solve(egl,eqg2,eq3)

% solve the three equations and store the solution in the wvariable sol
% sol is also a new kind of variable

% 1t is a struct variable with values for the solution
sol.x % the solution for x is recovered by typing sol.x
sol.y % the solution for y is recovered by typing sol.y
sol.z % the solution for x is recovered by typing sol.x
%% solution - second method - (using matrix)

A [2,2,1;3,2,-2;2,-2,1] % define matrix A

b= 19,1,1]" % define column vector Db

xs = A\b % solve the matrix equation

In the Command Window

eqgl =

2*x + 2*y + z = 9
eq2 =

3*x + 2%y -2%*z =1
eq3 =

2*x =2*y + z =1
sol =

ans

ans =

ans =
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A =
2 2 1
3 2 -2
2 -2 1
b =
9
1
1
xs =
1.0000
2.0000
3.0000

Execution in Octave
The code is same as in MATLAB above except for the changes shown below
In Octave Editor:

% Section 2.4.2 - System of Algebraic Equations
clc, clear, format compact, close all
pkg load symbolic # Loads the package for symbolic calculations

eql = 2*x + 2*y + z == 9 & define first equation
eq2 = 3*x + 2*y -2*z == 1 % define second equation
eq3 = 2*x -2*y + z == 1 % define the third equation

eql = (sym) 2*x + 2*y + z = 9
eq2 = (sym) 3*x + 2*y - 2%z =1
eg3 = (sym) 2*x - 2*y + z =1
ans = (sym) 1
ans = (sym) 2
ans = (sym) 3
A =

2 2 1

3 2 =2

2 =2 1
b =

9

1

1
Xs =

1

2

3

There are some formatting differences but the solution is the same
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2.4.4 Traditional Solution to System of Algebraic Equations
We know how to solve systems of equations in MATLAB/Octave. The traditional way is to substitute
and eliminate unknowns. This is done as follows:

2xt+lytz= first
it 2y—-2z=1 second

2x—2y+z=1 third

The equations are identified for reference in the following sequence of calculations. Use the first
equation to define z

z=9—-2x—2y
Substitute z in the second equation and define y using the second equation
x+2y—29—-12x—2y)=1
Tx+6y=1+18=19
(19—7x)
6

:[':

Now, substitute for y and z in the third equation and solve for x

k { AN A
zx—z—[lg_mﬂ9—21——2 i | N
6 | 6 )
EI—E-I-E-I-Q—II—E-FE:l
2 3 g
- REhd I,
RPN o B B
3 3 3 3
.1':E=1
14

Now substitute the value of x to calculate y and z

These should be the same as the values for x, y, and z from MATLAB. The number of calculations
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significantly increases if you add more unknowns and more equations. In rigid body statics there are
six equations that can accommodate six unknowns. In MATLAB the procedure does not change with
more unknowns and equations.

2.4.5 Additional Problems

In the following problems, first solve the problem by hand and then re-solve by MATLAB/Octave and
compare your solutions

Problem 2.4.1
Find the product of matrices A and B
i .
3 45 14 48
ES - &
A=145 32X 2T 08} F=
24 2:
06 05 48 29
104 29|

Problem 2.4.2
Solve the following set of algebraic equations:

2x+y+32z=76 (el)
x+2ytda—"735 (e2)
x+15v+2z=64 (e3)

Problem 2.4.3
Solve the following set of algebraic equations:

s ol B (el)
2x + vy + 15==T7 (&2)
15x+3y+45z=12 (e3)

If you run into a problem - look over the set of equations and see if you can spot an important fact.
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2.5 USEFUL MATHEMATICAL RELATIONS

This section reviews some useful mathematics that is taken for granted in engineering courses. Some
of these are part of your high school curriculum or the earliest mathematics course you attended as
part of the engineering curriculum. These usually appear as part of formula derivation. These are part
of your engineering vocabulary. These will include algebra, calculus, and trigonometry. We will review
geometry in a separate section because it is very important in Mechanics. This review is similar to the
practical coverage of vectors and matrices in earlier sections. These are short subsections and
provide instructions on how to solve them using symbolic calculations in MATLAB. In a sense they
are provided as a reference.

2.5.1 Polynomials

Polynomials are usually expressed with the variable x. However they can be expressed using any
symbol. They are represented as a function pp(x). The are formed by the addition of terms made up
of a constant multiplying x raised to an integral power. The highest power is n - which is the order of
the polynomial. The common polynomial is the quadratic where the highest power is 2. Cubic
polynomials are sometimes used to smooth data. In the following we will avoid the subscript n since
we will be using mostly second or third order polynomial.

px)=px)=ax +bx+c 2.31)

pi(x)=p(x) = ac +bxt +ex+d

The polynomial is completely described by the the constants. The number of constants describes the
order of the polynomial. Therefore

p(x)=ax’ + bx+e=[a.b.cl; (2.32)

Quadratic equation: The quadratic equation is a solution to the algebraic equation defined by
setting the quadratic polynomial with known constants to zero. The solution to this equation
determines the roots of the equation or the zeros of the polynomial. What exactly are roots? They are
just the values of x that solve the equation. These are the same values that make the polynomial
evaluate to zero - which can be seen in (2.33). The second order polynomial will have two solutions or
two roots. Let us denote them as x4 and x2.Then the polynomial can also be expressed through the
roots as:

ax’® +tixte=0={x—xp)x—x) (2.33)

The formula for the roots are

b +4p? —dac o b* —4ac (2.34)

_',li'_' =
1 3 : 3

- -
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The roots can be imaginary too. However we will deal with polynomials with real roots and leave
imaginary numbers for another time. You can program the calculator to solve for the roots based on
the value of the constants a, b, and c. Off course we will use MATLAB as our calculator. Note you
can get the formula as well as a numerical solution.

Quadratic Equation in MATLAB
In the Editor:

% Essential Mechanics
% P. Venkataraman
S

©0000000000000000000000000000000000000000000000000000000000o0
OO O0OOOOOOOOOOO©O©OO©O©OO O © O © O O0OO0OO0OO0OOOODOOODOOODOOOOOOOOOOODOOOO™©
clc, clear, format compact, close all
©000000000000000000000000000000000000000000000000000000000O0o0
OO0OO0DO0OO0OO0OOOODOOODOOODOOODOOODOOODODODODODOLODODODODOOODOOODOODODOODODODODODOODOOODOOOO©OOO™©
fprintf('------------- \n'")

fprintf ('Polynomials: Quadratic equation\n')
fprintf('-------------- \n'")

355553555 %5%%5%5%%53%5%5%5%55%5%5%5%53%5%5%5%53%5%5%5%53%55%5%53%3%5%5%%53%5%5%5%53%5%5%5%%%
%% gquadratic equation

syms x

a =2; b= -3; c=1;

sol = solve('a*x"2 + b*x + ¢ == 0') % this will give formula

% here a, b and c are treated as symbolic variables as they are defined
within a string expression

o)

sol = subs(sol) % substitute known wvalues of a, b, ¢ in solution

In the Command Window:

Polynomials: Quadratic equation

sol =
-(b + (b"2 - 4*a*c)”~(1/2))/(2*a)
-(b - (b"2 - 4*a*c)"(1/2))/(2*a)
sol =
1/2
1

Note: you can see that MATLAB reproduces the formula in Eqn. (2.34).

Execution in Octave

Symbolic substitution is more formal in Octave. The MATLAB code does not work as is. The code
for Octave is below. The difference in the code is highlighted. The symbolic display by default is
natural. This is more readable. If you want to flatten it uncomment the sympref display flat -
command. The change in code is due to the following:

1. Solve does not appear to like a string expression.
2. Substitution of defined unknowns can only be scalar substitution - that is only one unknown at
a time.
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In the Octave Editor
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[ ]
[ / 2]
[ b \/ -4*a*c + b ]
(- —- === ]
[ 2*a 2*a ]
[ ]
[ ]
[ / 2]
[ b \/ -4*a*c + b ]
[~ === 4+ e ]
[ 2*a 2*a ]

Cubic Equation: |t is possible to solve for the roots of a quadratic equation using analytical formulas
similar to those for the quadratic equation Eqn.(2.34). They are more complex and long. Here we
commit to use MATLAB to handle these equations. MATLAB has efficient built in functions for this.
Before we move on to the example, note that a polynomial can be defined by the coefficients of the
terms multiplying x and its powers. An important way to assemble these coefficients in MATLAB is to
use an array/vector to collect the coefficients from the highest power to the constant term. A
coefficient of zero must be used if the polynomial lacks a term corresponding to x raised to a specific
power - Eqn. (2.32).

Cubic Polynomial in MATLAB

In the Editor:

% Essential Mechanics

% P. Venkataraman

% Section 2.5.1 - Polynomials
©00000000000000000000000000000000000000000000000000000000000000O0o0o
O O0OO0DO0OO0OO0OOOODOOODOOODOOODOOODOOODODODODODODODODODOODODOOLODODOOODOOLODODODODODOOODOODODOODOOODOOODO©OO™O
clc, clear, format compact, close all
©000000000000000000000000000000000000000000000000000000000000000o0o
O O0OO0DO0OO0OO0OOOODOOODOOODOOODOODODOODODODODODODODODODODOOODOOLOODOOODOOLOODODODODOODODOODODOOOOOOOO©O©OO™O
fprintf('------------- \n'")

fprintf ('Polynomials: Cubic polynomiall\n')
fprintf('------------- \n'")

S
f = (x+2)*(x-1.3)*(x-3) % £ will be a third order polynomial
% with roots -2, 1.3, 3

f = collect (f, x) % returns the polynomial in decreasing powers of x
p = coeffs(f,x) % extract the polynomial coefficients

% coeffs orders the polynomial coefficients from low to high
p = fliplr(p) % Here we reverse it to make use
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\O

s of MATLAB program roots to find the roots of polynomial

sol = roots(p % should give you the solution for polynomial roots
and it should check with what w used to create polynomial

o)
o

In the Command Window:

Polynomials: Cubic polynomial

bed
+
N
*
bed
|
w
*
bed
|
i
w
~
o
(@)

>

- (23*x72)/10 - (47*x)/10 + 39/5
9/5, -47/10, -23/10, 1]

, —23/10, -47/10, 39/5]

-2
13/10
3

nw — "0 —"T X +h —~ th

o
= ollw w

Execution is Octave
There are two changes in code
1. Octave does not appear to have a collect function
2. input to the roots function must be a real number and not a symbolic number

o

In Octave Editor

90900900000000000000000000000000000000000000000000000000000000000000

909090090000000000000000000000000000000000000000000000000000000000000

sSyms
f = (x+2)*(x-1.3)*(x-3) % f will be a third order polynomial
% with roots -2, 1.3, 3
##f = collect(f,x) % returns the polynomial in decreasing powers of x
p:

coeffs(f,x) % extract the polynomial coefficients
% coeffs orders the polynomial coefficients from low to high

p = double (p) % the roots function need real numbers instead of symbolic
% MATLAB is flexible in this regard
p = fliplr(p) % Here we reverse it to make use

% of MATLAB program roots to find the roots of polynomial
sol = roots(p % should give you the solution for polynomial roots

%

and it should check with what w used to create polynomial

In Octave Command Window

Polynomials: Cubic polynomial
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(x = 3)*|Ix - ——]*(x + 2)
\ 10/

p = (sym 1x4 matrix)

[ -47 -23 ]

[39/5 ---= -—=-- 1]

[ 10 10 ]
p =

7.8000 -4.7000 -2.3000 1.0000
p =

1.0000 -2.3000 -4.7000 7.8000
sol =

-2.0000

3.0000

1.3000

2.5.2 Logarithms

Logarithms are popular in engineering mathematics. Logarithms are defined over a base. The most
frequent one you come across is the natural logarithm (/n) which is based on the mathematical
constant e = 2.718282. Another popular one is the logarithm to the base 10 (log1g). There are a lot of
mathematical solutions that rely on this base. Computer science likes logarithms to the base 2 (logz)
and 16 (log+s) and they are important part of computer programming. Logarithm is defined below.

(2.35)

In addition the rules for basic arithmetic operations (any base) are

log I:c;rE:j =log I:c:] +log I:E:]
¢.5y
log | EJ =log(a)—log(d)

L3

log [:ﬂ,n:] =nlog(a) (2.36)

Logarithms in MATLAB
In the Editor:

o

Essential Mechanics
P. Venkataraman
Section 2.5.2 - Logarithms

o°

o\
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2220002088000 0088000008805 9 909 5

clc, clear, format compact, close all
9900000000000090000009000000000900000090000000000000090000000000000000000900o
OO0OO0OO0OOO0ODOOOOOODOOODOODODOOOODODODODODODODODODODODODODODODODODODODODODODODODODODODODODODODODOODODOODOOODO©OOO™©
fprintf('-—---------—— - \n")

fprintf ('Logarithms: \n'")

fprintf('-—--------—--- e \n")

o .
% Numerical Calculations

0000000000000 000000000000000000000000000000000000000000000000oooo
© 0000000000000 0O0O0O0O0O00000000000000000000000000000000000000000S0S0S000

%% Logarithms and bases

% log is natural logarithm

exp (1) % should give the wvalue of e
log(exp (1)) % should give you 1

% log2 is logarithm with the base 2
log2(8) % should yield 3 since (2)"3 = 8

% loglO is logarithm with the base 10
logl0(100) % this should yield 2 since 1072 = 100

There are only three logarithm functions in MATLAB

other log functions can be set up through

logb (x) = log(x)/log(b)

For example log to base 16 can be defined as

logl6 64 = log(64)/log(l6) % cannot use logl6(64) since

% MATLAB will create an array with 64 values

o° 00 o© oo

In the Command Window:

ans =

ans =
2

loglo 64 =
1.5000

Execution in Octave
The code is the same and so are the results

2.5.3 Trigonometry
The basic trigonometric functions we normally use are centered around the right angled triangle. In

addition trigonometric functions repeat after one revolution or 27t radians or 360 degrees.
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quadrant Il quadrant |
90<H<180 | 0<8<90
c only sind and cosec8 | all trigonometric functions
are positive are positive
a
only tan6 and cot only cos and secf
are positive are positive
|| 0 180<0<270  270<O<360
b quadrant quadrant IV

Figure 2.5.1 Basic trigonometry definition

Base definition:

sined = sin SzE; EDEiﬂEEZEDEEZE; tmgmtﬂztané':g;

N 3 (2.37)
c e
cosecantf=cscf = —; secantd =secd =—; cotangent& =cotd =—
a b a
Additional Identities:
In addition the following relations will be useful in derivations and proof.
sin*@+cos’@#=1 l1+tan’@=sec’d: l+cot’d=csc’;
i 1 & 1
mn—z,\,—[l—cn&é‘]; cnﬁ—z\{—[l+c95§J;
2 2 2 2
(2.38)

sin2f =2sinfcos®; cos2f=cos" @—sin" &;
sin({ath)=sinacosbtcosasinb;

cnﬁ[aib] =cosacosh Fsin asin b;

For a regular triangle the following relations are very useful (the large letter represent angles and the
lower case the length of the sides)

e
. B RHKHa
A c—~.D
b
a b c :
. —— - sinemle
sinAd sinB  sinC (2.39)

c"=a +b"—2abcos(C; cosinemle

¢t =a® +b* +2abcosD:
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We have previously used many of these relations while working with vectors. This section
consolidates the useful information from trigonometry. We have also used MATLAB to process
trigonometric information while dealing with vectors.

2.5.4 Derivatives

The usual solution for many engineering problems, especially in the early courses in engineering, are
continuous solutions. Very often additional properties are dependent on the derivatives and integrals
of these functions. Through intense practice, many of you may remember the formulas associated
with differentiation and Integration. There are handbooks that provide the formula for integration of
popular functions. However, symbolic calculations through any of the software packages that support
them, makes such a resource less necessary. In the following we outline some of the basic formulas
for differentiation that appear often in engineering.

It is also important to note the difference between derivatives and differentials. They are nearly the
same except the first provides unit change with respect to a variable, while the latter provides the
small changes in the function for small changes in the independent variables, using the derivative
information. Often the lower case Greek letter delta O is used for differentials. Here | will use the
lowercase d for it. Let us clarify with an example of a function f(x, y). This is a function of two
independent variables. You must use partial derivatives.

f(x.v) isatwo variable function

5f— 2 5x+—f dy. same asdf=£dx+£aﬁ'; is the differential
cy e cy

af . . . . . (2.40)
—: 1s the partial derivative of f with respect tox

chx

daf . : o g :
E: is the partial derivative of f with respect to v

What about a function of a single variable? What are the derivative and the differential in that case?

The popular relations for the derivatives are

E=rr'3x’”"1; d[uvj=vdu+uﬁ; !“‘v’;=vg_ﬂuaz
dx dx dx dx dx v
d(s i (2.41)
M:CDEI M:—ﬂﬂx‘: M:EEE‘J{:
e dx dx
d(sinh x) i d(cosh x) —sinh x etk =sech’ x;
dx dx dx

Derivatives in MATLAB
In the Editor
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o° 00 oo

S22 0002880000008 080900808080000088080000088000000880000008800500008080505 05

clc, clear, format compact, close all
9900000000000 00000000000000000000000000000000000000000000000000o0oo
OO0OO0OO0OOO0OOOODOOODOOODOOODOODODODODODODODODODODODODODODODODODODODODODODODODODODODODODODODODODODOODOOODO©OOO©OO™©
fprintf('-———----""""“"“"“"“"“"“"“""-"“"-"-"—~-~-—~—-~—~——— \n')
fprintf ('Derivatives: \n')
fprintf('-——-----------—m o \n")
9900000000000 0000000000000000000000000000000000000000000000000O0o0o
OO0OO0OO0OOO0OOODODOOODOOODOOODOODOODODODODODODODODODOODODODODODODODODODODODODODODODODODODODODODODOODOOOO©OO©O©OO™©
% Symbolic Calculations
% Math Handbook for derivatives
9000000000000 00000000000000000000000000000000000000000000000000o0o
OO0OO0OO0OOO0OOOODOOODOOODOOODOODODODODODODODODODODODODODODODODODODODODODODODODODODODODODODODODODODOODOOODOOO©O©OO™O
%% Derivatives
syms x
% power
fprintf ('diff(x"3) = "),disp(diff (x"3))
fprintf('diff(x"3,x) = "),disp(diff (x"3,x))
$ diff(x*3) == diff(x"3,x) % good idea to include x to avoid
% interpretation
% product
= 3*x; v = 2%exp (x); % exp(x) == e"x
fprintf ('u(x) ') ,disp (u)
fprintf('v(x) = '),disp (V)
fprintf('diff (u*v) = "),disp(diff (u*v))
% division
fprintf ('diff(u/v) = "),disp(diff(u/v))
% trigonometric
fprintf('diff(sin(x)) = "),disp(diff(sin(x)))
% hyperbolic
fprintf('diff(sinh(x)) = '),disp(diff(sinh(x)))

o

% all - check if it is right
fprintf ('diff (x"3*%*exp(x)*sin(x)*sinh(x))= \n'"),
disp ((diff (x"3*%*exp(x)*sin(x)*sinh(x))))

%% You can also define implicit dependence
fprintf ('\nImplicit functions:\n')

Define implicit functions
u = sym('u(x)'); % u(x)
v sym('v(x)'); % v(x)
fl = diff (u*v); % this should give you the chain rule formula
fprintf ('diff (u*v) = "),disp(fl)

o\

In the Command Window

diff (x"3) = 3*x"2
diff (x"3,x) = 3*x"2
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u(x) = 3*x

v(x) = 2*exp (x)

diff (u*v) = 6*exp(x) + 6*x*exp(x)

diff(u/v) = (3*exp(-x))/2 - (3*x*exp(-x))/2
diff(sin(x)) = cos (x)

diff(sinh(x)) = cosh(x)

diff (x"3*%exp(x)*sin(x)*sinh(x))=
x"3*exp (x) *cos (x) *sinh (x) + x*"3*exp(x)*cosh (x)*sin(x) +
3*x"2%exp (xX) *sin(x) *sinh (x) + x"3*%*exp(x)*sin(x) *sinh (x)

Implicit functions:
diff(u*v) = u(x)*diff(v(x), x) + v(x)*diff(u(x), Xx)

You do not have to remember the formula but you have make sure that you are not making a coding
error.

Execution in Octave
The code is the same and so are the results

2.5.5 Integrals

We can use symbolic calculation in MATLAB to function as an Handbook of Integrals. It may not
always be a neat looking function. Another important fact about integrals in MATLAB is that it returns
definite integrals correctly. However, it does not include an integration constant for indefinite
integrals. If it does return one sometimes it may not be the one you are expecting. It is a good idea
to remember that you are responsible for the constant of integration when processing indefinite
integrals. In the following please note the the integration constant ¢ will not be provided by MATLAB.
Only a small number of examples are included in the exercise. You should be able to calculate
integrals for any expression you come across. If MATLAB cannot solve the integral it will just return
the same integral expression. The following are examples from integral tables:

Integrals of simple functions of x

el

.x”dx— =

[:r: lde=In x+c

ax 2
x-'c:r+.5xa’x— *n' cr+.5x +c; | ——=—+Ja+bx+c;
‘[W“-'?H’x 6 (2.42)
;r:n,;"c;r+Eixd:r:—

[3.53:— j I:-I:I+EIIIJ3+C
% = ;: I:E:x—aln(cr+bx)]+c
“{a+bx

Integrals of basic trigonometric and hyperbolic functions
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5in xax = —CcosXx+ ¢ [ cos xdx =sin x+c;

- 1, 1+sinx

secxdx=—Iln—+¢;

. 2 l-sinx

i g x sin2 ; x sin2

5111 :r:ar:r:z;——+c; [:05 xdx=;+—+c;
- sin ~ X

5in XCOos Xxdx = T+c;

(2.43)

Integrals of exponential functions

[ eﬂci}:=i+c; ‘l.ln xdx=xlnx

il

[ sinh xdx = coshx; [ cosh xdx =sinhx; [ tanh xdx=1n [:n&hx] :

—x+c: [ . O

e™ (asin px— pcos px)

[e‘ﬂﬂin pxdx= d = +e
- a +p

e” (acos px+ psin px
[E‘Jxl:DEpI{iI= I: p p P :I+c;
. a +p

(2.44)

Definite integrals:

3 7

! (1+2x)dx= o 1|||'|'\1+ 2x)
P g
tanh(2.5x)dx==In(cosh(2.5x)
[ e ™ d —ﬂ[—”x—ljf
4

Integrals in MATLAB

In the Editor

% Essential Mechanics

% P. Venkataraman

% Section 2.5.5 - Integrals
9000000000000 0000000000000000O0o0
O 0O O0OO0O0OO0OO0DOO0OODOODODODODODODODODODODOODODOODOO©OO™ O
clc, clear, format compact, clo
0000000000000000000000000000O0O0o0
O 0O O0OO0O0OO0OO0ODOO0OODOODODODODODOODODODODOODODODODOO©OO™ O
fprintf('--———---------------—-
fprintf ('Integrals: \n')

;[Jl P -5 |=843817

g
3
=
i

000000000000000000000000000000
0000000000000 000000000000000O0D0
000000

0099000000000 000000000000000000 0
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fprintf('-—--------—-—-mm o \n'")

5555555555555 %5%5%5%5%5%5%5%5%5%55%5%5%5%%5%5%%5%5%5%5%%5%5%%5%5%%5%5%55%5%%5%5%5%5%%
% Symbolic Calculations

% Math Handbook for integrals

555555555555 %5%55%5%5%5%%5%5%%5%5%%5%5%5%5%%5%5%%5%5%%5%5%5%5%%5%5%%5%5%%5%5%5%5%5%5%5%5%5%%
%% Integrals of x

syms x n a b p

% functions of x
fprintf ('Integrals of functions of x\n')

fprintf ('-—--------———-m \n")

fprintf('int (x"n) = "),disp(int(x"n))

fprintf('int (sgrt(a + b*x),x) = "),disp(int(sgrt(a + b*x),x))
fprintf ('int (1/sqrt(a + b*x),x) "y,disp(int(1/sgrt(a + b*x),x))
fprintf('int (x*sgrt(a + b*x),x) = '),disp(int(x*sgrt(a + b*x),x))
fprintf('int(x/(a + b*x),x) = '"),disp(int(x/(a + b*x),x))

%% basic trignometric functions
fprintf ("\n----------“""—"——— - ")

fprintf ('\nIntegrals of trignometric functions\n')
fprintf('-——---"----"---mm \n'")
fprintf('int (sin(x)) = "),disp(int(sin(x)))
fprintf('int (sec(x))) = '"),disp(int (sec(x)))
fprintf('int (sin(x)"*2)) = "),disp(int(sin(x)"2))
fprintf('int (tanh(x))) = '),disp(int (tanh(x)))

%% basic exponential functions
fprintf ("\n----------"“"“"""—"—— - ")

fprintf ('\nIntegrals of exponential functions\n')

fprintf (' - \n'
fprlntf('lnt(exp(a*x),x) = '),disp(int (exp(a*x),x))

fprintf('int (log(x)) = ),dlsp(lnt(log(x)))

fprintf ('int (x*exp(a*x)) = "),disp(int (x*exp(a*x)))
fprintf ('int (exp(a*x) *cos(p*x)) = '"),disp(int(exp(a*x)*cos(p*x)))

%% Definite Integrals

fprintf ("\n------------————— - ")

fprintf ('\nDefinite Integrals of functions \n')

fprintf('-—------------m o \n")

fprintf('int (sqrt(l + 2*x),x) between [2,5]= "),...
disp (vpa (int(sgrt(l + 2*x),x,2,5),3))

fprintf('int (tanh(2.5*x)),x,3,4) = "),disp(vpa(int(2.5*tanh (x),x,2,3),5))
fprintf('int (x*exp (-2*x),x,2,5) = '"),disp(vpa(int (x*exp(-2*x),x,2,5),5))

In the Command Window

int (x*n) = piecewise([n == -1, log(x)], [n ~= -1, x*(n + 1)/(n + 1)1)
int (sgrt(a + b*x),x) = (2*(a + b*x)"(3/2))/(3*b)
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int (1/sqrt(a + b*x),x) = (2*(a + b*x)"(1/2))/b

int (x*sgrt(a + b*x),x) -(10*a*(a + b*x)"(3/2) - 6*(a +
b*x)~(5/2))/(15%b"2)

int(x/(a + b*x),x) = -(a*log(a + b*x) - b*x)/b"2

int (sin(x)) = —-cos (x)

int (sec(x))) = log(l/cos(x)) + log(sin(x) + 1)
int(sin(x)"2)) = x/2 - sin(2*x)/4

int (tanh(x))) = log(cosh(x))

int (exp(a*x),x) = exp(a*x)/a

int(log(x)) = x*(log(x) - 1)

int (x*exp(a*x)) = (exp(a*x)*(a*x - 1))/a"2

int (exp(a*x) *cos(p*x)) = (exp(a*x)*(a*cos(p*x) + p*sin(p*x)))/(a”2 + p"2)

int(sqgrt(l + 2*x),x) between [2,5]= 8.43
int (tanh(2.5*x)),x,3,4) = 2.4608
int(x*exp(-2*x),x%x,2,5) = 0.02277

Solution Using Octave
The code is same as in MATLAB above except for the changes shown below

In Octave Editor:
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pkg load symbolic oads the package for symbolic calculations
sympref display flat # writes to the command window cleanly
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In Octave Command Window

int (x"n) = Piecewise ((x**(n + 1)/(n + 1), Ne(n, -1)), (log(x), True))
int (sgrt(a + b*x),x) = 2* (a + b*x)**(3/2)/ (3*b)

int (1/sqrt(a + b*x),x) = 2*sqrt(a + b*x)/b

int (x*sqrt(a + b*x),x) = —4*a** (9/2)*sqrt (1 + b*x/a)/ (15*a**2*b**2 +

15*%a*b**3*x) + 4*a**(9/2)/(1l5*a**2*Db
**2 + 15%a*b**3*x) - 2*%a**(7/2)*b*x*sqgrt(l + b*x/a)/ (1l5%a**2*b**2 +
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15*a*b**3*x) + 4*g*x*x(7/2)*b*x/ (15*a**2*
b**2 + 15%*a*b**3*x) + 8*a** (5/2) *b**2*x**2*gsqrt (1 + b*x/a)/ (15*a**2*b**2 +
15*a*b**3*x) + 6*a** (3/2)*b**3*xx
**3*xgqrt (1 + b*x/a)/ (15*a**2*b**2 + 15*a*b**3*x)
int(x/(a + b*x),x) = -a*log(a + b*x)/b**2 + x/Db

int (sin(x)) = -cos (x)

int (sec(x))) = -log(sin(x) - 1)/2 + log(sin(x) + 1)/2
int(sin(x)"2)) = x/2 - sin(x)*cos(x)/2

int (tanh(x))) = x - log(tanh(x) + 1)

int (exp(a*x),x) = Piecewise ((exp(a*x)/a, Ne(a, 0)), (x, True))

int (log(x)) = x*log(x) - x

int (x*exp (a*x)) = Piecewise (((a*x - 1) *exp(a*x)/a**2, Ne(a**2, 0)),
(x**2/2, True))

int (exp(a*x) *cos (p*x)) = Piecewise ((x, Eg(a, 0) & Eg(p, 0)), (I*x*exp (-
I*p*x)*sin(p*x) /2 + x*exp(-I*p*x)*

cos (p*x)/2 + exp(-I*p*x)*sin(p*x)/(2*p), Eg(a, -I*p)), (-

I*x*exp (I*p*x) *sin(p*x) /2 + x*exp(I*p*x)*cos (p*x)/

2 + exp(I*p*x)*sin(p*x)/(2*p), Eqgq(a, I*p)), (a*exp(a*x)*cos(p*x)/(a**2 +
p**2) + p*exp(a*x)*sin(p*x)/(a**2

+ p**2), True))

int (sgrt(l + 2*x),x) between [2,5]= 8.43
int(tanh(2.5*x)),x,3,4) = 2.4608

int (x*exp (-2*x),x%x,2,5) = 0.022770

2.5.6 Series

The following is a limited collection of some popular series that you will come across in engineering.
The series are usually a way to approximate the function using polynomial terms. They are usually
infinite series - or infinite terms used in evaluating the function. The more terms the better the
approximation. Binomial, Fourier, and Taylor expansions are popular in engineering. Sometimes the
series are referred as expansions about a point (a). For Maclaurian series the point a is 0.
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nin—1) , nln-1)(n—-2) , e ; :
[lix]ﬂzlim:+ [ :I;r:‘i [ JI: Jx‘+ [:r:‘-cil:l; binomial
21 3!
s = x ? .
= —=ltxt—+—+ exponential
— H 2 3
¥ x x : .
sinx=x——+——"— [}:1111’3::11311]
3 54 o (2.46)
2 4
: gt N 5 . .
cosx=1-——+——+ __. [xmradian]
21 4! &l
e —e” " gt o
sinh x = =x+—+—+—
2 31 51
I X i 4 f
+e x x X
cosh x = =l+—+—+—+
21 41 4l

[ A PN . HTx _ :
f[x}=7:'+ b0 EDET+Z'§|’! sin T where (Fourier series )
- Rl Rl

a, = 1? [ FG)cos H%de: i 1? [ 7Gosin ”—? dx

[ (a)

n!

f(a)

3!

f"(a)

2!

fx)=fla)+ fa)*(x—a)+ (x—a) + (x—a) + . + (x—a)" +

(Tavlor series about point a)

e Ff @, 2 @, . S0
F) =0+ £ [x}+T[x] + = e e O~ r fa]

(Maclaurian seriesabout point a) (2.47)

We will discuss series as and when needed.

2.5.7 Additional Problems
In the following problems, first solve the problem by hand and then re-solve by MATLAB and
compare your solutions

Problem 2.5.1
Find the roots of the quadratic equation:

r+x-12=0

Problem 2.5.2

Find the derivative of: € Jx OR
102



nf[g-“ﬁ]

dx

Problem 2.5.3
Find the integral:

[ g x cos | 2x)dx
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2.6 GEOMETRY

In this section we will review some ideas from geometry. Geometrical form is the important element of
design and it is often challenging to choose the right geometry for the best outcome. Many solutions
and models depend on geometrical formulation and their various properties. The word geometry
incorporates many ideas and is usually tagged to indicate its nature. We will try to capture some
essential information from several aspects of geometry.

2.6.1 Analytical Geometry

Analytical geometry refers to a convenient description of the physical geometry using a mathematical
equation. In many cases this provides a way to define the constraint, or better still, provides an
equation to reduce the number of unknowns. The equation for the straight line, the circle, and the
ellipse should be familiar. Sections 2.61 and 2.6.2 should be useful for this book. The rest is for fun
and allows you to use MATLAB to actually draw shapes that are of correct scale. You can skip those
sections if you wish.

Table 2.1 Popular Objects ,

|
|
|
|
x2/a2 +y2/b2 =1 |
el

y y=mx+a 1y (x-gr)fi (y-b)2 =r2 ///

/:m/ N /j/ S~

2a |
|
|
|
|

Line Circle Ellipse

Parabola Hyperbola

Let us use MATLAB to create the objects in Table 2.1

n the Editor

Essential Mechanics

P. Venkataraman

Section 2.6.1 - Drawing geometric primitives

o oo

o°
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figure % open a figure window and park it in the lower left corner
set (gcf, '"Position', [25,50,400,35017)
hold on % allow multiple plots in the same figure

%% line

syms x y

a=2; m=20.5Db=1; r= 1;
y = a + m*x % the line
ezplot(y, [-3,3.5])

% circle

sgrt will account for negative and positive values giving two solutions
hold on

yl = sqrt(r*2 - (x-a)”™2) + b % first solution to vy

y2 = —-sqgrt(r"2 - (x-a)”"2) + b % second solution to vy

hpl = ezplot(yl,[1,3]); % plot half the circle

set (hpl, 'Color','r")

hp2 = ezplot(y2,I[3,11); % plot the second half

set (hp2, 'Color','r")

o oo

%% ellipse

y3 = b*sqrt(l - (x/a)"2)
hp3 = ezplot(y3,[-3,3]);
set (hp3,'Color', "k")

y4d = -b*sqrt(l - (x/a)"2) % second solution
hp4 = ezplot(y4,[-3,31); s plot the other half
set (hp4, 'Color', k")

first solution for y
plot half the ellipse

3
3

O

%% Parabola

y5 = b*x"2/a"2

hp5 = ezplot(y5,[-3,31); % plot the parabola
set (hp5, "'Color', 'm")

%% Hyperbola

y6 = a"2/x;

hp6 = ezplot(y6,[-3,0.51);

set (hp6, 'Color', 'g', 'LinewWidth', 2)
hp7 = ezplot(y6,[0.5,3.5]1);

set (hp7, 'Color', 'g', 'LinewWidth', 2)

%% label the plot and emphasize x and y axis-
title('The Objects')

axis([-3,3.5,-2.5,31) % to accommodate all figures
line([0,0],[-2.5,3], " "'Color"',"k") % draw the y - axis
line([-3,3.5],[0,0], "Color"',"k") % draw the x - axis
grid on
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xlabel ('x")
ylabel ('y")
daspect ([1,1,1])

The functions corresponding to the objects appear in the Command window and are not reproduced
here. The objects in the figure window provide confirmation (Figure 2.6.1).

The Objects

Figure 2.6.1 Basic objects created in MATLAB using mathematics

2.6.2 Just Geometry

In this section we recount the calculation of area, perimeter, volume as appropriate for the geometry.
We also include some geometric properties that are exploited in the development of appropriate
physics.

106



Essential Mechanics

h
0, I 2
el

A circumference = 2nr

arc length=s=ro0

= similar triangles
h, + h2

0, + 92+93=180 9, =0, +0,

area = 7 r2

1
area of sector = 5 r2
1
Area = = b,*(hy + hy)  0.5*base*height 91 + 92 = 90

4
volume sphere= — n r?
3

surface area =4 7 r2

r

right circular cone

any pyramid

volume = ;—11: rZh

volume= =4 A __h
areaofcone=nrL 3 "'hase

Figure 2.6.2 Basic geometric objects and properties
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2.6.3 Just For Fun
Here we will create the various objects with filled color in MATLAB using patch and surface. You can
use MATLAB to draw and animate precisely.

n the Editor

Essential Mechanics
P. Venkataraman
S

o® o oo

0090000000000 0000000000000000000000000000000000000000000000000000 0

9090000000000 0000000000000000000000000000000000000000000000000000 0

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/
5o~

0090000000000 0000000000000000000000000000000000000000000000000000 0

0090000000000 00000000000000000000000000000000000000000000000000000

h
o
Q
e
=
D
o\
O
o)
[0)
3
o))
- h
'_l
Q
e
=
0]
)
'_l
3
0.
O
)
o))
3
0.
o)
o))
o
s
'_l
pa
'_l
3
pa
j=p
)
'_l
O
)
0]
[
'_l
)
h
P
Q
O
D)
3
)
[

set (gcf, 'Position', [25,50,400,3501);
hold on % allow multiple plots in the same figure

%% triangle (2D object)

Xxv = [2,4,3]; % the x coordinates of the vertices

yv [0,0,11;

patch(xv,yv,'y'); % patch fills color between the points
it doe not have to be triangular

o\

o\

% filled circle - animated - (2D object)
en = [2,2]; rad = 1;
theta = linspace(0,2*pi,51);
XC cen(l) + rad*cos(theta);
yc = cen(2) + rad*sin(theta)
% creating an animation

for i = 1l:length(theta)-1

xpatch = [cen(l),xc(i),xc(i+1)];

ypatch = [cen(2),yc(i),yc(i+1l)];

patch (xpatch, ypatch, 'g', "EdgeColor', "None'")

pause (0.1) % slow it down so you can see
daspect ([1,1,1]); % perfect circle

Q

14

end

%% generate right cone - this object is 3D
r = linspace(0,1.5,31);

theta = linspace(0,2*pi,31);

[R, THETA]=meshgrid(r, theta) ;

X=R.*cos (THETA) ;

Y=R.*sin (THETA) ;

Z2=4-R;

surf(X,Y,Z)

view (135, 30)
axis tight
xlabel ('x-axis"')
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ylabel ('y-axis')
zlabel ('z-axis")
colormap (hsv) ;

%% a unit sphere
sphere

%% label the plot and emphasize x and y axis-
title('The Objects')

axis([-4,4,-2.5,3]) % to accommodate all figures
line([0,0],[-2.5,3], ' "Color',"k") % draw the y - axis
line([-3,3.5],10,0], '"Color',"k") % draw the x - axis
grid on

xlabel ("x")

ylabel ('y"')

daspect ([1,1,1])

The Objects

4 -

3 4

Z-axis

Figure 2.6.3 Additional Objects

Execution in Octave
The code is same as in MATLAB above

In Octave Figure window
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The Objects

Z-axis

Figure 2.6.4 Figure in Octave

No Additional Problems are prescribed. Students are encouraged to test if the MATLAB code in
Section 2.6.1 works
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2.7 MASS CENTER AND INERTIA

This is a topic that is usually covered after half way through the subject of statics and usually appears
as an appendix in dynamics and mechanics of materials. The ideas present in this topic is quite
instinctive and is probably better managed early as it just depends on basic calculus for computation.
As far as this book is concerned, these topics are most important for design as they determine the
actual physical structure of design. They need to be introduced before you can discuss design. All of
the calculation in this section involve geometry.

Mass center, area center, volume center all imply the same thing. Their calculations are similar.
Physically it allows us to idealize and simplify the calculations by replacing distributed forces by
concentrated forces at the these special points. Consider the human body. Every small volume of the
body will have a different density - it may be due to fat, muscle, bone, blood - but most likely a
different proportion of all of them at different locations on the body. So your weight, which is the
density multiplied by the volume and further multiplied by the gravitational acceleration constant, is
actually varying over your body. That will present a problem during quick calculations that require the
weight.When you stand on that weighing scale, you are not interested in any particular distribution of
weight in your body. You are looking for a single number that is integrated over your body’s volume.
So the weight that you read is an integrated value of a distribution that is lumped together. A
companion question, particularly important if you are a gymnast, is where is this weight located so
that you can control it to achieve dizzying rotations. Engineers came up with the idea to locate the
weight of the body at the center of mass. Off course, you will need to know where the center of mass
for the body is. This will require another calculation. With data and experience the point can be
approximately located, maybe below your belly button. In this process we have accommodated the
distribution of the mass within the body to a point within the body, which will influence the problem in
the same way as the distributed weight, but with less calculations. This is much easier than
calculations that must include the distribution of mass with every calculation. The center of mass ,
which is a point on the body, is also the center of weight (uniform density is assumed) and which is
also termed as the center of gravity. In many problems we need the center of area and this is termed
as the centroid of the area. Similarly we have the centroid of the volume. If you were to study fluid
mechanics then the aerodynamic forces are located at the center of pressure for convenience, which
are not related to the center of mass or the centroid. We will just term everything as center and let the
context identify the particular definition.

In many cases the location of the center will be obvious from geometry. For example the center of the
circular area is at the physical center. This is facilitated by the assumption of uniform density or
uniform thickness. The assumption of uniformity brings with it an additional simplification. We can
reduce the dimension of the problem. Instead of a three dimensional problem it will become a two
dimensional problem or even a one dimensional problem. This is usually accompanied by a reduction
in the calculations. You will meet very limited number of problems in three-dimensions before you
graduate with an engineering degree, because the calculations are not trivial. In addition to the center
there are additional properties associated with the mass distribution or area distribution for
mechanical design. The real world is mostly three dimensional so you will have to teach yourself
these calculations. Many simulation software will provide information on these properties. We will
discuss the calculations in a later section.
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In addition to the mass center, there are many other properties associated with the area or the
volume. One of them is the moment of inertia (MOI). This relates to the distribution of the area about
the centroid, particularly along specific axis. The larger the value the better the stress handling
property of the cross-section. This appears in the first strength of materials course. For traditional
geometry you can usually find them through the Internet, through handbooks, or the text. This is
easier than actually computing them using basic calculus. However for one of a kind geometry you
must calculate it yourself. That will be our focus in this section. A two-dimensional shape will have
three values of inertia that must be computed. A three dimensional object will have six value for the
inertia. In the following we have only one example and we will keep it generic so you can extend it to
any problem. We will increase the dimensionality of the object and you will notice that the equations
used for computation are very similar.

One more thing we will do from this section on, if appropriate, is to break up the MATLAB code in
segments so it address the immediate formulas and avoids confusion by creating a long piece of code
that does everything. This way you can learn from pieces of code, their objective, and their results.
You can then collect all the pieces in a single file and create the front end and the description of what
is being implemented.

2.7.1 A Line/Curve

A one-dimensional problem is represented by a rod of constant diameter and density, but whose
curve is mathematically defined. If you have a rod and it is not mathematically defined then you can
approximate the shape by curve-fitting mathematical functions. We are interested in the mass, the
location of the mass center, and its moment of inertia about the coordinate axes. Here is an example:

Figure 2.7.1 Alline/curve

The length of the line can be obtained by integration of an differential element of the line ds. This is
infinitesimal length of the line segment.Since the line is available through x and y we need to convert
this information before integration through the geometry shown in Figure 2.7.1.

Mass of Line
The mass of the rod of uniform cross-sectional area (A), with uniform density of the material (p) is

m=LAp
(2.48)

L [ff.s—[ 1+

If the area and the den3|ty are varying as a function of x then you should be easily extend the
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formulas as:

-

£ ()’
m=[A()p0), 1+ = | ax (2.49)
: \ dx )
“a
%% line
% circular rod of diameter d and density rho
d=2.5; % [cm]
rho = 8.96; % [g/cm”3] - copper
xa = 1; xb = 3;
Syms x
y = 0.5 - 2*x + 4*sqgrt(x);
ya = subs(y,xa);

yb = subs(y,xb);

dydx = diff (y,x);

L = double(int (sgrt(l + dydx"2),x,xa,xb));
mass = (pi*d~2/4)*rho*L;

fprintf('y(x) = '),disp(y)
fprintf ('L [cm] = '"),disp (L)
fprintf('mass [g] = "),disp(mass)

set (gcf, 'Position', [50,50,300,2*300/317)
hpl = ezplot(y, [xa,xb]);

set (hpl, 'Color', 'r', 'LinewWidth', 2)
xlabel ('x")

ylabel ('y")

grid on

axis ([0,4,0,571)

In command window

y(x) = 4*x~(1/2) - 2*x + 1/2
L [cm] = 2.3078e+00
mass [g] = 1.0150e+02
e g 41p
5 - :
4_ ..............................................

Figure 2.7.2 Actual line

Mass Center of Line
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The location of the mass center cab be established with respect to any point - a reference point. If
you have a mathematical expression for the line it is better to define it with respect to the origin so you
do not have to reestablish the equation about this other reference point. The calculation of the mass
center depends on the first moment of the mass of the line about the coordinate axes through the
reference point. For the line in two-dimensional space in the previous example there will be first
moment of the line about the x and the y axis. The location of the mass center from the origin and
along the particular axis (our reference point) is the first moment of the mass of the line about that
axis divided by the mass of the line. Calculus is used to develop the relations .The first moment of a
differential element is defined and then integrated over the line. This is done for all of the coordinate
directions/axes. This mass center does not have to be physically on the object. We will use the
symbol Q for the first moment. The mass center will be located at the point G (xg, ¥¢). In the figure
below, the differential element is located at P, which is at the point (x,y) form the origin.

Ay

Figure 2.7.3 First moment of the line

In the current example as the density and the diameter are constant we can calculate the location of
the point G in terms of the length of the rod. Otherwise we have to locate the point G using the
differential mass in the calculations. Qx and Qy are the first moment of inertia about the respective
axis.

Tk
G 0,
W —=— = W = ——
" [as e
5 (2.50)
V e <
e [dj & S
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(Continued MATLAB code)

o

% mass center

(2.51)

Qy = double (int(y*sqgrt (1l + dydx"2),x,xa,xb));
xG = Qy/L;

Ox = double (int(x*sqgrt (1l + dydx"2),x,xa,xb));
yG = QOx/L;

fprintf ('QOx = '),disp (Qx)

fprintf( = '),disp(Qy)

fprintf ('xG [cm] = '"),disp (xG)

fprintf ( [cm] = '"),disp (yG)

hold on

plot (xG,yG, 'ro', "MarkerFaceColor','r")

In Command Window

Ox = 4.7272e+00
Qy = 4.7725e+00
xG [cm] = 2.0680e+00
yG [cm] = 2.0484e+00
LS R
5
_d__ ..............................................

Figure 2.7.4 Mass center

Moment of Inertia of Line

Essential Mechanics

The moment of inertia (MOI) of the line is the second moment of the mass of the line around an axis.
It is a simple extension of the first moment of the mass in the previous discussion. It is also possible
to calculate the MOI about the z-axis of the line described in the x-y plane. We will use the symbol I
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for moment of inertia. To be specific we will indicate the axis and the point about about which it is
calculated through subscripts. lox is the MOI through the x-axis passing through the origin O.
Similarly lgy is the MOI of the line about the y-axis through the point G. We can also define the MOI
of the line rather the the MOI of the mass of the line. This will remove the area and the density from
discussion. In dynamics the mass MOI is important. In statics and strengths the line and area MOl is
important. The modification to the formula is simple and is not done here. The following relations are
for the the mass MOI.

(2.52)

" m X,

(Continued MATLAB code)

IOx = (pi*d”"2/4)*rho*int (y*2* (sqrt(l + dydx"2)),x,xa,xb);

IOx = double (IOXx):;

IOy = (pi*d”"2/4)*rho*int (x"2* (sqrt (1l + dydx"2)),x,xa,xb);

IOy = double (IOy);

I0z = (pi*d”2/4)*rho*int ((x"2+y"2)* (sqrt(l + dydx"2)),x,xa,xb);
IOz = double(IOz);

In the Command Window

IOx [g-cm"2] = 4.4508e+02
IOy [g-cm”™2] = 4.5942e+4+02
IOz [g-cm"2] = 9.0449%9e+02

Inertia About Mass Center
The MOI computed in the previous section is about the axis through the point O (origin). In many
design analysis the MOI about the mass center G is quite significant. This would require describing
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the equation of the curve about the mass center and then using the integrals described above. There
is a however nifty relation that allows us to calculate the MOI about CG knowing the MOI about
another point (O in our case). Keep in mind that the MOI about point O is the easiest to compute
because of the curve definition. This is called the Parallel Axis Theorem. This theorem also
suggests that the MOl is the least about the center of mass.

-

o :Iex"'m[xa _IGJ‘; I, :Iﬂt—m[xﬂ—x,;]‘

I, =15 +mI:J.'E.—J.'G]‘; Iey =fq1.—mlz}'ﬂ. —1',3]‘

(2.53)

=

(Continued MATLAB Code)

% parallel axis theorem
x0 = 0; y0 = 0;

IGx = IOx - mass*(x0 - xG)"2;
IGy = IOy - mass*(y0 - yG)"2;
fprintf ('IGx [g-cm”2] = "),disp (IGx)
fprintf ('IGy [g-cm”2] = "),disp (IGy)

In the Command Window

xG [cm] = 2.0680e+00
yvG [cm] = 2.0484e+00
IGx [g-cm”™2] = 1.0991e+01
IGy [g-cm”™2] = 3.3524e+01

In this section we have used an example to show how we can translate the equations to MATLAB
and solve for important properties of the line. Note that by simply changing the equation of the line -
one line of code - you can generate all of the properties using the same code

Execution in Octave

This MATLAB code was quite difficult to execute in Octave directly. It could be the appearance of the
square root of x in the expressions. The int command in Octave in the documentation is illustrated
using a single expression. That is the idea in the changes in the code below. MATLAB did not have a
problem integrating the multiplication of several function.

e This code took a lot of debugging. | have included the code that finally worked for me. There
is probably a better way to make it work but at this time it is beyond me.

e | have also included the complete information from the command window with warts and all.

e There are lots of printing with semicolons removed for debugging along with the formal fprintf
statements

e There are locations where the processing takes a lot of time - indicated by Waiting ...........

e The solution requires some patience

n Octave Editor

Essential Mechanics

P. Venkataraman

Section 2.7 1- Properties of a line

S22 0020800000800 00008088000008080000008820002088800050808800000808080805050005

Q Q Q
O O0OO0OO0OO0OO0OO0OO0OOOODOODOODODODODODODODODODODODODODODODOODODODODODODODOOOOOOOO™©

o\

o°

° 0

clc, clear, format compact, close all, warning off
##setenv python C:\Users\venkalAnaconda3\python.exe
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pkg load symbolic
sympref display flat

2220008080000 000880050080088050590500808 05

fprintf('--———-—---=""-"""-"""“""-"—"-"-"—~-~-~—~—~—~——— \n')
fprintf ('Properties of a Line \n')
fprintf('--—-——--"-"-"-"—""—"—"————— - ——— \n'")
%% line

% circular rod of diameter d and density rho
d = 2.5; % [cm]

rho = 8.96; % [g/cm”3] - copper

xa = 1; xb = 3;

Syms X

y = 0.5 - 2*x + 4*sqgrt (x)

ya = double (subs(y,xa));
yb = double (subs (y, xb));
dydx = diff (y, x)

exp00 = expand(dydx”"2)
exp0 = 1 + exp00
expl = sqgrt (exp0)

L = int (expl, x,xa,xb);

##L = (int(sgrt(l + dydx"2),x, [xa,xbl))
L. = double (L) ;

mass = (pi*d~2/4)*rho*L;

fprintf('y(x) = '),disp(y)

fprintf ('L [cm] = '"),disp (L)
fprintf('mass [g] = '"),disp(mass)

set (gcf, 'Position', [50,50,300,2*300/317)
hpl = ezplot(y, [xa,xb]);

set (hpl, 'Color', 'r', 'LineWidth', 2)
xlabel ('x")

ylabel ('y"')

%% mass center

exp2 = expand(y*expl) ;

Qy = int (exp2,x, [xa,xb]);

Qy =double (Qy) ;

##Qy = double(int(y*sqgrt (1l + dydx"2),x,xa,xb));

xG = Qy/L;
exp3 = expand (x*expl) ;
Ox = int (exp3,x, [xa,xb]) ;

Qx = double (0x) ;
##0x = double(int (x*sqgrt (1 + dydx"2),x,xa,xb));

vG = QOx/L;

fprintf ('Qx = '),disp (Qx)
fprintf('Qy = '),disp(Qy)
fprintf ('xG [cm] = '"),disp (xG)
fprintf('yG [cm] = "),disp(yG)
hold on

plot (xG,yG, 'ro', "MarkerFaceColor','r")
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Q

% parallel axis theorem

expd= expand(y*y*expl)

IOx = (pi*d”2/4)*rho*int (exp4,x,xa,xb) ;
I0x double (I0Xx) ;

expb= expand(x*x*expl)
IOy (pi*d”~2/4) *rho*int (exp5, x, xa, xb) ;
IOy double (IQy) ;

expb =expand((x*xty*y) *expl)
I0z = (pi*d”"2/4)*rho*int (exp6,x,xa,xb) ;
I0z double (I0z) ;

x0 = 0; y0 = 0;

IGx = IOx - mass*(x0 - xG
IGy = IOy - mass*(y0 - yG
fprintf ('IGx [g-cm”™2] !
fprintf ('IGy [g-cm™2] = '

In Octave Command Window

Symbolic pkg v2.7.1: Python communication link active, SymPy vl1.3.

y = (sym) 4*sqgrt(x) - 2*x + 1/2

dydx = (sym) -2 + 2/sqgrt(x)

exp00 = (sym) 4 + 4/x - 8/sqgrt(x)

exp0 = (sym) 5 + 4/x - 8/sqrt(x)

expl = (sym) sqrt(5 + 4/x - 8/sqrt(x))
Waiting.........

y(x) = 4*sqrt(x) - 2*x + 1/2

L [cm] = 2.3078

mass [g] = 101.50

Waiting........

Waiting.............

ox = 4.7272

oy = 4.7725

xG [cm] = 2.0680

yvG [cm] = 2.0484

expd = (sym) -16*x**(3/2)*sqrt(5 + 4/x - 8/sqgrt(x)) + 4*sqrt(x)*sqgrt(5 +

4/x - 8/sqgrt(x)) + 4*x**2*sqrt (5 + 4/x - 8/sqgrt(x
)) + 1ld*x*sqrt (5 + 4/x - 8/sqrt(x)) + sqgrt(5 + 4/x - 8/sqgrt(x))/4

Waiting.........

expb = (sym) x**2*sqgrt(5 + 4/x - 8/sqgrt(x))

L= B e o

exp6 = (sym) -16*x**(3/2)*sqrt(5 + 4/x - 8/sqgrt(x)) + 4*sqrt(x)*sqgrt(5 +

4/x - 8/sqgrt(x)) + LH*x**2*sqrt (5 + 4/x - 8/sqrt(x
)) + 1ld*x*sqrt(5 + 4/x - 8/sqrt(x)) + sqgrt(5 + 4/x - 8/sqgrt(x))/4

Waiting........
IGx [g-cm”™2] = 10.991
IGy [g-cm”™2] = 33.524

The Figure is the same. The results match the one in MATLAB.
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2.7.2 An Area

An area is a two dimensional object. Constant thickness makes it three dimensional. The
development of the calculations follow the definition for the line object and the equations are quite
similar but more terms. For the derivation we chose an area located away from the origin and
enclosed by the line y = y. on the bottom. The left side is x = X, and the right side is defined by x = x.
The top is the function y(x) - the same used in the definition of the curve previously. This is the
region enclosed by red line in Figure 2.7.6. While this is a specific example it can be easily
generalized.

Figure 2.7.6 The area

The Area Calculation

This section deals with plane area in the x-y plane. There are two definitions of area in play here. The
Area object and the value for the region covered by the area. The calculation of the area is done
through calculus using a differential area (shown in green). It is then integrated over the region.

Area=A= [ci:i = [ (y—¥ )dx (2.54)
A

=
“a

(Start of new set of MATLAB code)

xa = 1; xb = 3;
syms x
y = 0.5 - 2*x + 4*sqgrt(x);

ya = double (subs(y,xa));
yb = double (subs(y,xb));
yc = 0.5;

dA =y - ycC;

A = double(int((y - yc),x,xa,xb));

fprintf ('Position a [xa, yal] = '), disp([xa, vyal)
fprintf ('Position b [xb, yb] '), disp([xb, vybl)
fprintf('yc = '"),disp(yc);

fprintf ('A = '),disp(A);
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% using patch to draw the object
ezplot(y, [xa,xbl)

xx = linspace (xa,xb,11);
yy = double (subs(y,x,xx));
Xp = [xa,xx,xb]l;

yp = lyc,yy,ycl;

patch(xp,vp, 'y', 'LineWwidth', 2)
axis([0,4, 0,471)

grid on

set (gcf, 'Position', [50,50,300,25017)
xlabel ('x")

ylabel ('y")

text (xa-0.2,vya,'a', '"FontWeight', 'b")
text (xb+0.1,yb, 'b', "FontWeight', 'b")

In the Command Window

Position a [xa, va]l] = 1.0000e+00
Position b [xb, yb] = 3.0000e+00
yc = 5.0000e-01
A = 3.1897e+00

In the Figure Window

41225 +12

Figure 2.7.7 Area enclosed

The Centroid

2.5000e+00
1.4282e+00

Essential Mechanics

The centroid is located with respect to a reference axis. In this example it is the origin. The center of a
differential area (green) is located with respect to the reference axis. We then find the moment (first)
of this differential area about the reference axis using the center and integrate over the area. You will
notice, we have taken advantage of the specific geometry in this example to reduce the area integral
to a line integral. For each axis, the location of the centroid is the first moment of area divided by the
area. Remember the first moment of area about the x-axis is Qx and it determines the y-location of

the centroid. Here xm and ynm are the center of the differential area.
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(Continued MATLAB code)

Qy = double(int((y - yc)*x,x,xa,xb));
ym = yc + 0.5% (y-yc);

Ox = double(int((y - yc)*ym,x,xa,xb));
xG = Qy/A;

yvG = Qx/A;

fprintf ('QOx [cm”™3] ") ,disp (Ox)
fprintf ('Qy [cm”3] = "),disp(Qy)
fprintf ('xG [cm] = "),disp (xG)
fporintf('yG [cm] = "),disp(yG)

In the Command Window

ox = 4.2451e+00
Qy = 6.0082e+00
xG [cm] = 1.8836e+00
yvG [cm] = 1.3309%e+00

In the Figure Window
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Figure 2.7.9 Centroid of area

Area Moment of Inertia

The moment of inertia (MOI) of the area is the second moment of the area around an axis. Itis a
direct extension of the first moment of the area. You would just square the distances from the
references used in the calculation of Q, and Q. It is also possible to calculate the MOI about the z-
axis of the area described in the x-y plane. The symbol I is continued for moment of inertia. As a
reminder, lox is the MOI through the x-axis passing through the origin O. The following relations are
for the the area MOI obtained from Figure 11.8. We can then find the MOI about the centroid using
the parallel axis theorem.

Mo = -:I"rr*:-]"-:_i_;[}_}f:l
fmz‘x‘mi{:‘ix:[}—}l_,]dx

A X

) : . (2.56)

RIS, A

A X o
Igy=Ip,—A(x—%p) =Ig —Axs
I =Io = A(¥e —¥o) =In—Ay

. = A (2.57)

(Continued MATLAB code)
IOy = double(int((y - yc)*x"2,x,xa,xb));
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IOx = double(int((y - yc)*ym"2,x,xa,xb));
IOz double (int ((y - yc)*(x"2 + ym"2),x,xa,xb));

IGy = IOy - A*xG"2;
IGx = IOx - A*yG"2;
IGz = I0z - A*(xG"2 + yG*2);

fprintf ('I0Ox [cm™4] = '),disp (IOx)
fprintf ('I0y [cm”™4] = '),disp (IO0y)
fprintf ('I0z [cm”™2] = '),disp (I0z)
fprintf ('IGx [cm™4] = ') ,disp (IGx)
fprintf ('IGy [cm™4] = '),disp (IGy)
fprintf ('IGz [cm”™2] = '),disp(IGz)
In the Command Window

IOx [cm™4] = 5.7237e+00

IOy [cm™4] = 1.2303e+01

I0z [cm™4] = 1.8027e+01

IGx [cm™4] = 7.3934e-02

IGy [cm™4] = 9.8623e-01

IGz [cm™4] = 1.0602e+00

Product of Inertia

The MOI defined above are the ones you will likely see in the basic courses in engineering. In
advanced courses you will require the products of inertia. For two-dimensional objects there is one
but for three-dimensional structures there will be three. The product of inertia of the differential area
is the area multiplied by the x and y locations from the reference point. Products of inertia can be
negative as it is influenced by the location of the reference point. Figure 2.7.8 is used to set up the
relations.

¥ 1
Ip, = E X Y iid = :[ I[ Ye +§ (}'_}'c)}dx (2.58)

(Continued MATLAB code)

IOxy = double(int ((y - yc)*x*ym,x,xa,xb));
IGxy = I0Oxy - A*xG*yG;

In the Command Window

IOxy [cm™4] = 7.7309e+00
IGxy [cm”™4] = -2.6528e-01

Note: Instead of Area we could have computed the Mass moments and inertia. They will require
extensions of the formula not included here but should be straight forward. The sample is available in
the previous section dealing with the line.

2.7.3 A Volume
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The centroid of the volume or the center of mass of the volume can be similarly defined. These points
are located using the appropriate first moments of volume. MOI and products of inertia (second
moments of volume) are usually defined with respect to the mass distribution (instead of the area).
The volume is a three-dimensional object and therefore there will be a additional calculations because
of the additional dimension. An interesting way to create a surface is to revolve a line about an axis.
This is called a surface of revolution. Revolving an area would generate a volume of revolution. An
example is the simple flower vase which is usually axisymmetric. These are important geometric
objects and are very abundant in practice. In this section we will mostly deal with these objects as it is
not easy to characterize an arbitrary three-dimensional object, since they will be generated by
complex equations. There are many useful volumes that can be generated through revolution and
this section focuses on them.

Surface of Revolution

We will start with an arbitrary curve - the solid black line. Let us revolve it about the dotted vertical line
for one revolution. The outline in the cross section is shown in black. The area generated by revolving
the line is shown below the line in green (was created in a software called Canvas version 10). Also
shown on the side is the bottom view of the area so that you can recognize the curve which generated
it. The calculation of the surface area is expected and though could have been done in the previous
section it is developed here because of the theorem of Pappus-Guldinus. There are two of them.
Both of them refer to objects derived by revolving about a line (axis of rotation).

N
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surface of revolution /

Bottom View
Figure 2.710 Surface of revolution

The First theorem expresses the area obtained by the revolution of a line about an axis. For example
the rotation of the line about the x-axis as set up in Figure 2.7.11
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Figure 2.7.11 Surface of revolution
The actual area of the surface of revolution is

& ¥ ]
A= [ds(y [ dé (2.59)
&

iy R
F
.=:e-

Theorem 1 - Pappus-Guldinus
This area is the product of the length of the line multiplied by the distance traveled by the centroid of
the line through one revolution.

L is the length of the line and y. is the distance of the centroid from the axis of rotation. For less than a
revolution the factor 2x in the formula is replaced with the angular travel in radians.

(Start of new set of MATLAB code)
syms x th

% let us create the curve that will rotate about x-axis
figure

set (gcf, '"Position', [50,500,400,350])

y = 2 + exp(-0.1*x)*cos(2*x); % the line
ezplot(y,[1,3]) % plot the line

axis([1,3,0,3])

xx = linspace(1,3,31);

tt = linspace(0,2*pi,31);

[X,T] = meshgrid(xx, tt)'% mesh to create the surface
Y = double((2 + exp (- X) .*cos (2*X)) .*cos (T));

Z = double ((2 + exp(- X).*cos (2*X)) .*sin(T)) ;
figure

set (gcf, 'Position', [50,60,400,3501])

% fancy figure

surf (X,Y, 7z,
'FaceColor', '"interp'
'EdgeColor', 'k',
'"FaceLighting', "phong')

camlight left

view (30,45)

% label axis so you can see the rotation about x-axis

xlabel('x")

ylabel ('y")

zlabel ('z")

In Figure Window

126



Essential Mechanics

cos(2 x) expl-x/10) +2
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X

Figure 2.7.12a. The line

Figure 2.7.12b. The surface of revolution

The curve is rotated about the x-axis. The actual area and the area computed by Theorem 1 is

compared below

(Continued MATLAB code)

o

% the centroid of the line (previous code)

dydx = diff (y,x);

L = double(int(sgrt(l + dydx"2),x,1,3)); % length
fprintf('y(x) = '),disp(y)

fprintf ('L = '),disp (L)

o

% centrod

Ox = double (int(y*sqgrt (1l + dydx"2),x,1,3));
Qy = double (int (x*sqgrt (1l + dydx"2),x,1,3));
vG = Qx/L;

xG = Qy/L;

fprintf ('Ox = "),disp (0Ox)

fprintf ('Qy = '),disp (Qy)

fprintf ('xG [cm] = "),disp (xG)

fprintf ('yG [cm] = "),disp (yG)

o

Area_int = double (int (int (y*sgrt(l + dydx"2),x,1,3),th,0,2*pi));
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Area pap = 2*pi*L*yG;

fprintf ('Area - Integrated = '),disp(Area int)
fprintf ('Area - Pappus = '),disp(Area_pap)

In the Command Window

y(xX) = cos(2*x)*exp(-x/10) + 2

L = 2.9477e+00

Ox = 5.1820e+00

Qy = 5.9504e+00

xG = 2.0187e+00

yG = 1.7580e+00

Area - Integrated = 3.2560e+01
Area - Pappus = 3.2560e+01

Body of Revolution

Essential Mechanics

Revolving an area around an axis will create a volume of revolution. The second theorem of Pappus
and Guldinus is associated with computing this volume. To compute the volume by calculus, the
differential area shown in green in Figure 2.7.13a is revolved around the x-axis. A differential
revolution through the angle d6 will generate a pie shaped wedge shown in Figure 2.7.13b.

AY

Figure 2.7.13a Volume of revolution

rdo

dx

Figure 2.7.13b Pie shaped wedge

Here r is the radius of rotation - which is the same as y in Figure 2.7.13a. The differential wedge
element’s volume and the volume of the body of rotation is derived below for a rotation through an

angle dO. This leads to the second theorem of Pappus-Guldinus

(1 3 (1 X (v
AV =| —rrdf |dc=| — y vd8 |dx =]
Ii g J} I‘h i J} I1 9

v=[|(d,)(d8)=[0,d6=0, A6
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Theorem 2. Pappus-Guldinus
The volume of the body of rotation is equal to the area generating the volume times the distance traveled by the
centroid of the area

We will rotate the area formed by the line in the previous section and the x- axis and revolve it around
the x-axis for one revolution.

(Continued MATLAB code)

%% volume of revolution

syms x th

y = 2 + exp(-0.1*x)*cos(2*x); % the line
xx = linspace(1,3,31);

tt = linspace(0,2*pi,31);

y 2 + exp(-0.1*x)*cos (2*x); % the line
yy = double (subs(y,x,xx));

patchx = [xx (1) xx xx(end)];

patchy = [0 yy O0];

A = double(int(y,x,1,3));

Qy = double(int(y*x,x,1,3));
ym = 0.5*%y;
Ox = double (int(y*ym,x,1,3));
xG = Qy/A;
vG = Qx/A;

V= 2*pi*A*yG;

fprintf('A = "),disp (A)
fprintf ('Ox = "),disp (0Ox)
fprintf ('Qy = '),disp(Qy)
fprintf ('xG = "),disp (xG)
fprintf('yG = "),disp (yG)
fprintf('v = ") ,disp (V)
figure

set (gcf, 'Position', [50,50,400,35017)

% subplot (121)

patch (patchx,patchy,'y', 'LineWidth', 2)
xlabel ('x"); ylabel('y'):;

hold on

plot (xG,yG, 'ro', "MarkerFaceColor','b")
hold off

text (xG-0.2,yG-0.2,'G")

In Command Window

A 3.4593e+00
ox = 3.2731e+00
Qy = 7.4616e+00
xG = 2.1570e+00
yG = 9.4618e-01
v 2.0566e+01

In Figure Window
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Figure 2.7.14 Area of revolution and centroid

The volume of revolution is the region within the surface in Figure 2.7.12b. At the time of writing
MATLAB does not have a way to create a solid volume.

Centroid of Volume

The calculation for the centroid of the volume (mass center), MOI, and product of inertia can be
directly extended from the definitions for the line and the area. The differential volume and the total
volume are shown in Figure 2.7.15. If the integrals to define the volume can be defined using
mathematical functions, then calculus can be used to determine the geometric properties. The
differential volume is centered at P and the centroid of the volume is at G. We use the first moment of
the volume to establish the centroid and the second moment of volume to calculate the MOI. Note
that these are triple integrals. There is very different idea of the first moment in this instance. For
example, xdV, is the first moment of the differential volume with respect to the y-z plane. Previously
we required the first moment about a line or an axis. Since this is not about an axis we label this
differential moment of volume as Q.. This is very different from Qy of the previous sections - where
the first moment was about the axis/line. The computation of Qx is shown through Figure 2.7.15 and
the equation below.

4

I);igure 2.7.15 An arbitrary volume.
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Q. =rdV=[ [y +z*)dV

Q, _|1,|||[_1':+:::]d1'=’; Q__zj,f[_f+3'::]rﬂf

Example: Pyramid

The volume and centroid of a pyramid is computed in this illustration. It is a regular pyramid with the
base in the yz plane as shown in Figure 2.7.16. The base dimensions are a and b. Symmetry will
establish that yg = 0 and zg = 0. Only xg needs to be calculated. The figure also shows the projection
of the pyramid in the xy-plane so that the equations necessary for calculations can be inferred. The
rectangular cross-section varies linearly from the base to a value of zero at the tip of the pyramid. The
tip lies on the x-axis. At a distance x from the base the sides if the cross-section are a(x) and b(x).

(2.63)

-
e

Figure 2.7.16 Regular pyramid and projection

Bx) h—x axy h—x
b E @ ho

 §
Y

| z

5 =_[ dv = £ a(x) b(x) dx 260

:f:;r(x) b{x) x dx
D

Iﬁ-— 7

(Continued MATLAB code)

%% A regular pyramid
syms x a b h

bx = b* (h-x)/h;
ax = a* (h-x)/h;
dV = ax*bx;

V = int(dv,x,0,h);

xG = int (dVv*x,x,0,h)/V;
fprintf ('V ") ,disp (V)
fprintf ('xG ') ,disp (xG)

In Command Window
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\Y
xG

(a*b*h) /3
h/4

The relations above are the formulas for the volume and the location of the centroid for any pyramid
(of similar geometry). These are usually available in text books and reference literature.The MATLAB
code above is a substitute for a handbook .This is the advantage of symbolic processing. A fair
knowledge of MATLAB is like having a reference book in many topics.

Moment of Inertia

The mass moment of inertia for a three dimensional object is challenging. There are three MOl about
the coordinate axis and three products of inertia about the three planes. This is important in
dynamics, particularly the motion of a six degree of freedom system like an aircraft. In statics and
mechanics usually the area MOl is sufficient in the previous section is sufficient. To define the various
MOI we use the definition in Figure 2.7.15 (redrawn below). The differential mass (dm) of the
differential volume is pdV.

'}

;igure 2.7.15 An arbitrary volume

I=[(3*+2)(pdV), I,=[(2+x")(pdV):
F r

L=[(2+3)(pdv): (2.65)
I\ .

I.=[x(pdv) I.=[»y(paV) I.=[=x(pdV):

r T r
Returning to the example of the pyramid, the computation of the MOI will be assisted by Figure
2.7.17 that allows the use of the formulas above. The differential volume dV (dx*dy*dz) is located in

the positive quadrant at a distance x, y, and z from the origin. The limits of the integration are defined
by the geometry and they are critical to the computation of the MOI.
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dV = dx*dy*dz

Figure 2.7.17 The differential volume and generic location.
Setting up the computation as a triple integral, I, can be computed through

1 - e Py Ry |
. R T s SN T

L=p[ [ [ (#+2)dzdyeix (2.66)

- . L | T Ty |
R T Rt S T

(Continued MATLAB code)

syms x y z a b h rho
bx = b* (h-x)/h;

ax a* (h-x)/h;

av ax*bx;

V = int(dv,x,0,h);

xG int (dv*x,x,0,h)/V;

Ix = rho*int (int (int(y"2 + z"2,z,-ax/2,ax/2),y,-bx/2,bx/2),x,0,h);
fprintf ('Ix= '),disp (Ix)

In the command window
Ix= (a*b*h*rho* (a”2 + b"2))/60

Once again this is a formula for pyramids whose geometry is defined through values for a, b and h.
Other MOI and products of inertia can be similarly set up. The complete set of formulas are obtained
below.

(Continued MATLAB code)

%% A regular pyramid
syms x y z a b h rho
bx = b* (h-x)/h;

ax = a* (h-x)/h;

dVv = ax*bx;

V = int(dv,x,0,h);

xG = int (dv*x,x,0,h)/V;

fprintf('v = "),disp (V)
fprintf ('xG = "),disp (xG)
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Ix = rho*int(int (int (

Iy = rho*int (int (int (x

Iz = rho*int(int (int (

Ixy = rho*int (int (int (x*y,z,-ax/2,ax/2),
Iyz = rho*int (int(int(y*z,z,-ax/2,ax/2),y
Izx = rho*int(int(int(z*x,z,—ax/2,ax/2),
fprintf(' = '"),disp(Ix)

fprintf (' ") ,disp (Iy)

fprintf (' = '"),disp(Iz)

fprintf (' Ixy = '),disp(Ixy)

fprintf('Iyz = "),disp(Iyz)

fprintf('Izx = "),disp(Izx)

In the Command Window

yh2 + z72,z,

x"2 + y*2,z,

+ 2*h"2)) /60

V = (a*b*h)/3

xG = h/4

Ix = (a*b*h*rho*(a”2 + b"*2))/60
Iy = (a*b*h*rho*(a”2 + 2*h"2))/60
Iz = (a*b*h*rho* (b"2

Ixy = 0

Iyz = 0

Izx = 0

Execution Using Octave

-ax/2,ax/2),y
"2 + z72,z,-ax/2,ax/2),y
-ax/2,ax/2),y ,
y,—bx/2,bx/2), 0,h

—bx/2,bx/2),x 0,h
y,-bx/2,bx/2),x,0,h

Essential Mechanics

-bx/2,bx/2),x,0,h);
-bx/2,bx/2),x,0,h);
-bx/2,bx/2) 0,h);

’

’

X
X
Xy
)
)
)

’

The code is same as in MATLAB but gathered in a file without duplication. The following statements

are included

fprintf ('

fprintf ('Example Pyramid \n'

forintf ('
pkg load symbolic
sympref display flat

In Octave Command Window

Example Pyramid

v = a*b*h/3
xG = h/4
Ix= rho* (h* (-a**3*b -

11*h* (a**3*b + a*b**3)/60)

Iy = rho* (-a**3*b*h/12 + h* (-a**3*Db
2*a*b*h**2) /6 + h*(a**3*b + 12*a*b*h*
*2)/60)

Iz = rho* (ma*b**3*h/12 + h* (-a*b**3
2*a*b*h**2) /6 + h*(a*b**3 + 12*a*b*h*
*2)/60)

Ixy = 0

Iyz 0

Izx = 0
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Note: Unlike the code in Section 2.7.1 Octave had no problem executing all the integrations for this
example

The products of inertia being zero can be reconciled with instinctive reasoning. If there is a differential
volume (dV) that is symmetrically located such that any y,z is balanced by -y,z, then the integration
will cancel their contributions to the calculation of the corresponding inertia. A plane of symmetry will
yield a zero product of inertia with respect to that plane. You can also determine the MOI about the
centroid by using the parallel axis theorem. The axis must be parallel and must pass through the
centroid. If m is the mass of the object and d, d, and d; are the distance between the parallel axes,
then

xV

F?gure 2.7.18 Parallel axis theorem
Io=Ig+m(d)+d>); Ip =Ig+m(dl+d.); Ip=Ig+m(d;+d}):;

log=lgy tmdd,. Ip,=Ig. +tmdd,;. I, =Ig +tmdd,;
(2.67)

These calculations are possible if there is a continuous distribution of volume. If the volume is made
up of discrete components then the integration in all of the formula above is replaced by summation
over the discrete volumes involved. This is more practical and is illustrated in the next section.

2.7.4 Additional Problems
There are two suggestions before you attempt these problems.

1. Prior to the attempt of problems it would be useful to evaluate the integral outside of MATLAB to
make sure MATLAB is giving you the right results. This will also suggest you set up the computation
correctly and programmed the right code. You can use a handful of results to confirm instead of all of
them.

2. Collect all of the connected pieces of code in a separate file so that you can run the example by
changing a few lines of code.

3. If you are using Octave then please verify other pieces of code in this section.

Problem 2.7.1
Create your own cubic polynomial between x = 0.5 and x = 3. Draw your figure and your coordinate
system. Calculate (a) the centroid; (b) the MOI about the coordinate axes; and (c) the MOI about the
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centroid. .

Problem 2.7.2
Define your enclosed area using the polynomial in Problem 2.7.1. Draw the figure and the coordinate

system. Calculate (a) the centroid; (b) the MOI about the coordinate axes; and (c) the MOI about the
centroid.

Problem 2.7.3

Rotate the area in Problem 2.7.2 about the y-axis. Draw your figure and coordinate system.
Calculate (a) the volume generated; (b) the total surface area; (c) the centroid of the volume; and (d)
the MOI about the axis of rotation.

Problem 2.7.4
Define your own volume. Draw the figure. Calculate (a) the volume; (b) the total surface area; (c) the
centroid of the volume; and (d) the MOI of the volume about the coordinate axis.
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2.8 INERTIA OF DISCRETE GEOMETRIES

Practical designs often involve complicated objects that are composed of simple geometry. In the
previous section we obtained the centroid and inertia using mathematical integration. That was
because the geometry was described by continuous functions. In Engineering very often a good
estimate of the geometrical properties is sufficient for design. Very often manufacturing constraints
dictates simple geometries. In practice, our geometry can be constructed of addition of piecewise
simple shapes. In this case we translate the integration to a summation over the various individual
geometries that collective give form to the object. This is true of an object comprised of wire frame
elements, areas, and volumes.The properties of these simple objects are known or can be easily
obtained. In this instance it will be difficult to compute area and mass properties through mathematical
integration that was used in the previous section. Using summation rather than integration is an
engineering approach to develop geometric information of a composite object. Figure 2.8.1a are
simple examples of a wire frame, an two-dimensional object whose area can be broken into simpler
geometry, and a volume that can be composed of simpler geometry.

° £

Figure 2.8.1a Examples of Eomposite objects

Figure 2.8.1b is a composite cross-section made of two triangles and a rectangle identified as Objects
A, B, and C.The individual areas and the location of the respective centroids are known from some
reference - the XY axis. The areas of the elements are Aa, Ag, and Ac. The procedure for obtaining
the centroid (X’, y’) of the composite area is illustrated below.
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Figure 2.8.1b A composite area object

J x A, +xpAp +3x0 A
-‘.i_.-] +J{E +-ﬂ4f
' vud, +yvedg + Ve

(2.68)

w

Next, the area MOI of each element is known about its own centroid. For example Ixa is the moment
of inertia (MOI) of the area A along the x axis through the centroid of A. Similarly lya is the MOl of
area A about the y axis passing through the centroid of A. The parallel axis theorem can be
profitably employed to calculate the composite MOI. The relations for applying this theorem to
calculate the MOI of the element A about the overall centroid axis (x’, y’) is

.

Lea =L+ 4,(¥'=3.) (2.69)

-

I.I'_'.! =I:1;.-!+"{..-! I:IF—IAJ‘

Now, the composite MOI over all of the elements about the centroidal axis is:

=} =} =
=

.. =[IL; +4, I:.}If_.}l.-!j‘]+|:}-r_ﬁ'+"‘iﬂ I:Jf"_}'sj :|+|:le£“ +4; I:}'f_}'cj‘] (2.70)
I.l‘.T' :[ILA +4, [IF_IA:I:]+|:IIE+‘{EI:xr_xﬂjz:|+|:‘r}f +4; I:x'—:r:c]:]

The above calculations were made using the area of the objects. The extension to mass center and
mass MOl is direct and no examples are necessary.

In the following we will pursue calculations with respect to the three examples in Figure 2.8.1a. Note
that the calculations are strictly problem dependent. It is the procedure that will remain consistent with
each class of problems. One more assumption in the following is that the mass center or the centroid
are known for the individual elements that make up the composite piece . A hole will be subtracted in
the summation. It is the standard practice to tabulate the calculations for consistency and clarity. In
the calculations below we will calculate the moment of inertia about the major axes. We will not be
calculating the products of inertia. The extension to the products of inertia calculation are left as an
exercise.
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2.8.1 The Line Object

The wire frame is the simplest object in this section. The overall object is made up of linear or curved
elements in two-dimensional space. There are five elements as seen in Figure 2.8.2a. The dimension
and the location of the mass center for each element is also marked in the figure. They are at the
middle for the straight line elements. We will assume that the area of cross-section is the same for all
elements and the density is uniform so that we can work with the mass per unit length. This is
represented by the symbol m.

> X

Figure 2.8.2a Composite line object

The 5 line objects are addressed through the the index i that varies from 1 to 5. The center of mass
of the element mjis located at the point shown by the letter G;. This is at the mid point of the line,
except for the quarter circle. For the quarter circle the center of mass is 2R/t from the center of the
circular arc along both axis. The uniform mass per unit length is m. The mass of the structure is M.
The origin of the coordinate system is at the point A in Figure 2.8.2a. For the calculation of the
centroid all locations are from the origin can be calculated. For computing the MOI of the composite
structure it is presumed that the MOI of each of the composite elements about its own centroid is
known. For the straight segments the MOI of the line about its center is (1/12)ML?, where L is the
length of the object.. For the circular arc, the centroid location is easily available through Wikipedia
and eFunda, but the MOl is difficult to track down. The formula for the MOI for the quarter circle is
obtained below.

A

O x
Figure 2.8.2b MOI of an arc

The mass per unit length is m. The differential mass is dm. Since m is constant we can establish the
centroid using length.
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L =jds=]‘1Rd§; M = m:
0

x=R—Rcosf; y=Rsind

-

o}
0, =|xds= [ (R—Rcosé)Rd8: X ="
) [
w2 (2.71)
0, =[vds= | Rsin0RdB; y,= QE :
H

sl

I.=[1'mds= [ y'mRde. I_=I_+M?2

0

m'd

I,=|x*mds= [ *mRa6: I,=1I+Mx

1]

(Start of new set of MATLAB code)

% MOI of an arc
syms R tht m

%% calculate the centroid of the arc
L = int (R, tht,0,pi/2);

X = R - R*cos (tht); y = R*sin(tht);
Qy = int(x*R,tht,0,pi/2);

xG = Qy/L;

Ox= int (y*R,tht,0,pi/2);
vG = QOx/L;

fprintf ('L = '"),disp (L)
fprintf ('Ox = '),disp (Qx)
fprintf ('Oy = '),disp(Qy)
fprintf ('xG = "),disp(xG)
fprintf('yG = "),disp(yG)

o\°

% MOI of the arc

x = int (m*y"2*R,tht,0,pi/2);

IOx = simplify (IOx);

IOy = int (m*x"2*R,tht,0,pi/2);

IOy = simplify (IOy):;

IGx = IOx - m*L*yG"2; % parallel axis
IGx = simplify (IGx);

IGy = IOy - m*L*xG"2;

IGy = simplify (IGy):;

[y
O

fprintf ('I0Ox = '),disp (IOx)
fprintf ('I0y = '),disp (IO0y)
fprintf ('IGx = "),disp (IGx)
fprintf ('IGy = "),disp(IGy)
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In the Command Window

L = (pi*R) /2

O0x = R"2

Qy = (R"2*(pi - 2))/2

xG = (R*(pi - 2))/pi

yG = (2*R)/pi

I0x = (pi*R"3*m) /4

I0y = (R"3*m* (3*pi - 8))/4

IGx = (R*"3*m* (pi~2 - 8))/ (4*pi)
IGy = (R"3*m* (pi”2 - 8))/ (4*pi)

Essential Mechanics

This information is useful for calculating the MOI for the composite object. Using Figure 2.8.2a

M =y +my+mg+my +mg =2 m

e (2.72)
( 3
| —2aR |+mL; +mL,

(@2)

Th center of mass (located with respect to the point A) is computed through:

=mL +ml, +m

G.m
G + Gy + G + Gty + G s ; -

Xg =
M M (2.73)
J G, m,
_Gym+G, m+Gym +Gym+Gym, 2,
Sl =

M M

If the MOI about the centroid is known for each line object then

[

I.= ;I:Iﬁ’x +m; 1G:| 078

[

I, = Z[I@ + :r:ét-]

H

The line object in Figure 2.8.2a is assigned values for the five segments for an illustrative calculation.
It is available in the code below. The MOI about the axes through the origin are obtained through the

following code:

(Continued MATLAB code)

o)

% Composite MOI

L(l) = 0.1; L(2)= 0.3; R = 0.5;

L(4) = L(2) + R; L(5) = L(1) + R; L(3) = 2*pi*R/4;
L

m = 2; me = m*L

141



YG

M = sum(me) ;
xg = [0,0.5*L(2), (L(4)-(2*R/pi1)),0.5*L(4),L(4)]
yg = [0.5%L(1),L(1), (L(1) +(2*R/pi)),0,0.5%L(5)]
XG = sum(xg.*me) /M

) /M

sum(yg. *me

% MOI of elements about their G

m01xg = [me (1 ).*L(l)A2/12,O,(RA3*m*(piA2 - 8))/ (4*pi),
me (5) .*L(5)"2/12]

m01yg = [0, me(2) *L(2)72/12, (R"3*m* (pi~2 - 8))/ (4*pi),
(4) 4)7~2/12,0]

IAx = sum(moixg + me.*yg."2)

IAy = sum(moiyg + me.*xg."2)

In the command window

L, =

0.1000 0.3000 0.7854 0.8000 0.6000
me =

0.2000 0.6000 1.5708 1.6000 1.2000
xXg =

0 0.1500 0.4817 0.4000 0.8000

Y9 =

0.0500 0.1000 0.4183 0 0.3000
XG =

0.4732
YG =

0.2102
moixg =

0.0002 0 0.0372 0 0.0360
moiyg =

0 0.0045 0.0372 0.0853 0

IAx =

0.4627
IAy =

1.5290

2.8.2 Composite Area

Essential Mechanics

The composite area object is the second example. It is an assembly of standard two dimensional
shapes whose centroid and moment of inertia about the centroid is available. This information is
used to establish the geometrical properties of the composite object. A more detailed geometry of the
area object from Figure 2.8.1a is laid out in Figure 2.8.3. There are four standard area objects. The
rectangle A with sides a and b, the hole B of radius rg, The semicircle C of radius r¢, and the
isosceles triangle D of height h as shown. The location of the centroids are also marked on the figure

with +. The y location of the centroid of B and D are at the mid point f the side b.
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Ycc

[

Figure 2.8.3 Composite area object

The calculations of the centroid and MOI are with respect to the area with the assumption of uniform
mass per unit area. The area of the hole is negative. In this example the formulas are not recorded
separately but are incorporated into the MATLAB code. You can find these formulas through the
Internet. The approach is similar to the line object except the calculations are based on area rather
than mass. The assumption of unit depth allows direct extension to plate objects. The code below is
long but note that it is the same for each object. You could have taken advantage of vector operations
but it will be accompanied with some loss of clarity, particularly if the formulas are not explicitly
developed or expressed. You can always delete the semi colon to see other values.

(Start of new set of MATLAB code)
% MOI of Composite areas
% given values

a =1; b = 2; rB = 0.5;

fprintf('a = '),disp(a)

fprintf('b = '),disp(b)

fprintf('h = '),disp (h)

fprintf('rB = '"),disp(rB)

fprintf('rC = "),disp(rC)

% derived values

AreaA = a*b; AreaB = -pi*rB"2; AreaC = pi*rC"2/2; AreaD = 0.5*b*h;

AT = AreaA + AreaB + AreaC + AreabD;
fprintf ('"Area A =" disp (Areahd)
fprintf('Area B = '),disp(AreaB
fprintf ('Area C = '),disp(AreaC
fprintf('Area D = '),disp(AreaD
fprintf ('Total Area : '),disp (AT
% Centroid location

xga = a/2; vyga = b/2; xgb = a/3; vygb = b/2;
xgc = a-rC; vygc = b + (4*rC/3/pi);

xgd at h/3; vygd = b/2;

)
) )
) )
) )
)

o)

% Composite centroid

xG = ((xga*Areald)+ (xgb*AreaB) + (xgc*AreaC) + (xgd*AreaD)) /AT;
yG = ((yga*Areald)+ (ygb*AreaB) + (ygc*AreaC) + (ygd*AreaD)) /AT;
fprintf ('xG = "'),disp (xG)
fprintf('yG = '"),disp(yG)

o)

% MOI of each piece about its centroid
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IAx =

IBx
ICx
ICz
IDx

o)
°

MOI of the

a*b""3/12; IAy = b*a”3/12; IAz = (a*b/12)*(a”2 + b"2);
-pi*rB"4/4; IBy = -pi*rB"4/4; IBz = -pi*rB"4/2;

(pi/8 - (8/9/pi))*rC™4; ICy = pi*rC*4/8;

(pi*rC™4/4)- (pi*rC"2/2)*(4*rC/3/pi)"2;

2*h* (b/2)"3

’

IDy = b*h"3/36; 1IDz

IAxXG = IAx + AreaA*(yG - yga)"2;

IBxG = IBx + AreaB* ( - ygb) "2;

ICxG = ICx + AreaC*(yG - ygc)"2;

IDxG = IDx + AreaD* ( - ygd) "2;

IGx = IAxXG + IBxG + ICxG + IDxG;

IAyG = IAy + ArealA*( - xga)"2;

IByG = IBy + AreaB*( - xgb) "2;

ICyG = ICy + AreaC*(xG - xgc)"2;

IDyG = IDy + AreaD*( - xgd) "2;

IGy = IAyG + IByG + ICyG + IDxG;

IAzG = IAz + ArealA*((yG - yga) "2+ (xG - xga
IBzG = IBz + AreaB*((yG - ygb) "2+ (xG - xgb
ICzG = ICz + AreaC*((yG - ygc) "2+ (xG - xgc
IDzG = IDz + AreaD*((yG - ygd) "2+ (xG - xgd
IGz = IAzG + IBzG + ICZG + IDzG;

fprintf ('IGx ") ,disp (IGx)

fprintf ('IGy = '),disp (IGy)

fprintf ('IGz = '),disp(IGz)

In the Command Window

a = 1

b = 2

h = 0.8000

rB = 0.5000

rCc = 0.7000

Area A = 2
Area B = -0.7854
Area C = 0.7697
Area D = 0.8000
Total Area 2.7843
XG = 0.7120

yG = 1.3586

IGx = 3.1809
IGy = 2.0227
IGz = 3.7471

2.8.3 Composite Area - Inclined
This is an example of composite area with an inclined edge. The sides all have the same thickness t
and the inclination of the two sides is 45 degrees. The cross-section is symmetric. The relationship
among the sides and the thickness are shown in the figure. Such connections can also be established
for other inclinations and non symmetric composite area. Lett =5 mm and b = 60 mm.
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sqrt (IDx"2 + IDy"2);
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b - 2 t)sin 45

? 2*b*cos45
Figure 2.8.4a Inclined composite area

Take a moment to view the various relations about the sides and the thickness. Since the object has
an axis of symmetry we know that the x-location of the centroid is at the center of the cross-section.
We only need to calculate the y location. The area of the parallelogram is the base multiplied by the
height and the area of the triangle is one-half the base multiplied by the height. We will use MATLAB
to calculate the centroid and the moment of inertia about the centroid. The values for some of the
geometric elements, the areas and the centroid location from the base are reported below. If you
calculate different numbers let me know.

Establish the following values

t [mm] = 5.00

b [mm] = 60.00

d [mm] = 35.36

e [mm] = 7.07

ya [mm] = 2.50

yb [mm] = 22.68
yc [mm] = 42.71
Aa [mm2] = 424.26
Ab [mm2] = 250.00
Ac [mm2] = 50.00

(Start of new set of MATLAB code)
yC = (ya*RAa + 2*yb*Ab + yc*Ac)/(Ra + 2*Ab + Ac)
yC [mm] = 14.92

The MOI of Base
IAx at yC [mm"4]
IAy at yC [mm”4]

66319.522
254558.441

The MOI for the triangle is available in Section 2.9

The MOI of the top triangle
ICx at yC [mm"4] 38626.133
Iyx at yC [mm"4] 1666.667

The calculation of the MOI of the inclined plate is more involved. Using Figure 2.8.4b
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g E_: :.-" E*—.lll‘
I :‘[ E+ Elxxlz}:H-EJ i 79
ed’

i
I
- I
I 2*b*cos45
Figure 2.8.4b MOI of inclined plate

The MOI of the inclined member
IBx at yC [mm"4] = 82181.273
IBy at yC [mm"4] = 279166.67

2.8.4 Composite Volume

The composite volume provided by the third example in Figure 2.8.1 is three dimensional. There
should more calculations to compute all of the Inertias. The volume is formed through the addition of
a rectangular plate, a hole, and a quarter circular plate. Once again the center of mass of each of
these pieces and their MOI about their own center of mass is known through other sources. This is a
three dimensional problem. It is almost the same as composite area example except that the circular
plate is at right angles to the rectangular plate.The example from Figure 2.8.1 is refurbished with
dimensional symbols which will appear in the formula and calculation. The hole is aligned with the
center of the rectangular plate. The mass is uniform for the entire object and the mass per unit
volume is m.

l/"i\ s

AN = = )') \’
&mk’ﬁ’.g:

Figure 2.8. 5 Composite Volume

The formulas are again embedded in the MATLAB code as in the previous section. In Figure 2.9.5
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the location of the center of mass of each volume is shown. As a reminder it is in the plane through
the center of the constant thickness. The center of volume of the composite object is obtained below:

(Start of new set of MATLAB code)

s Center of mass and MOI of Composite volumes

o)
°

given values

ax 0.5; ay = 1; az = 1.5; rB = 0.25; rC = 1.5; cy = 0.5; m = 2;

fprintf('ax = '),disp(ax)

fprintf('ay = "'),disp(ay)

fporintf('az = "'),disp(az)

fporintf('cy = '),disp(cy)

fprintf('rB = '"),disp(rB)

fporintf('rC = "'),disp (rC)

fprintf('m = '),disp(m)

%% derived values

fprintf ('\nMass Calculations\n')

massA = m*ax*ay*az; massB = -m*pi*rB"2*ax; massC = m*cy*pi*rC"2/4;

mT = massA + massB + massC;

fprintf('Mass A = "'),disp(massA)

fprintf('Mass B = '),disp(massB)

fprintf('Mass C = "'),disp(massC)

fprintf ('Total Mass : '),disp (mT)

%% Centroid location

xga = ax/2; vyga = ay/2; zga= az/2;

xgb = ax/2; vygb = ay/2; zgb = az/2;

xgc = 4*rC/3/pi; vygc = ay + cy/2; zgc = rC -4*rC/3/pi;

fprintf ('\nLocal Center of mass\n')

fprintf ('Centroid A xga = %$4.2f; yga = %4.2f; zga = %$4.2f;\n",
xga,yga,zga)

fprintf ('Centroid B xgb = %$4.2f; ygb = %4.2f; zgb = %$4.2f;\n"',
xgb, ygb, zgb)

fprintf ('Centroid C xgc = $4.2f; ygc = %4.2f; zgc = %$4.2f;\n",
Xgc, ygc, zgc)

fprintf ('\nComposite Center of mass\n')

xG = (massA*xga + massB*xgb + massC*xgc)/mT;

yG = (massA*yga + massB*ygb + massC*ygc) /mT;

zG = (massA*zga + massB*zgb + massC*zgc) /mT;

fprintf ('Centroid xG = "),disp (xG)

fprintf ('Centroid yG = "),disp(yG)

fprintf ('Centroid zG = "),disp (zG)

In the Command Window

ax = 0.5000
ay = 1

az = 1.5000
cy = 0.5000
rB = 0.2500
rc = 1.5000
m = 2

Mass Calculations
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Mass A = 1.5000
Mass B = -0.1963
Mass C = 1.7671
Total Mass : 3.0708

Local Center of mass

Centroid A : xga = 0.25; vyga = 0.50; =zga = 0.75;
Centroid B : xgb 0.25; vygb 0.50; =zgb 0.75;
Centroid C : xgc 0.64; vygc = 1.25; zgc = 0.86;

Composite Center of mass
Centroid xG = 0.4725
Centroid yG = 0.9316
Centroid zG = 0.8152

The MOI about the center of mass of the composite object is obtained using the parallel axis
theorem. The MOI of the rectangular and circular area, abouts its own center of mass is readily
available through a simple search. However the information about the quarter circle cylinder is difficult
to track down. The MOI for a quarter circle length is detailed in a previous section. We can extend it
to the quarter cylinder. Here the information is explicitly made available through the formula below
and Figure 12.6 which is defined to coincide with composite volume under discussion. The mass of
the quarter cylinder is M¢ = m*(1r*r:2/4)*c,.

(2.76)

(Continued MATLAB code)
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% square cylinder about its mass center

IAxg = massA* (az"2+ay"2)/12;
IAyg = massA* (ax"2+az"2)/12;
IAzg = massA* (ax"2+ay"2)/12;
fprintf ("MOI of A about xga = '"),disp(IAxQg)
fprintf ('"MOI of A about yga = '"),disp(IAyQg)
fprintf ("MOI of A about zga = '"),disp(IAzQg)

o

IBx
IBy
IBz

fprintf ('\nMOI of B about xgb = '),disp (IBxQg)

g:
g:
g:

% circle about its mass center

massB*rB"2/2;
massB* (rB"2/4) + massB*ax"2/12;
massB* (rB"2/4) + massB*ax"2/12;

fprintf ('MOI of B about ygb = '"),disp(IByQg)

fprintf ('MOI of B about zgb

o

ICx
ICy
ICz

g:
g
g:

massC* ((1/4)-(16/9/pi"

") ,disp (IBzg)

% gquarter cylinder abouts its mass center
massC* ((1/4)-(16/9/pi”2))*rC"2 + (massC*cy”2/12);
) *rC”"2 + (massC*cy”™2/12);

2)
massC* ((1/2)-(32/9/pi"2))*rC"2;

fprintf ('MOI
fprintf ('MOI

[Ie)
i)

H
X

IyG

I1zG

fprintf ('\nMOI of C about =xgc ") ,disp (ICxqg)
of C about ygc = '),disp(ICyqg)
of C about zgc = '),disp(ICzqg)
posite MOI
IAxg + massA* ((yG-yga) "2+ (zG-zga)"2)+
IBxg + massB* ((yG-ygb) "2+ (zG-zgb) "2) +
ICxg + massC* ((yG-ygc) "2+ (zG-zgc) "2);
IAyg + massA* ((xG-xga) "2+ (zG-zga) "2)+
IByg + massB* ((xG-xgb) "2+ (zG-zgb) "2) +
ICyg + massC* ((xG-xgc) "2+ (zG-zgc) *2);
IAzg + massA* ((xG-xga) "2+ (yG-yga) "2) +
IBzg + massB* ((xG-xgb) "2+ (yG-ygb) *2) +
ICzg + massC* ((xG-xgc) "2+ (yG-ygc) *2);

fprintf ('\nMOI of Composite Volume about xG=

Com

G =

fprintf ('MOI of Composite Volume about yG=
fprintf ('MOI of Composite Volume about zG=

In the Command Window

MOI
MOI
MOI

MOI
MOI
MOI

MOI
MOI
MOI

MOI
MOI
MOI

of
of
of

of
of
of

of
of
of

of
of
of

A about xga = 0.4063
A about yga = 0.3125
A about zga = 0.1563
B about xgb = -0.0061
B about ygb = -0.0072
B about zgb = -0.0072
C about xgc = 0.3146
C about ygc = 0.3146
C about zgc = 0.5556
Composite Volume about xG= 1.1464
Composite Volume about yG= 0.7418
Composite Volume about zG= 1.2389

149

") ,disp (IxG)
") ,disp (IyG)
") ,disp (IzG)

Essential Mechanics



Essential Mechanics

The products of inertia are not calculated here.

Execution in Octave

The code is same as in MATLAB but consolidated in a file without duplication. The following
statements are included

In Octave Editor

i Ssabialigan (Vo e \n')
fprintf ('Example Composite Volume\n')
I8 el i (U e \n')

pkg load symbolic
sympref display flat

In Octave Command Window

ax = 0.50000
ay = 1

az = 1.5000
cy = 0.50000
rB = 0.25000
rc = 1.5000
m = 2

Mass Calculations

Mass A 1.5000
Mass B = -0.19635
Mass C = 1.7671
Total Mass : 3.0708

Local Center of mass

Centroid A : xga = 0.25; vyga = 0.50; =zga = 0.75;
Centroid B : xgb = 0.25; vygb = 0.50; zgb 0.75;
Centroid C : xgc 0.64; vygc 1.25; zgc 0.86;

Composite Center of mass

Centroid xG = 0.47249

Centroid yG = 0.93160

Centroid zG = 0.81525

MOI of A about xga = 0.40625
MOI of A about yga = 0.31250
MOI of A about zga = 0.15625
MOI of B about xgb = -0.0061359
MOI of B about ygb = -0.0071586
MOI of B about zgb = -0.0071586
MOI of C about xgc = 0.31464
MOI of C about ygc = 0.31464
MOI of C about zgc = 0.55564
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MOI of Composite Volume about xG= 1.1464
MOI of Composite Volume about yG= 0.74176
MOI of Composite Volume about zG= 1.2389

2.8.5 Additional Problems

There are two suggestions before you attempt these problems.

1. Prior to the attempt of problems it would be useful to evaluate the integral outside of MATLAB to
make sure MATLAB is giving you the right results. This will also suggest you set up the computation
correctly and programmed the right code. You can use a handful of results to confirm instead of all of
them.

2. Collect all of the connected pieces of code for the same geometry in a separate file so that you can
run the example by changing a few lines of code.

3. If you are using Octave then please verify other pieces of code in this section.

Problem 2.8.1
Find the centroid and the MOI about the centroid for the wire object in Problem 2.8.1

R/3

- -
4R |
Problem 2.8.1

Problem 2.8.2
Find the centroid and the MOI about the centroid for the composite area object in Problem 2.8.2

R/3

- I-|
4R
Problem 2.8.2

Problem 2.8.3
Find the centroid and the MOI about the centroid for the composite volume in Problem 2.8.3
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o o

4R
Problem 2.8.3
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2.9 INERTIA OF POPULAR GEOMETRIES

Instead of calculating the centroid and MOI (moment of inertia) by direct calculations there are
available formulas for some popular cross-sections. These formulas can be often leveraged for
establishing the geometric properties of complicated geometry using the method of composite areas
outlined in the previous section.

Table 2.2 Geometry: Plane Areas

W 3 3
bz bz bh
i L,=— L= L=—(8+K)
12 3 12
b
C X
H
B T EEE——
h
Rectangle

y da_ 4t

Quarter Ellipse

Table 2.3 Geometry: Circle
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Table 2.4 Geometry: Solid

Im=£m2+1—m!2, I_=mr3;
= 1 1
I, = Emal'2 + —mi*;
r
fralf .s*wa:J_c=g;r; _ir&,:_s=(l—£I
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Hollow cylinder

1
hI_ =—mia’+b°);
1
T 12

z e
' K

: KA
Rectangular Rod

Table 2.5 Geometry: Sphere

Half Disk
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Im=lma2+imfz; 1 =tm?+ Lp
4 12 4

1 1 1
I_ =Em(a2 +0); I, =Emb2 +§mrl2

Semi Ellipsoid
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2.10 FORCES

This chapter has been long and had a great variety of information that will be useful later. Before we
slip into the study of mechanics it will be useful to refocus our ideas about the reasons that we study
mechanics - to understand and resist the actions imposed on a structure - like the lamppost, the
building, the bridge, the ship, and even yourself. Mechanics is finally about designing structures that
will withstand the action it encounters. There are only two kinds of actions and they can be applied
either singly or together. The simpler one is the action that tends to move the structure in a certain
direction. This action is called the Force and it has an important connection with Newton’s second
law. The second kind is the Couple, which tends to rotate the structure. In this section we focus on
the Force and its properties. Force is a vector and we manipulated and calculated it in Section 2.2
without knowing a lot about it. Here we will fill in some important properties of the force in addition to
being a vector.

Figure 2.10.1 Forces

Consider Figure 2.10.1. The figure on the left captures the effort of trying to move the dresser to the
right. The figure on the right is a simpler illustration of the action taking place. The action of the forces
on the right are drawn on a Free Body Diagram (FBD). We encountered this figure earlier. These
forces represent the action on the dresser - which is the free body for this problem. The free body
has been isolated from the problem (the the influence of the surroundings). The action of the man,
the floor, and the earth are represented by corresponding forces. Such figures are the backbone of
the calculations that follow.

The figure also shows two kinds of forces based on how they interact with the object are shown in
Figure 2.10.1. They can be further identified as lumped or concentrated force (F1and W) and
distributed forces (F2 and F3). We can replace the latter though an equivalent concentrated force for
convenience of calculations. So in this section we will focus on concentrated forces. We have learned
that Forces are vectors. That is why we show them with an arrow indicating its direction.

The two concentrated forces F4 and W differ in several ways:

e F4 is considered a surface force as it is usually applied at the boundary of the object - in this
case on the left side of the object. W represents the weight of the object and acts through the
volume. For an object with uniform mass density it is usually at the centroid of the volume.
That is why you calculated mass center earlier. For two dimensions it is the centroid of the
area.lt is called a body force.
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e F4 can be applied due to any reason or direction. It must physically contact the object. W is the
result of Newton’s law of gravitation. It acts at a distance. There is no contact necessary for
this force. It is directed towards the center of the earth - or in the vertical direction.

e There are many kinds of surface forces created through different actions. They include friction,
tension, air resistance, spring action, normal and shear. Body forces can be created through
magnetic or electric fields.

2.10.1 Line of Action of a Force

All forces are vectors. They have a magnitude and a direction. In addition to being vectors the force
has an additional property that is very important. It also has a line of action - that is an imaginary
line aligned with it as illustrated in Figure 2.11.2. This line is parallel to the force and contains it. Here
concentrated forces Fq, W and F4 are shown with their line of action - as a dotted line.

W

Figure 2.10.2 Line of Action of a Force

Principle 1:  You can only move a force along the line of action or parallel to itself (parallel line of
action).

Principle 2: You can move a force anywhere along the line of action and its effect on the structure
will be the same. This is true even for a surface force. The reason you will be doing this is for the
convenience of calculation.

Principle 3: If you move a force parallel to itself it has to be accompanied by an appropriate
couple/moment. Couples are introduced in the next section and this is discussed there.

2.10.2 Idealizations and Simplification

In text books and lectures we rarely solve a problem in mechanics as they are initially identified or
postulated. One reason is that solution can become very complex and require mathematical
knowledge beyond our current scope. For example the course Statics is usually seen at the
Freshman level. Students posses basic mathematic skills that include algebra, geometry, and
introductory calculus. It is therefore necessary we reduced the complexity through idealizations and
simplifications. These idealizations however, should determine a solution that should be very close to
the exact one if available. This is the nature of engineering calculations.

Let us return to the problem expressed in Figure 2.10.1 and the simplifications made:

e Notice the problem looks flat and two-dimensional even though the man and the dresser are
three-dimensional. Three dimensional problems require lot more effort but the magnitude of
the forces calculated should not change with dimensions in this case as we can lump the effect
in a central plane of the dresser.

e Another idealization is that we have assumed that the man pushes uniformly on the dresser, or
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the ground reacts to the dresser uniformly on the dresser. It would really be difficult to replace
the uniformly distributed F2 with an actual nonlinear distributed force F2 without doing a lot of
specific testing on how a particular person generated the distributed force.

e The third idealization is uniform mass distribution. The dresser could have different kinds of
garments with different densities in each drawer. Even if these details are available it would be
difficult to estimate the location of the concentrated force.

e If the distribution of weight in the dresser is non-uniform it is likely that the force distribution
due to the ground F3 will not be uniform

e Friction is neglected in this problem.

Figure 2.10.3 represents another another example with simple idealization. In the original problem,
the figure on the left, the weight of the man on the hammock is seriously distributed, The shape of
the hammock is a curve in three dimensions. The interaction of the man with the hammock is usually
normal to the plane of contact at the point of the hammock while the weight is vertical. This needs to
be defined all across the hammock. The actual support has two forces in the ropes at each end
increasing the number of unknowns to be solved for. The idealized problem on the right has made the
problem easy to solve. Can you list all the idealizations that have been made?

L, W) L \“”'fl;l Uik W oo -
Figure 2.10.3 Original representation and idealized representation.

The two examples also illustrate a system of forces. A force system can also have additional
properties as shown in the following sections.

2.10.3 Concurrent Force System

In a concurrent force system all forces pass through a single point. The advantage of this idealization
is that the structure can be considered a particle. There is also no need to compute moments. Figure
2.10.4 shows two examples of concurrent system in three and two dimensions. The first is a pot of
gold suspended from three poles. The second is the force on an aircraft in the vertical plane that is
flying at constant speed and at a constant altitude. The aircraft is idealized as a particle and the
forces are drawn at the center of gravity.
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Thrust (T)

o p—

Elrag (D)

Figure 2.10.4. A concurrent system of forces.

Example 2.2 - Concurrent Forces

A sample calculation of determining the force is revisited in this example. One way to bring down a
damaged branch is to throw a rope over the limb and pull on either side. The first person pulls with a
force of 600 N, at an angle (8) of 50 deg to the vertical. Meanwhile, the second person pulls with a
force of 850 N, at an angle () of 25 deg to the vertical. Both the forces are in the same plane. Use
your own coordinate system. (a) Express both forces as components in the coordinate system. (b)
Express both forces as a product of the magnitude and a unit vector. (c) Find the net force in the
horizontal-direction. (d) Find the net force in the vertical-direction. (e) Express the sum of the forces
as a new force in magnitude and unit vector (f) Will the falling branch hit either person?

Figure 2.10.5 Example 2.2

Data: F;=600 N; 6 = 50 degrees; F, = 850 N; B = 25 degrees. Both vectors in same plane.
Assumptions: none

Solution: Coordinates system shown.

(@)
F =—600sin(50)7 +600cos(50) j =—459.63i +385.67j[ N]

F,=850sin(25)i +850 cos(25) j=359.22: + 770.36 j[ V]

(b)
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F, =600, = 600| —sin(50)7 +cos(50) 7 | = 600 ~0.777 +0.64j |[ V]
F,=850¢, =850| sin(25)i +cos(25) j | =850|0.427 +0.91 |[N]

©9 S F, = —459.63+359.22 = -100.41[N]
SF, =385.67+770.36 =1156.05[N]
(e)
F,,, =1160.40(—0.0867+0.996 j
(f) Not enough information

2.10.4 Non Concurrent Force Systems

Parallel Force System

All forces are parallel to each other. It can be in one plane as shown in Figure 2.10.6a This is
referred too as coplanar system of forces. It can be three dimensional if you are looking at the weight
of the students as they are at their desks in a class room or the forces carried by the columns in the
parking garage shown below. All forces are along only one direction.

Figure 2.10.6a A parallel system of forces

Non-Parallel Force System

The forces are not parallel. We further assume that the force are not concurrent too. A planar system
has all forces in a plane - making it a 2Dimensional system. A non-planar system will be three
dimensional (3D). Such systems are shown in Figure 2.10.6b. In these problems all degrees of
freedom must be considered. All equations in all directions must be considered.

162



Essential Mechanics

0.5m

Figure 2.10.6b Non-concurrent and non-parallel system of forces

Distributed Force System

The examples so far mostly involved concentrated loads. Many structures are designed to carry
distributed loads. In this case we will have to use calculus and integration to arrive at their equivalent
concentrated effects. This is important in the chapter on beams and bending.. Here is an example
from Rocky Mountain News in Montana. There have been roofs of buildings and stadiums that
collapse under the weight of unexpected excessive snow. Adjacent is the distributed weight of books

iy v ivire
Figure 2.10.6¢c Distributed Loads

Systems of forces regardless of their advantages must obey the same equations of statics. In this
way there is only a matter of some convenience rather than any change is our approach to the
problem. Working with these categories require the calculation of moments and are therefore
postponed to the next section where moment is introduced. Working with them will be presented
through additional examples.

Resultant of a System of Forces:
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If several forces are acting on the object the laws of mechanics react to the vector sum of these
forces instead of each single one. Very often we add the vector sum of these forces to express it as a
single force acting on the object. This simplifies the calculation. If the object is idealized as a particle
there will be only forces acting on it. If the object is a rigid body then there will also be a couple acting
on it. We will discuss such examples later after introducing the moment in the next section. The
resultant is the sum of the forces. For example the system of the parallel forces in Figure 2.10.6d can
be replaced by a single force R located at a distance dg. Computation of dg requires knowledge of
moment.

R
R= W, + W, +W; + W,

dﬁ

L R |

W,y w,
W, W,

f
Figure 2.10.6d Resultant of a system of parallel forces.

We can do the same for the planar distributed force in Figure 2.10.6e

2.10.5 Additional Problems

Use Simplifying assumptions to reduce problem complexity.

Problem 2.10.1
Three forces are acting on the problem. List all of the simplifications that can be used in the problem.
What is the simplest problem?
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Problem 2.10.2

There are two links in the problem connected by a pin at B. There is a single applied force on the link
at Ain the vertical direction as shown.The end C and D are held fixed. One important assumption in
this problem is that the force in link BC will be along the link. This is called a two-force link. (a) If you
drew the FBD of link AD what is the nature of the force at the end D. These forces are termed as
reactions. (b) In the FBD of link BC, what is the nature of the force at C - this is also a reaction.

A B

Problem 2.10.2

Problem 2.10.3
Four forces are shown acting on the figure. List all of the simplifications that can be used in the
problem. What is the simplest problem?

Problem 2.10.3

Problem 2.10.4
The cylinder is held in place by the cable AB which is parallel to the inclined plane. List all the
assumptions. Draw the FBD of the cylinder.
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Problem 2.10.4

Problem 2.10.5
The cylinder is held in place by the cable BC which is parallel to the inclined plane. List all the
assumptions. Draw the FBD of the cylinder.

»

Problem 2.10.5

Problem 2.10.6
Three identical cars are placed in a row on a carrier and are stationary. List all the assumptions and
arrive at the simplest model.

Problem 2.10.6
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2.11 MOMENTS AND COUPLES

The moment is the action of a force acting at a distance from a point about which the object wants to
rotate about. It is a vector quantity. Usually moment is associated with a rigid body. Particles by
definition cannot distinguish a moment because they do not have size. Let us use a simplified
representation of a previous illustration of a man pushing against a chest of drawers. We will replace
the chest of drawers by a rectangle and the action due to the person by a horizontal force acting at C
as shown in Figure 2.11.1. The chest of drawers has a mass center at G. Here we have simplified
the problem by considering it as a two-dimensional one and it appears instinctively acceptable as we
can lump the forces in the center plane of the chest of drawers. Also by instinct we know that if we
applied P lower, it is likely that the object will move without rotation. The size of the object matters and
therefore the object must be a rigid body. A and B are the corners of the chest in contact with the
floor. The chest is likely to rotate about the point B.

P

L

_|_G

N e oo
A B
Figure2.11.1 Force on the chest

The moment, or the physical quantity that causes the object to rotate, is usually caused by the force
acting at a distance. It is important that the line of action of this point not pass through the point of
rotation to produce a moment. This formal distance lacks clarity as you can see in Figure 2.11.2 that
the distances can be referred with respect to three points G, A, or B and are shown using the letter d
with appropriate subscripts. While we can define moment of the force about any point, the most
interesting one is the point B about which the object wants to rotate.

Figure 2.11.2 Force acting at a distance

We can modify the definition by considering that the moment of the force is about a point. The
value of this moment is the product of the force and the shortest distance between the point and
the force. This brings in the concept of - the line of action (LOA) of the force, visited in the last
section. This is the line that is parallel to the force and contains the force. The force can be placed
any where on this line and cause the same action on the object. This also means that the moment
caused by the force will not change as it is moved along the line of action.Figure 2.11.3 illustrates the
line of action. It does not matter where the force is placed on this line as far the calculations are
concerned. We can move the force along this line to take advantage of the geometry.
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Line of action
of the force

Line of action
of the force

Figure 2.11.3 Line of action

Since the chest tries to rotate about the point B, let us calculate the moment of the force P about the
point B. We start with the idealized figure

p P
B SN — -
= G
it
d
deg
A B

Figure 2.11.4 Calculating Moment

Sliding the force along its line of action the shortest distance appears as d. We notice it is the
perpendicular distance between the point B and the line of action (LOA)

M=Pd (2.77)

The value (magnitude) of M is product of the magnitude of the force P and the distance d. M is
magnitude of the moment of P about B. The dimension for [M] is the product of force and distance.
The basic units for the Moment M is [N-m] or [Ib-ft]. But moment M is a vector!

The direction of M is normal to the plane formed by the force P and d (it is a plane that holds the P
vector and the distance d) . Since there are two choices here, the correct one is determined using a
right handed system as follows: Roll the fingers of the right hand in the same sense as the rotation
induced by this moment while resting on this plane: the thumb will point in the direction of M

Therefore, the M vector is directed into the plane of the screen you are watching — while P and d
are in the plane of the screen.
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Figure 2.11.5 Moment vector

The more formal calculation for the vector moment M is the cross product of the position vector rgc
[from B (point about which you are computing the vector) to C (the point where the force is applied or
passes through)] and the force vector P. Therefore

M =Fpx P 2.78)

This is valid for calculating M in both 2D and 3D problems. This gives you the vector M. You have
to place the vectors tail to tail for the angle 6 in the calculations. The moment for this example is in the
+k- direction - normal to the plane determined by the two vectors rgc and P. Even though the moment
is a vector it is important to distinguish it from other vectors because it creates a different action on
the body. There are three ways to illustrate the moment vector M in Figure 2.11.6. The firstis a
straight arrow and a curved arrow. The second involves a double arrow. This is favored in the book.
The third is curved arrow in the plane of the force and distance.

A m B

Figure 2.11.6 Three ways to indicate a moment.

We have two vector quantities that create action on a body. The first is the force P which attempts to
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move the body in its direction. The second is the moment M that likes to rotate the body. They also
have different dimensions and we must be cautious that we do not add them together. \We must
have a way of distinguishing them in the figures we draw since our analysis will use such figures
extensively.

The calculation of the vector M and the magnitude M can be summarized as:

M =7y x P=8,|r3||P|sin 6

M =Pd =P(rgsin8)=P(rgsin(180-8)) = P(rz sin 5)

(2.79)

en is the unit vector normal to the plane determined by rgc and P using the right hand. The moment
is the same if another point D is chosen along the line of action as in Figure 2.11.7

Figure 2.11.7 Same Moment by the force along line of action

M= Fen 3 P
M =rg, Psin@ = P(rg,sinf)=Pd

(2.80)

Another way to calculate the moment

=i(0-0)+7(0-0)+k(0+rP)=k(Pd) (281)
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2.11.1 Example 2.3

You do not like the angle bracket attached to the wall. You are going to pull on the vertical edge at
the point shown, with a force of 120 [N], at an angle 6 of 20 [deg], to see if you can break it at the
wall ( in strength of materials you will learn that it is easier to break stuff by applying moments). Find
the moment of the force at the wall.

Figure 2.11.9 Example 2.3 (original, simplified, useful)

Data: F =120 [N]; 6 =20 [deg];
Find: Moment of F at the point A (Ma)
Solution: Using the last figure above

M, =F_xF

- b
M,-| 05 02 0
11276 —-41.04 0

— K[(0.5)(—41.04)— (0.2)112.76)] = k(~43.07) [Nim]

The moment is directed in the -k direction (into the page).

Using MATLAB

% Essential Mechanics

% P. Venkataraman

% Section 2.11.1 - Example 2.3
5%%%5%5%5%5%5%%5%5%5%5%5%5%5%5%5%5%5%5%5%5%5%5%5%5%5%5%5%5%5%5%5%5%55%5%5%5%59%5%5%5%5%5%5%5%5%5%5%5%5%5%5%5%5%5%5%5%5%%
clc, clear, format compact, close all
5%%5%5%%5%5%5%5%5%5%5%5%5%5%5%5%5%5%5%5%5%5%5%5%5%5%5%5%5%5%5%5%5%5%5%5%5%5%5%5%5%5%5%5%5%5%5%5%5%5%5%5%5%5%5%5%5%5%5%5%%%
fprintf('----——-—---"---"-"-"""-"" \n')

fprintf ('Example 2.3\n')
fprintf('----——-—--—-----"--"""-"""" = \n'")
5%%5%5%5%%5%5%5%5%5%5%5%5%5%5%5%5%5%5%5%5%55%5%5%5%55%5%55%55%59555%59595959559%5959%59%55%5555%%5%
%% Data

F =120,

theta = 20; thetr = theta*pi/180; % in radians
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%% calculations

A = [0,0,0]; B = [0.5,0,01; C = [00.5,0.2,071;
rAC= C - A; % position vector from a to C
Fvect = [F*cos(thetr),-F*sin(thetr),0];

MAl= cross (rAC, Fvect);
fprintf ('Position vector AC [m] ") ,disp (rAC)
fprintf ('Force vector at C [N] = '),disp(Fvect)

fprintf ('Moment of F about A [Nm] = ) ,disp (MAL)

In the Command Window

Example 2.3

Position vector AC [m] = 0.5000 0.2000 0
Force vector at C [N] = 112.7631 -41.0424 0
Moment of F about A [Nm] = 0 0 -43.0738

Example 2.3a - Moving force along line of action
Solve Example 2.3 by moving the force along the line of action to D (see Figure).

Figure 2.11.10 Force at D

Move the force F along the line of action till it intersects the y axis at D. The y-component of the force
at D passes through A and will not create a moment about A ( because there is no moment arm). The
x-component of the force at D is perpendicular to the line (or the moment arm ) AD. From the
geometry in the figure the magnitude of the moment is

M, =d, (Fcos6) =(0.2+0.5tan 20)(120 cos 20) = 43.074[Nm]

The moment causes the fingers of the right hand roll from D to B about A and the thumb points into
the screen thatis in the — k direction.

Example 2.3b - Moving force along line of action
Solve Example 2.3 by moving the force along the line of action to E (see Figure).
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b : 2 ~ F
-'l—.'l-ll—lrl
0.5m 0.2*tan(90-8)

Figure 2.11.11 Force at E

Move the force F along the line of action till it intersects the x axis at E. The x-component of the force
at E passes through A and will not create a moment about A ( because there is no moment arm). The
y-component of the force at E is perpendicular to the line (or the moment arm ) AE. From the
geometry in the figure the magnitude of the moment is

M, =d, Fsin{00 - &)= (05+02tan70)(120 sin 20) = 43 074 [ Nin]
M, = 43074 (-5 [Nm]

Example 2.3c - Moment using shortest distance
Calculate the moment using the shortest distance between A and the line of action of the force.

Figure 2.11.12 Shortest distance

From the geometry in the figure the magnitude of the moment can be obtained as:
M=dF=dan%-6)F =(02+ 035tan 20) sin(00 — 20) 120 = 43 074 [ Nm]
The direction is obtained using the right hand.

Example 2.3d - Scalar implementation of vector multiplication
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.

Figure 2.11.13 Vector multiplication scalar implementation

First resolve the force components. Calculate moment by each component by the multiplication of
force and its shortest distance from A. If they produce roll in the same direction they will add.
Moment is positive if it is the positive coordinate direction.

M,=—d, Fsin@—d, Fcosf =—05%120%sin 20— 0.2%120*cos(20) = 43.074 [ Nm

Summary of these various methods:

Method 1 (Example 2.3 ) is the most direct and straight forward. It works for both 2D and 3D
problems. It provides both the magnitude and the direction of the moment - In other words it
calculates the Vector. It has a simple mathematical basis of applying the cross-product

Method 2, 3, 4 (Example 2.3 a, b, c¢) require construction, geometry, and trigonometry. It challenges
your visualization skills but will develop intuition. It is easy in 2D problems but not so easy for 3D
problems. 3D visualization is a challenge for all of us.

Methods 2 through 5 (Example 2.3 a, b, c) are useful in determining the magnitude. The vector
direction requires use of the right hand. It is difficult in 3D problems.

Method 4 is challenging as it requires visualization skills and an ease with geometrical reasoning

Method 5 is very useful for 2D problems. In fact it is equivalent to Method 1 for such problems

2.11.2 Couple Moment

We now understand that to rotate an object we need to apply a moment that is typically produced by a
force that is located at some distance from a reference point (maybe the center of mass). Place an
eraser on the table and apply a concentrated force from the center of mass in the horizontal plane.
The top view illustrates that the eraser will move and turn
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@ STAED
Mars plas

Figure 2.11.14 Applying a moment

Consider the eraser on the table again. This time apply a pair of equal and opposite concentrated
forces away from the center of mass — in the horizontal plane (a moment?). If the experiment went
right you should see the eraser turning in place and not displacing. This special moment is a couple.
In the case of the couple, the net force in the horizontal plane is zero, so the eraser is in force
equilibrium.

E

B

Figure 2.11.15 A couple moment

Definition: A couple moment is produced by a pair of equal but oppositely directed forces separated
by a distance.

Properties:
e The couple moment is normal to the plane formed by the forces
e The sum of these forces is zero since they are equal and opposite
e The object experiences a moment only. This is a pure moment.
e |t causes the object to rotate in space
e Couple moment can be moved parallel to itself without changing its effect on the object
e Couple and couple moment refer to the same thing

2.11.3 Calculating the Couple Moment
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Figure 2.11.16 Calculating couple moment

We will represent the pencils by concentrated forces on a rigid body at points A and B. The geometry
is shown in Figure 2.11.16. F1 and F2 have the same magnitude and oppositely directed (F1 = F3). G
is a reference point (say center of mass), rega and rgg are the position vectors from G to the points A
and B (these points are on the line of action of the two forces). The moment of the couple can be
calculated as the moment about G of the two forces F1 and F2. Remember that the angle for the
cross product is between the two vectors with their tails in contact. Using the right hand we can
determine that the magnitude of the couple (couple moment) is F*d - Force multiplied by the shortest
distance between them.

M, =(7g xR )+ (Fep x Fy ) = Fyrgsin & (—k ) + Fyrgp sin 6, |-k |

glzﬂ-—ﬁl; 5': :,T—ﬁ; Ein(,T—ﬁJZEiﬂ,ngl; Eiﬂ[ﬂ__lﬁ;]:ﬂﬂﬁ: (2.82)
re5in B =d ;. rpsin B =d,

M =(_§5]|:F1‘-"f_a +Fydp) =[_-ﬁ;]1i':1*f'?r o (_f%”:ﬂr

Figure 2.11.17 illustrates the forces applied at a different orientation. The couple is still F*d, though d
is different in this case. It is still the shortest distance between the forces.

*_G :[_";5:”3:1‘-'??_4 +F:“r5:| :[_""Hli':l‘f'f = [_"HF*'?? (2.83)

Figure 2.11.17 Couple moment

Point G does not have to be a special point (like the center of mass). We can choose an arbitrary
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point E on the body, see Figure 2.12.18.

Figure 2.11.18. Couple Moment (again)

1

My =(7ey* ) +(Fes % Fy) = Fygysin 6 (& |+ Fygp sin 6y k|

O=a—8; O=a—8; sin{7x—F)=sin; sin(7—,5 )=sinf, (2.84)
rggsin ff=d,; rgpsin f, =dp
*'_E=(_-'%:|[F1ﬂr_a+szfE]=[_-’T';:|F1ﬂr = (_-'%]-'51::‘1'?r

The point does not have to be on the body, see Figure 2.11.19. Consider point D

Figure 2.11.19 Couple Moment (one more time)

M, = (P X F ) +(Foy X Fy )= Fry, siﬂﬂl(—fg)+ Eyr,, sin6, (+I€:)

6,=n—PB;; 6,=n—P,, sin(n—P,)=sinp,; sin(n—PB,)=sinp,

Fpa SiNPy =d,; TpgSinp, =dy
M :(_‘%)(Fld.—:_ﬂdﬂ):(_kﬁ)‘?l(d.e_dﬂ):(_kﬁ)Fld

(2.85)

The couple moment is a free vector. You can move it to G, D, E and it will have the same effect on
the body.
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Also understand that the same couple is obtained by doubling the distance and reducing the
magnitude of the forces by half. Hence different force systems can produce the same couple
moment. These are called equivalent systems.

Example 2.4

Three couples are shown acting on the triangular prismatic body shown. The magnitude of forces
F1, F2, F3, acting in x, y, and z direction respectively are 10, 12, and 15 [N]. (a) Calculate the moment
due to the three couples; (b) Identify the resultant couple.

Figure 2.11.20 Example 2.4 and the plane of the couples

Data: F1 = 10 [N], F2=12 [N], Fs= 15 [N]. Location shown on figure. [note that they are couples
since the forces (i) have the same magnitude; (ii) have opposite direction; and (iii) are separated ].

Find: (a) the individual couples (M4, M2, M3), and (b) sum of the couples

Solution:

4H1| =M, = Fd,

M, =(Tpp) %( =B 1) +(Toe) < (A1)
M, =(0.37 +0.27 )% (-107 ) +(0.37)x (107 ) =—27 -3k

ﬂl| =3.6056[ Nm]

g J.H'I _i 'Iﬂr'l
Fd Fd Fd ¥ d

=(0.37 x| 1;|+[D?rj+[:l”ﬂ:|}=:[1 27)=—3.6k—2.47. M, =43267[ Nin|
(15)(0.3)1 = 4.5: [ Nim]

M,

£

¥ M= [—2}—35&]{—3_5;}— :_45“] +[4.57|=2.0 - 27 - 6.6k[ Nim]
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2.11.4 Moving a Force Parallel to Itself
A particular force on the body effects it in a unique way. You can only move the location of the force
on the body if you do not change its effect. The direction of the force cannot be changed. . You can
move the force on the object in two ways without changing its effect.
1. Move the force along the line of action. This does not change its effect on the object. We saw
this earlier when we computed the moment.
2. Move the force parallel to itself. To deliver the same effect on the body you also need to add
moment or a couple to the problem.

This is demonstrated though the example we used Figure 2.11.9 which is reproduced on the left in
Figure 2.11.21. The force F is initially applied at C. We wish to move it to the point A.

Figure 2.11.21 Moving a force parallel to itself

The construction follows the procedure for illustrating a couple moment.

We place the force F and -F at A. Because they cancel the structure is still experiences the
force F at C. We combine the force F at C with the force -F at A to define a couple Maas
shown in the figure. This leaves the force F at A and the couple moment Ma. The resultant of a
single force F at C is the force F at A and a couple Ma at A.

The couple Mais calculated as a moment due to the force F at the point A.

M, =F *xF

Example 2.5 Moving a force parallel to itself

Consider the force P of magnitude 100 N with directional cosine angles 55, 45, 60 respectively
applied at the point A as shown. Point B is at a distance d4 = 0.3 m along the negative z direction
from the origin O. Point A is at a distance d> = 0.1 m along the positive x-direction from B. Figure
2.11.22 shows the layout of the points and the Force. (a) Move the force P to the point B. (b) Move
the force at A to the origin at O.
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Figure??.ZEExample 25

Data: P = 100*(cos(55) I + cos(45) j + cos(60) k] [N]. Point O(0, 0, 0). Point A(0.1, 0, -0.3) [m].
Point B(0.0.-03) [m].

Find: (a) Move P to point B from point A; (b) Move P from point A to point O

Solution: At B and O there will be the force P and a Moment. The force is the same as the original
force in magnitude and direction.

()
P=[57.36i + 70.71j+ 50k][N]
Y =[:|_1;[}??]

My =7 x P =(0.1x70.71)(7 x 7) +(0.1x50) 7 x

=-57+7. D?.ﬂ: [ Nm]

Figu@ﬂzﬁ) Solution (a)

(b)
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P=[5736i + 70.71j+ 50k][N]
7y = 0.17 —0.3 k[m]

i, =70, % B=(0.1x70.71)(7 x §)+(0.1x50) 7 x k) +

L

(—0.3x57.36)| kxi | +(—0.3x70.71)( kx

=21217 -22217+707k [Nin]

Figure 2.11.22¢ Solution (b)

2.11.5 Moment of a Force About a Line

In some problems we will need the moment of a force along a line. This is important if the object is
constrained to only be able to revolve around the line or a hinge. For example when you open your
laptop you may be applying a force at the corner of the lid in any direction upward. This force creates
a moment about the hinge of the lid which opens the laptop. Note that this a dynamic problem. Here
we are calculating the component of the moment about a line or the hinge. The result is a scalar and
with a value of the component of the moment along the line. This can be set up as a triple vector
product as shown in the development.

Consider you are opening the door of the refrigerator using the force F. The hinges are aligned with
the line OB. The moment about the hinge that opens the door is the moment about the line OB. We
calculate the moment about the point O (Mg) and then take the component of this moment along the
hinge line by calculating the dot product of this moment and the unit vector egg.
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Figure 2.11.23a Moment about a line
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Example 2.6 Moment of a force about a line

A force of 250 N is directed along the line AB as in Figure 2.11.23b. Find the moment of this force

about the line CD.

B (5, 5, -3)
Y.l. F -
A(-3,27-2)
L 3
g X

C (-1,0, 4)
o Sa

A i
r

¥ D (3, -1, 5)
z

Figure 2.11.23b Moment about a line
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In the Editor
% ssential Mechanics

E
% P. Venkataraman
S

0099000000000 0000000000000000000000000000000000000000000000000 o

clc, clear, format compact, close all
9900000000000000000000000000000000000000000000000000000000000O0
OO0 O0OO0DO0OO0OO0DO0OO0OODOODODODODODODODODODODOODODODODODODODODODODODODODODODODODODODODODODODODODODODODODOODODOOODOOO©O™©O
fprintf('--——---"-""""""""— - ——— \n')

fprintf ('Example 2.6 \n'")
fprintf('--——----------- \n'")

0090000000000 000000000000000000000000000000000000000000000000 o

%% Data

F = 250/

A= [-3, 2, 2]; B =[5 5, -3];y C=1[-1, 0, 4]; D= [3, -1, 51;
%% calculations

AB = B- A;

eAB = AB/norm (AB) ;
Fv = F*eAB;

rCA = A - C;
cross (rCA,Fv) ;

=
Q
Il

CD D-C;
eCD = CD/norm(CD) ;
Mcd = dot (MC,eCD) ;

fprintf ('Fv[N] = '"),disp(Fv)

fprintf ('rCA [m] = '),disp(rCA)

fprintf ('Moment of F about C [Nm] = '"),disp(MC)
fprintf ('\neCD [m] = '),disp(eCD)

fprintf ('Moment of F about CD [Nm] = '),disp (Mcd)

In Command Window

Fv[N] = 202.0305 75.7614 -126.2691

rCA [m] = -2 2 -2

Moment of F about C [Nm] = -101.0153 -656.5992 -555.5839
eCD [m] = 0.9428 -0.2357 0.2357

Moment of F about CD [Nm] = -71.4286

Execution in Octave
The code is same as in MATLAB

In Octave Command Window

Example 2.6
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Fv [N] = 202.031 75.761 -126.269

rCA [m] = -2 2 =2

Moment of F about C [Nm] = -101.02 -656.060 -555.58
eCD [m] = 0.94281 -0.23570 0.23570

Moment of F about CD [Nm] = -71.429

2.11.6 The Resultant

If several forces are acting on the object the laws of mechanics react the same to the vector sum of
these forces instead of each single one. Very often we add the vector sum of these forces to express
it as a single force acting on the object. This sometimes simplifies the calculation. It also provides
ideas of how to constrain the object from moving - both translational and rotational. If the object is
idealized as a particle there will be only forces acting on it. If the object is a rigid body then there will
also be a couple acting on it unless the forces acting on the body have a special structure like in the
following example. For example the system of the parallel forces in Figure 2.11.24 can be replaced
by a single force R located at a distance dg. It can also be replaced by the force R and a couple at
the left end.

R= W, + W, +W, + W,

lw1 w, = lw
. . .|‘ d

" |
L

Figure 2.11.24 Resultant of a system of parallel forces

In general a structure subject to a system of forces and couples can be reduced to a (i) single force
or (ii) a single force and a single couple (depends on the system of the applied loads). This is called
a resultant of the system of loads. It is important that both the original system of loading and the
resultant produce the same effect on the structure. They are also considered equivalent. Once
again this is usually done for convenience. It does not add or subtract from the laws of mechanics.
We can still design structures without using this concept but it does help in developing an instinct
about reactions of structures to applied loads. The idea is based on moving a force parallel to itself
that we explored in defining the couple moment above. In Example 2.11.1 a single force was
moved. In general a system subject to several forces all of the forces can be similarly moved. The
couples can be moved without any modification.

Example 2.7 Resultant of a Set of Parallel Forces

All of the forces are parallel to each other. We create this example from Figure 2.11.24 by providing
values for the forces and their locations. W1 =200 N, W>= 300 N, W3 =100 N, W;=250 N. The
locations are shown in the diagram. (a) Reduce the system of forces to a single force at G and finds it
location. (b) Reduce the system of forces to a single force and a single couple at A.
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1m 3 3 4
> -
dg

Figure 2.11.25a. Single resultant force for Example 2.7

Figure 2.11.25b. Single resultant force and single couple for Example 2.7

Data: W, =200 N, W,=300 N, W3 =100 N, W,4= 250 N. Since the force and distance are at right
hand we can calculate moments using the product Fd instead of calculating it using a vector product.
The directions are assigned using the right hand.

Find: (a) Resultant R and dg (b) Resultant R and Ma.

Solution:

(@)

R=3F =W+, 7+,
= (=7)[200+300+100+250] =850[ V]

(~#)[do R]=(F)[d s+ e W+ o W+ g ]

_ [1x200+4x300+7x100+11x250]

= =5.706[m]

)

(b)
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R=YF =W +W,+W,+W,
= (—7)[200+300+100+250] =850[ N]

[_'EE] [M.]= (_E_] (AW +d e Wy+d o W +d W, ]
M, =[1x200+4x300+7x100+11x 250] = 4850 Nim]

Example 2.8 Resultant of a Set of Distributed Forces

We can do the same for the distributed force in Figure 2.11.26. The distributed force is usually
represented as w(x) with basic units of [N/m]. The distributed force in this example is a constant.
Here we wish to determine the value of the resultant force R and its location d.

Figure 2.11.26. Example 2.8

The setup uses calculus to calculate the resultant and its location. It uses a differential element of the
resultant dR and integrates it over the range of x to obtain R. It then calculates the location d by
requiring that the moment at any point (say O) by the resultant R must be equal to the the distributed
moment about the same point. The application is the same for all manner of distributed loads.

Data: The load distribution w(x) is constant. Let us say w(x) = k. It ranges from A to B along the x
axis.

Find: (a) Resultant R (b) its location d

Solution: We will calculate the values symbolically. We will calculate the magnitude only since the
direction is known to be in the negative z-direction.

(a) The force vector R is in the -k direction
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dR = w(x}dx =fdx

K= _I dR = w[x}fﬁ— _| kdc=Kk(xz—x,)

Xg

= area wnider the load rfa.m'rbsmm?

(b) The moment is into the board (+j). The moment is computed at O.

dM, = xw(x)dx=kxdx

_I dM 111)(1)&’1— | kxdx=

4 4 Kk 5 P _ :J.'E.+J.'4“,
po 4 25 TF ) 3
2 ) :.".'15.+.".'__1\", S ]

g

(x5 +3,
. 2
= center of the distributed load

=

2.11.7 Example 2.9
The 2D beam is loaded with concentrated forces, a distributed force and a couple. Find the resultant
force Fr and its location d from A.

F
d

<

200 N 150 N/m SN

A *B K DYMYi F G
’)2000 Nm

300N
Figure 2.11.27 Example 2.9

Data: Beam and applied loading shown in red. Fgris the resultant force.

The uniform distributed force is replaced by the concentrated force of (150x1) [N] located at 0.5%(3 +
4) = 3.5 m from the edge A.

While it is not recommended you can solve this using positive directions for force and couple without
using a coordinate system. Force is positive downward and couple is positive into the page.

Solution: Fr at a distance d from A produces the same effect on the structure as all the applied
loads. Unlike the previous example here we have a single force as the resultant.

Fr = sum of all the forces applied irrespective of their location.
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The distance d is the moment about A due to all applied loads divided by Frg.

F,=200-300+(150x 1)+ 400 =450 N

3 (200% 1) — (300% 2) + (150 % 3.5) +(400 % 6) — 2000
B 450

=1.17m

Note: Fr can be moved to A and in that case there will also be a couple at A. Can you work that out?

2.11.8 Additional Problems

Use Simplifying assumptions to reduce problem complexity if required. Compare answers by solving
the problem again in MATLAB.

Problems 2.11.1

In your garden there is an old tree whose branch is starting to decay. You decide to see if you can
break of this branch by applying a moment about the point A, after having notched the branch at the
point A with a saw. You lasso the branch at the point B ( as far from A as possible) using a rope and
pull on it (along the direction BC) applying a force of magnitude 350 [N]. What is the moment of this
force about the point A? The location of the various points are shown on the figure using the origin at

.
}rl @
\X \
B @
. v 74 ;,}z
< N s = i
7 |
< " i15m
i 1
e |
ll’!’ - __5.0mi
o' o 102 Ty 22m
5m \my
’ s Y 6.5m

Problem 2.11.1
In case the figure is unclear the various coordinates are O (0, 0, 0); A (0.2, 0.5,7); B (-2.2, 5.0, 15);
C (6.5, 8, 1.5). All dimensions in [m]. F is along BC and has a magnitude of 350 [N].

Problem 2.11.2

The sign in front of the establishment is being battered by the wind. You are concerned that it will be
uprooted. The effect of the wind can be reproduced by a concentrated force F, located at A, of
magnitude 1500 N, in the horizontal plane, and at an angle of a of 55 degrees to the plane of the sign
which is in the yz plane. The stiffened sign weighs 980 N and the center of mass of the sign is at B.
The lengths L1, L2, and L3 are 6.5 m, 0.6m, and 1.2 m respectively. What is the net moment
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(resultant moment) at the point O?
4
|

Problem 2.11.2

Problem 2.11.3

The L shaped link is acted on by two forces F¢ and Fp. Their magnitudes are 500 N each. The
contact at A generates a magnitude of 750 N along AB. (a) Find the resultant of this force system at
E. (b) If the resultant can be further reduced to a single force only, calculate the location of this
resultant force.

0.8m

Problem 2.11.3

Problem 2.11.4
The three force system is shown in the figure. Fag carries a force of 150 N. F¢p is a force of 250 N.
Frc is a force of 200 N. Find the resultant of the force system about the origin O.
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B (5,5, -3)
Yy AB ---*
A(-3,272)
G (-3, 2, -2)
CEVO9 " F@e,-22)
,ff -""':i_ i |
» Feo D (3, 1, 5)

Z
Problem 2.11.4

Problem 2.11.5
The parallel force system is shown in the figure. The magnitude of Wy and W- are the same at 300 N.
Similarly the magnitude of the weights W3 and W, are the same at 500 N. Find the simplest resultant
of this system.

Yy

- * S *Wﬁ TW3 l
. B c D E .

/ A

4 3m
z’ | 1m 5m 2m |
Problem 2.11.5

Problem 2.11.6

Two linearly distributed loads are shown in the figure. For each of them (a) determine the expression
that describes the loading function w(x); (b) The resultant (or equivalent concentrated ) force; and (c)
the location of the resultant force.

y

A

50 N l l ll gt i 1 N
[ l

" 3m

Problem 2.11.6
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3. WHY DESIGNS FAIL?

Structural design is the design of objects, devices, components to perform their task without failure.
These designs are withstanding loads (forces and moments) as they serve a purpose. You do not
want the car to fall apart while riding on the expressway. Maybe if it bumps into another vehicle the
fender breaks and fall off without harming the passengers. The airplane traveling between cities
should not fall out of the sky while dealing with the pressure distribution around it. The roof of your
house should not fall over your head when there is nothing disturbing outside. In all of these
examples we are talking structural failure.

Any structure like a bridge, car, aircraft, building, the computer, or most anything else will be subject
to loads (forces, moments, couples etc.) and wear and tear as part of their existence. They must
handle/carry these loads without falling apart. This must be ensured when they are designed the first
time. We do this by playing with the size, using a different material, changing the design to decrease
the load in a particular member, or other remedies suggested by engineering practice and ethics. It is
imperative for the design to carry the loads without failing. There are tremendous consequences if
failure takes place. This is important for safety, reliability, convenience, and the economic well-being
of your company.

In many designs failure may not imply that the structure breaks. It may mean that the structure does
not recover the original shape after the loads have been removed. This is called elastic failure. For
example when you sit on a chair during the lecture the chair probably deforms. This deformation may
go unnoticed as it is designed to be small. Once you raise yourself, this deformation should
disappears. It is like a spring. It stretches when you pull on it but returns to its original position when
the force is removed.

While the loads are responsible for failure the actual cause depends on how they are internally
distributed within the structure. Therefore the load per unit area of the cross section provides a more
important determination of failure. This is called stress. The discussion of failure centers around the
stresses the design can bear and the corresponding change in shape of the object or design. The
relative change in shape is related to strain. For a given material, the stress and strain are are
related and must be established experimentally as the property of the material. This is recognized as
material behavior under loads. This chart of material behavior is a useful design tool for designing
against failure.

Failure can also be more than stress and strain. It can be due to fatigue or it can be to corrosion. It
can also be due to the misfortune of an earthquake or a tornado. In academic discussions stress and
strain are usually the culprit for failure and that is the focus in this book.

This therefore brings a big difference to the problems until now where we considered that the object
subject to loads is stationary - statics. Under the application of loads stresses are developed in the
material and the structure experiences strain. This will cause the structure to elongate or change
shape as it resists these loads. This resistance depends on the property of the structural material -
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strength of materials. In many curriculum, Strength of Materials which allows for the exploration of
design of structures is usually a follow up course to Statics . It is a natural extension. In fact most of
the work in applying the strength of materials to a design is the solution of the corresponding statics
problem. Studying Statics alone we cannot discuss design. In that case any discussion of design
must be delayed to the follow up course. It makes sense to integrate Statics and Strength of
Materials so that students are engaged in discussing design all the time. What makes it easy is that
the concepts from the Strength of Materials course is only a small extension to the calculations but
make a big difference in design thinking. The book will attempt to integrate the combination of Statics
and Strength of Materials through application in the succeeding chapters after introducing concepts
from Strength of Materials here.
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3.1 NORMAL STRESS AND STRAIN

Stress is the way the materials internally handle the loads. Consider a uniform rod of a given length
that is carrying a pair of equal and opposite forces (concentrated) at the end as shown in Figure 3.1.1.
Note that the rod cannot just have one of the forces. In that case according to Newton’s Law it will
accelerate in the direction of the force. In statics our analysis starts with the idea of equilibrium. We
must balance the force by having an equal and opposite one at the other end. This rod is in
equilibrium - sum of forces on it must add to zero.This is a one-dimensional (1D) problem shown by
the coordinate x.

B D C

}

|- -l
i |
Figure 3.1.1 A rod in tension

Consider the cross section an an interior point in the rod, say at D. To expose what is happening at
the cross section, we cut the section at D and draw the free body diagram of the length BD of the rod.
We can argue the same with the piece CD. While P is a concentrated force applied load at B, in the
cross section at D we need a force P for equilibrium. This will be resisted by all of the cross section. If
we assume that P is uniformly distributed over the cross section, then this distribution of P over the
cross section is called stress. It is represented by the Greek letter 6. It is called a normal stress.
The units are [N/m? or Pa]. Note the direction of the force and the normal to the area on which it acts.
They are both parallel. This is the reason it is called a normal stress. In this illustration the applied
force P attempts to stretch the rod and cause it to be in tension. This is a tensile stress and is
considered positive. If the direction of P were reversed then the stress would be compressive and
negative by convention.

B D
P —
.‘— —f
— -
—» G
Figure 3.1.2 Normal stress
0 =— ;‘i=(IFE?cIEJfC}’EJJ.ESE;E Hon '

.ﬂi

This can be considered an internal reaction - or a reaction to force P by the interior of the material.
Under a microscope the cross-section will appear to be composed of individual fibers of material with
lots of gaps. It makes sense that the material may fail because some fiber carried more stress than it
is was capable of. Distributing the stress uniformly makes for less calculations as the exact
distribution of fiber thickness is difficult to establish.

We are looking at deformable materials so it is likely that the material will be pulled or increase its
length in the direction of this applied load. The study of “Strength of Materials” assumes that materials
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will deform (or change shape) when subject to forces and moments. In the simplest analysis it is
assumed that these deformations are small and will not affect the geometry of the loading. In the
illustration of the uniaxial stress above, we expect that there will be a change of length along the
direction of the load. For a tensile force there will be a tensile stress and an extension of the rod in the
direction of the force. If we further assume that the density of the material is unaltered by this
deflection, there will be a shortening of the length in the direction normal to the applied load
(transverse direction). Figure 3.1.3 captures the deformation associated with this tensile load. The
orange is the original material while the yellow in the deformed material due to the applied force P.

B D C 5
P e L (':i P
-— Tl
c S X
e |

Figure 3.1.3. Definition of strain

This extension, AL, when divided by the original length L is defined as strain.

_AL (3.2)

R
For one dimensional stress we ignore the lateral contraction. This contraction is called the Poisson’s

effect. We will introduce it later. For one-dimensional problem the subscripts on stress and strain are
not necessary.

To summarize, the load carried by a structure is resisted in the cross section as a stress. This stress
is associated with a strain in the cross section which can cause the structure to change shape and
even break and therefore fail. The relation between the stress and strain depends on the material
used in the structure. These stress and strain are called engineering stress and strain. They are
based on the original area of cross section and original length of the member. The counterpart is true
stress and strain based on the current area of cross section (reduced) and current length (longer for
tension). Most design decisions are based on the engineering stress and strain.

Example 3.1.

A short rod of diameter 2 cm and length 10 cm is subject to a load P of 1500 N. It appears to deflect
by 0.01cm under the load.(a) Find the stress and strain on the rod. (b) If the maximum allowable
stress in the rod is 12 MPa what must be the diameter of the rod for the same load.

'y
AL

K
E

B
|
Figure 3.1.4. Example 3.1

Data: d =2/100 m; L =10/100 m; P =1500 [N]; AL =0.01/100 m; omax=12 MPa.

Assumptions: Uniform Stress
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Find: (a) o and ¢; (b) d,

Solution:
(@) )
m'gﬂz;‘rd—ziﬂ.ﬂlz=3_142K1E]_1[m:]
4 4
P 1500 5
I S — =4.77x10" [ Pa]
ad /4 3.142x10
E=ﬂ£=E=D_DDI
L 10
(b)
5 ;
area, = I LDD‘:=1_25KID4[W‘]
v Bl

o,
I

ST e WU 101 (5
/A

3.1.1 Point Stress

The assumption of uniform stress is convenient for discussion and calculations. It works well for initial
engineering design and estimates. The actual cross-section of the bar may have a distribution of
material fibers and empty spaces when viewed under a microscope. There could be a stress
distribution on the surface rather than a uniform stress. In this case we can define stress at a point by
using the limit from calculus.In Figure 3.1.5 the stress in the cross-section varies with every point.

e

AA
K 4

L

a, AF

Figure 3.1.5 Point Stress

At any representative point B in the cross-section it can be defined as :

AF

. =l11m — (3.3)
z=lim 7

With the constraint that (cg varies in the cross-section and is used as a place holder)
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[ Opdd=F (3.4)

|

This makes the stress and load statically equivalent. Point loading as used in Figure 3.1.5is a
problem. They cause a local distortion of stress and strain that cannot be easily described as uniform
stress. To uniformly distribute the stress edge plates are used to distribute the point load over the
cross-section. This is illustrated in two-dimensions in Figure 3.1.6.

I '

TP f_/ TP |

(a) (b) (c)
Figure 3.1.6 Applying uniform stress

Placing end plates does not completely solve the problem. It reduces crinkling at the ends but the
stress distribution becomes uniform at a finite distance from the end. This is referred to as the Saint-
Venant effect. It takes about a distance of the width into the member for the stress distribution to
become uniform. This is true for any type of loads and stress and is not restricted to axial stress
alone. This is illustrated in Figure 3.1.7.

lp ¢P ¢p | ip

g

P

Figure 3.1.7 Saint Venant’s principle

In general the load and the stress distribution must satisfy the following:
e The load and the stress distribution are statically equivalent.
e In the immediate region of the applied load, the stress cannot be determined analytically. It
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must be established through experiments or simulation.
e In design the variation in stress is often ignored everywhere.

3.1.2 True Stress and True Strain

True stress and true strain are based on actual area of cross-section and the accumulated strain over
the loading. It is more accurate in identifying material behavior. For design purposes the common
reference to stress and strain are engineering stress and strain based on the original area and
original length (before any load was applied. Let A, be the original area and L, be the original length.
Let A and L be the current area and length respectively. Let AL be the deflection measured from
original length for the current load P:

Engineering stress and strain : g = E E= E (3.1, 3.2)
A, I
True stress and strain: 07 = E; £ =Iln £ (3.5)
N E

=@

The equations are based on experimental measurements and therefore difficult to illustrate through
an example.

3.1.3 Example 3.2

A composite object is made of two different materials is fully attached at the intersection. The bottom
(A) is held fixed. At the intersection (B) a compressive force of 5000 N is applied. At the free end C a
tensile force of 3500 N is applied. The diameter of AB is 50 mm while the diameter of BC is is 30 mm.
Their lengths are shown in the figure. (a) If the magnitude of the strain in each segment has the
same value of 0.01 what is the net change in the length of the object. (b) What is the stress in each
material. Figure 3.1.8(a) illustrates the problem.

The forces on each piece of the composite object is shown in Figure 3.1.8(b) and (c). In Figure
3.1.8(a) the body is stationary and any portion of the object is also stationary. Figure 3.1.8(b) is the
FBD of BC just before the application of the compressive load of 5000 N. Every section in BC sees a
tensile load of 3500 N since the net force must be zero as the section is stationary (this is called
equilibrium). Figure 3.1.8(c) is the FBD of BA just after the compressive load is applied. The net
load on material AB is a compressive load of 1500 N and this portion must also be stationary.
Therefore every piece of section AB is seeing a compressive load of 1500 N.
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d =30 mm 05m
5000 N || 3500 N
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(a) (b) (c)
Figure 3.1.8 Example 3.2

Data: dag = 50/1000 m; Lag = 0.6 m; dgc = 30/1000 m; Lgc = 0.5 m.

Fag (compression) = 1500 N; Fgc (tension) = 3500 N. eag = egc.= 0.01 (magnitude)

Assumptions: Uniform stress
Find: (a) Aac; (b) oaB ; oBC

Solution:

(a)
R T ] TR o
=—0.006+0.005=-0.001[m]

(b)
A =H%=D-DD]96[W:]

o ﬂr‘% =0.00071 m’ |

Oup= S =—0.764x10% Pa]=—0.764[ MPa]
A 0.00196
s g =4.95x10°[ Pa] =4.95[ MPa]

A 0.00071
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3.1.3 Additional Problems

Problem 3.1.1

The following figure was used as an example for non concurrent force system in Section 2.10.
Assume the force in the cable 200 N. What should be the diameter of the cable so that the stress
does not exceed 2 MPa?

E

0.5m
A c D
( i ¥ v
M osm 2m osm T 2m |
500 N
Problem 3.1.1
Problem 3.1.2

The composite rods are made of square cross-section and welded together. The rod AB is made
steel and the maximum tensile stress in it cannot exceed 120 MPa. The rod BC is made of brass and
the maximum stress in it cannot exceed 60 MPa. The length of the rods L1 and L, are 25 cm and 30
cm. (a) Determine the dimensions of the cross-section of the rods.

I

A

B
25kN¢.

L,

C (]
iBSkN

Problem 3.1.2

Problem 3.1.3

A compressive force of 200 kN is applied on the rod with a square cross-section of side 4 cm. It is
decided to replace the rod with circular cross-section of the same length and carrying the same
stress. What should be the diameter of the rod.
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Problem 3.1.3
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3.2 HOOKE'S LAW

The Hooke’s is one of the important relations used in structural design. It references the elastic
behavior of materials where stress is proportional to strain. The constant of proportionality is a
material constant that must be established by experiments. The law is used to ensure that the
structure returns to undeformed state after the load is removed. Consider the bar of material used in
the definition of normal stress and strain - reproduced here as Figure 3.2.1. You are going to test the
material by increasing the load in tension progressively. You should also expect the material to
progressively extend.

B D C :
p e TN 2
- T
g . )(
|t -]

Figure 3.2.1 Force and elongation

A machine that can applied such a load is called a tensile test machine and is shown in Figure 3.2.2.

Figure 3.2.2 Tensile test
(image from from: Wikimedia Commons)

You can record the force and the corresponding elongation undergone by the material. You start from
zero force and then increase it till you are able to break the specimen. You can choose to plot the
applied force against the elongation. If you did that, for the same material, you will get a different
curve for each specimen that had a different initial length or area of cross-section. If however you
plotted the engineering stress and the corresponding strain then you will record a single curve for the
same material even if your specimen changed. For a ductile metal like steel you are likely to see the
red curve in Figure 3.2.3.
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Strain
Figure 3.2.3 Stress Vs Strain for a ductile material
(image from from: Wikimedia Commons)

Stress-Strain Curve

Figure 3.2.3 is obtained experimentally. The red curve is the engineering stress strain curve. The blue
is the true stress strain curve. The engineering curve is the one used for design. The machine in
Figure 3.2.2 can actually break a two inch steel specimen. The point 3 is called rupture - where the
material breaks. The stress corresponding to point 1 is the maximum stress or the ultimate stress.
The design limit for stress is indicated by the stress at point 2, which represents the elastic limit. The
corresponding stress is noted as the proportional limit of the material. The stress-strain behavior is
nonlinear after point 2. The region 3 is called the strain hardening region - stress increase with
strain. The region 5 is the necking region, where the strain increase with a reduction in stress. You
can use the same data to plot the true stress and true strain curve. You can access the actual values
for the properties though handbooks or the Internet. The American Society of Testing and Materials
(ASTM) is the primary organization that publishes properties of materials through testing. It also
provides a numbering system characterizing materials and their properties. For some materials the
proportional limit also doubles as the yield stress (oy) or yield strength. Often stress and strength are
used to describe the same quantity.

The structural steel, ASTM A36, has an yield strength of 250 MPa and an ultimate strength of
400-550 MPa.

True stress and strain are based on current area of cross section and current length of the
specimen. Most design and analysis are based on the engineering stress-strain behavior.

A (original area) A (true area)
B D C
Y L
<= ——
[T SRS eSS X
L !

Figure 3.2.4 True stress and true strain
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¥
B, = ? fruestress
o A A5 ) |
A [ =In - frue strain
3 b L L

3.2.1 Elastic Limit

Revisiting the stress strain curve in 3.2.3 it appears that the stress and strain are proportional until

point 2. This is called the proportional limit. If this point is unique then it is also the elastic limit. If Oy is
the stress corresponding to this point, then for the stress below this value the material will behave like
a linear spring. If you pull on it it will stretch but once you remove the pull then the material will get rid
of its strain and is unstressed. This is a critical design value and is also a design limit - since you do
not want the structure to have a different geometry every time it experiences a high stress value. This
is where the stress starts decreasing with strain and the material starts yielding. Usually the elastic
limit and the yield strength differ little for ductile materials. Unless otherwise noted the yield stress is
also the elastic limit. For an elastic material then on can express the relationship between stress and
strain as

o, =Leg, (3.6)

Where E is the constant of proportionality, or the modulus of elasticity, or the Young’s modulus. This

is Hooke’s Law. This is an experimentally determined property. Table 3.2.1 lists the value of E for
several materials.

Table. 3.1 Approximate Young's modulus (E) for various materials

Material GPa Ibflin? (psi)
Aluminum 69 10.0x10°

Aramid 70.5-1124 10.2x108 — 16.3x10°
Aromatic peptide 230-275 33.4x10° — 39.9x10°
nanospheres

Aromatic peptide nanotubes 19-27 2.76x106-3.92x10°
Bacteriophage capsids 1-3 150,000—435,000
Beryllium (Be) 287 41.6x10°

Brass 100-125 14.5%10% — 18.1x10°
Bronze 96-120 13.9%108 — 17.4x10°
Carbon fiber reinforced 30-50 4.35%x10% — 7.25x108

plastic (50/50 fibre/matrix,

biaxial fabric)

Carbon fiber reinforced 181 26.3x10°
plastic (70/30 fibre/matrix,

unidirectional, along grain)

Carbyne (C 32,10 4.66x10°

Copper (Cu) 117 17.0x10°
Diamond (C) 1,050 - 1210 152x106-175x10°
Diatom frustules (largely silicic0.35-2.77 50,000-400,000
acid)
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Flax fiber

Glass (see chart)
Glass-reinforced polyester
matrix

Graphene

HDPE

Hemp fiber
High-strength concrete
Human Cortical Bone
Low density polyethylene
Magnesium metal (Mg)
Medium-density
fiberboard (MDF
Molybdenum (Mo)

58
50-90
17.2

1,050

0.8

35

30

14
0.11-0.45
45

4

329 - 330

Mother-of-pearl (nacre, largely70

calcium carbonate)
Nylon

Oak wood (along grain)
Osmium (Os)
polycrystalline Yttrium iron
garnet (YIG)
Polyethylene
terephthalate (PET)
Polypropylene
Polystyrene

PTFE (Teflon)

Rubber (small strain)
Silicon carbide (SiC)

2-4

1

525 - 562
193

2-2.7

1.5-2
3-3.5
0.5
0.01-0.1
450

Silicon Single crystal, different130-185

directions

single-crystal Yttrium iron
garnet (YIG)
Single-walled carbon
nanotube

Steel (ASTM-A36)
Stinging nettle fiber
Titanium (Ti)

Titanium alloys

200
1,000

200

87

110.3
105-120

Tooth enamel (largely calcium 83

phosphate)

Tungsten (W)
Tungsten carbide (WC)
Wrought iron

(from wikipedia)

3.2.2 Example 3.3

400 - 410
450 — 650

190-210

Essential Mechanics

8.41x10°
7.25%x10° — 13.1x10°
2.49%10°

152x10°
116,000
5.08x10°
4.35%106
2.03x10°
16,000-65,000
6.53x10°
580,000

47.7x106-47.9x10°
10.2x10°

290,000-580,000
1.60%10°
76.1x10°-81.5x10°
28.0x10°

290,000-390,000

218,000-290,000
440,000-510,000
75,000
1,450-14,503
65%10°

18.9%x106 — 26.8x10°

29.0x10°
150%106 +

29.0x10°

12.6x10°

16.0x10

15.0x106 — 17.5%106
12.0%10°

58x106-59x10°
65%10°-94x10°
27.6x10¢ — 30.5%x10

Material properties are obtained by testing a specimen of a prescribed geometry in a testing machine.
The material is silicon. The specimen has a uniform width of 1.6 mm. The geometry is shown on the
left. These are standard specimens whose dimensions are prescribed through standards.(a) What is



the change in length between A and B? (b) What is the true strain at this point?

AL Ie
£=ln— =ln =% —1.0081x10™
L L
12 mm
250 N A B 250 N
-— = . —
|-—w
50 mm

Figure 3.2.5 Example 3.3

Data:

P =250 N; L=50/1000 m

w = 12/1000 m; d = 1.6/1000 m
E =1.29*1011 Pa;

Assumptions:
Uniform one dimensional stress and strain
Stress within elastic limit (use Hooke’s Law)

Find: (a) the change in length between A and B, (b) true stress, and true strain.

Solution:
(@) o
A=w*d =192x107% m*

g=£=1_3mzxm’"" Pa

=

-
.

A
%:1_0632}{16“; AL=L*z, =5.041x107 m

(b)
£ =In Lo =In He =1.0081x107
L L

3.2.3 Displacement in Elastic region

Essential Mechanics

The displacement or the change in the length of the specimen under normal stress can be calculated

using the definitions of stress and strain and Hooke’s Law. Referencing Figure 3.2.1
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G’=£; = w=IRr
A
I (37)
A L
Rt
EA

The last equation above is very useful.

Example 3.4

The composite rod is made of solid circular cross-section and welded together. The rod AB is made
steel with E = 200 GPa and the maximum tensile stress in it cannot exceed 120 MPa. The rod BC is
made of brass with a E of 105 GPa and the maximum stress in it cannot exceed 60 MPa. The length
of the rods L4 and L, are 25 cm and 30 cm. Determine the final length of the rod under the action of
the applied loads.

I

A

B
25kN¢.

L,

Cc |

izskm

Figure 3.2.6a Example 3.4

Data:
Eag = 200 GPa; oag= 120 MPa; Lag =25/100 m; Pag =25 kN
EBC =105 GPa; OBC = 60 MPa; LBC = 30/100 m; PBC =35 kN

Assumptions:
Uniform one dimensional stress and strain
Stress within elastic limit (use Hooke’s Law)

Find: (a) Final length of the rod.
Solution:
The stress in the rods are distributed as in Figure 3.2.6b. Every section in BC will resist a force of 35

kN in the cross-section by developing a corresponding stress.. Similarly every section of rod AB will
resist a force of 60 kN.
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35 kN

Figure 3.2.6b FBD - Example 3.4 - force in the rods

e TOBES Gy Ed

Gl
4, =T 1500000 4 6005833 Ed

T & 60 =1

s, ~Fuls __60000x025 0.00015[]

€ EgAdy  200x1° x0.0005

=

fpo=mctee __ 000X03 ___ 505)9) 437 ]

EgoAge  105x1° % 0.0005833
A o = Az + Ay =0.00032143[m]
L=Lg+Lg+A, =025+03+0.00032143 =0.55032[m]

3.2.4 Displacement and Statically Indeterminate Problem

A principal idea from mathematics is that if you are establishing a value for an unknown quantity (or
unknown) then you need an algebraic relation that involves the unknown quantity. This relation is
traditionally known as an equation. The relation is set up with an equal sign and therefore the name
equation. In general, if you have several unknowns to establish then you will need the same number
of equations, each containing one or more unknowns, to identify the unknown quantities. These
equations must be different from each other to work.

A statically indeterminate problem is one where equations from statics alone cannot solve for all of the
unknowns. That is there are more unknowns than the number of equations. Therefore to obtain a
solution additional relations must be established. Strength of materials provides these additional
equations if constraints are involved. In Figure 3.2.7a,describes a composite rod that is held between
the walls. It is subject to a force P at the junction B as shown as shown. The rod can have different
properties in segment AB and BC which we will indicate by subscripts. The wall will induce reactions
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on the rod AC due to the applied load P at the ends A and C. There are two reactions. What are the
values for these reactions?

A B c

———

Figure 3.2.7a Composite rod with force

To expose the reactions at the wall a FBD of the rod is required. This is shown in Figure 3.2.7b. This
is a one-dimensional problem and the coordinate used is x. The two unknown reactions are A and
CX.

A B C

*‘T —=x :L"‘C—
P X

X

Figure 3.2.7b FBD of rod

Statics: Rod is stationary or in equilibrium

A +P-C, =0:
A+C. =P (i)

There are two unknowns and one equation>

Strength of Materials: The overall length of the rod cannot change as it is held between two walls.
However The segments will change length because of the load in each of them.

The portion AB is in tension and will expand. The force in AB is Ax.

The portion BC is in compression and will contract. The force in BC is Cx.

A g +Ag, =0
ALy  Cly

E -IE"‘_I_-IE Eﬂf" BC

=) (ii)

The two equations (i) and (ii) can be used to solve for Ax and Cx which is done in the example below.
The solution for Cx must be negative since it is in compression.

Example 3.5 (Modified Example 3.4)

The composite rod is made of solid circular cross-section and welded together. The rod AB is made
steel with E = 200 GPa with a diameter of 50 mm. . The rod BC is made of brass with a E of 105
GPa with a diameter of 35 mm. The length of the rods L1 and L, are 25 cm and 30 cm. Determine the
reactions at the ends of the rod.
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A
I'1
B
25 kN
L2
c

Figure 3.2.8a Example 3.5

Data:
EAB =200 GPa; dAB = 50/1000 m; LAB = 25/100 m; P =25KkN
Egc =105 GPa; dgc=35/1000 m; Lgc=30/100 m;

Assumptions:

Ignore weight of the rods

Uniform one dimensional stress and strain
Stress within elastic limit (use Hooke’s Law)

Find: (a) Final length of the rod.

Solution:
The portion AB is in tension and will expand. The force in AB is Ax.

The portion BC is in compression and will contract. The force in BC is Cy.

The overall length of the rod cannot change

A
L
B
25 kN
L,
o] X

Figure 3.2.8b FBD - Example 3.5

Solution Using MATLAB
In MATLAB Editor
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% P. Venkataraman
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EAB = 200e9; dAB = 50/1000; ©LAB = 25/100; P = 25e03;
EBC = 105e9; dBC 35/1000; LBC= 30/100; PBC = 35e03;
fprintf ('--—————- Weights ---——--—---- \n')
fprintf ('EAB [GPa] = '"),disp(EAB/1e09)
fprintf ('EBC [GPa] = '"),disp(EBC/1e9)
fprintf ('dAB [m] = ') ,disp (dAB)

fprintf ('dBC [m] ") ,disp (dBC)

fprintf ('"LAB [m] = '),disp (LAB)

fprintf ('"LBC [m] = '),disp (LBC)
fprintf ('P [N] = "),disp (P)

%% calculations

$ Part (a)
fprintf('-—-—----""-"“"“"“"“"“"-""-"-"-"-"--~—-—-—-~—— \n')
fprintf ('--- Part (a) ————-- \n")
fprintf('-—-—----""""“"“"“"“"-""-"-"-"-"--—-—-—-~—— \n')
syms Ax Cx

areaAB = pi*dAB"2/4;

areaBC = pi*dBC"2/4;

eg(l)= Ax + Cx - P;

delAB = Ax*LAB/EAB/arealAB;

delBC = Cx*LBC/EBC/areaBC;

eq(2) = delAB + delBC;

sol = solve(eq);

Ax = double(sol.AXx);

Cx = double(so0l.Cx);

fprintf('areaAB [m"2] = '"),disp(arealAB)
fprintf('areaBC [m"2] = '"),disp(areaBC)
fprintf ('Ax [N] = '"),disp(Ax)
fprintf('Cx [N] = '"),disp(Cx)

In the Command Window

———————— Data - -———————-
EAB [GPa] 200

EBC [GPa] = 105

dAB [m] = 0.05
dBC [m] 0.035
LAB [m] = 0.25
LBC [m] 0.3

P [N] = 25000
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-—- Part (a)  -—--——-
areaAB [m"2] = 0.0019635
areaBC [m"2] = 0.00096211
Ax [N] = 31822
Cx [N] = -6821.8

Please Check these solution using a calculator.

Execution In Octave
The code is the same as in MATLAB except for the additional statements below . The changes are
highlighted. You must include the symbolic package.

pkg load symbolic
sympref display flat

Q

$% Data

In Octave Command Window

———————— Weights --—-——-—-—-----
EAB [GPa] = 200

EBC [GPa] = 105

dAB [m] = 0.05

dBC [m] = 0.035

LAB [m] = 0.25

LBC [m] = 0.3

P [N] = 25000

-—- Part (a)  —-————-—-
areaAB [m”"2] = 0.0019635
areaBC [m”2] = 0.00096211
Ax [N] = 31822

Cx [N] = -6821.8

3.2.5 Additional Problems

For the problems below use Table 3.1 for values of the modulus of elasticity. Also solve the problems
by hand and using MATLAB/Octave. Ensure the solutions match.

Problem 3.2.1

The object AB is made of a hollow aluminum cylinder with a brass insert. The outside diameter of the
brass rod is the same as the inside diameter of the aluminum cylinder. A rigid end plate ensures that
the deflection in the two materials are the same and the load is shared between the aluminum and
brass material. The length of the object is L = 0.6 m. The outside diameter of aluminum cylinder (d,)
is 55 mm. The inside diameter (d;) is 30 mm. The applied load is 20 kN. Find: (a) The load in the
aluminum and the brass materials. (b) The stresses in the material. Do the stresses exceed the yield
stress of the material. This will require looking up information. (c) The deflection of the object due to
the applied force?
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P
A e
L
B | J
[ |
el
i
|<—>d |
o]
Problem 3.2.1
Problem 3.2.2

Three different materials are joined together and subject to the forces shown. The material for
segment AC is Copper. Point B, where the 40 kN force is applied, is located midway AC. The material
for segment CD is brass. The force of 30 kN is applied at the junction D. The material for segment
DE is steel. The lengths and the diameter of the segments are shown on the figure. (a) Calculate the
change in the length of AE after calculating the change in the lengths of each segment. (b) Calculate
the stress in the materials and check if they are below the yield stress.

Remember to draw the FBD of each portion of the composite rod needed for calculations.

d =50 mm
d =45 mm
Al l d=20mm
B C '
D v E
i —= 20 kN

40 kN 30 kN

e -
60 cm HED cm 50 cmH

Problem 3.2.2

Problem 3.2.3

The structure experiences a force of 25 kN applied at C on the bar AC as shown. AE is a brass rod
and BD is aluminum. There are pinned to the walls and to the bar AC. The bar AC is rigid.The area of
cross-section of AE and BD is the same and is 600 mm?. (a) Find the forces in the brass and
aluminum rods. (b) Find the deflection in the brass and aluminum rods
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213

Essential Mechanics



Essential Mechanics

3.3 THERMAL STRAIN

When structural materials are subject to a change in temperature they experience a strain or change
in the length. It can increase if the temperature increases above the normal operating temperature
and decreases if the temperature falls below the operating temperature. It’s effect is three
dimensional though it is included in the design of long members - like railroad tracks. Generally there
is a gap between two sections of the railroad to accommodate this change in length for elevated
temperature. As the world’s average temperature increases these designs must be changed at
significant cost. Figure 3.3.1 is an image of buckled railroad tracks where trains have to slow down.
Tracks buckle when there is no space to expand and tremendous compressive forces are created
due to this constraint.

R LE  ~T [

(Courtesy of US Department of transportation - Volpe Center)

There are also other changes in structural materials due to change in temperature whether natural or
deliberate. These changes are defined through the following:

e Thermal strain — change in the length of structure with temperature

e Change in material properties due to temperature

e Temperature cycling — for example the aircraft operating between Florida and Buffalo (NY) in
the winter will have its structural properties degraded because it is constantly operating in the
warm and cold temperatures alternatively in a predictable pattern. This is associated with
reduced product life.

e Thermal stresses — if thermal strain is constrained or their is a mismatch in thermal properties,
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there will be new stress the material has to withstand. This may cause unexpected forces in
the structures

e Decrease in structural capacity due to creep. Creep is a time-dependent deformation under an
applied load which is enhanced with high temperature.

You can see the design for thermal strains in rail tracks, bridge structures, and other structures with
metals where large increase in temperatures are expected. There is usually a gap between long metal
members so that they do not butt each other and develop thermal stresses under change in
temperature. A formal definition of one dimensional thermal strain is shown in Figure 3.3.2.

AT=0
B C c

-
X

| - - |H|
L AlT
Figure 3.3.2 Thermal strain

A bar of length L is subject to an increase in temperature AT will increase in length by ALt. A

decrease in temperature will cause a corresponding decrease.This change in length as a fraction of
the original length is the thermal strain.

&r = 7 =aAT: thermal strain  (3.8)

This increase in length can be computed as
AL, =aATL; (3.9)

The force associated with the strain is:
"ﬂ'T 3.10
P.= A{o; )= AE&, =;IET=AE£!.-1T (3.10)

Where a is the coefficient of thermal expansion of the material. This is a material property that is
established through experiments and published by standards body like ASTM.

3.3.1 Example 3.6

The copper board of width 4 inches fits snugly between rigid walls of the box. If the temperature
increases by 50 °F, (a) what is the stress developed in the material? (b) What is the change in the
thickness of the sheet?

Note: This is a rare example in US units. The unit conversion is implemented in MATLAB.

0.25in l |
-

6in
Figure 3.3.3a Example 3.6
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Given Data:

L=6in, w=0.25in,d=4in
E =17x108 psi, v = 0.33 and
a = 9.6x10%/°F

Properties for copper: E =17x10° psi, v = 0.33 and a = 9.6x10-6/°F

Assumptions:
Uniform stress and strain
Stress within elastic limit (use Hooke’s Law)

Solution:

0.25 in I Ad

6in

Figure 3.3.3b Example 3.6

Essential Mechanics

Let us remove the right rigid end. Increase in temperature will cause the dimensions to increase.

AL = LAT = 2.8800 %102 in
Aw=cwAT =12000x 10—4 I 1/oF

Ad = ad AT =1.9200x10° in

Ad

- I
0.25in I =l

6in
Figure 3.3.3c Example 3.6

The right side cannot expand. Therefore a compressive force P is developed to nullify the thermal

expansion.

AEAL

P= —=8.1600=10° b

cr:—i;:&lﬁ[][]xl[]gpﬂ'

-

The change in w will be the increase due to temperature

awﬂ=1.mr;mx1rrﬂ'n
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The above example was different. It was in the US unit system. However we can use MATLAB to
translate the results to the Sl system. Note the tabbed and formatted printing

Solution in MATLAB
In Editor Window

Essential Mechanics
% P. Venkataraman
S

clc, clear, format compact, close all, format short g
990000000000000000000000000000000000000000000000000000000000
OO0OO0OO0OO0OO0OO0OO0OO0OO0OOOOOOOOOOOOODODOODODODODODODODOODOODODODODODODODODODODODOODODOOOOOOOOOOO™O
fprintf('--————-—-----"-"-""-""“"“"“"“"“""“""-"- - ——— \n'")
fprintf ('Example 3.6 \n'")
fprintf('------------- \n'")
090000000000000000000000000000000000
OO0OO0OO0OO0OO0OO0OO0OO0OOO0OOOODOODOOOOOOOOOOOOOODOOOOO™O
% Conversion factors used
1 ft = 12 in
$ 1 ft = 0.3048 m
$ (DT) C = (DT)F *5/9;
1 1b = 4.448 N
090000000000000000000000000000000000000000000000000000000000
OO0OO0OO0OO0OO0OO0OO0OO0OO0OOOOOOOODOODOOODODOOOODODODODODOOODODODODODODODODOODODODODOOOOOOOOOOOOO™O
$% Data (US units)

n = 0.3048/12;

= 0.25; wsi = w*0.3048/12;

; dsi = d*0.3048/12;
= w*d; Asi = wsi*dsi;
DT = 50; DTsi = DT*5/9;
al. = 9.6e-6; alLsi = aL*9/5;
E = 17e6; Esi = E*4.448/in"2;

i

W 0

L = 6; Lsi = L*0.3048/12;
d 4

A

dL = alL*L*DT; dLsi = alLsi*Lsi*DTsi;

dw = alL*w*DT; dwsi = alLsi*wsi*DTsi;

dd = aL*d*DT; ddsi = alLsi*dsi*DTsi;

P = A*E*aL*DT;

Psi = Asi*Esi*alsi*DTsi;

sigma = P/A;

sigmasi = Psi/Asi;

fprintf('--—-----—- Data ———=—=—=—=——=—=—=—————————"———~———~——~——— \n'

fprintf('-——----"---—-- - \n'

fprintf ('\td [in] = %4.2f ; d [m] = %4.4f \n',d,ds1i)

fprintf ('\tw [in] = %4.2f ; w [m] = %4.4f\n '",w,ws1l)

fprintf ('"\tL [in] = %4.2f ; L [m] = %4.4f\n ',L,Ls1)

fprintf ('"\tA [in"2] = %4.2f ; A [m"2] = %4.4f\n\n ',A,Asi)

fprintf ("\tDT [oF] = %4.2f ; DT [oC] = %4.4f\n\n ',DT,DTsi)

fprintf ('\talpha [1/0F] = %4.7f ; alpha [1/0C] = %4.7f\n ',alL,alLsi)

fprintf ('\tE [kpsi] = %4.3f ; E[GPa] = %4.2f\n ',...
E/1000,Esi/1000000000)

fprintf ("\n--------- Results —---—---—-——-—-———————————"———~—~—"———— \n")

fprintf('-——----"---—--—m \n")



fprintf ('\tP [1lb] = %4.1f ; P [N] = %4.1f \n',P,round(Psi))
fprintf ('\tsigma [psi] = %4.1f ; sigma [Pa] = %4.1f \n', ...
sigma, round (sigmasi))
fprintf ('\tDw [in] = %4.6f ; Dw [mm] = %4.4f \n',dw,1000*dws1i)
fprintf ('\tDd [in] = %4.6f ; Dd [mm] = %4.4f \n',dd,1000*dds1i)
fprintf ('\tDL [in] = %4.6f ; DL [mm] = %4.4f \n',dL,1000*dLs1i)
In Command Window
Example 3.6
————————— Data - - ———— == ———————

d [in] = 4.00 ; d [m] = 0.1016

w [in] = 0.25 ; w [m] 0.0064

L [in] = 6.00 ; L [m] 0.1524

A [in”2] = 1.00 ; A [m"2] = 0.0006

DT [oF] = 50.00 ; DT [oC] = 27.7778

alpha [1/0oF] = 0.0000096 ; alpha [1/0oC]
E [kpsi] = 17000.000 ; E[GPa] = 117.21

P [1b] = 8160.0 ; P [N] 36296.0
0

sigma [psi] = 8160. ; sigma [Pa] = 56258417.0

Dw [in] 0.000120 ; Dw [mm] = 0.0030
Dd [in] 0.001920 ; Dd [mm] = 0.0488
DL [in] = 0.002880 ; DL [mm] = 0.0732
Execution in Octave
The code is same as in MATLAB above.
In Octave Command Window
Example 3.6
————————— Data --=-—-===="="="==="="="="="="—"="—="—"—-"—"——"—"—-—-—-—
d [in] = 4.00 ; d [m] 0.1016
w [in] = 0.25 ; w [m] 0.0064
L [in] = 6.00 ; L [m] = 0.1524
A [in”2] = 1.00 ; A [m"2] = 0.0006
DT [oF] = 50.00 ; DT [oC] = 27.7778
alpha [1/0F] = 0.0000096 ; alpha [1/0C] = 0.0000173
E [kpsi] = 17000.000 ; E[GPa] = 117.21
————————— Results -----——--—7"-"—-—"-"—""—"—"-"—"—"-"—"—"—-"—"—-"-———-——

Essential Mechanics
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P [1b] = 8160.0 ; P [N] = 36296.0

sigma [psi] 8160.0 ; sigma [Pa] = 56258417.0
Dw [in] = 0.000120 ; Dw [mm] = 0.0030

Dd [in] = 0.001920 ; Dd [mm] = 0.0488

DL [in] = 0.002880 ; DL [mm] = 0.0732

The results are the same. No coding necessary.

3.3.2 Thermal expansion coefficients of materials
(From : Wikipedia)
The following are the coefficient of linear thermal expansion (CLTE) of some popular materials

Table 3.2 Coefficient of linear thermal expansion (CLTE)

Linear coefficient CLTE a at 20 °C (10 /°K)

Material

Aluminium 23.1
Aluminium nitride
Brass 19
Carbon steel

CFRP -0.8
Concrete 12
Copper 17
Diamond 1
Douglas-fir 27
Glass 8.5
Gold 14
Ice 51
Iron 11.8
Lead 29
Magnesium 26
Mercury 61
Molybdenum 4.8
Nickel 13
Oak 54
Platinum 9
Silicon 2.56
Silver 18
Stainless steel 10.1 ~17.3
Steel 11.0~13.0
Titanium 8.6
Tungsten 4.5
Water 69

Perpendicular to the grain

3.3.3 Additional Problems

Solve the following problems and compare the solution with MATLAB/Octave

Problem 3.3.1

Essential Mechanics

The aluminum shell and copper core are fully bonded. The diameter d4 is 30 mm. The diameter d; is
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60 mm. The length of the structure is 0.5 m. The modulus of elasticity of aluminum and copper are
70 GPa and 120 GPa respectively. The CLTE of aluminum and copper are 23.1x10 and 17x10 /°C
respectively. There is no stress in the material at room temperature. The composite structure sees a
change in temperature of 150 °C. Determine (a) final length of the composite structure; (b) stress in
aluminum; (c) stress in copper.

i
d, o | @ d,
} 5 4

Problem 3.3.1

Problem 3.3.2

The composite structure is made of a brass and an aluminum rod.The structure is restrained at both
ends. The diameter d1 is 30 mm. The diameter dz is 60 mm. The lengths L4 and L, are 250 mm and
300 mm. The modulus of elasticity of brass and aluminum are 105 GPa and 70 GPa respectively.
The CLTE of brass and aluminum are 19x10 and 23.1x10 /°C respectively. Initially the structure is
stress free and the structure is subject to a temperature drop of -75 °C. (a) Find the force in the
structure; (b) Find the stress in brass; (c) Find the change in length of the brass rod.

A B c

4 fo
I

—

Ly L,

Problem 3.3.2

Problem 3.3.3

The structure is made of the same materials and same dimensions as in Problem 3.3.2 with the same
constraints. However initially the structure has a gap 6 of 0.4 mm at room temperature and is
unstressed. It is subject to a temperature increase of 175 °C. Find (a) normal stress in aluminum; (b)
Change in length of the aluminum rod.

A Cc

ih B B g,
A ==y

‘-‘—b 3‘<T>|

L,

Problem 3.3.3
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3.4 SHEAR STRESS AND STRAIN

The definition of shear stress requires two-dimensions. The previous sections involving normal stress
and strain were set up as problems in one dimensional alone. To make this clear Figure 3.4.1
describes the force and the area on which it acts in the case of normal force and normal stress -part
(a) as well as shear force and shear stress - part (b). The cross-sectional area vector is normal to the
area (outward normal) by definition.

y y

- A EE Y

(@) (b)

Figure 3.4.1 (a) Normal stress, (b) Shear stress.

The direction of P vector and the direction of the area vector A on which it acts in part (a) for normal
stress are parallel. Orthe force is normal to the area on which it acts. In part (b) the force vector is
at right angles to the area vector on which it acts. This is the definition of shear force. The force is in
the plane of the area. The corresponding stress is called shear stress For the definition of shear
stress we see that the force is in the y-direction and the area in the x-direction. Hence shear force and
stress require two dimensions and are frequently expressed using two subscripts.

j_":j_"l___l_z_‘i: (311)

The shear stress (T) , Greek letter tau, is the force divided by the area The first subscript is the
vector direction for the area. The second subscript is the vector direction for the force. In this
definition we have idealized that the stress is uniform.

Shear force and shear stress are more common than you realize. In previous sections we designed
structures where normal stress is below the yield stress to preserve the elastic behavior of the
structure. We also noted that it is the stress that causes the material to fail Consider you bite into a
carrot for lunch and chop a piece into your mouth. You have basically caused the material of the
carrot to fail by applying a shear stress with your incisors. This shear force caused a shear stress that
made the material of the carrot yield and break.The reason you can do this mostly ith your front teeth
is that they are shaper and behave like a knife. The edge of the knife provides the area for the stress
calculations.

You are slicing a softer vegetable like zucchini with a knife. It requires less shear force than a carrot.
Figure 3.4.2 demonstrates slicing a zucchini. You can see the knife applying a shear force and the
material yielding by failure. More force is used initially in part (a) than part (b) because of skin

221



Essential Mechanics

resistance to shear.
__ A\l

(@) (b)
Figure 3.4.2 Shear force and shear stress causing failure

The force exerted by the knife is in the plane of the area. The stress is based on the area of the knife
edge. The sharper the knife the less force needed to cause failure in the zucchini because more
stress is generated. Note the material is not uniform. The properties of the skin layer make it require
(slightly) more force than the central layer. Cutting a tomato with a flat knife is a skill. You can do
better by employing a sawing motion. Shear force is easily illustrated with Figure 3.4.2. The same
things happen with structural materials. In most designs you want to avoid failure by keeping the
shear stress with a certain limit. A lot of wood working involves causing material to fail in shear. This
can happen by sawing, sanding, shaving, planing, chiseling. You also keep material from shear failure

by gluing.

3.4.1 Shear Strain
The definition of shear strain is a little more complex than normal strain.

y
Ax
|
P |
—_— C
D/ o
/
/
“ ff /
L T f.-f _,.-';’
.-"'r _-"f
.-"'r ___r"f
L h X
A B

Figure 3.4.3 Definition of shear

To understand shear stress and strain we must conduct a thought experiment. Let us imagine you
were able to hold firm a two-dimensional square material at the bottom and apply a force P on the
top along the surface as shown below in Figure 3.4.3. To make it easy you can imagine the material is
rubber. For small deformation the material is likely to deform like a rhombus. The original angle,
before P was applied, between the sides AB and AD was 90°. After the application of P, the sides
are no longer at 90°. Furthermore, consider the force P applied over an area A on the top. This

causes a shear stress T.

222



Essential Mechanics

The shear strain is the angle (in radians) y which is the decrease in the original right angle in the

presence of the shear stress T. Normally the shear stress and strain will have two subscripts.The first
subscript denotes the normal to the area, while the second describes the direction of the force. The

particular shear strain in the illustration is Yyyx.. Also, for small shear strain

y=y,=£BAD — ABAD

fooim (3.12)
i (3.13)
L
The actual representation of Figure 3.4.3 should be in three-dimensional as in Figure 3.4.4
Ay AY
D D .
WX WX
Txy¢
- C - C
- - - - - - -
Z A . Z A QYX\TTXY
B & B x

(a) (b)
Figure 3.4.4 3D representation of Figure 3.4.3

In Figure 3.4.4 part (a) we have the FBD of the cube and the applied shear stress due to P. We can
discuss the effects of shear force and shear stress equivalently. In part (a) the cube is not in
equilibrium. In statics every structure must be in equilibrium. Part (b) is in equilibrium. This is justified
as follows:

e First we add equal and opposite shear to the bottom because of the constraint.

e This cancels the force but there will now be a rotation about the point A or B due to the shear
on top.

e To cancel this moment we must add a shear to the right face in the + y direction.

e This now causes a force unbalance in the y-direction which must be balanced by a negative
shear in the negative y-direction on the opposite face.

Note that the subscripts for the pair of shear stress are different. In the limit there is only one shear
stress and we can show that

X (3.14)

Instructural problems in three dimensions there are at most three shear stresses with different pairs of
subscripts. The subscripts can be interchanged as in Eqn. (3.14). Finally, the FBD of the element in
Figure 3.4.3 can be shown (without subscripts) as

D’ —

VoA

7 ¢’

223



Essential Mechanics

Figure 3.4.5 Shear equilibrium fro an element

3.4.2 Hooke’s Law for Shear

In Section 3.2 the material property E was obtained experimentally using a massive machine called
the tensile testing machine. There are similar machines that can subject standard specimens to shear
stress. One way is to apply torsion and measure twist angle. These can be related to shear stress
and shear strain respectively. If the material is elastic,or within the elastic region, then the
corresponding Hooke’s Law for shear, where G is the modulus of rigidity is:

Ty =G ¥ (3.15)

This can be used for design of structures to avoid shear failure

Table 3.3 Shear Modulus of Materials

Material Typical values for shear modulus (GPa) (at room temperature)
Diamond 478.0

Steel 79.3

Iron 52.5

Copper 44.7

Titanium 41.4

Glass 26.2

Aluminium 255

Polyethylene 0.117

Rubber 0.0006

(from Wikipedia)

Example 3.7

To calculate the shear modulus of an unknown material the following experiment is performed. A
rectangular brick of the material (Figure 3.4.6) is bonded to rigid end plates. The bottom plate is
fixed. The top plate is subject to a horizontal force of 120 kN. The height of the block (h) is 50 mm.
The width of the brick (w) is 60 mm. The length of the brick is (L) is 200 mm. The upper plate moves
through a distance (AL) of 2 mm. (a) Calculate the shear strain. (b) Calculate the modulus of rigidity
of th}g material.

T AL |
T
;"{f fj-
. / j;f
.:J i s
- 1 - Wﬂ

Figure 3.4.6 Example 3.7

Given Data:
L=200mm; h=50mm; w=60mm; AL=2mm
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P =120 kN

Assumptions:

Uniform stress and strain

Stress is within proportional limit (use Hooke’s Law)

Solution: (Calculation based on definition - FBD not necessary)

AL 2

a) y=—=—=004|rad
(@) h 50 [ ]
G
(PP _ 120000 oy
A Lw 02x006

r: 10
By G=—=—=025|"
s e

i

3.4.3 Poisson’s Effect or Ratio

This is a material property associated with normal strain. One important effect of axial normal stress
and corresponding normal strain is a transverse effect that is not negligible. This affects normal strain
only and its inclusion in discussion of shear is prompted by two considerations. First, we are
considering two dimensional effects in this section. The previous sections discussed only one-
dimensional effects. Second the modulus of elasticity E, and the modulus of rigidity G, are related
through the value of the Poisson’s ratio v (Greek letter nu) which is a measure of this transverse
effect of normal strain. Consider direct stress applied in the x-direction through the force P as shown
below. The original dimensions of the material are Ly and L,.

LY
A
i B B
L ‘—hp
i 1 AL
L, AL,

Figure 3.4.7 Direct stress and Poisson’s effect

The direct stress in x-direction will elongate the material in the x-direction causing the direct normal

strain &. However the density of the material is constrained to be the same. The material must
therefore must reduce the lateral dimension in the y-direction. This lateral displacement and the

corresponding normal strain, &y is called the Poisson’s effect . It is incorporated through the
Poisson’s ratio (v) - which is an another material property as
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The transverse effect is opposite to the direct effect. That is the reason for the negative sign in

Equation 3.16.

Table 3.4 Poisson’s ratio of some materials
Poisson's ratio
0.32

Material

Aluminum-alloy

cast iron
clay
concrete
copper
cork

foam

glass

gold
magnesium

metallic glasses

rubber
sand

saturated clay
stainless steel

steel
titanium

(from Wikipedia)

0.21-0.26
0.30-0.45
0.1-0.2

0.33
0.0

0.10-0.50
0.18-0.3
0.42-0.44
0.252-0.289
0.276-0.409
0.4999
0.20-0.455
0.40-0.49
0.30-0.31
0.27-0.30
0.265-0.34

A few material called auxetic materials have a negative Poisson’s ratio. That is the sign in Equation
(3.16) is positive. Also from continuum mechanics it can be established that the Poisson’s ratio must
be less than 0.5. Most engineering materials have a value of Poisson’s ratio between 0.2 and 0.5.
Cork has a Poisson’s ratio of zero. That is one of the reasons it is used as a stopper for wine bottles.

Example 3.8

A rod made of aluminum alloy of rectangular cross-section is subject to an axial load P (Figure 3.4.8)
of value 120 kN. The height of the rod (h) is 50 mm. The width of the rod (w) is 60 mm. The length of
the rod (L) is 2 m. The change in length of the rod (AL) is 1.2 mm. (a) Calculate the direct strain and

the transverse strains in the rod (b) Calculate the final dimension of the rod.
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Figure 3.4.8 Example 3.8

Given Data:

L=2m; h=50mm; w=60mm; AL=1.2 mm
P =120 kN

Material : Aluminum; v=0.32

Assumptions:
Uniform normal stress and strain
Stress is within proportional limit (use Hooke’s Law)

Solution: (Calculation based on definition - FBD not necessary)

(a)
AL 12
= L. 2000
g, =—ve, =—0.32x0.0006 =—0.000192

£ =—-vE, =—0.32x0.0006 =—-0.000192

= 0.0006

(b)

L'=(1+¢,)L =(1+0.0006)x2=2.0012[m]

W =(1+g, )h=(1-0.000192)x0.05 = 0.04999 [ m]
w =(1+&. Jw=(1-0.000192)x 0.06 = 0.059988[m]

3.4.4 Relation between E, G, and v

Essential Mechanics

The modulus of elasticity E, the modulus of rigidity G, and the Poisson’s ratio are three material
properties that we have introduced so far. Only two of them are independent. It can be established

that for materials that have the same material properties in all directions

E
Gi=

_ (3.17)
2(14+v)
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This is related to the idea that an axial load can produce both normal strain and shear strains which
can be related. This requires more understanding of the transformation of strain and is beyond the
scope of the simple definitions we have advanced until now. We will accept Eqn. (3.17) and use it if
necessary.

3.4.5 Additional Problems
Solve the following problems on paper and in MATLAB if applicable.Use material properties for the
problem from any resource.

Problem 3.4.1

A force of P = 10 kN is applied to a rod of initial length 200 mm. The original diameter is 20 mm. The
change in length of the rod is 15 mm and the change in diameter is 1 mm after the application of the
force. (a) Calculate the modulus of elasticity of the material. (b) Calculate the Poisson’s ratio of the
material. (c) What is the modulus of rigidity of the material?

4y
4Y

-4 X — -
P P z

- -

3 L
Problem 3.4.1
Problem 3.4.2

A massive weight of 100 kN is hanging from the large hook. A steel rod of diameter d = 75 mm
supports the load at the bearings A and B. (a) What is the stress in the rod? (b) Is it likely to fail in
shear?

e
- 1
I:l —SSSSsS L:I L]
A E B d
— T

\ U

w

Problem 3.4.2

Problem 3.4.3

The two rectangular blocks of rubber are bonded to the rigid end plates as well as the central plate.
Two dimensions of the rubber block are L = 200 mm, w = 150 mm. The maximum shearing stress in
rubber is 2 MPa. The maximum deflection of the plate is 10 mm. (a) Calculate the dimension h of the
rubber block for maximum deflection. (b) What is the load applied to the plate to cause this
deflection?
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3.5 CLASSIFICATION OF MATERIALS

A design or structural engineer has thousands of engineering material that can be used for design.
Most of the time the choice is usually suggested by knowledge, history, and prior practice. One of the
impressive changes in current engineering activity is the explosive development and use of new
materials. There are so many of these new materials coming on line. These materials, largely
represented by composites can actually be designed for particular applications. In addition, the
manufacturing is also seeing a radical change through custom three-D printing and additive
manufacturing. As you can expect these developments will certainly affect the way we approach
design, and particular instruction, such as this book. They have yet to be formalized as they are
largely experimental. Another fascinating area of development is the area of bio-materials, where
molecular changes can be incorporated at the molecular level. New compounds can be synthesized
on the computer before resulting in a liquid medium. This section is largely the domain of courses like
material science or metallurgy.

The material in this section is not original. It is a summary based on the references mentioned below.
In this book we just need material properties to analyze and solve engineering problems. A brief
introduction is useful for understanding applications.

The reference for this page is NDT resource center( https://www.nde-

ed.org/educationsesource ommun ollege/lvia

j.org/Ed htm ) and
Wikipedia

3.5.1 The Material Classification
The standard classification of materials currently involves four groups

1. Metals. This is divided into Ferrous metals and alloys (irons, carbon steels, stainless steels),
and Nonferrous metals and alloys (aluminum, copper, nickel, titanium, noble materials,
refractory materials, super alloys)

. Ceramics (Glasses, Glass ceramics, Graphite, Diamond)

. Polymers (Thermoplastic plastics, thermoset plastics, elastomers)

. Composites (reinforced plastics, metal-matrix composites, ceramic-matrix, sandwich
structures, concrete)

A OWON

In order to use these materials in design one would expect information about its material properties,
like stress-strain behaviors, thermal behavior, that we saw in the previous section. In some cases
additional properties can be necessary like its behavior subject to cyclic loads, or exposure to
radiation. Within each group. Materials are further classified by their composition and physical
properties. A brief discussion of each group follows.

3.5.2 Metals

Most introductory textbooks on mechanics of materials deal with this category. Until recently metals
was the significant material used in engineering applications. Low mass design, computers controlling
structures, 3D printing, and other novel manufacturing techniques have caused all categories of
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materials to be equally important in engineering applications. For example the the modern
commercial aircraft structure has gone from almost one hundred percent aluminum to include about
40 % composite materials. Metals are chosen for engineering applications because they can tolerate
stress, are ductile, have good thermal and electrical properties, are tough, and have high melting
points. Metals are typically hard, opaque, shiny, and malleable. 91 out of 118 elements of the periodic
table are metals. The common metals are:

a. Iron/Steel : are used where strength is needed. Used in bridges, buildings, ships

b. Aluminum: Light weight design, easy to form, corrosion resistance, easily available, and
recyclable

c. Copper: high ductility, corrosion resistance, good electrical conductivity

d. Titanium: high temperature applications, corrosion resistance, light weight - high speed
aircrafts have a lot of titanium. It is also expensive to extract

e. Nickel: high temperatures, good corrosion

f. Refractory materials: high temperature applications like turbine blades

3.5.3 Ceramics
A ceramic is a non-metallic solid that starts in powdered form and is made into products through
processing. They usually involve a combination of metallic and nonmetallic elements, are crystalline
in nature. They are usually good thermal and electric insulators. They can be hard and tough (high
moduli of elasticity) and have high melting temperatures and good chemical resistance. They are
brittle (low ductile) by nature. They are useful in lots of applications. The category continuous to
evolve with advanced ceramics. They are now important in engineering and are termed as technical
ceramics and are classified as:

o Oxides (alumina, beryllia, ceria, zirconia

o Non oxides: carbide, boride, nitride, silicide

o Composite materials: particulate reinforced and fiber reinforced

You can find them in knife blades, brake disks, armored vehicles, ballistic armored vests, ball
bearings, gas turbine engines, tissue engineering, biomedical implants and watch making.

The traditional classification of ceramics is:
a. Structural Clay: sewer pipe, wall tiles
b. Whitewares: dinnerware, electric porcelain
c. Refractories:used in petroleum and chemical industries
d. Glasses:flat glass, glass fibers, optical fibers
e. Abrasives: natural diamond, silicon carbide
f. Cements: roads, buildings
g. Advanced Ceramics:
o Structural : bioceramics, engine components
o Electrical: piezoelectrics, magnets, superconductors
o Coatings: cutting tools, industrial wear
o Environmental: filters, membranes, catalysts

3.5.4 Polymers

A Polymer is a large molecule consisting of repeated sub molecules forming a chain and a solid.
There are natural and synthetic polymers and they have a broad range of properties. They are valued
for toughness and viscoelasticity. The basic classification refers to natural polymers and synthetic
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polymers. Natural polymers include shellac, amber, wool, silk, rubber and cellulose. Synthetic
polymers include synthetic rubber, phenol formaldehyde, neoprene, nylon, polyvinyl chloride,
polystyrene, polyethylene, polypropylene. Silicone, and many more.

The advantage of polymers are low density, resists atmospheric and other forms of corrosion, is bio
compatible, and a good conductor of electric current. They are strong too. Kevlar is used for bullet
proof vests and is about twenty times stronger than steel and much lighter.

For engineering materials the two categories are plastics and elastomers. Plastic are usually obtained
through forming or molding. They are further classified as thermoplastic or thermoset polymers.
Elastomers are used for elastic load bearing and suppression of vibrations.

The thermoplastic polymers are polyethylene, polypropylene, polystyrene, and polyvinyl chloride.
The thermosetting polymers are alkyds, amino and phenolic resins, epoxies, polyurethanes, and
unsaturated polyesters.

3.5.5 Composites

A composite is a composite material is made from two or more different constituent material with
different physical and chemical properties and results in a material with very different characteristic
than the material it is created from. In fact today engineering properties can be customized through
composites. The materials forming the composite are of two types. One of them is considered the
reinforcer and the other is called the matrix. The reinforcing material is usually used in particulate
form, as fibers, or as sheets and is usually a smaller percentage of the composite. They are folded
into the matrix in different ways. The constituents materials can be metal, ceramic , or polymers.
Natural composites are palms and bamboo. Bricks, made from straw and mud were known from the
beginning. Concrete, plywood, pappier-mache are examples of composite materials.The reinforcing
material is of low density and higher strength. The matrix is ductile or tough. Composites can be

e Reinforced plastics

e Metal-matrix composites

e Ceramic-matrix composites
e Sandwich structures

e Concrete

The strength property of the composite depends if it is dispersion strengthened, particle reinforced, or
fiber reinforced. Metal-matrix are of the first category. For particle strengthening the volume fraction
of the reinforcer s large. The strength of the composite is shared between the matrix and the
reinforcer. In fiber reinforced composite the fiber carried the load.

The reference for this page is NDT resource center( https://www.nde-

j.org/Ed htm ) and
Wikipedia
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3.6 STRESS ON AN INCLINED PLANE

If you apply a tensile force to a rod of homogeneous material you expect to see simple tensile
stresses in the cross section along the rod. Today engineering materials, like composites, are
specially designed for efficient handling of stress in prescribed directions. That is, It provides better
strength in certain directions. A natural example is wood with fibers that improve its structural
performance in those directions. If you applied a tensile force to wood in a certain direction, it is likely
that it may fail along a very different direction then the one in which the force is applied. This is
decided by the orientation of the wood fibers to the direction of the applied force. This suggests that
we must be concerned by the stresses in cross sections that are not normal to the applied force. This
is illustrated b the following development. This is important in designs involving composite materials.

Let us begin with a a component in simple tension. The cross section normal to the load experiences
a uniformly distributed stress o.

Oy

B b C B o
- | T - -
| —= X

Figure 3.6.1 Simple tension

Let us look at a cross section that is inclined at an angle 0 to the vertical as shown (Figure 3.6.2a).
We cut along this plane to expose the forces/stresses on this inclined plane. Since the original
structure was in equilibrium the two sections cut must also be in equilibrium. Consider the equilibrium
of the piece to the of the cu.t It will have force components normal to and in the plane of the cut
(Figure 3.6.2b).

E s 5 E y -
B E (o B % /,’ P

: ‘5 P P ol
g 2. = Id *_F‘ &H:—?F—— - =
= - t 0

Figure 3.6.2a Inclined plane Figure 3.6.2b FBD on inclined plane  Figure 3.6.2c Stresses - inclined plane

The force P can be resolved into a component (F,) normal to the inclined plane which will have an
area of Ay producing normal stress.It will also have the component (F;) in the inclined plane
producing shear stress as shown in Figure 3.6.2c:

g(f) = 5 = P.CDEE =fc05: f=0,cos' B
A, Alcos@ A

&
@)= o = i =£5in5‘c055‘=a.5in8c555‘ (3.18)
A, Alcos@ A )

()
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The location of E and the angle 8 are arbitrary and can be located anywhere on the beam. Therefore,
even if the original loading suggests normal stress the beam can experience different values of
normal and shear stress along different planes in the material. This analysis is important for
materials that are glued or made up of fibers, like the PCB, fiber reinforced plastic etc. This idea is
used to discuss principal stresses and Mohr’s circle in a later section. Meanwhile the variation of the
stresses for different values of 6 can be easily generated by MATLAB as shown in Figure 3.6.3.

Stress as a function of @ for o, = 100 MPa

100 =, T T -, T T T
N AN 4

o(0), +(0) [MPa]

-50

0 1 2 3 4 5 6 7
# [rad]
Figure 3.6.3 Stress on inclined plane

Example 3.9

The block AB is glued together at the section CD - Figure 3.6.4a. The dimensions of h and w are 60
and 120 mm respectively. The maximum allowable tensile stress in the glue is 500 kPa. (a) What is
the maximum load P than can applied? (b) What is the corresponding shear stress?

s s
/!
A D/ B P b A D4F
/60 °
- W - CI
C c =
(b) Fa

Figure 3.6.4 Example 3.9

Given Data:

h=60mm; w=120 mm; 06 =60°
omax = 500 kPa

Assumptions:
Stress on inclined plane

Solution: (Calculation based on Figure 3.6.4b)
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F, = Psin (60):
F, = Pcos(60);
: 0.06)(0.12
T X , J012) _ ) 0083
T sin I:ﬁD] sifl I:ﬁD]
£, _ s00000= 2512(89)
A, 0.0083
P=4800 N
- Peos(60) _ 4800cos(60) — 194kPa
A 0.0083

n

3.6.1 Additional Problems

Problem 3.6.1

The glass block of cross-section 125 mm x 150 mm is subject to a compressive force of 1000 kN. (a)
What is the maximum normal stress in the material? (b) What is the maximum shear stress in the
material?

Problem 3.6.1

Problem 3.6.2

The composite wood of square cross-section is subject to a tensile load of 20 kN. The cross-section
is square and the ply angle is 45 degrees as shown. The maximum tensile stress is 2 MPa and the
maximum shearing stress is 1.2 MPa. (a) What is the largest cross-section of the piece?

N\

Problem 3.6.2
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3.7 MULTIDIMENSIONAL NORMAL STRESS AND STRAIN

So far our discussion of normal stresses were restricted to one dimension. Shear stress by definition
acts on a plane (or two dimensions). Consider normal force/stress only. Let us visit a situation when
forces in the x and y directions are simultaneous applied. This is best illustrated by force on a 2D
rectangular element shown in Figure 3.7.1 below.

1to

Py Y4 i

& 1
- L || —=

X Ly

- ‘“‘H—A
Lxl s
F‘.‘-"

Figure 3.7.1 two normal forces

Oy

it

Ox

Figure 3.7.2 Direct Normal stresses

The forces will cause direct stresses (Figure 3.7.2)

11
=

| — !
1
A,
¥

This defines a problem in Plane stress.
Each direct stress will cause strain in the other direction due to Poisson’s effect.
The strain will cause a change in the size (dimensions) of the rectangle.

3.7.1 Plane Stress

The direct stress in x-direction will elongate the material in the x-direction causing the direct normal
strain &. This will cause the normal strain, & and & through Poisson’s effect . It is incorporated

through the Poisson’s ratio (V). A stress in the y-direction must do the same and create a Poisson’s
effect in the x and z-direction. As a result the we can write the sum of the direct strain and the
Poisson strain for an object subject to simultaneous stress in two directions as:
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1 =
E, :E_gx_l’ﬁ;-]
L -10, | (3.19)
“ E_ o
1 i
A e —1=‘E:!"J.:|

We can also express the relation in (3.19) in terms of stresses and noting that there is no stress in z-
direction

e
~ / (3.20)

g e
X [1_]:,;][5 ¥ kJ

The strains in Eqn. (3.19) will cause a change in the dimension of the object as shown in Figure
3.7.3.

"Fr'
‘ul_r.l
L
Fy i Fx
-— A -
e
X Ly
v
- - -
L
x AL
phy

Figure 3.7.3 Displacements due to the forces

The new dimensions of the object in the x and y directions can be calculated as:
L=L +AL =L +L £ =L (l+£)
L'=L +AL =L +Le =L (1+¢&)

(3.21)

Even if there is no stress in the z-direction (plane stress) there will be a change in the dimensions of
the z-direction as:

e e, 3.22)

Eo=d e Al =gl e =L §l+e )

The change in the volume of the material is
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For small strains

A(Vol ) =L L L (& +¢,+&.)

Example 3.10

(3.23)
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The copper plate is subject to two-dimensional loading. The compressive stress in the x-direction is
50 MPa while the tensile stress in the y-direction is 75 MPa. The length Ly is 50 mm while the length
Ly is 75 mm. The thickness t of the plate is 10 mm. (a) Calculate the change in the dimensions of the

plate.

"x thickness = t
Figure 3.7.4 Example 3.10

Given Data:

Lx=50mm; Ly=75mm; t=10 mm;
E =117 GPa; v=0.33;

ox =--50 MPa; oy =- 75 MPa

Assumptions:
Two-axis loading
Plane stress

Solution: (Do not need a FBD)

LT 2
e o 11Tx10" )

Y

. o

& =={o, ~vo} = ——
* V117 x10° )

1

E- —

={-ve, -1}

/
1
|
l‘-

=-T705x

I -50x10° ~0.33(75x10°) |

|| 75x10° —0.33( 50 10°) |

11710

3
e
1073

=0.00782

| -0.33(—50x10°)-0.33(75x10°) |

—0.00063%

The change in each dimension is the strain multiplied by the corresponding length. The new

dimensions are:
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L,=L (1+¢)=0.05(1-0.000639) =0.0499 m
L =L, (1+&, )=0.075(1+0.00782) = 0.075059 m
t =t(1+£,)=0.01{1-7.05x10 ) =0.00999 m

¥

3.7.2 Three-Dimensional Stress and Strain

One can similarly extend this to a 3D state of stress. The corresponding Hooke’s law is termed as
the generalized Hooke’s law. This is also referred to as multi-axis loading.

> X

a7

z
Figure 3.7.5 Three dimensional state of stress.

The generalized Hooke’s law

F,
|

g =|= igx_l"‘jr -0, |
£ 1) _
R [ o, —VO, — VO, (3.24)
YLEMT : -
R -
B —ir:,r_—m:r -,
Sl 5

This can be written conveniently in matrix form as:

£ 1 —v vl o
x 1 x
g |l==lv 1 —v|uo (3.25)
L E L
E. -v —v 1 || o

The equations (3.19) and (3.20) assume that the material properties are the same in all directions.
This is called an isotropic material. If properties change in different directions it is an anisotropic
material. Metals are usually isotropic while wood and composites are anisotropic. The relations must
be modified using direction specific material properties.
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3.7.3 Plane Strain

The plane stress problem introduced earlier had no stress in the z-direction (G = 0) but there was a
strain in the z-direction due to Poisson’s effect. A plane strain problem will require a constraint to
eliminate this strain in the z-direction. This is done by employing a counteracting stress in the z-
direction to cancel this strain €;. One way to generate this is to use rigid end plates to hold the
element in plane stress - Figure 3.7.6

e
B ,,,,////////W b,

x thickness =t

Figure 3.7.6 Plane Strain

The stress required for zero strain in the y-direction can be calculated as:
V ) O

gl cba =2
B il

(3.26)
Applied ©.=— [—v (0. +0, ]} =v(o, +0,

The equations for the strain in the plane stress direction must incorporate this stress in the z-direction

E, :é[.gr _1.-',::r_1_ —1;,:::.'__:] :élﬁ'ﬁ —1*":::?"_1_ —1'1: I’I:C:"l. +£71:|Jl|

1 1
=_—|[{1l—-v" — ’ (3.27)
E E[[-l v )o, —v(l+y ]r:rJ.]

&

g, =é[[_1—1=*: )o, —1"(14‘1"]511

J

3.7.4 Additional Problems
Solve the following problems on paper and in MATLAB if applicable.Use material properties for the
problem from any resource.

Problem 3.7.1
Obtain the matrix relation between stress and strain by solving the matrix problem in Eqn. (3.25)
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Problem 3.7.2

The aluminum block is set up in a wise to be subject to a compressive stress in the x-direction of 150
MPa and a compressive stress in the y direction of 120 MPa. The initial length of the specimen is 150
mm, 30 mm and 15 mm in the X, y and z directions respectively. (a) Calculate the change in the
dimension of the object; (b) What is the change in the density of the object ?

(c) What is the change in the area of the cross-section?

y
I

o l
LY L EL BN IR R R B B
*—g
—— X
) =
v A S a———
X - -
L
- - z
Lx
Problem 3.7.2
Problem 3.7.3

Aline at an angle 60 degrees is inscribed in an unstressed square copper specimen as shown. A
stress of 150 MPa is applied to the specimen in the x-direction. (a) What is the new angle the line
makes with the horizontal?

I
e
§
I

0 - OX
_____ o
[ 3
3

Problem 3.7.3
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3.8 PRINCIPAL STRESSES

An important approach to structural design in recent years is the use of composite materials. This
provides the structure with strength in preferred directions. You can find them on aircrafts (current
Boeing transport aircraft are 40 % composite skin), automobiles, sports equipment (all sports
racquets, golf clubs), laptop chassis, and most everywhere else. Many are made of carbon/graphite
fibers in resin and cured. They provide very high strength to weight ratio. One material, Kevlar is
used in body armor. This provides the ability to orient fibers in the direction of maximum stresses.

This idea of principal stresses also references the previous section on stresses on an inclined plane.
Even if the loading is uniaxial you can expect to find shear stress along different planes in the
material. Another important consideration is that stress can vary from point to point in a material
continuously. This is an important assumption from continuum mechanics.All of this together allows
us to define a state of stress at a point. This is defined in detail for the two-dimensional case and we
will generalize it to the three dimensional case through extrapolation.

3.8.1 Two-dimensional; State of Stress at a Point

The two-dimensional object shown in Figure 3.8.1a is subject to several loads but is in equilibrium.
We expect every point in the object to be experiencing stress that varies continuously. What is the
state of stress at a typical point P in the body? To expose the point P and the stress at point P we
cut the section arbitrarily along a plane that includes point P. At P we expect to see a force vector F
and the area vector A on which it acts - Figure 3.8.1b. These vectors are independent. We can
resolve the force in components in the coordinate directions. We can similarly resolve the area into
two components. Stress is defined as force divided by area. There are four such elements. We find
stress at a point by using the limit on the area.

X
Figure 3.8.1a. Force system on Object Figure 3.8.1b. Force at point P
F=Fi+Fj A=Ai+Aj
F . o e (3.28)
g =lm—=; ¢ =lim—; o =hm—; o =lm-——
(=0 4 y (=0 4 o (=0 4 Y =0 4

L L

The stresses in Eqgn. (3.28) are defined so the first subscript references the area component and the
second the force component. We recognize that repeated subscripts represent normal stress while

242



Essential Mechanics

the mixed subscripts represent shear stress. The limiting process allows us to represent Figure 3.8.1
in a different way. To define stresses at the point we inscribe an elemental rectangle of infinitesimal
size centered around the point - Figure 3.8.2 (a). The sides of the rectangle are of infinitesimal
lengths dx and dy and the definitions for state of stress is shown in Figure 3.8.2 (b).

AY
F, Cyy by

$ O,

\ P El |
2= X !—
il \\ l dx

Fa

(@) (b)
Figure 3.8.2 State of Stress at a point

Since the original object is in equilibrium, the point P with the differential area must also be in
equilibrium. This is shown in Figure 3.8.3 where the dimensions of the rectangle are not important
since it represents the region around a point.

T
VX
I & |

Figure 3.8.3 State of stress at a point

3.8.2 Principal stresses
The discussion here parallels the discussion for stress in an inclined plane. The state of stress at

point P given by Figure 3.8.3. For equilibrium txy and tyx are the same.

Consider a rotation of the the element by the angle 6. This is a coordinate rotation by the angle 6.
The new coordinate directions are x’ and y’. The stress and strain along new coordinate, in terms of
the original stresses, is calculated through the relations in Eqn. (3.29). This can be derived through
equilibrium and simple rotation of the coordinate system often introduced in math courses. We will
avoid the details and apply the relations as given in Eqgn. (3.29)
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Gy’

‘cx! y!
Figure 3.8.4 Coordinate transformation.

The normal and shear stress along the new directions can be obtained as:

c.+toc, 0.—-0C

o= Ly = Y cos20+1_ sin260
Xy
2 2
c.+o., o.—-0,
o, =— Y _ = Y cos20 —1__sin20
Yy 2 2 Xy
o,—0, |
T, =———=sin20+71_ cos20
y 2 Xy

(3.29)
This is also referred to as the transformation of stress and strain. For the special case of 8 which

leads to zero shear stress (6,) , called principal direction, there will be only normal stresses on the
element. These are the maximum and minimum normal stresses at the point (P).

Omin

/ \Gmin
Omax
Figure 3.8.5 Principal Stresses

The angle 0, and the stresses are calculated through Eqgn. 3.29

244



Essential Mechanics

T
tan IEP — a
o, —0,
g +o0, o -0, ,
Jﬂ:l;_'i = ) = + i P : ] + I'-""I.
s I-\._\_ s _,-'I
(3.30)
g . to. fe-e% .
B — o il (e,
i '._‘_ i J.l
LA
T = of| = J +T,

o,.—0
tan28. =— -
2t
T i (3.31)
r:l:l-'_'i: - +'i!-‘.'l
R

Figure 3.8.6 Plane for maximum shear stress

It can be verified that

o,+0,=0,+0, (3.32)

3.8.3 Mohr’s Circle
For different values of 8 the normal and shear stresses in Eqn (3.30) will generate points that lie on a

245



Essential Mechanics

circle. This is called the Mohr’s circle. This is a special circle that can be constructed through the
formula or just through geometry. It is based on the current state stress - that is the values for the of
the normal and shear stress. The shear stresses are plotted with opposite sign to make the rotation
angle 8, match the physical direction of rotation. The circle is constructed using the nominal values
of the ox and oyand t,. Starting with the nominal values in Figure 3.8.3:

e We draw the axis using a convenient scale. The x-axis represents normal stress and the y-axis
represent the shear stress.The origin is at (0, 0).

® Plot two points P [0, -Tx,] and Q [0y, ~Txy ]

e Join points P and Q which intersects the horizontal axis at S.

e With S as center, and radius SQ (or SP) Draw a circle. This is the Mohr’s circle

+T

—T
Figure 3.8.7 Mohr’s Circle

For any rotation 20 the o,(8), 0,/(8), and 1¢,(6) can be read off the axis.

—

G}.IP-T 1,1 —

Xy

=y
Figure 3.8.8 Transformation of stress

Example 3.11

The state of stress at a point in the specimen is given by the stress diagram shown below. Note T,y =
Tyx - (@) Find the principal stresses; (b) the rotation of the principal plane; (c) the maximum shear
stress for this state of stress; (d) represent the stresses on the Mohr’s circle
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48 MPa

Figure 3.8.9 Example 3.11

Given Data: (sign of stresses are important)
ox =-16 MPa; oy =- 48 MPa; 1ty =-60 MPa

Assumptions:
2D state of stress

Solution: (Do not need a FBD)

(a) Principal stresses

=0.5(16 —43)+\[[0_5(15— (—43)]]2 +(—60)* =52 MPa

fer = b :

=]
q
| g

| ¥ ]
i o )

=0.5(16 —43)—J[D_5 (15—(—43}]]3 +(—60)" =—84 MPa
(b) The rotation of the principal plane

(1Y 4 2(-60)
“=la ™ 11

3
Mo 5 Bl BETT
1) —(—42) |

(c) The maximum shear stress

-
rd

. =\[g_5[15_[_43]]:+[—43] = 68MPa

max

(d) The Mohr’s circle
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| -25 MPa

—T

Figure 3.8.10 Mohr’s Circle

3.8.4 Calculating and Drawing Mohr’s Circle

We will use MATLAB to calculate the principal stresses and draw the Mohr’s circle

Solution Using MATLAB
In the Editor

% Essential Mechanics
% P. Venkataraman
S

% Section 3.8 - Example 3.11
09000000000000000000000000000000000000000000000000000000000
OO0OO0OO0OO0OO0OO0OO0OO0OO0OOOOOOODOOOOOODOOOODODOODODODODODOODOODODOODOODOOOODODODOOOOOOOOOO™O
clc, clear, format compact, close all, format short G
09000000000000000000000000000000000000000000000000000000000
OO0OO0OO0OO0OO0OO0OO0OO0OOOOOOOODOOOODODOOOOODODOODODODODODOODODODODOODOODODODOODOODOOOOOOOOOO™O
fprintf('--———-—----"-"-"-"-""-"“"“"“"“""“""-""————— \n'")

fprintf ('Example 3.11 \n'")
fprintf('------------- \n'")
09000000000000000000000000000000000000000000000000000000000
OO0OO0OO0OO0OO0OO0OO0OO0OO0OOOOOOOOOOODOOOOOODODODODODODOOODODODODODODODODODODODOODOOOOODOOOOOOO™O
%% Given State of Stress

sigx = 16; sigy = -48; txy = -60;
fprintf('-----------------—~ \n")

fprintf ('Current State of Stess \n')
fprintf('--———-----------——-— \n'")

fprintf('sigx = '),disp(sigx)

fprintf('sigy = '),disp(sigy)

fprintf ('txy = '),disp(txy)

%% Calculate Principal Stress

sigav = 0.5* (sigx + sigy);

R = sqgrt((0.5* (sigx-sigy)) "2 + txy"2);
siga = sigav+R; sigb = sigav-R;

thtp = 0.5*atan2 (2*txy, (sigx—-siqgy)):;
fprintf ('\n-——-------------————~ \n')
fprintf ('Principal stresses \n')
forintf('--———------------—- \n"')
fprintf ('siga [Pa] :'),disp(siga)
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fprintf ('sigb [Pa] :'),disp(sigb)
fprintf ('taumax [Pa] :'),disp (R)
fprintf ('thtp (deg):'),disp(thtp*180/pi)

%% Draw Mohr's Circle (Graphics)
tht = linspace(0,2*pi,101);

x = sigav + R.*cos(tht);

% R.*sin (tht) ;

plot(x,y,'r-", 'LineWidth', 2)
xlabel ('"Normal stress [MPal]')
ylabel ('Shear Stress [MPal]')
title('Mohrs Circle')

grid

axis square

axis tight

hold on
text (sigx,-1.05*txy, 'A', 'FontWeight', 'b");
plot(sigx, -txy, 'ro', '"MarkerFaceColor','y');
text (sigy,1.05*txy, '"B', '"FontWeight', 'b")

1 1

(
(
( ;
plot(sigy, txy, 'ro', '"MarkerFaceColor','yv');
text (sigav,0, 'C', '"FontWeight', 'b");
text (siga, 5, "\sigma a', 'FontWeight', 'b");
text (sigb, 5, "\sigma b', 'FontWeight', 'b");
line (
(
(
(

line([sigav sigav], [0 R], 'Color','b', 'LineWidth', 2)
line([-100 60], [0 O], 'Color','k', 'LineWidth', 2)
line ([0 0],[-1.1*R 1.1*R],'Color','k', 'LineWidth',2)

text (sigav,1.1*R, '"\tau {max}', 'FontWeight', 'b");
plot(sigav,R, 'ro', "MarkerFaceColor', 'y");
plot(sigx, -txy, 'ro', "MarkerFaceColor','y"');

In the Command Window

sigx 16
sigy = -48
txy = -60

siga [Pa] 52
sigb [Pa] -84
taumax [Pa] 68
thtp (deg): -3.0964e+01

In the Figure Window
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Mohrs Circle
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Figure 3.8.11 Mohr’s Circle by MATLAB

Execution in Octave
The code is same as in MATLAB above

In Octave Command Window

sigx = 16
sigy = -48
txy = -60

siga [Pa] :52
sigb [Pa] :-84
taumax [Pa] :68
thtp (deg) :-30.964

In Octave Figure Window
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Mohrs Gircle
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Figure 3.8.12 Mohr’s Circle by Octave

The figures are slightly different and the text location must be fine tuned.

3.8.5 Additional Problems
Solve the following problems on paper and in MATLAB

Problem 3.8.1
(a) Find the principal stresses; (b) the rotation of the principal plane; (c) the maximum shear stress for
this state of stress; (d) represent the stresses on the Mohr’s circle

-25 MPa
—l—> 50 MPa
85 MP y"
a el 85 MPa
Oy P 9 -Fx
50 MPa -
-25 MPa
Problem 3.8.1
Problem 3.8.2

(a) Find the principal stresses; (b) the rotation of the principal plane; (c) the maximum shear stress for
this state of stress; (d) represent the stresses on the Mohr’s circle
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-25 MPa
_l_' 50 MPa
- 85 MPa y* 85 MP.
O P ) 2
50 MPa <

-25 MPa
Problem 3.8.2
Problem 3.8.3

(a) Find the principal stresses; (b) the rotation of the principal plane; (c) the maximum shear stress for
this state of stress; (d) represent the stresses on the Mohr’s circle

-25 MPa
VA
8 MPa «— ®___p |/ BMPa
Ox P X

-25 MPa

Problem 3.8.3
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3.9 FAILURE CRITERIA

An engineer will be engaged in designing engineering structures. The design of an engineering
structure involves:

e Understanding the purpose of the structure

e The dimensions and geometry of the structure

e The loads - that is the forces and moments that the structure will experience
e The restrictions and constraints on the structure and the way it is supported
e The material the structure will be made off.

e Ensuring the structure will not fail

e The structure performs reliably over its lifetime.

Today it is also important that the design is:

o Sustainable

o Economical

o Optimal

o Easily replaceable with improved designs
o Disposable

o Environment friendly

o Accessible

The design of a structure that is subject to forces and moments experiences the following:

m Two kinds of stresses - normal and shear stress

m The stresses may change from point to point within the structure

m A state of stress can be defined for each point

m Each point will have a maximum normal stresses and maximum shear stresses - principal
stresses and the maximum shear stresses

m For failure and reliability these maximum stresses must be below the allowable stresses
permitted by the structural material.

m For further safety the maximum stresses must be less than the permitted stresses by the factor
of safety.

In summary, any device or object that is designed and manufactured is expected to operate as
advertised over a stated length of time. If the product does not function as expected then it is
considered a failure. Failure can have many reasons. Failure is usually associated with reliability -
the expression of confidence that the product will deliver on its expectation.

Failure also has a practical side effect which is best attributed to Taguchi :”When a product fails, you
must replace it or fix it. In either case, you must track it, transport it, and apologize for it. Losses will
be much greater than the costs of manufacture, and none of this expense will necessarily recoup the
loss to your reputation”.

Failure is serious business and designing for actual failure is impossible because of so many
variables. Instead we try and ensure that the design meets the Failure Criteria. There is no unique
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criteria and the designer usually satisfies the failure criteria that is appropriate for the type of the
product and its underlying design.

Finally, an engineering structure is considered deformable - it will deform under loads. If the bridge
does not return back to its original state it is likely to cause additional problems in many ways. It is
expected to behave elastically: that is when the loads are removed the structure returns to its
undeformed state. If the design is stretched beyond the elastic domain then the residual strain on
the structure changes the design forever. Many failure criteria are based on principal stresses rather
than the standard engineering stress and strain. Since we can calculate the principal stress form the
value of the engineering stress and strain at every point, we examine some of the popular failure
criteria below.

3.9.1 Mechanical Structural Failures
For most designs we can investigate four types of failures.

a. Failure by elastic structural deflection (& > dmax)

b. Failure by structural yielding (6. < ©)

C. Failure by Fracture (¢ = oy )

d. Progressive Failure (failure is built slowly during life - creep and fatigue)

There are failures that are difficult to quantify and difficult to investigate.

a. Operating environment (moisture, dirt, dust, corrosion)

b. Aging and shelf life

c. Unanticipated operating current and voltage levels

d. Unintended chemical reactions

e. Electromagnetic interference

f. Material properties may unexpectedly vary due to production and finish

The design/structural engineer must determine the possible modes of failure and establish criteria to
predict these failures. In order to account for these unpredictable variations a factor of safety (FS) is
usually adopted. For many structural and machine applications recommended FS are available. They
vary by state and country.

£ - Permissible stress in maternial (3.33)

Maximum stress in the structure

Figure 3.9.1 Failure n tension (necking)
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Drctile Torsion Failure

El'.i"]l_—'! TIJI'$iIII| F:-u'lm'l;l:
Figure 3.9.2 Failure in torsion

Figure 3.9.3 Failure in bending
(The following images are obtained from Wikimedia commons)

3.9.2 Simple Description of Mechanical Failures

The illustration below is a simple beam that is fixed at one end. When there is no load at the end the
entire structure remains horizontal. When a load P is applied at the end the beam will bend/deflect
along the length with the maximum deflection at the end as shown. If the beam is elastic then when
the load is removed it should be straight and undeformed again. The maximum deflection will depend
on the value of the load P. As P increase so does the maximum deflection. However when P exceeds
a certain value the beam will not return to its horizontal initial position again. This is considered
failure.
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Figure 3.9.4 lllustration of maximum structural deflection

This type of failure is prevalent in vibration when the amplitude is large that parts collide. Also beams
and shell may buckle under load. The failure criteria is applied on the maximum deflection of the
component that includes buckling load too. A factor of safety is assumed and the deflection must
remain less than the maximum elastic deflection.

(i) Maximum Yield Stress

In most structural design, the maximum stress is kept below the yield stress (or proportional limit).
Instead of the deflection the stress is monitored. It is assumed that the stress at maximum elastic
deflection and maximum yield stress are pretty close by. This type of failure is used for simple
structures and simple loading in beams, shells, and plates.

For failure criteria, the designer must calculate the maximum stress of the component that include
buckling and an appropriate factor of safety to ensure the actual maximum stress will not exceed the
yield stress of the material.. Instead of the maximum stress, the failure criteria have evolved t
include principal stress like Tresca and Von Mises failure criteria.

(ii) Failure by Fracture

Failure by fracture is usually associated with brittle materials since ductile materials will have already
yielded and will suffer plastic deformation prior to fracture. Fracture will also depend on existing
cracks as these cause stress concentrations where local stresses will exceed any stress limit under
consideration.

For this type of failure the maximum principal stress must be calculated with an appropriate factor of
safety to ensure the stress is still within the yield limit.

(iii) Progressive Failure

During progressive failure, a small failure or small changes is added on to the component during
routine operations. This builds up to a sudden failure at a later date even it it is not apparent at the
current time. A micro crack is usually the culprit. As noted before this failure can happen due to creep,
due to fatigue, and due to changes in material property leading to a change in the stress-strain
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behavior, due to small changes in the component.

During Creep failure there is usually
e Increase in strain without increase in stress
e Enhanced strain at high temperature operation

During fatigue failure there is usually
e Change in stress level because of the change in the frequency of the load cycle
e Repeated changes in the direction of load causing change in local material properties

(iv) Failure Criteria

The mechanical failures outline above are actually implemented by verifying that the component
satisfies some formal failure criteria. Now with software used for structural analysis it becomes easy
to obtain a detailed picture of stress, strain, displacement everywhere through structural simulation
software. The software can also report on multiple failure criteria as part of the solution. We look at
four popular criteria

Maximum Shear Stress Criterion (Tresca’s Hexagon)
Maximum Distortion Energy Criterion (Von Mises)
Maximum Normal Stress Criterion (Coulomb’s Criteria)
Maximum Normal Stran Criterion (St. Venants Criteria)

A component will be safe under given loading if the stress at all critical points, including areas of
stress concentration, is less that than that recommended by one or more of the failure criteria
indicated above.

3.9.3 Maximum Shear Stress Criterion
This criteria is based on plane stress and useful for ductile materials.

It is believed that ductile materials will fail in slippage along an oblique surface due to
Shear stress

Criteria:

Tmsx (10 the component) = 7, (shear vieldin test specimen based on samematerial )
Consider a cantilever beam with end load. The principal stress at every point can be evaluated as
illustrated below. The state of stress at every point can be translated through the principal stress. G,
is the maximum principal stress and Gy, is the minimum principal stress:

(0.-03) (334

2 | =
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= *
| .

s,
Figure 3.9.5 Regular and principal stresses at the same point
Alternate Criteria:
|G-'I_ | o ||:F_ | <, |crh —iF, | < o, (if o, and o, are of opposite sigr)

(3..35)

This leads to Tresca’s Hexagon with the criteria that the principal stresses at every point must lie

within the area of the Hexagon shown in Figure 3.9.6 for the component to be safe. vy is the yield
strength of the material

%b
oy

8

oy
Figure 3.9.6 Tresca’s Hexagon

3.9.4 Maximum Distortion Energy Criterion (Von Mises)
A given structural component is safe

If the maximum value of the distortion energy per unit volume of the material is less
than the distortion energy per unit volume required to cause yield in a tensile-test specimen f the
same material

The distortion energy (Ug) , which is the energy associated with the change of shape, is different from
the strain energy , which is the change in the volume of the material. These concepts are to early for
this first course in mechanics. However we can tie the distortion energy to the principal stresses. For

an isotropic material under plane stress with a modulus of rigidity G

u;=—/(0,-0,0,+0,°) (3.36)
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2 S

‘\if oy O
‘, "‘t(}'a
:5 principal —oy
: stresses

Figure 3.9.7 Principal stress and alternate criteria for distortion energy

Alternate criteria

The structural component is safe if the principal stresses at every point is within the area enclosed by
the ellipse. This is also regarded as the Von Mises Criteria.

3.9.5 Maximum Normal Stress Criterion

This failure criteria is applied to brittle materials where failure is expected through rupture or fracture.
It will be sudden with no yielding before failure. It would certainly apply to products created using
ceramic materials.

Criteria:
A given structural component is safe if the maximum normal stress in the component
reaches the ultimate stress in a tensile test specimen made of the same material

If the ultimate stress in tension and compression are the same the criteria is regarded as the
Coulomb’s criteria and can be summarized as follows:

P b
] | %
w f ‘ g
o ™G0, oy g
- principal
L stresses ..

Figure 3.9.8 Coulomb’s normal stress criteria

o, <oy |ow|<oy

If the ultimate stress in tension and compression are different the criteria is regarded as the Mohr’s
criteria and can be summarized as follows:
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o Oh
. kg
"RQ”' —oyc
S K""Ua OyUT ©a
G principal
3 stresses e

Figure 3.9.9 Mohr’s normal stress criteria

T <O O <O (T, .0, >0

|D-H|{|C'-UC; [5.5){|D-UC|(E:I=C'—EJ {DJ (

3.39)

3.9.6 Maximum Normal Strain Criterion
This failure criteria is applied to brittle materials where failure is expected through rupture or fracture.
It will be sudden with no yielding before failure.

Criteria:
A given structural component is safe if the maximum normal strain in the component
remains smaller than the ultimate normal strain in a tensile test specimen made of the same material

For material with the same strain in tension and compression the criteria is called the Saint Venant’s
criteria and can be summarized as:

Sb

o
p ou
i Sy f o 1-v
| T / =4
\/cu

/jl
(A

‘l"; H“-L(}'a

principal

Op
stresses

Figure 3.9.10 St. Venant’s normal strain criteria

&l<eus |&l<ey
|5—‘ LRl (3.40)

Alternate Criteria:
A structural component is safe as long as the principal stresses remain within the area of the plot shown
above
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3.9.7 Example 3.12

The state of stress, at a critical point on the PCB guide, due to warping is a concern. The result of
tensile stress tests of the same material establishes the yield stress as 250 MPa (ov). Since this not
a brittle material find the factor of safety with respect to yield, using (a) the maximum-shearing-stress
criterion; (b) the maximum-distortion-energy criterion

i 80 MPa *

o

Figure 3.9.11 Example 3.12
Data: o, =80 MPa; o, =-40 MPa; 1, =25 MPa; oy=250 MPa; ty=250/2 =125 MPa

Assumption: None (not brittle material)

Solution:
r:rm.f=%[_r:fl.+r:r_1.:]=%[ED—4D]=ED_:‘L£PH
Comm N o WoR=f- 3
[k | 8 G Ll ol s +25° =65 MPa
L. 2 R EET Al T

|
".

o,=0,, +R =20+65 =85 MPa
o, =0, —R =20—65=—45 MPa

(a) the maximum-shearing-stress criterion

195
o L, e P
L. B3

(b) the maximum-distortion-energy criterion
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Solution Using MATLAB
In the Editor

% Essential Mechanics
% P. Venkataraman
S

% Section 3.9 - Example 3.12

9000000000000 000000000000000000000000000000000000000000000o0o
OO0OO0OO0OO0OO0OOOODOOODOOODOOOOODODODODODODODODODODODODODODODODODODODODODODODODODODODODODODODOODOOODO©OOO™©
clc, clear, format compact, close all, format short G
9900000000000 00000000000000000000000000000000000000000000o0oo
OO0OO0OO0OO0OO0ODOOODOOODOODODOODODOODODODODODODODODODODODODODODODODODODODODODODODODODODODODODODODOODOOO©O©OO™©
fprintf('-—-—--=--""-"""“"“"“"“"“"“"-"-"—"-"-"—“"-~-—~—-~—~——— \n')

fprintf ('Example 3.12 \n'")

fprintf('-—---------—--mm e \n")

9900000000000 00000000000000000000000000000000000000000000O0o0o
OO0OO0OO0OO0OO0OOOOOODODOOODOOOODODOODODODODODODODODODODODODODODODODODODODODODODODODODODODODODOODOOODO©OOO™©
%% Given State of Stress

sigx = 80; sigy = -40; txy = 25; sigY = 250; tauY = sig¥/2;
fprintf('-——----------—=-———— \n')

fprintf ('Current State of Stess \n')
fprintf('-—----------——————- \n")

fprintf('sigx = '),disp(sigx)

fprintf('sigy = '),disp(sigy)

fprintf('txy = "),disp(txy)

fprintf('sig (yield) = "),disp(sigY¥)

fprintf('tau (yield) = "),disp(tauy)

o o

%% Calculate Principal Stress
sigav = 0.5* (sigx + sigy);
R = sgrt((0.5* (sigx-sigy)) "2 + txy"2);

taumax = R;

siga = sigav+R; sigb = sigav-R;

% thtp = 0.5%atan2 (2*txy, (sigx-sigy));
fprintf ("\n-——-----------—-—————- \n'")

fprintf ('Principal stresses \n')
fprintf('-——-----"---=---=-———~ \n')
fprintf('siga [Pa] :"),disp(siga)
fprintf ('sigb [Pa] :"),disp(sigb)
fprintf ('taumax [Pa] :'),disp (R)

% fprintf ('thtp (deg):'),disp(thtp*180/pi)

%$% (a) Failure criteria
FS1 = tau¥Y/taumax;

fprintf ('\nFS based on Maximum shear Criteria :'),disp(FS1)

$% (b) Failure criteria
FS2 = sqrt(sigY¥"2/(siga”2 - siga*sigb + sigb"2));

fprintf ('FS based on Von Mises Criteria ') ,disp (FS2)
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In the Command Window

sigx = 80
sigy = -40
txy = 25
sig (yield) = 250
tau (yield) = 125

siga [Pa] : 85
sigb [Pa] : -45
taumax [Pa] : 65

FS based on Maximum shear Criteria
FS based on Von Mises Criteria

Execution in Octave
The code is same as in MATLAB above

In Octave Command Window

sigx 80

sigy = -40

txy = 25

sig (yield) = 250
tau (yield) = 125

siga [Pa] :85
sigb [Pa] :-45
taumax [Pa] :65

FS based on Maximum shear Criteria
FS based on Von Mises Criteria

3.9.8 Additional Problems

:1.9231
:2.1863
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Solve the following problems on paper and in MATLAB/Octave. These problems appeared in the
section on principal stresses.

Problem 3.9.1
The state of stress is in a ductile material of your choice. Apply, (a) the maximum-shearing-stress
criterion; (b) the maximum-distortion-energy criterion

-25 MPa
—l—> 50 MPa
85 MP y"
a el 85 MPa
Oy F v -Fx
50 MPa -
-25 MPa
Problem 3.9.1
Problem 3.9.2

This state of stress is in a brittle material of your choice. Apply (a) the normal maximum stress
criteria; (b) the maximum normal strain criteria.

-25 MPa
_l_V 50 MPa
85 MP. y"
5 a ais -85 MPa
Gx P . -);
50 MPa -
-25 MPa
Problem 3.9.2
Problem 3.9.3

Chose the material and the failure criteria you will apply.
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-25 MPa
VA
8 MPa «— ®___p |/ BMPa
Oy P X

-25 MPa
Problem 3.9.3
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3.10 TORSION - AN INTRODUCTION

This material will appear again in Chapter 8. You can skip it if you choose. The essential
information in this section are the following:

e Torsion introduces shear stress and shear strain in the object
e Torsional shear stress are distributed across the cross-section
e Designs involving torsion prefer circular cross-sections

e Torsion causes a twisting deflection

In the previous sections we have discussed the stresses, strain, and displacement resulting from
pushing and pulling on the object. The concern was to avoid failure. You can also break an object by
twisting it - applying torsion. An example was included in the previous section. In this section we
briefly introduce torsion and then revisit the topic to study it in detail in a later chapter.

While we talked a lot about stresses in the previous sections you must realize that there are only two
types of stresses. They are the normal stress and the shear stress. In normal stress the force is
normal to the area on which it is acting. In the case of shear stress the force is over the area over
which it is acting. Whatever the action of the force on the body it can only produce either or both of
these stresses. Pulling and pushing normal to a member of the structure produces normal stresses as
we defined in the previous sections. Pure torsion will produce shear stresses. Pure bending
produces normal stresses.

3.10.1 Pure Torsion

Torsion is just moment applied along an axis. It is important in power transmission, both during
generation and consumption. In Figure 3.10.1.1the vertical wind turbines generate power through the
rotational motion created by aerodynamic forces. The turbine generates power by harnessing the
rotational motion created along an axis through aerodynamics again. The hydraulic electric generator
creates a rotational motion by converting the linear momentum of the fluid stream to angular
momentum and torque. The automobile is driven by delivering torque to the wheel axle. You open a
wine bottle by twisting or applying torque.

[ W D

Figure 3.10.1 Examples of useful torsion applications (figures courtesy of Wikimedia commons)

B

One of the design features in objects that deal with torsion is that the cross-sectional area is usually
circular. Transmission shafts are usually solid circular or annular. This has evolved through practice
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and the fact that circular cross-sections provide rotational symmetry. When you are executing the
Biellmann spin on the ice you are not really symmetrical or have a rotational cross-section. We will
restrict the cross-sections to be circular for mechanical designs. Non circular sections can also carry
torque. Currently the design insight is to use circular geometry for carrying torque. To start our
discussion we start with a solid circular shaft of radius R in equilibrium carrying a pair of torque.

T
T ‘\k \

] —

Figure 3.10.2a Shaft in equilibrium - three equivalent representations

Figure 3.10.2a shows a shaft carrying torque T in equilibrium and is represented in three ways. We
will use the last representation with the torque represented by double arrows because it is direct and
simple. The torsional momnt is given by the curl of the fingers of the right hand as the thumb is in the
direction of the double arrows. Since the torsional displacement is relative to the ends of the shaft we
will introduce a further simplification that the left end is fixed and it is the right end that will deform due
to the application of torque. Figure 3.10.2b represents this depiction along with another illustration of
the torque T on Face C. This will assist in following the discussion below.

T

Figure 3.10.2b Representation in the cross section

In our representation the external torque T is exerted at the ends of the shaft of length L at B and C.
What about the cross-sections in between? A simple FBD will require that every section of the shaft
along the length to support the same torque T. But unlike the ends they must react by developing a
force distribution on the area of the cross-section that results in the torque T. This is what we term
the resultant force in the cross-section. This force will naturally define a stress distribution in the
cross-section. Since we have axial/circular symmetry the quantities will be at most a function of the
radial location - r. Let us list the following ideas for development of relations among various entities in
torsion:

1. There is only a single equivalent load in each internal cross-section and it is the torque or a
moment T

2. The stress distribution in the cross-section must integrate over the area of the cross-section to
produce this torque T.

3. Axial symmetry suggests that this stress may be only a function of the radial distance from the
center -r.

4. The best way to generate a torque or a moment is to have a force acting at a distance. In this
illustration the force is located away from the center of the cross-section F(r). This force must
be in the plane of the cross-section and therefore will produce a shear stress. We will identify
this as t(r).

5. The force and the stress around the cross-section will have the same value at the same radial
location r. An annular dA is the best choice to establish the force at the location r. The value of
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dAis 2 1t rdr.
6. Finally we assume deflections are small and we are in the elastic range where distributions can
be assumed linear. Angles are small so that sometimes curvature can be neglected

We illustrate this at any cross-section D on the shaft as:

Figure 3.10.3 Force in cross-section leading to T
We can develop the following relation between the torque T and the stress 1(r)
F [r] =i (rj dA

a’T[r}z rxF r] =i F[r}z r[r]ri‘i

o

(3.41)

Tzifcﬂ'[rjz r(r]ri{

:'_';F_‘pd

This is all we can establish using statics and equilibrium. Since we cannot establish the nature of

T(r) it is a statically indeterminate problem. To develop the relationship further we have to include
displacement and deformation of the shaft. Let us explore the relative shaft deflection of the end C
relative to end B which is held fixed. We illustrate this in Figure 3.10.4 which is shown enlarged. It
has two depictions to detail several ideas in the following discussion.

Figure 3.10.4 Shaft deformation or deflection

In the figure on the left above we have shown two surfaces at different radius. The inner surface is at
r = r (arbitrary) and the outer surface at r = R. In our experience the shaft will twist due to the torque.

This is the angle shown as ¢. We have drawn a line on the outer surface BC and a corresponding line
EF on the inner surface. The twist deforms the shaft such that the points C on the outer surface
moves to C’ and the point F on the inner surface moves to F’. The angle of twist is the same for both
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surfaces. We can deduce that the length CC’ is R¢$ and the length of FF’is r¢.

In the figure on the right we have the same figure but include another angle vy, capturing the
deflection of the outer surface. Before the application of the torque the angle between BG and BC is
90 degrees. The application of torque causes the angular deflection y,, which is the reduction in the
original right angle. This is the classic definition of shear strain. We can similar define the shear
strain at r = r as y. We can accept that the maximum strain is at the outer surface as it relates the the

displacement CC’. The shear strain on the inner surface will be related to displacement FF’ as the
length of the shaft is the same. We now can relate

CC' R
ta'ﬂ:"r:.-z.?s-:_:_
E E
IR, L i (3.42)
i
:.-"::J_—
R

We now exploit the elasticity of the shaft (shear modulus G) to relate the shear stress to the shear
strain and include this in the integration of the torque

f(}-]:;}?:G?&}-:f&i; S SO
R (3.43)
£ =
T=[r rrdd= H[ dd == ke [}‘cf:i

Jis the polar moment of |nert|a and is the property of the cross-section. For a solid shaft as in this
example with radius R or diameter D

oofpe

Let us recompile the information above to express the stress and the twist angle in terms of the the
applied torque and the geometry of the shaft.

4

”T}*dr] TT}' ®

1
w

4 R4:£D4
32

u'——-.h:l

g
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I'-:'I:.F_E :E:GFIH = E
J L
;;'?:E; is not a functionof r
(3.44)
we - ol
- TFH L
Tr

t(r)= ¥ in Gy(¥)

The distribution of the shear stress is illustrated in Figure 3.10.5. The shear stress is linear in the
cross-section with zero at the center (for a solid cross-section) and a maximum value at the outer
surface. It is same for any radius drawn in the cross-section (or any azimuthal angle 0).

\I'.

Figure 3.10.5 Shear stress distribution

You will note that we have avoided placing the two subscripts required to define any shear stress -
the first subscript identifies the direction normal to the plane of the area on which the force acts and
the second the direction of the force. If we use the coordinate x to define the axis of the shaft then the
cross-section is defined by the coordinates y and z as shown. For any radius (r) and azimuth (0)
there are two components of the shear stress t,y and ..

Stress Distribution for Annular Cross-section

T

e

Figure 3.10.6 Stress in annular cross-section.
The relations are the same but the polar moment of inertia id defined similarly but has a different

expression for this cross-section. You should confirm the following equations are useful for the
annular cross-section with a length L and shear modulus G.
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()= Tan =i Ty = 349
J LW J
TL

ey

3.10.2 Example 3.13
Let us complete a set of calculations using the relations we have established. Consider a single shaft
of annular cross-section, of length L = 1.2 m, inner diameter D1 = 50 mm, outer diameter D, = 72 mm,

made of Aluminum 2014- T6 (tut =275 MPa, ty = 230 MPa. G = 27 GPa) subject to torque T along

its axis. What is the maximum torque that can be handled by the shaft for a factor of safety of 3 with
respect to shear yield?

X

Figure 3.10.7 Example 3.14.1

The calculations are simple and a calculator will do. We will confirm it with MATLAB.

Ay x y
J =| 2= |(0.072* —0.05*) =2.025x10° [ m*]

.32)

Loy 230x10° 5
g ey ST : =76.67x10°[ Pa]

i HOS
T, = T 4310 No]
D, /2

Solution Using MATLAB

In the Editor

% Essential Mechanics

% P. Venkataraman
Section 3.10

2220002088800 0008000008088000000880000008080000008080000008050 0950005

S22 000088800000 8000008088000000880000008080000008080000008058005 005

Hh
°'C T O

-
° 3
O ~—

2220000088800 0008000000880000008800000080800000088000000805005 0005
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$% Data (in meters)
1 = 50/1000; R1 = D1/2; D2 = 72/1000; R2 = D2/2; L = 1.2;
FOS = 3; tauy = 230e06; tallow = tauy/FOS;

o\°

% calculations -
We can plug data into formula (numerical)
% or solve as an unknown (symbolic)

o\°

syms T % torque unknown

J = (pi/32)*(D2"4 - D1%4);
eql = T —tallow*J/RZ;

T = double(solve(eqgl));

fprintf ('Length [m] = '"),disp (L)
fprintf ('Inner diameter [m] = '"),disp(D1l)
fprintf ('Outer diameter [m] = '"),disp(D2)
fprintf('d [m"4] = '),disp(J)
fprintf ('FOS = '"),disp (FOS)
fprintf ('Max allowable shear stress [Mpa] = '),disp(tallow/1000000)
fprintf ('Maximum Torque [Nm] = '"),disp(T
Output in Command Window

Example 3.13

Length [m] = 1.2

Inner diameter [m] = 0.05

Outer diameter [m] = 0.072

J [m"4] = 2.0247e-00

FOS = 3

Max allowable shear stress [Mpa] = 76.667
Maximum Torque [Nm] = 4312

Execution in Octave

The code is the same as in MATLAB except for the additional statements below . The changes are
highlighted. You must include the symbolic package and if you do not wish to see warnings you
include the command warning off as shown

clc, clear, format compact, close all, format short G, warning off

pkg load symbolic

5%5%5%5%5%5%5%5%5%5%5%55%5%555%5%5%5%5%5%5%5%5%%

Length [m] = 1.2

Inner diameter [m] = 0.05

Outer diameter [m] = 0.072

J [m™4] = 2.0247E-06
FOS =3
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Max allowable shear stress [Mpa] = 76.667
Maximum Torque [Nm] = 4312

We did not use the length in the calculations. We can change the example to calculate design
information like the maximum radius for a given torque. We can calculate both the radii if we constrain
the twist angle. We will look at Torsion more extensively in a later chapter.

3.10.3 Failure in Torsion
In Example 3.13 we related failure to the maximum yield stress for pure torsion. The failure in torsion
can be related to the type of material as shown in Figure 3.10.8.

T

T Ductile Torsion Failure

Brittle Torsion Failure

Left segment of the failed shafts

Figure 3.10.8 Torsional Failure (photo by Jeff Thomas, 1997)

To understand the two types of failure let us explore the principal stresses in this case using Mohr’s
circle of a point on the top surface of a shaft subjected to torsion. To coincide with the failure in the
image the direction of torque is changed from earlier figures. This only changes the direction of the
shear stress.

Gb c,
Tmax \ /
— 450
-l 7
P x
Tna 1 o /
X ‘ T \
max
—
‘_; Trax Ga L2 Gb
+1
'
TmaxI \
RN

Mohr’s circle
Figure 3.10.9 Torsion at a point on the shaft

Consider point P in Figure 3.10.9. It’s state of stress is shown on a rectangular element in the top
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figure in the second column. There is shear stress in the right side because of the applied torque. The
shear stress on the remaining sides can be filled in by considering equilibrium of the element. The
lower figure in the second column is the Mohr’s circle corresponding to the point P. The principal

stresses 63 and G}, can be directly established by the circle of radius Tmax. The figure in the third
column s the orientation of the planes at the point P on which the principal stresses appear. For the
applied torque there are two kinds of failure. One type of failure can occur due to the maximum
shear stress (shear failure) which explains the failure in ductile materials in the top part of Figure
3.10.8. The other type of failure is due to the normal principal stresses (normal failure) as seen in
the case of the brittle materials in the lower part of Figure 3.10.8. In this case the material has given
way in tension even though the primary applied stress is shear. In essence failure can occur along
planes that are different from those that handle the direct application of the loads. This is particularly
true for composite materials where different planes are designed to handle different stresses.

This also suggests that there is a need for different failure criteria for different types of materials.
Failure theories are continuously evolving. Materials are usually non-homogeneous and therefore
also need for a factor of safety for the design.

We will explore Torsion in greater detail Chapter 8. Problems are deferred until then.
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3.11 BENDING - AN INTRODUCTION

This material will appear again in Chapter 7 and Section 7.3. You can skip it if you choose.
The essential information in this section are the following:

e Bending introduces normal stress and normal strain in the object

e Bending stress are distributed across the cross-section

e Designs involving bending have large moment of inertia with respect to bending axis
e Bending causes real bending in beams

e Bending can cause large normal stresses

Let us start with Figure 3.11.1 describing bar bending - a term that describes the ability to bend the
barbell by lifting significant amount of weights. The FBD alongside suggests that the bar between CD
is in pure bending - only a bending moment is carried/resisted in the section. Also note that it
appears to bend in an arc of a circle (larger the radius less the bending?). What are some of the
idealizations involved in this problem. If this is a design problem what information are we trying to
establish ? - the maximum stress, the elastic deformation (we want the bar to be straight after the
weights are removed), etc.
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Figure 3.11.1 Pure Bending (Wikimedia Commons) and FBD

Idealizations
(The helper figures used for illustration and explanation below are not numbered)

1. First we will regard the problem as two-dimensional - the beam was only loaded along a single line.
I's depth is ignored in the primary discussion. In this illustration the barbell is round but the FBD
alongside ignores the three-dimensionality of the barbell. We have replaced the couple by the
moment moments at C and D. Where exactly are these moments located? It is likely they are applied
through the vertical plane through the center of the barbell. In the development of the mathematical
relations we will ignore the three dimensionality of the problem. This is helpful (initially) if the vertical
plane through the center of the beam is also a plane of symmetry.

2. We like our positive x-axis to flow right and the y-axis to go up. The z-axis is out of the
screen/page. A positive bending moment is shown in the plane of symmetry and is directed along the
positive z-axis. Figure 3.11.1 demonstrates negative bending moment.

L
[
[

Sk

e
e

X

3. Now what kind of stresses will be created by this moment in the cross-section (or what kind of
stress distribution in the cross-section will result in a moment?)? Let us consider a small area dAin
the cross-section in the positive quadrant. It is located at a distance y and z (the cross-section is in
the yz plane). The stresses on this dA will determine the elemental force dF. This force can create
elemental moments about the axis. These elementals values can be integrated over the cross-section

L

a1
|
y
|
U* -
- T 4
"x

Since there only a bending moment in the cross-section there must be a distribution of normal stress
to create the bending moment Mz.
We can set

The negative sign is to relate the direction of the bending moment and the moment produced by the
normal stress to be the same.

In order for the integrated moment not to cancel over the area of the cross-section the sign of ox must
change above and below the z-axis to create the bending moment M.. To support
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this assertion further, we know that integral of ox over the cross-section must equal a normal force
which must be zero since there is only M, in the cross-section. This also suggest that the normal
stress must change sign over the cross-section to cancel .

E=]o dd=0
4

The same ox can also cause My which does not exist in this illustration and so must be zero.

M =jzo, dd=0
- A

The normal stress distribution in the cross-section must satisfy these three equations. This is an
overdetermined system.

4. We have arrived at a statically indeterminate system. We cannot solve for the stress unless we can
understand the deflection or the deformation of the beam.

5. Since every cross-section in the beam sees the bending moment, every cross-section will bend the
same way.

3.11.1 Bending Deformation (Pure Bending)
Pure bending will deform the beam in an arc of a circle. In Figure 3.11.2 we see that the straight bar
subject to bending can bend in at least two ways.

Figure 3.11.2 Original beam, Bending - Case 1, Bending - Case 2

Case 1: the top surface AB and the bottom surface CD can bend with the same radius, have the
same length after bending but with the center of the circle at different points. This suggests that the
strains might be the same everywhere - and therefore the stresses. That is not what we were
expecting in our previous idealizations of bending expressed earlier.

Case 2: In the second case the center of the circle is the same for both surfaces, but AB will shorten
and CD will elongate compared to EF. Therefore, Case 2 requires that there will be strains and
deformation in bending will vary in the cross-section. Case 2 agrees with our expectation in
idealization item 3 above.

Therefore Case 2 describes what happens in pure bending. This leads to another idealization which
suggests that the points in the cross-sections will be in the same plane before and after bending
moment is applied - plane sections remain plane. It is a cleaner description of bending than allowing
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multiple centers for bending deformation in Case 1. In Figure 3.11.3 we look at Case 2 in more detail
to derive the relations between strain, stress, and bending moment.

“HH‘H?//
/ ;0 \

M —%; ma
M, . E R |

l y = -bi2
D p: —

-

Figure 3.11.3 Pure _B_éﬁding and deformation

Figure 3.11.3 is explained further here. The pure bending moment M, bends an original straight bar
ABCD into an arc of a circle of radius R. Instead of the round cross-section in the first illustration
we will assume that the cross-section is rectangular. O is the center of curvature and the radius is
measured from O to a special line/surface EF. Plane sections remain plane. In the straight bar the
lengths AB, CD, and EF all have the same length (L). Once the bending is applied AB will shorten
(compression) and CD will expand (elongation/tension) since plane sections remain plane. These are
normal strains as they are normal to the cross-section. EF has the same length before and after
bending. EF has a special name and is called the neutral axis (NA). EF suffers no strain and
therefore no stress. Since the cross-section is doubly symmetric it is easy to locate the neutral axis
passing through a special point - the centroid. Later on we will show that this is also the case for non-
symmetric sections too. The angle subtended by the bar at the center is 6. The radius of curvature is
R and is drawn from O to the neutral axis EF as shown. The line GH (or the surface GH) is at a
distance +y measured from the NA.

One of the assumptions we make is that the angle 6 is small. Since the bending of the bar is
represented by an arc of a circle we can calculate

EF=L=R0
GH=(R-y)6
AB = (R-b/2) 0; CD=(R+Db/2)0;

Change in length at the distance y from the neutral axis and the subsequent strain is calculated as

5=GH-EF =(R-y)6—RE=—18

g —y8 -y
g(v) " ER b (3.46)
L b _tb
T T
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The negative sign indicates shortening above the neutral axis and also indicates lengthening below
the neutral axis for negative values of y. Another thing to note is that the strain is linear and is zero at
the neutral axis. A very important fact in this relation is that the linear strain relation is independent of
the type of the cross-section as long as the distance is measured from the NA. It therefore follows the
maximum strains are felt by the fibers on the top or the bottom. In our illustration they are the same
but of opposite sign because the cross-section is symmetric. The maximum strain depends on the
furtherest distance furtherest from the NA and must include the sign. Finally, every cross-section of
the bar is subject to the same strain distribution.

We have related the bending deformation to normal strains. This is due to the resistance of the beam
to bending alone.

Figure 3.11.4 Failure in bending

3.11.2 Normal Bending Stresses

Pure bending introduces a linear normal stress distribution in the cross-section of the beam. Both
tensile and compressive stresses are created in the same cross-section. The maximum stresses are
on the outer fibers of the beam. Hence failure is likely to occur either at the top or the bottom of the
beam, whichever is higher in magnitude. Since our design will usually be limited to the elastic range,
the stress distribution can be related to the strain in pure bending using the modulus of elasticity of
the material and normal strain established above. . Using this stress distribution we can then relate
the stress and the applied bending moment through the integral we established in the previous
section. Note the bending radius R is the same for the entire beam.
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Since y is measured with respect the NA, I, is the second moment of area (or the moment of inertia -
MOI) about the NA. What about the NA itself? Let us look at the equation for Fy.
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The NA passes through the centroid for the area of cross-section. Or, the z-centroidal axis of the
cross-section is the NA.

3.11.3 Bending Deflection

We will go back to the beginning of the section and examine Figure 3.11.1 again. We really would like
to know how is displacement of the beam y(x) connected to the bending moment moment M,. For
pure bending this is connected to the radius of curvature R that appears in the equations above.
From calculus the radius R and y(x) are related through the expression:
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We know that the slope of the deflections will be small. From the previous relation we can then write:

1 d'y M,

et = (3.48)
R d EI

[ =)

The latter defines a second order differential equation for y(x). We know that the bending moment M,
could be a function of length of the beam, x, and I, could also change with x if the cross-section
varies. The differential equation can be integrated twice with appropriate boundary conditions to
establish y(x).

3.11.4 Example 3.14 - Bar bending

Let us calculate the stress and deflection associated with Figure 3.11.1. Figure 3.11.5a is the
description and specification of a barbell from Rogue barbell from their website. It gives some of the
properties. Let us calculate the stresses and deflection for the highest world record for dead lift. It
was Class: 308; Weight Lifted: 939 Ib; Lifter: K Konstantinovs; Country: Latvia ; Year: 2009;
Federation: AWPC.
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GEAR SPECS
Loadable Sleeve Length
Dual Knurl Marks No Center Knurl Brand Rogue Fitness
I @ 28.5MM Diamet
I_l I ameter Bar Type Men's Bars
- _ Bar Use Weightlifting, Qlympic Weightlifting

Powerlifting, Mu“ipurpose

Bar Length Bar Weight 20KG
Diameter 28.5MM
X G O 190K ++ L=
20KG BUSHING 28.5MM PSITENSILE GOODWHIP STANDARD U.S.A.MFG Center Knurl Mo
STRENGTH KNURL
Knurl Marks Dual
Made At The Rogue Factory Shaft Coating Black Zinc
Columbus, Ohio U.S.A. KNURL DETAIL
Loadable Sleeve 16.40"
Length
Figure 3.11.5a The barbell specification
Y
= : _—
M = 7512 in-b i —
. +0
A 4d=1120n B W15
+ e ] R A B e
[+ .l d
! “— |-o(y)
51.21in =

Figure 3.11.5b The bending moment on the barbell and the stress in the cross-section.

We will perform the calculations in US units for this example. The modulus of elasticity for the
material is difficult to find. We will choose it the same as a zinc alloy. The yield strength of the
material is associated with the tensile strength given above. The calculations are straight forward and

involves direct substitution.

Solution Using MATLAB
In the Editor

Essential Mechanics
P. Venkataraman
Section 3.11
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calculations
We can plug data into formula
or solve as an unknown

(numerical)
(symbolic)

o° o o

o
o

syms
Izz=
sigxy
sigm
R

torque unknown
i/62)*(D1"4);
-Mz*y/Izz;
-Mz*(D1/2)/Izz;
E*xIzz/abs (Mz) ;

Yy
(p
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fprintf ('Length [in] = '"),disp (L)
fprintf ('Diameter [in] = '"),disp(D1)
fprintf('Moment [in-1Db] = '"),disp(Mz)
fprintf('Iz [in"4] = '"),disp(Izz)
fprintf('Max normal stress [lb/in/in] = '),disp(sigm)
fprintf('Yield strength [lb/in/in] = '),disp(sigy)
fprintf ('FOS = '),disp(sigy/sigm)
fprintf ('Modulus of Elasticity [lb/in/in] = '),disp(E)
fprintf ('Radius of curvature [in] = '"),disp(R)

In the Command Window

Example 3.14

Length [in] = 51.2
Diameter [in] = 1.12

Moment [in-1Db] = -7512

Izz [in"4] = 0.079732

Max normal stress [lb/in/in] = 52761

Yield strength [lb/in/in] = 190000

FOS = 3.6011

Modulus of Elasticity [lb/in/in] = 12600000

Radius of curvature [in] = 133.74

We will explore Bending in greater detail Chapter 7.

Execution in Octave

The code is the same as in MATLAB except for the additional statements below . The changes are
highlighted. You must include the symbolic package and if you do not wish to see warnings you
include the command warning off as shown

clc, clear, format compact, close all, format short G, warning off

pkg load symbolic

0000000000000 0000000000000 0

Length [in] = 51.2

Diameter [in] = 1.12 as highlighted
Moment [in-1Db] = -7512

Izz [in"4] = 0.079732

Max normal stress [lb/in/in] = 52761

Yield strength [1lb/in/in] = 1.9E+05

FOS = 3.6011

Modulus of Elasticity [lb/in/in] = 1.26E+07

Radius of curvature [in] = 133.74

We will explore Bending in greater detail Chapter 7. Problems are deferred until then.
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3.12 BUCKLING - AN INTRODUCTION

This material will appear again in Chapter 9. You can skip it if you choose. The essential
information in this section are the following:

e Buckling takes place when compressive axial loads are applied to a tall column
e Bucking causes bending of the column

e Buckling deflection depends on end conditions

e Buckling causes normal compressive stresses

e Buckling deflection is solved as a second order linear differential equation

Design of structures involves calculating stresses due to the loads experienced by the structures and
deciding that the stresses will not cause failure. The previous sections considered many ways that the
structure can fail. You can push or pull on it to break the structure. You can twist it to cause rupture.
You can bend the structure to break it. Buckling is another mode of failure. This happens with tall or
long structures that are carrying a compressive load. This section provides a simple introduction to
buckling so that it is part of design awareness as knowledge of mechanics of structures are gained in
the following chapters.

The simple deflection of the structure causes a bending load due to the eccentricity of the load
because of the deflection. Very often this is also termed as column buckling. Figure 3.12.1 illustrates
buckling of columns in testing performed at NIST (National Institute of Standards) in the NIST
Building and Fire Research Laboratory, particularly the column identified as Col 79. This column is
bent under the application of a compressive load. Note Col 80 also bends but has a different shape.
Both of the columns are deflected sideways.
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Figure 3.12.1 Column buckling (NIST Burlrng and Fire Research Laboratory)

Buckling can occur at a load well below the direct compressive stress that lead to compressive failure.
For this reason bucking is considered a structural instability. For a structure carrying a load the
simple idea of instability is that if the load exceeds a certain value it will no longer be able to support
the load and may fail catastrophically. Instability is bad in all structural designs because you cannot
guarantee the safety or performance of the structure. Apart from the failure criteria that was presented
earlier it is important that the design will not experience the critical buckling stress or the critical
buckling load. If loading increases beyond the critical buckling load the structure will respond
unpredictably leading to the loss of any capacity to carry the load.

Nevertheless buckling is a special case of loading. The structure is long and is subject to
compression. Buckling can be related to the length of the column as can be derived for the basic
model of buckling. Compressive loads can develop on a structure due to thermal strains. An example
of this is the gap between between adjacent sections of railway tracks. If the outside temperature
exceeds the design maximum the tracks will expand and press against each other creating enough
compressive load to detach from the foundation, Figure 3.12.2. There are other types of buckling like
multiple column buckling (bicycle wheels), plate buckling (extension of column buckling), surface
buckling (creation of potholes in winter). They will always cause failure if they occur.
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-

Figure 3122 Buckling of tracks (Wikipedia)

Column buckling is usually discussed in a later course on mechanics of solids because the simple
model of buckling requires knowledge of differential equations and their solutions. In a standard
engineering curriculum this usually happen after a course on statics - which means that this concept
may be a bit early for discussion here or in Chapter 9. The model itself should be easy to follow but
the solutions are borrowed directly and their interpretation are taken for granted.

3.12.1 Euler Buckling Model

The simplest model for column buckling is the Euler formula for columns having pin connections at
the ends. The buckling shape or deformation is influenced by the type of end connections as shown
in Figure 3.12.3. This is explored in Chapter 9.

Figur 3.12.3 Types of buckling deformatio (Wikipedia)

Since buckling deformation is a transverse deformation the applied load must be able travel so the
model has the compressive load mounted on a rail as shown in Figure 3.12.4.
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Figure 3.12.4 lllustration of pinned column buckling

The Euler buckling model is developed using a free body diagram of the part of the buckling
deformation shown in Figure 3.12.4b. In the model the pin supports cannot deflect. These conditions
are translated to the boundary conditions on the differential equations describing the model. Small
deflections are also assumed so that the relations from pure bending are incorporated into the
development. One anomaly is that the original length L of the column and the deflected length L’ are
considered the same even though they are visually different - even in the experimental setups above.
It is necessary for the completeness of mathematical model since two boundary conditions are
required. The model development is shown in Figure 3.12.5.

(a) physical (b) Mathematical (c) FBD

Figure 3.12.5 Euler buckling model

First apply the equations of equilibrium:
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Now replace the bending moment M through its relationship to the radius of curvature in pure bending
(3.48) as:
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In the above equation x is considered the independent variable and y is the dependent variable. The
solution being sought is y as a function of x or y(x). The final equation is called a differential equation
since it contains derivatives and there is an equal to sign in the expression. It is usually expressed by
grouping terms in the dependent variable on the left side of the equal sign.

The equation is considered homogeneous if there is no terms on the right of the equal to sign. The
order of the equation is based on the highest derivative in the expression. If the powers of the terms
involving the dependent variable and the derivatives is one then it is considered linear. If the
coefficients of the terms on the left are constant it is considered a c